Delay-Robust Event-Scheduling In Memoriam of A. Caprara

Size: px
Start display at page:

Download "Delay-Robust Event-Scheduling In Memoriam of A. Caprara"

Transcription

1 Delay-Robust Event-Scheduling In Memoriam of A. Caprara A. Caprara 1 L. Galli 2 S. Stiller 3 P. Toth 1 1 University of Bologna 2 University of Pisa 3 Technische Universität Berlin 17th Combinatorial Optimization Workshop January 7-11, 2013 Aussois, France

2 Outline Delay-Robust Event-Scheduling Robustness Framework

3 Outline Delay-Robust Event-Scheduling Robustness Framework Train Platforming Problem In and Out TPP deterministic model

4 Outline Delay-Robust Event-Scheduling Robustness Framework Train Platforming Problem In and Out TPP deterministic model Delay-Robust Train Platforming Delay propagation network Buffers linking constraints

5 Outline Delay-Robust Event-Scheduling Robustness Framework Train Platforming Problem In and Out TPP deterministic model Delay-Robust Train Platforming Delay propagation network Buffers linking constraints Computational results

6 Outline Delay-Robust Event-Scheduling Robustness Framework Train Platforming Problem In and Out TPP deterministic model Delay-Robust Train Platforming Delay propagation network Buffers linking constraints Computational results References

7 Delay-Robust Event-Scheduling Robustness Robust Optimization Robust Optimization finds best solutions, which are feasible for all likely scenarios.

8 Delay-Robust Event-Scheduling Robustness Robust Optimization Robust Optimization finds best solutions, which are feasible for all likely scenarios. Pros no knowledge of the underlying distribuition is required

9 Delay-Robust Event-Scheduling Robustness Robust Optimization Robust Optimization finds best solutions, which are feasible for all likely scenarios. Pros no knowledge of the underlying distribuition is required Cons Strict robustness is generally overconservative, because: solutions must cope with every likely scenarios without any recovery

10 Delay-Robust Event-Scheduling Robustness Recoverable Robustness Informally speaking, a solution to an optimization problem is called recovery robust if it can be adjusted to all likely scenarios by limited recovery action. Thus a recovery-robust solution provides a service guarantee (Liebchen et al [3], Stiller 2008 [4]).

11 Delay-Robust Event-Scheduling Robustness Robust Network Buffering We are interested in the special case in which the recovery problem is a delay (d e ) propagation in some directed graph N =(E,A), which is buffered on the arcs against disturbances on the nodes e E. Details in Liebchen et al [3], Stiller 2008 [4].

12 Delay-Robust Event-Scheduling Framework A framework A set E of events to be scheduled. Denoting by F the set of feasible schedulings of events E, i.e., the feasible region, a nominal problem of the form min{c(x):x F}. A set S of possible scenarios, where each scenario s S is defined by the external disturbance δ s e 0 assigned to each event e E. A delay-propagation network N =(E,A), with (e,e) A if a delay d e on event e may propagate to a delay d e on event e. A delay d e on event e may propagate to a delay d e on event e according to the relation d e d e b((e,e),x), where b((e,e),x) is a buffer time function.

13 Delay-Robust Event-Scheduling Framework Mathematical model The delay-robust problem can be formulated as: minc(x)+d, (1) subject to x F, (2) D de, s s S, (3) e E d s e δ s e, e E, s S, (4) d s e d s e f (e,e), (e,e) A, s S, (5) f (e,e) =b((e,e),x), (e,e) A. (6)

14 Delay-Robust Event-Scheduling Framework Scenario set {δ s R E + : δs 1 } (7) These are uncountably many scenarios, which can however be handled easily thanks to the following observation. Proposition For the delay-robust problem (1)-(6), the compact scenario set defined by (7) is equivalent to the finite scenario set S defined by the vectors which contains only E scenarios. {δ s {0, } E : δ s 1 = },

15 Delay-Robust Event-Scheduling Framework Quadratic buffer time function In the most natural case, the buffer time b((e,e),x) only depends on the way in which events e and e are scheduled in x, and is independent of the scheduling of the other events: f (e,e) = ϕ(e,h,e,h) x e,h x e,h, h H e h H e These quadratic constraints can be linearised in a few ways. (e,e) A.

16 Delay-Robust Event-Scheduling Framework Projecting out delay variables One may directly optimise over the feasible region obtained by projecting out the d s e variables (and removing the constraints (3)-(5)). Let σ f (s,ē) be the value of the shortest path from s to ē E on the delay propagation network N =(E,A) with arc lengths f (e,e) for (e,e) A. Moreover, let P f (s,ē) A denote such a shortest path. Lemma Given buffer time values f (e,e), an external disturbance equal to on event s E (and null for the other events) propagates to a delay of value max{0, σ f (s,ē)} on event ē E.

17 Delay-Robust Event-Scheduling Framework Projecting out delay variables (cont.) A direct consequence is: Lemma Given buffer time values f (e,e) and maximum cumulative delay D, for every scenario s S there exist values of the d s e variables satisfying (3)-(5) if and only if e E max{0, σ f (s,e)} D. Otherwise, for the considered scenario s, letting E f (s) E be the set of events such that σ f (s,e)>0, a valid inequality that is violated by f (e,e) and D is f a E f (s) D. e E f (s) a P f (s,e)

18 Train Platforming Problem Problem definition The objective of train platforming is assigning trains to platforms in a railway station.

19 Train Platforming Problem Problem definition The objective of train platforming is assigning trains to platforms in a railway station. Platforming is carried out:

20 Train Platforming Problem Problem definition The objective of train platforming is assigning trains to platforms in a railway station. Platforming is carried out: for a specific railway station

21 Train Platforming Problem Problem definition The objective of train platforming is assigning trains to platforms in a railway station. Platforming is carried out: for a specific railway station after the timetable has been defined

22 Train Platforming Problem In and Out In and Out

23 Train Platforming Problem In and Out In and Out Input Train schedule : arrival, departure times, directions and allowed shifts Railway station topology: platforms, paths and directions

24 Train Platforming Problem In and Out In and Out Input Train schedule : arrival, departure times, directions and allowed shifts Railway station topology: platforms, paths and directions Output Assign each train a platform and two paths for arrival and departure s.t. no operational constraint is violated

25 Train Platforming Problem In and Out Train schedule PALERMO C.LE FN DIR L arrival and departure times directions and preference list shifts Figure: Train Schedule The train schedule of a railway station contains info on arrival and departure times, directions and allowed shifts of each train passing through it.

26 Train Platforming Problem In and Out Railway station topology MILANO (1) 1 PADOVA (2) 2 FIRENZE (3) 3 4 DEPOT (4) Figure: Topology The topology of a railway station includes platforms, paths and directions.

27 Train Platforming Problem TPP deterministic model Resources and operational constraints A B C D Platform conflicts are forbidden, path conflicts are allowed to some extent. E F G :00 23:59 MILANO (1) PADOVA (2) FIRENZE (3) A,D,G B,E C,F 4 DEPOT (4) Figure: Platform and path. A pattern P for a train t is a 5-tuple defining: platform, arrival/departure paths and shifts. Operational constraints can be expressed using an incompatibility graph among patterns. Figure: Incompatibility graph.

28 Train Platforming Problem TPP deterministic model TPP deterministic model s.t. min c t,p x t,p t T P P t P P t x t,p =1, x t,p 1, (t,p) K x t,p {0,1}, Details in Caprara et al [1]. t T K K t T, P P t

29 Delay-Robust Train Platforming Delay propagation network Delay propagation network The platforming gives rise to a network in which the delay caused by disturbances propagates.

30 Delay-Robust Train Platforming Delay propagation network Delay propagation network The platforming gives rise to a network in which the delay caused by disturbances propagates. We consider two type of disturbances: (i) the train arrives late at the station, and (ii) the platform operations take longer than required.

31 Delay-Robust Train Platforming Delay propagation network Delay propagation network The platforming gives rise to a network in which the delay caused by disturbances propagates. We consider two type of disturbances: (i) the train arrives late at the station, and (ii) the platform operations take longer than required. Hence, the following two events are associated with each train t T and define E: arrival a t : the train occupies a given arrival path at a given instant departure p t : the train frees its platform at a given instant

32 Delay-Robust Train Platforming Delay propagation network Example Assume that in the nominal solution trains t and t stop at the same platform, event p t is scheduled at 10:00, and event a t at 10:04 with 3 minutes to travel along the arrival path, so that t occupies the platform at 10:07. Moreover, assume that the headway time that must elapse between t freeing the platform and t occupying it is 2 minutes and that the 3-minute travel time for t along its arrival path is fixed. If the departure path of t and the arrival path of t are compatible, the buffer time f (pt,a t ) is equal to 5 minutes, as a delay of up to 5 minutes on p t does not affect a t, whereas a larger one does.

33 Delay-Robust Train Platforming Delay propagation network Delay-robust mathematical model subject to min c t,p x t,p +D t T P P t P P t x t,p =1, t T, x t,p 1, K K, (t,p) K x t,p {0,1}, t T, P P t, f (e,e) = c P1,P 2,a x t1,p 1 x t2,p 2, P 1 P t1 P 2 P t2 (e,e) A, D de, s s S, e E d s e δ s e, e E, s S, d s e d s e f (e,e), (e,e) A, s S.

34 Delay-Robust Train Platforming Buffers linking constraints Buffers linking constraints A straightforward link between the buffer value of a given arc a A(N) associated with train pair (t 1,t 2 ) T 2 and the choice of patterns for the given pair of trains is the following: c P1,P 2,a x t1,p 1 x t2,p 2 P 1 P t1 P 2 P t2 where c a,p1,p 2 is a constant associated to arc a and to the corresponding choice of patterns (P 1,P 2 ) for trains (t 1,t 2 ).

35 Delay-Robust Train Platforming Buffers linking constraints Buffers linking constraints f a P 1 P t1 α a P 1 x t1,p 1 + P 2 P t2 β a P 2 x t2,p 2 γ a, a A(N), (α,β,γ) F a (8) Following Caprara et al [1], the separation of Constraints (8) is done by a sort of polyhedral brute force, given that, for each pair of trains t 1,t 2, and for each arc a A(N) the number of vertices in Q t1,t 2,a is small. Specifically, Q t1,t 2,a has P t1 P t2 vertices and lies in R P t 1 + P t2 +1, so we can separate over it by solving an LP with P t1 P t2 variables and P t1 + P t2 +1 constraints.

36 Computational results Computational results: Palermo C.Le. [1] Solution Delay-Robust LP Delay-Robust Solution instance D time D time D %gap %reduction time PA I % 29% 9788 PA II % 16% 3892 PA III % 22% 5411 PA IV % 13% 1417 Table: Results for the real-world instances of Rete Ferroviaria Italiana.

37 Computational results Computational results: Genova P.Principe [1] Solution Delay-Robust LP Delay-Robust Solution instance D time D time D %gap %reduction time GE I % 19% 147 GE II % 35% GE III % 19% 1086 GE IV % 34% 274 Table: Results for the real-world instances of Rete Ferroviaria Italiana.

38 Computational results Computational results: Bari C.Le. [1] Solution Delay-Robust LP Delay-Robust Solution instance D time D time D %gap %reduction time BA I % 23% 1095 BA II % 0% 5 BA III % 8% 525 BA IV % 6% 2431 BA V % 7% 3204 BA VI % 0% 5 BA VII % 27% 4126 BA VIII % 19% 535 Table: Results for the real-world instances of Rete Ferroviaria Italiana.

39 Computational results Computational results: Milano C.Le. [1] Solution Delay-Robust LP Delay-Robust Solution instance D time D time D %gap %reduction time MI I % 1% 201 MI II % 13% 2415 MI III % 25% 938 MI IV % 11% 2547 MI V % 44% 2503 MI VI % 9% 618 Table: Results for the real-world instances of Rete Ferroviaria Italiana.

40 Questions Thank you!

41 References References A. Caprara, L. Galli and P. Toth (2011). Solution of the Train Platforming Problem. Tran. Sci., 45(2), A. Caprara, L. Galli and P. Toth (2012). Delay-Robust Event-Scheduling Submitted. C. Liebchen, M. Lübbecke, R.H. Möhring, and S.Stiller (2009). The Concept of Recoverable Robustness, Linear Programming Recovery, and Railway Applications. In R.K. Ahuja, R.H. Möhring and C.D. Zaroliagis (eds.), Robust and On-Line Large Scale Optimization. Lecture Notes in Computer Science 5868, Springer-Verlag, S. Stiller (2008). Extending Concepts of Reliability PhD thesis, Institut für Mathematik, Technische Universität Berlin, Berlin, Germany.

Solution of the Train Platforming Problem

Solution of the Train Platforming Problem Solution of the Train Platforming Problem Alberto Caprara, Laura Galli, and Paolo Toth DEIS, University of Bologna Viale Risorgimento 2, 40136 Bologna, Italy {alberto.caprara,l.galli,paolo.toth}@unibo.it

More information

LIGHT ROBUSTNESS. Matteo Fischetti, Michele Monaci. DEI, University of Padova. 1st ARRIVAL Annual Workshop and Review Meeting, Utrecht, April 19, 2007

LIGHT ROBUSTNESS. Matteo Fischetti, Michele Monaci. DEI, University of Padova. 1st ARRIVAL Annual Workshop and Review Meeting, Utrecht, April 19, 2007 LIGHT ROBUSTNESS Matteo Fischetti, Michele Monaci DEI, University of Padova 1st ARRIVAL Annual Workshop and Review Meeting, Utrecht, April 19, 2007 Work supported by the Future and Emerging Technologies

More information

Stochastic prediction of train delays with dynamic Bayesian networks. Author(s): Kecman, Pavle; Corman, Francesco; Peterson, Anders; Joborn, Martin

Stochastic prediction of train delays with dynamic Bayesian networks. Author(s): Kecman, Pavle; Corman, Francesco; Peterson, Anders; Joborn, Martin Research Collection Other Conference Item Stochastic prediction of train delays with dynamic Bayesian networks Author(s): Kecman, Pavle; Corman, Francesco; Peterson, Anders; Joborn, Martin Publication

More information

Timetabling and Robustness Computing Good and Delay-Resistant Timetables

Timetabling and Robustness Computing Good and Delay-Resistant Timetables Timetabling and Robustness Computing Good and Delay-Resistant Timetables Rolf Möhring GK MDS, 24 Nov 2008 DFG Research Center MATHEON mathematics for key technologies Overview The Periodic Event Scheduling

More information

Towards Solving Very Large Scale Train Timetabling Problems by Lagrangian Relaxation

Towards Solving Very Large Scale Train Timetabling Problems by Lagrangian Relaxation Towards Solving Very Large Scale Train Timetabling Problems by Lagrangian Relaxation Frank Fischer 1, Christoph Helmberg 1, Jürgen Janßen 2, Boris Krostitz 2 1 Technical University of Chemnitz, Department

More information

Min-max-min robustness: a new approach to combinatorial optimization under uncertainty based on multiple solutions 1

Min-max-min robustness: a new approach to combinatorial optimization under uncertainty based on multiple solutions 1 Min-max- robustness: a new approach to combinatorial optimization under uncertainty based on multiple solutions 1 Christoph Buchheim, Jannis Kurtz 2 Faultät Mathemati, Technische Universität Dortmund Vogelpothsweg

More information

Solving Railway Track Allocation Problems

Solving Railway Track Allocation Problems Konrad-Zuse-Zentrum für Informationstechnik Berlin Takustraße 7 D-14195 Berlin-Dahlem Germany RALF BORNDÖRFER THOMAS SCHLECHTE Solving Railway Track Allocation Problems Supported by the Federal Ministry

More information

Improved Railway Timetable Robustness for Reduced Traffic Delays a MILP approach

Improved Railway Timetable Robustness for Reduced Traffic Delays a MILP approach Improved Railway Timetable Robustness for Reduced Traffic Delays a MILP approach Emma V. Andersson 1, Anders Peterson, Johanna Törnquist Krasemann Department of Science and Technology, Linköping University

More information

Non-cyclic Train Timetabling and Comparability Graphs

Non-cyclic Train Timetabling and Comparability Graphs Non-cyclic Train Timetabling and Comparability Graphs Valentina Cacchiani, Alberto Caprara, Paolo Toth DEIS, Università di Bologna, Viale Risorgimento 2, I-40136 Bologna, Italy {valentina.cacchiani,alberto.caprara,paolo.toth}@unibo.it

More information

Robust Timetables for Trains on Single-Line Corridors

Robust Timetables for Trains on Single-Line Corridors Recoverable-Robust Timetables for Trains on Single-Line Corridors Work partially supported by the Future and Emerging Technologies Unit of EC (IST priority - 6th FP), under contract no. FP6-021235-2 (project

More information

A new robust approach for a production scheduling and delivery routing problem

A new robust approach for a production scheduling and delivery routing problem A new robust approach for a production scheduling and delivery routing problem Azeddine Cheref, Christian Artigues, Jean-Charles Billaut To cite this version: Azeddine Cheref, Christian Artigues, Jean-Charles

More information

Bicriterial Delay Management

Bicriterial Delay Management Universität Konstanz Bicriterial Delay Management Csaba Megyeri Konstanzer Schriften in Mathematik und Informatik Nr. 198, März 2004 ISSN 1430 3558 c Fachbereich Mathematik und Statistik c Fachbereich

More information

Application field and optimal co-ordination of fixed interval timetable services in passenger interchanges

Application field and optimal co-ordination of fixed interval timetable services in passenger interchanges Urban Transport 133 Application field and optimal co-ordination of fixed interval timetable services in passenger interchanges C. Lorenzini & S. Ricci University of Rome La Sapienza - DITS - Transport

More information

On max-algebraic models for transportation networks

On max-algebraic models for transportation networks K.U.Leuven Department of Electrical Engineering (ESAT) SISTA Technical report 98-00 On max-algebraic models for transportation networks R. de Vries, B. De Schutter, and B. De Moor If you want to cite this

More information

When Periodic Timetables are Suboptimal

When Periodic Timetables are Suboptimal Konrad-Zuse-Zentrum ür Inormationstechnik Berlin akustraße 7 D-14195 Berlin-Dahlem Germany RALF BORNDÖRFER CHRISIAN LIEBCHEN When Periodic imetables are Suboptimal his work was unded by the DFG Research

More information

Algorithms for a Special Class of State-Dependent Shortest Path Problems with an Application to the Train Routing Problem

Algorithms for a Special Class of State-Dependent Shortest Path Problems with an Application to the Train Routing Problem Algorithms fo Special Class of State-Dependent Shortest Path Problems with an Application to the Train Routing Problem Lunce Fu and Maged Dessouky Daniel J. Epstein Department of Industrial & Systems Engineering

More information

Recoverable Robust Knapsacks: Γ -Scenarios

Recoverable Robust Knapsacks: Γ -Scenarios Recoverable Robust Knapsacks: Γ -Scenarios Christina Büsing, Arie M. C. A. Koster, and Manuel Kutschka Abstract In this paper, we investigate the recoverable robust knapsack problem, where the uncertainty

More information

A Re-optimization Approach for Train Dispatching

A Re-optimization Approach for Train Dispatching Zuse Institute Berlin Takustr. 7 14195 Berlin Germany FRANK FISCHER 1 BORIS GRIMM 2 TORSTEN KLUG 2 THOMAS SCHLECHTE 2 A Re-optimization Approach for Train Dispatching 1 University of Kassel, Algorithmic

More information

Multicommodity Flows and Column Generation

Multicommodity Flows and Column Generation Lecture Notes Multicommodity Flows and Column Generation Marc Pfetsch Zuse Institute Berlin pfetsch@zib.de last change: 2/8/2006 Technische Universität Berlin Fakultät II, Institut für Mathematik WS 2006/07

More information

Models for rescheduling train timetables when passenger s arrivals follow dynamic patterns

Models for rescheduling train timetables when passenger s arrivals follow dynamic patterns Introduction Problem description Problem formulation Computational experience Conclusions Models for rescheduling train timetables when passenger s arrivals follow dynamic patterns Juan A. Mesa 1, Francisco

More information

A control strategy to prevent propagating delays in high-frequency railway systems

A control strategy to prevent propagating delays in high-frequency railway systems A control strategy to prevent propagating delays in high-frequency railway systems Kentaro Wada* Graduate School of Information Sciences, Tohoku University, Sendai, Miyagi, Japan Takashi Akamatsu Graduate

More information

Disaggregation in Bundle Methods: Application to the Train Timetabling Problem

Disaggregation in Bundle Methods: Application to the Train Timetabling Problem Disaggregation in Bundle Methods: Application to the Train Timetabling Problem Abderrahman Ait Ali a,1, Per Olov Lindberg a,2, Jan-Eric Nilsson 3, Jonas Eliasson a,4, Martin Aronsson 5 a Department of

More information

Routing Trains through Railway Stations: Planning, Robustness and Rescheduling. Tessa Matser

Routing Trains through Railway Stations: Planning, Robustness and Rescheduling. Tessa Matser Routing Trains through Railway Stations: Planning, Robustness and Rescheduling Tessa Matser June 10, 2014 Contents 1 Introduction 3 2 Problem Statement 5 2.1 Current situation/planning Process......................

More information

Passenger Routing for Periodic Timetable Optimization

Passenger Routing for Periodic Timetable Optimization Konrad-Zuse-Zentrum für nformationstechnik Berlin Takustraße 7 D-14195 Berlin-Dahlem Germany RALF BORNDÖRFER HEDE HOPPMANN MARKA KARBSTEN Passenger Routing for Periodic Timetable Optimization Supported

More information

An algorithm to make a resilient timetable

An algorithm to make a resilient timetable An algorithm to make a resilient timetable Keisuke Imada a,1, Norio Tomii a,2, a Department of Computer Science, Chiba Institute of Technology 2-17-1, Tsudanuma, Narashino-shi, Chiba, Japan 1 E-mail: imada@tomii.cs.it-chiba.ac.jp,

More information

MULTIOBJECTIVE EVOLUTIONARY ALGORITHM FOR INTEGRATED TIMETABLE OPTIMIZATION WITH VEHICLE SCHEDULING ASPECTS

MULTIOBJECTIVE EVOLUTIONARY ALGORITHM FOR INTEGRATED TIMETABLE OPTIMIZATION WITH VEHICLE SCHEDULING ASPECTS MULTIOBJECTIVE EVOLUTIONARY ALGORITHM FOR INTEGRATED TIMETABLE OPTIMIZATION WITH VEHICLE SCHEDULING ASPECTS Michal Weiszer 1, Gabriel Fedoro 2, Zdene Čujan 3 Summary:This paper describes the implementation

More information

Discrete (and Continuous) Optimization WI4 131

Discrete (and Continuous) Optimization WI4 131 Discrete (and Continuous) Optimization WI4 131 Kees Roos Technische Universiteit Delft Faculteit Electrotechniek, Wiskunde en Informatica Afdeling Informatie, Systemen en Algoritmiek e-mail: C.Roos@ewi.tudelft.nl

More information

Traffic Modelling for Moving-Block Train Control System

Traffic Modelling for Moving-Block Train Control System Commun. Theor. Phys. (Beijing, China) 47 (2007) pp. 601 606 c International Academic Publishers Vol. 47, No. 4, April 15, 2007 Traffic Modelling for Moving-Block Train Control System TANG Tao and LI Ke-Ping

More information

Cost Optimal Train Scheduling

Cost Optimal Train Scheduling Cost Optimal Train Scheduling Thomas Lindner Siemens AG Ackerstraße 22, D-38126 Braunschweig Germany thomas.dr.lindner@siemens.com Uwe T. Zimmermann Braunschweig University of Technology Pockelsstraße

More information

Minimizing Total Delay in Fixed-Time Controlled Traffic Networks

Minimizing Total Delay in Fixed-Time Controlled Traffic Networks Minimizing Total Delay in Fixed-Time Controlled Traffic Networks Ekkehard Köhler, Rolf H. Möhring, and Gregor Wünsch Technische Universität Berlin, Institut für Mathematik, MA 6-1, Straße des 17. Juni

More information

ROPI A Robust Optimization Programming Interface

ROPI A Robust Optimization Programming Interface ROPI A Robust Optimization Programg Interface Version 0.1.0 Marc Goerigk Institute for Numerical and Applied Mathematics University of Göttingen, Germany m.goerigk@math.uni-goettingen.de June 19, 2012

More information

Robust Network Codes for Unicast Connections: A Case Study

Robust Network Codes for Unicast Connections: A Case Study Robust Network Codes for Unicast Connections: A Case Study Salim Y. El Rouayheb, Alex Sprintson, and Costas Georghiades Department of Electrical and Computer Engineering Texas A&M University College Station,

More information

Robust Combinatorial Optimization under Budgeted-Ellipsoidal Uncertainty

Robust Combinatorial Optimization under Budgeted-Ellipsoidal Uncertainty EURO Journal on Computational Optimization manuscript No. (will be inserted by the editor) Robust Combinatorial Optimization under Budgeted-Ellipsoidal Uncertainty Jannis Kurtz Received: date / Accepted:

More information

The Clique Problem with Multiple-Choice Constraints under a Cycle-Free Dependency Graph

The Clique Problem with Multiple-Choice Constraints under a Cycle-Free Dependency Graph The Clique Problem with Multiple-Choice Constraints under a Cycle-Free Dependency Graph Andreas Bärmann 1, Patrick Gemander 1 and Maximilian Merkert 2 1 Andreas.Baermann@math.uni-erlangen.de Patrick.Gemander@fau.de

More information

The recoverable robust spanning tree problem with interval costs is polynomially solvable

The recoverable robust spanning tree problem with interval costs is polynomially solvable Optim Lett (2017) 11:17 30 DOI 10.1007/s11590-016-1057-x ORIGINAL PAPER The recoverable robust spanning tree problem with interval costs is polynomially solvable Mikita Hradovich 1 Adam Kasperski 2 Paweł

More information

Technische Universität München, Zentrum Mathematik Lehrstuhl für Angewandte Geometrie und Diskrete Mathematik. Combinatorial Optimization (MA 4502)

Technische Universität München, Zentrum Mathematik Lehrstuhl für Angewandte Geometrie und Diskrete Mathematik. Combinatorial Optimization (MA 4502) Technische Universität München, Zentrum Mathematik Lehrstuhl für Angewandte Geometrie und Diskrete Mathematik Combinatorial Optimization (MA 4502) Dr. Michael Ritter Problem Sheet 1 Homework Problems Exercise

More information

On The Recoverable Robust Traveling Salesman Problem

On The Recoverable Robust Traveling Salesman Problem On The Recoverable Robust Traveling Salesman Problem André Chassein and Marc Goerigk Fachbereich Mathematik, Technische Universität Kaiserslautern, Germany Abstract We consider an uncertain traveling salesman

More information

Models and Algorithms for Combinatorial Optimization Problems arising in Railway Applications

Models and Algorithms for Combinatorial Optimization Problems arising in Railway Applications UNIVERSITÀ DEGLI STUDI DI BOLOGNA Dottorato di Ricerca in Automatica e Ricerca Operativa MAT/09 XIX Ciclo Models and Algorithms for Combinatorial Optimization Problems arising in Railway Applications Valentina

More information

Distributed model predictive control for railway traffic management

Distributed model predictive control for railway traffic management Delft University of Technology Delft Center for Systems and Control Technical report 16-013 Distributed model predictive control for railway traffic management B. Kersbergen, T. van den Boom, and B. De

More information

Delay management with capacity considerations.

Delay management with capacity considerations. Bachelor Thesis Econometrics Delay management with capacity considerations. Should a train wait for transferring passengers or not, and which train goes first? 348882 1 Content Chapter 1: Introduction...

More information

Optimizing regular symmetric timetables: a method to reach the best modal split for railway

Optimizing regular symmetric timetables: a method to reach the best modal split for railway Optimizing regular symmetric timetables: a method to reach the best modal split for railway Maurizio Bruglieri Dipartimento di Design, Politecnico di Milano via Durando 38/a, 20158 Milano. E-mail: maurizio.bruglieri@polimi.it

More information

Abstract. 1 Introduction

Abstract. 1 Introduction The max-plus algebra approach to railway timetable design R.M.P. Goverde Faculty of Civil Engineering and Geo Sciences, Delft University o/ Tec/mob^ f 0 Boz ^% ggoo G^ De% 7/^e A^e^er/a^^ email: goverde@ct.tudelft.nl

More information

ecompass ecompass TR 023 Robust Routing in Urban Public Transportation

ecompass ecompass TR 023 Robust Routing in Urban Public Transportation Project Number 288094 ecompass eco-friendly urban Multi-modal route PlAnning Services for mobile users STREP Funded by EC, INFSO-G4(ICT for Transport) under FP7 ecompass TR 023 Robust Routing in Urban

More information

16.1 Min-Cut as an LP

16.1 Min-Cut as an LP 600.469 / 600.669 Approximation Algorithms Lecturer: Michael Dinitz Topic: LPs as Metrics: Min Cut and Multiway Cut Date: 4//5 Scribe: Gabriel Kaptchuk 6. Min-Cut as an LP We recall the basic definition

More information

Reliability and Delay Distributions of Train Connections

Reliability and Delay Distributions of Train Connections Reliability and Delay Distributions of Train Connections Mohammad H. Keyhani, Mathias Schnee, Karsten Weihe, and Hans-Peter Zorn Darmstadt University of Technology, Computer Science, Hochschulstraße 10,

More information

Efficient Workplan Management in Maintenance Tasks

Efficient Workplan Management in Maintenance Tasks Efficient Workplan Management in Maintenance Tasks Michel Wilson a Nico Roos b Bob Huisman c Cees Witteveen a a Delft University of Technology, Dept of Software Technology b Maastricht University, Dept

More information

Embedded Systems - FS 2018

Embedded Systems - FS 2018 Institut für Technische Informatik und Kommunikationsnetze Prof. L. Thiele Embedded Systems - FS 2018 Sample solution to Exercise 3 Discussion Date: 11.4.2018 Aperiodic Scheduling Task 1: Earliest Deadline

More information

arxiv: v1 [cs.ds] 22 Apr 2013

arxiv: v1 [cs.ds] 22 Apr 2013 Chain minors are FPT Jaros law B lasiok 1 and Marcin Kamiński 2 1 Instytut Informatyki Uniwersytet Warszawski jb291202@students.mimuw.edu.pl arxiv:1304.5849v1 [cs.ds] 22 Apr 2013 2 Département d Informatique

More information

The prediction of passenger flow under transport disturbance using accumulated passenger data

The prediction of passenger flow under transport disturbance using accumulated passenger data Computers in Railways XIV 623 The prediction of passenger flow under transport disturbance using accumulated passenger data T. Kunimatsu & C. Hirai Signalling and Transport Information Technology Division,

More information

Earliest Arrival Flows in Networks with Multiple Sinks

Earliest Arrival Flows in Networks with Multiple Sinks Electronic Notes in Discrete Mathematics 36 (2010) 607 614 www.elsevier.com/locate/endm Earliest Arrival Flows in Networks with Multiple Sinks Melanie Schmidt 2 Lehrstuhl II, Fakultät für Informatik Technische

More information

Scheduling under Uncertainty: Optimizing against a Randomizing Adversary

Scheduling under Uncertainty: Optimizing against a Randomizing Adversary Scheduling under Uncertainty: Optimizing against a Randomizing Adversary Rolf H. Möhring Technische Universität Berlin, 0 Berlin, Germany moehring@math.tu-berlin.de http://www.math.tu-berlin.de/~moehring/

More information

2. Project management

2. Project management 2. Project management In what follows, we consider production processes where only a single item of a specific product is produced in the planning horizon In this case specific instruments for planning

More information

SOME FACTORS INFLUENCING THE REGULARITY OF SHORT HEADWAY URBAN BUS OPERATION*

SOME FACTORS INFLUENCING THE REGULARITY OF SHORT HEADWAY URBAN BUS OPERATION* NZOR volume 4 number 2 July 1976 SOME FACTORS INFLUENCING THE REGULARITY OF SHORT HEADWAY URBAN BUS OPERATION* W.J, Frith M inistry of Transport W ellington S u m m a r y T h e i m p o r t a n c e o f

More information

A Mixed Integer Linear Program for Optimizing the Utilization of Locomotives with Maintenance Constraints

A Mixed Integer Linear Program for Optimizing the Utilization of Locomotives with Maintenance Constraints A Mixed Integer Linear Program for with Maintenance Constraints Sarah Frisch Philipp Hungerländer Anna Jellen Dominic Weinberger September 10, 2018 Abstract In this paper we investigate the Locomotive

More information

arxiv: v1 [math.oc] 8 Mar 2018

arxiv: v1 [math.oc] 8 Mar 2018 A discrete event traffic model explaining the traffic phases of the train dynamics on a linear metro line with demand-dependent control Florian Schanzenbächer 1, Nadir Farhi 2, Fabien Leurent 3, Gérard

More information

Passenger-oriented railway disposition timetables in case of severe disruptions

Passenger-oriented railway disposition timetables in case of severe disruptions Passenger-oriented railway disposition timetables in case of severe disruptions Stefan Binder Yousef Maknoon Michel Bierlaire STRC 2015, April 17th Outline Motivation Problem description Research question

More information

Temporal Constraint Networks

Temporal Constraint Networks Ch. 5b p.1/49 Temporal Constraint Networks Addition to Chapter 5 Ch. 5b p.2/49 Outline Temporal reasoning Qualitative networks The interval algebra The point algebra Quantitative temporal networks Reference:

More information

A Case Study in Periodic Timetabling

A Case Study in Periodic Timetabling ATMOS 2002 Preliminary Version A Case Study in Periodic Timetabling Christian Liebchen and Rolf H. Möhring Technische Universität Berlin, Institut für Mathematik, Straße des 17. Juni 136, D-10623 Berlin

More information

Alexander Schrijver. 1. Introduction

Alexander Schrijver. 1. Introduction Doc. Math. J. DMV 1!" $#%&%!"' Alexander Schrijver Abstract. We discuss how decomposing the search space into homotopy classes can help in finding solutions to combinatorial optimization problems. Searching

More information

Solving the MWT. Recall the ILP for the MWT. We can obtain a solution to the MWT problem by solving the following ILP:

Solving the MWT. Recall the ILP for the MWT. We can obtain a solution to the MWT problem by solving the following ILP: Solving the MWT Recall the ILP for the MWT. We can obtain a solution to the MWT problem by solving the following ILP: max subject to e i E ω i x i e i C E x i {0, 1} x i C E 1 for all critical mixed cycles

More information

where B = B(U) and Lemma 2: For an uncertain discrete event system over the

where B = B(U) and Lemma 2: For an uncertain discrete event system over the 2009 American Control Conference Hyatt Regency Riverfront, St. Louis, MO, USA June 10-12, 2009 FrB05.3 Robust Invariance in Uncertain Discrete Event Systems with Applications to Transportation Networks

More information

Introduction to Algorithms

Introduction to Algorithms Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 18 Prof. Erik Demaine Negative-weight cycles Recall: If a graph G = (V, E) contains a negativeweight cycle, then some shortest paths may not exist.

More information

arxiv: v2 [cs.ds] 7 Mar 2016

arxiv: v2 [cs.ds] 7 Mar 2016 The robust recoverable spanning tree problem with interval costs is polynomially solvable arxiv:1602.07422v2 [cs.ds] 7 Mar 2016 Mikita Hradovich, Adam Kasperski, Pawe l Zieliński Faculty of Fundamental

More information

Projection, Consistency, and George Boole

Projection, Consistency, and George Boole Projection, Consistency, and George Boole John Hooker Carnegie Mellon University CP 2015, Cork, Ireland Projection as a Unifying Concept Projection underlies both optimization and logical inference. Optimization

More information

Solving a Real-World Train Unit Assignment Problem

Solving a Real-World Train Unit Assignment Problem Solving a Real-World Train Unit Assignment Problem Valentina Cacchiani, Alberto Caprara, and Paolo Toth DEIS, University of Bologna, Viale Risorgimento 2, I-40136 Bologna, Italy, valentina.cacchiani@unibo.it,acaprara@deis.unibo.it,paolo.toth@unibo.it

More information

(1) The starting point is the precedence table (aka dependence table) Immediately preceding activities

(1) The starting point is the precedence table (aka dependence table) Immediately preceding activities Critical Path Analysis (10 pages; 1/5/16) fmng.uk (1) The starting point is the precedence table (aka dependence table) Example Activity Duration Immediately preceding activities A 4 - B 5 - C 6 A,B D

More information

A Bicriteria Approach to Robust Optimization

A Bicriteria Approach to Robust Optimization A Bicriteria Approach to Robust Optimization André Chassein and Marc Goerigk Fachbereich Mathematik, Technische Universität Kaiserslautern, Germany Abstract The classic approach in robust optimization

More information

2 GRAPH AND NETWORK OPTIMIZATION. E. Amaldi Introduction to Operations Research Politecnico Milano 1

2 GRAPH AND NETWORK OPTIMIZATION. E. Amaldi Introduction to Operations Research Politecnico Milano 1 2 GRAPH AND NETWORK OPTIMIZATION E. Amaldi Introduction to Operations Research Politecnico Milano 1 A variety of decision-making problems can be formulated in terms of graphs and networks Examples: - transportation

More information

T-12 / Informed Traveller

T-12 / Informed Traveller T-12 Informed Traveller Paul McMahon Route Managing Director, Freight & National Passenger Operators Transport Focus Board 15 May 2018 1 A brief recap on context Network Rail offered May 2018 TT in November

More information

Management of intermodal container terminals using feedback control

Management of intermodal container terminals using feedback control Management of intermodal container terminals using feedback control A. Alessandri, S. Sacone $, S.Siri $ Institute of Intelligent Systems for Automation ISSIA-CNR National Research Council of Italy Via

More information

1.225 Transportation Flow Systems Quiz (December 17, 2001; Duration: 3 hours)

1.225 Transportation Flow Systems Quiz (December 17, 2001; Duration: 3 hours) 1.225 Transportation Flow Systems Quiz (December 17, 2001; Duration: 3 hours) Student Name: Alias: Instructions: 1. This exam is open-book 2. No cooperation is permitted 3. Please write down your name

More information

On the knapsack closure of 0-1 Integer Linear Programs. Matteo Fischetti University of Padova, Italy

On the knapsack closure of 0-1 Integer Linear Programs. Matteo Fischetti University of Padova, Italy On the knapsack closure of 0-1 Integer Linear Programs Matteo Fischetti University of Padova, Italy matteo.fischetti@unipd.it Andrea Lodi University of Bologna, Italy alodi@deis.unibo.it Aussois, January

More information

A unique representation of polyhedral types. Centering via Möbius transformations

A unique representation of polyhedral types. Centering via Möbius transformations Mathematische Zeitschrift manuscript No. (will be inserted by the editor) A unique representation of polyhedral types. Centering via Möbius transformations Boris A. Springborn Boris Springborn Technische

More information

PETER, a performance evaluator for railway timetables

PETER, a performance evaluator for railway timetables PETER, a performance evaluator for railway timetables G. Soto y Koelemeijer*, A.R. lounoussov*, R.M.P. Goverde^ & R.J. van Egmond* ^Faculty ofinformation Technology and Systems, Delft University of Technology,

More information

Pareto Efficiency in Robust Optimization

Pareto Efficiency in Robust Optimization Pareto Efficiency in Robust Optimization Dan Iancu Graduate School of Business Stanford University joint work with Nikolaos Trichakis (HBS) 1/26 Classical Robust Optimization Typical linear optimization

More information

Travelling Salesman Problem

Travelling Salesman Problem Travelling Salesman Problem Fabio Furini November 10th, 2014 Travelling Salesman Problem 1 Outline 1 Traveling Salesman Problem Separation Travelling Salesman Problem 2 (Asymmetric) Traveling Salesman

More information

Optimization Problems with Probabilistic Constraints

Optimization Problems with Probabilistic Constraints Optimization Problems with Probabilistic Constraints R. Henrion Weierstrass Institute Berlin 10 th International Conference on Stochastic Programming University of Arizona, Tucson Recommended Reading A.

More information

Recoverable Robustness in Scheduling Problems

Recoverable Robustness in Scheduling Problems Master Thesis Computing Science Recoverable Robustness in Scheduling Problems Author: J.M.J. Stoef (3470997) J.M.J.Stoef@uu.nl Supervisors: dr. J.A. Hoogeveen J.A.Hoogeveen@uu.nl dr. ir. J.M. van den Akker

More information

Robust Optimal Discrete Arc Sizing for Tree-Shaped Potential Networks

Robust Optimal Discrete Arc Sizing for Tree-Shaped Potential Networks Robust Optimal Discrete Arc Sizing for Tree-Shaped Potential Networks Martin Robinius, Lars Schewe, Martin Schmidt, Detlef Stolten, Johannes Thürauf, Lara Welder Abstract. We consider the problem of discrete

More information

The Modeling Power of the Periodic. Railway Timetables and Beyond

The Modeling Power of the Periodic. Railway Timetables and Beyond FAKULTÄT II MATHEMATIK UND NATURWISSENSCHAFTEN Institut für Mathematik The Modeling Power of the Periodic Event Scheduling Problem: Railway Timetables and Beyond by Christian Liebchen Rolf H. Möhring TU

More information

Universität Augsburg

Universität Augsburg Universität Augsburg Properties of Overwriting for Updates in Typed Kleene Algebras Thorsten Ehm Report 2000-7 Dezember 2000 Institut für Informatik D-86135 Augsburg Copyright c Thorsten Ehm Institut für

More information

Temporal Constraint Networks

Temporal Constraint Networks Ch. 6b p.1/49 Temporal Constraint Networks Addition to Chapter 6 Ch. 6b p.2/49 Outline Temporal reasoning Qualitative networks The interval algebra The point algebra Quantitative temporal networks Reference:

More information

Topics in Approximation Algorithms Solution for Homework 3

Topics in Approximation Algorithms Solution for Homework 3 Topics in Approximation Algorithms Solution for Homework 3 Problem 1 We show that any solution {U t } can be modified to satisfy U τ L τ as follows. Suppose U τ L τ, so there is a vertex v U τ but v L

More information

arxiv: v2 [cs.ds] 27 Aug 2016

arxiv: v2 [cs.ds] 27 Aug 2016 ariv:1606.01342v2 [cs.ds] 27 Aug 2016 Recoverable robust spanning tree problem under interval uncertainty representations Mikita Hradovich, Adam Kasperski, Pawe l Zieliński Faculty of Fundamental Problems

More information

Project scheduling with calendars

Project scheduling with calendars OR Spektrum (2001) 23: 325 334 c Springer-Verlag 2001 Project scheduling with calendars Birger Franck, Klaus Neumann, and Christoph Schwindt Institut für Wirtschaftstheorie und Operations Research, University

More information

A lower bound for scheduling of unit jobs with immediate decision on parallel machines

A lower bound for scheduling of unit jobs with immediate decision on parallel machines A lower bound for scheduling of unit jobs with immediate decision on parallel machines Tomáš Ebenlendr Jiří Sgall Abstract Consider scheduling of unit jobs with release times and deadlines on m identical

More information

Methods for the specification and verification of business processes MPB (6 cfu, 295AA)

Methods for the specification and verification of business processes MPB (6 cfu, 295AA) Methods for the specification and verification of business processes MPB (6 cfu, 295AA) Roberto Bruni http://www.di.unipi.it/~bruni 08 - Petri nets basics 1 Object Formalization of the basic concepts of

More information

Scheduling Online Algorithms. Tim Nieberg

Scheduling Online Algorithms. Tim Nieberg Scheduling Online Algorithms Tim Nieberg General Introduction on-line scheduling can be seen as scheduling with incomplete information at certain points, decisions have to be made without knowing the complete

More information

Decentralized Robust Control Invariance for a Network of Integrators

Decentralized Robust Control Invariance for a Network of Integrators 2010 American Control Conference Marriott Waterfront, Baltimore, MD, USA June 30-July 02, 2010 ThC01.2 Decentralized Robust Control Invariance for a Network of Integrators Miroslav Barić and Francesco

More information

Converse Lyapunov theorem and Input-to-State Stability

Converse Lyapunov theorem and Input-to-State Stability Converse Lyapunov theorem and Input-to-State Stability April 6, 2014 1 Converse Lyapunov theorem In the previous lecture, we have discussed few examples of nonlinear control systems and stability concepts

More information

Matroid Optimisation Problems with Nested Non-linear Monomials in the Objective Function

Matroid Optimisation Problems with Nested Non-linear Monomials in the Objective Function atroid Optimisation Problems with Nested Non-linear onomials in the Objective Function Anja Fischer Frank Fischer S. Thomas ccormick 14th arch 2016 Abstract Recently, Buchheim and Klein [4] suggested to

More information

Testing congruence and symmetry for general 3-dimensional objects

Testing congruence and symmetry for general 3-dimensional objects Computational Geometry 27 (2004) 3 11 www.elsevier.com/locate/comgeo Testing congruence and symmetry for general 3-dimensional objects Peter Brass a,,1, Christian Knauer b a Department of Computer Science,

More information

Solving a Production Scheduling Problem as a Time-Dependent Traveling Salesman Problem

Solving a Production Scheduling Problem as a Time-Dependent Traveling Salesman Problem Solving a Production Scheduling Problem as a Time-Dependent Traveling Salesman Problem GABRIELLA STECCO Department of Applied Mathematics, University Ca Foscari of Venice, Dorsoduro n. 3825/E, 30123 Venice,

More information

Minimum Linear Arrangements

Minimum Linear Arrangements Minimum Linear Arrangements Rafael Andrade, Tibérius Bonates, Manoel Câmpelo, Mardson Ferreira ParGO - Research team in Parallel computing, Graph theory and Optimization Department of Statistics and Applied

More information

Time Petri Nets. Miriam Zia School of Computer Science McGill University

Time Petri Nets. Miriam Zia School of Computer Science McGill University Time Petri Nets Miriam Zia School of Computer Science McGill University Timing Specifications Why is time introduced in Petri nets? To model interaction between activities taking into account their start

More information

Memorandum COSOR 95-19, 1995, Eindhoven University of Technology

Memorandum COSOR 95-19, 1995, Eindhoven University of Technology Memorandum COSOR 95-19, 1995, Eindhoven University of Technology A polyhedral approach to the delivery man problem C.A. van Eijl Abstract We propose a mixed integer programming formulation for the delivery

More information

Lagrangean Decomposition for Mean-Variance Combinatorial Optimization

Lagrangean Decomposition for Mean-Variance Combinatorial Optimization Lagrangean Decomposition for Mean-Variance Combinatorial Optimization Frank Baumann, Christoph Buchheim, and Anna Ilyina Fakultät für Mathematik, Technische Universität Dortmund, Germany {frank.baumann,christoph.buchheim,anna.ilyina}@tu-dortmund.de

More information

Chain Minors are FPT. B Marcin Kamiński. 1 Introduction. Jarosław Błasiok 1 Marcin Kamiński 1

Chain Minors are FPT. B Marcin Kamiński. 1 Introduction. Jarosław Błasiok 1 Marcin Kamiński 1 Algorithmica (2017) 79:698 707 DOI 10.1007/s00453-016-0220-1 Chain Minors are FPT Jarosław Błasiok 1 Marcin Kamiński 1 Received: 21 March 2014 / Accepted: 21 September 2016 / Published online: 20 October

More information

EE249 - Fall 2012 Lecture 18: Overview of Concrete Contract Theories. Alberto Sangiovanni-Vincentelli Pierluigi Nuzzo

EE249 - Fall 2012 Lecture 18: Overview of Concrete Contract Theories. Alberto Sangiovanni-Vincentelli Pierluigi Nuzzo EE249 - Fall 2012 Lecture 18: Overview of Concrete Contract Theories 1 Alberto Sangiovanni-Vincentelli Pierluigi Nuzzo Outline: Contracts and compositional methods for system design Where and why using

More information

Railway Crew Rescheduling with Retiming

Railway Crew Rescheduling with Retiming Railway Crew Rescheduling with Retiming Lucas P. Veelenturf 1, Daniel Potthoff 2, Dennis Huisman 2,3, Leo G. Kroon 1,3 1 Rotterdam School of Management and ECOPT, Erasmus University Rotterdam, P.O. Box

More information