AGN feedback and its influence on massive galaxy evolution

Size: px
Start display at page:

Download "AGN feedback and its influence on massive galaxy evolution"

Transcription

1 AGN feedback and its influence on massive galaxy evolution Darren Croton (University of California Berkeley) Simon White, Volker Springel, et al. (MPA) DEEP2 & AEGIS collaborations (Berkeley & everywhere else)

2 Outline Large-scale galaxy surveys have provided a new window into the Universe 1. Simple galaxy formation models 2. The mystery of massive galaxies 3. Is environment important?

3

4 Properties of galaxies Baldry et al Kauffmann et al What is the origin of this bi-modal behaviour?

5 Properties of galaxies Baldry et al What is the origin of this bi-modal behaviour?

6 Semi-analytic galaxy formation models Semi-analytic models couple the analytic evolution of baryons to the dynamical evolution of a dark matter N-body simulation They provide a theoretical framework within which to explore galaxy formation (White & Frenk 1992, Croton et al. 2006)

7 Semi-analytic galaxy formation models Croton et al gas infall and cooling star formation supernova feedback galaxy mergers and starbursts metal enrichment (black hole growth and AGN) Text The physics we implement is simple, parameterised, and motivated by both theory and observation

8 How gas cools in a dark matter halo Furusho et al Infalling gas (fb) will heat to the virial temperature of the dark matter halo 2. The gas can be modelled as an isothermal sphere (!~1/r 2 ) 3. We can predict the rate at which this gas will cool => Where there s fuel, there s fire (i.e. star formation) (Bertschinger 1989, White & Frenk 1991)

9 Cooling rates in the model vs. observation model data ROSAT clusters (taken from Peres et al. 1998) Cooling rates inside the cooling radius

10 The Millennium Run dark matter simulation dark matter particles 500 Mpc/h box side length mass resolution of 8.6 x 10 8 Msun softening of 5 kpc/h up to ~25 million (sub)structures followed ~7 million galaxies identified at z=0 with L B > 0.1LB *

11 The predicted galaxy population The relationship between galaxy colour and stellar mass Croton et al The mean stellar ages of galaxies as a function of galaxy mass

12 The predicted galaxy population Croton et al The galaxy luminosity function grossly overpredicts the abundance of bright galaxies

13 Failure of the model The L<L* bi-modality is reasonably consistent with the observations due to the satellite/central galaxy distinction Clearly this model fails to produce a L>L * galaxy population like that observed. Why? Perhaps a more efficient mechanism is missing that can totally sweep the cold gas out of the galaxy during a merger? Quasar winds inject large amounts of energy into the IGM... Springel et al have used merger triggered quasar events to grow black holes and blow strong winds

14

15 The over-cooling problem However its unlikely that this scenario can work as global mechanism: Quasars are common at high redshift (z~2-3) but not at the present day Halos grow significantly at z<1, thus any gas ejected at high redshift will have been replenished by z=0 De Lucia & Blaizot 2007 Richards et al. 2005

16 The over-cooling problem Locally, in massive clusters we do see substantial hot x-ray halos that should be cooling at their centre The fact that they are not indicates another heating source: low luminosity AGN

17 The AGN radio-mode Heating source that keeps gas out of the central galaxy Motivated by observations in cooling flow clusters Sub-Eddington accretion from hot gas onto black hole Efficient at late times, ongoing heating source ṁ BH 3 m BH V vir L BH = η ṁ BH c 2 black hole accretion rate radio-mode AGN luminosity Croton et al. 2006

18 The effect on cooling rates Suppression of cooling gas cooling flow suppression is most efficient in massive halos at late times

19 z=0 galaxy light

20 New colours and ages of massive galaxies massve galaxies are now red and old, consistent with that observed in the local universe

21 The luminosity function of galaxies The heating source is able to produce the correct knee in the galaxy luminosity function

22 A bi-modal galaxy distribution? spiral blue star-forming! elliptical red dead 1. The hierarchical evolution of dark matter halos provides excessive amounts of baryons at late times that can (presumably) cool on tcool<th 2. Transforming blue, star forming spirals into red and dead ellipticals requires more than just mergers and supernova

23 Is environment important for star formation quenching?

24 The smoothed 2dFGRS density field

25 Galaxy populations vs. environment Croton et al Relative populations: early and late type galaxies 2dFGRS Significant excess of late-type (star forming) galaxies in the voids. Early-type (quiescent) galaxies dominate in the clusters. What processes produce early type galaxies in such under-dense regions of the universe?

26 Theoretical predictions The Millennium Run semi-analytic galaxy formation model The model predicts that there should be a population of red earlytype galaxies in void regions of the universe Croton & Farrar (in prep.)

27 So what is special about void earlytype galaxies? Msun Msun Msun Croton & Farrar (in prep.) SFR vs. redshift in DM halos of fixed final mass

28 So what is special about void earlytype galaxies? Msun Msun Msun Croton & Farrar (in prep.) dashed=cluster solid=mean dotted=void SFR vs. redshift in DM halos of fixed final mass

29 So what is special about void earlytype galaxies? Croton & Farrar (in prep.) Halo mass function in different environments

30 Summary Can we understand massive galaxy formation in a LCDM universe? Quasar winds may shape the properties of high redshift galaxies, but at z<1 they are unlikely to significantly account for the observed properties. A heating source in the form of a low luminosity AGN, feed from the hot halo, is an energetically feasible solution that can dramatically alter the properties of massive galaxy evolution. Galaxies appear to only know about their large-scale environment through their DM halo. Everything I have shown today is publicly available: The full Millennium Run galaxy + halo catalogues (~25 million galaxies/halos, 0<z<127) are now available through the GAVO SQL interface for use by the community see astroph/

The Iguaçu Lectures. Nonlinear Structure Formation: The growth of galaxies and larger scale structures

The Iguaçu Lectures. Nonlinear Structure Formation: The growth of galaxies and larger scale structures April 2006 The Iguaçu Lectures Nonlinear Structure Formation: The growth of galaxies and larger scale structures Simon White Max Planck Institute for Astrophysics z = 0 Dark Matter ROT EVOL Cluster structure

More information

Supernova Feedback in Low and High Mass Galaxies: Luke Hovey 10 December 2009

Supernova Feedback in Low and High Mass Galaxies: Luke Hovey 10 December 2009 Supernova Feedback in Low and High Mass Galaxies: Luke Hovey 10 December 2009 Galactic Winds: Mathews, W. et al. 1971 Effects of Supernovae on the Early Evolution of Galaxies: Larson, R. 1974 The origin

More information

The Millennium Simulation: cosmic evolution in a supercomputer. Simon White Max Planck Institute for Astrophysics

The Millennium Simulation: cosmic evolution in a supercomputer. Simon White Max Planck Institute for Astrophysics The Millennium Simulation: cosmic evolution in a supercomputer Simon White Max Planck Institute for Astrophysics The COBE satellite (1989-1993) Two instruments made maps of the whole sky in microwaves

More information

Feedback and Galaxy Formation

Feedback and Galaxy Formation Heating and Cooling in Galaxies and Clusters Garching August 2006 Feedback and Galaxy Formation Simon White Max Planck Institute for Astrophysics Cluster assembly in ΛCDM Gao et al 2004 'Concordance'

More information

Galaxy Ecology. an Environmental Impact Assessment. Frank van den Bosch (MPIA)

Galaxy Ecology. an Environmental Impact Assessment. Frank van den Bosch (MPIA) Galaxy an Environmental Impact Assessment Frank van den Bosch (MPIA) in collaboration with Xiaohu Yang (SHAO), Houjun Mo (UMass), Simone Weinmann (Zürich) Anna Pasquali (MPIA), Daniel Aquino (MPIA) Aspen,

More information

The Formation of Galaxies: connecting theory to data

The Formation of Galaxies: connecting theory to data Venice, October 2003 The Formation of Galaxies: connecting theory to data Simon D.M. White Max Planck Institute for Astrophysics The Emergence of the Cosmic Initial Conditions > 105 independent ~ 5 measurements

More information

AGN/Galaxy Co-Evolution. Fabio Fontanot (HITS)

AGN/Galaxy Co-Evolution. Fabio Fontanot (HITS) AGN/Galaxy Co-Evolution Fabio Fontanot (HITS) 21/11/2012 AGN activity in theoretical models of galaxy formation Represents a viable solution for a number of long-standing theoretical problems Properties

More information

Mergers and Mass Assembly of Dark Matter Halos & Galaxies

Mergers and Mass Assembly of Dark Matter Halos & Galaxies Mergers and Mass Assembly of Dark Matter Halos & Galaxies Chung-Pei Ma Onsi Fakhouri James McBride (UC Berkeley) Mike Boylan-Kolchin (MPA --> Southern UC) Claude-Andre Faucher-Giguere Dusan Keres (Harvard

More information

Galaxy Activity in Semi Analytical Models. Fabio Fontanot (INAF OATs) Ljubljana 05/04/11

Galaxy Activity in Semi Analytical Models. Fabio Fontanot (INAF OATs) Ljubljana 05/04/11 Galaxy Activity in Semi Analytical Models Fabio Fontanot (INAF OATs) Ljubljana 05/04/11 Part I: Theoretical background 1. Baryonic gas falls in the gravitational potential of Dark Matter Halos 2. Baryonic

More information

Simulations of quasar feedback

Simulations of quasar feedback Simulations of quasar feedback Volker Springel Main collaborators: Lars Hernquist Simon White Tiziana di Matteo Debora Sijacki Brant Robertson Darren Croton Phil Hopkins Yuexing Li Thomas Cox Modelling

More information

The Monster Roars: AGN Feedback & Co-Evolution with Galaxies

The Monster Roars: AGN Feedback & Co-Evolution with Galaxies The Monster Roars: AGN Feedback & Co-Evolution with Galaxies Philip Hopkins Ø (Nearly?) Every massive galaxy hosts a supermassive black hole Ø Mass accreted in ~couple bright quasar phase(s) (Soltan, Salucci+,

More information

Origin of Bi-modality

Origin of Bi-modality Origin of Bi-modality and Downsizing Avishai Dekel HU Jerusalem Galaxies and Structures Through Cosmic Times Venice, March 2006 Summary Q: z

More information

Part two of a year-long introduction to astrophysics:

Part two of a year-long introduction to astrophysics: ASTR 3830 Astrophysics 2 - Galactic and Extragalactic Phil Armitage office: JILA tower A909 email: pja@jilau1.colorado.edu Spitzer Space telescope image of M81 Part two of a year-long introduction to astrophysics:

More information

Star formation feedback in galaxy formation models. Yu Lu (KIPAC/Stanford)

Star formation feedback in galaxy formation models. Yu Lu (KIPAC/Stanford) Star formation feedback in galaxy formation models Yu Lu (KIPAC/Stanford) Overview Galaxies form in dark matter halos. CDM model predicts too many low-mass and high-mass halos. Feedback is needed to explain

More information

The Impact of Quasar Feedback on the Formation & Evolution of Red Galaxies

The Impact of Quasar Feedback on the Formation & Evolution of Red Galaxies The Impact of Quasar Feedback on the Formation & Evolution of Red Galaxies Philip Hopkins 07/17/06 Lars Hernquist, Volker Springel, Gordon Richards, T. J. Cox, Brant Robertson, Tiziana Di Matteo, Yuexing

More information

Galaxy formation and evolution II. The physics of galaxy formation

Galaxy formation and evolution II. The physics of galaxy formation Galaxy formation and evolution II. The physics of galaxy formation Gabriella De Lucia Astronomical Observatory of Trieste Outline: ü Observational properties of galaxies ü Galaxies and Cosmology ü Gas

More information

Formation and growth of galaxies in the young Universe: progress & challenges

Formation and growth of galaxies in the young Universe: progress & challenges Obergurgl. April 2014 Formation and growth of galaxies in the young Universe: progress & challenges Simon White Max Planck Institute for Astrophysics Ly α forest spectra and small-scale initial structure

More information

The galaxy population in cold and warm dark matter cosmologies

The galaxy population in cold and warm dark matter cosmologies The galaxy population in cold and warm dark matter cosmologies Lan Wang National Astronomical Observatories, CAS Collaborators: Violeta Gonzalez-Perez, Lizhi Xie, Andrew Cooper, Carlos Frenk, Liang Gao,

More information

Formation of z~6 Quasars from Hierarchical Galaxy Mergers

Formation of z~6 Quasars from Hierarchical Galaxy Mergers Formation of z~6 Quasars from Hierarchical Galaxy Mergers Yuexing Li et al Presentation by: William Gray Definitions and Jargon QUASAR stands for QUASI-stellAR radio source Extremely bright and active

More information

AGN in hierarchical galaxy formation models

AGN in hierarchical galaxy formation models AGN in hierarchical galaxy formation models Nikos Fanidakis and C.M. Baugh, R.G. Bower, S. Cole, C. Done, C. S. Frenk Physics of Galactic Nuclei, Ringberg Castle, June 18, 2009 Outline Brief introduction

More information

Galaxy Formation: Overview

Galaxy Formation: Overview Galaxy Formation: Overview Houjun Mo March 30, 2004 The basic picture Formation of dark matter halos. Gas cooling in dark matter halos Star formation in cold gas Evolution of the stellar populaion Metal

More information

Two Phase Formation of Massive Galaxies

Two Phase Formation of Massive Galaxies Two Phase Formation of Massive Galaxies Focus: High Resolution Cosmological Zoom Simulation of Massive Galaxies ApJ.L.,658,710 (2007) ApJ.,697, 38 (2009) ApJ.L.,699,L178 (2009) ApJ.,725,2312 (2010) ApJ.,744,63(2012)

More information

AGN Feedback In an Isolated Elliptical Galaxy

AGN Feedback In an Isolated Elliptical Galaxy AGN Feedback In an Isolated Elliptical Galaxy Feng Yuan Shanghai Astronomical Observatory, CAS Collaborators: Zhaoming Gan (SHAO) Jerry Ostriker (Princeton) Luca Ciotti (Bologna) Greg Novak (Paris) 2014.9.10;

More information

Black Hole Feedback. What is it? What does it do? Richard Bower Durham University

Black Hole Feedback. What is it? What does it do? Richard Bower Durham University Black Hole Feedback What is it? What does it do? GALFORM: RGB + Benson, Lagos, Fanidakis, Frenk, Lacey, Baugh & Cole +++ EAGLE: Booth, Dalla Vecchia, Crain, Furlong, Rosas- Guevara, Schaye, RGB, Theuns,

More information

Observational Evidence of AGN Feedback

Observational Evidence of AGN Feedback 10 de maio de 2012 Sumário Introduction AGN winds Galaxy outflows From the peak to the late evolution of AGN and quasars Mergers or secular evolution? The AGN feedback The interaction process between the

More information

Moore et al Kenney et al. 2004

Moore et al Kenney et al. 2004 Moore et al. 1996 Kenney et al. 2004 (i) Interaction with other cluster members and/or with the cluster potential (ii) Interactions with the hot gas that permeates massive galaxy systems. The influence

More information

Astro 358/Spring 2008 (49520) Galaxies and the Universe

Astro 358/Spring 2008 (49520) Galaxies and the Universe Astro 358/Spring 2008 (49520) Galaxies and the Universe Figures + Tables for Lecture 13 on Tu Mar 18 Lectures 9 to 12 1) Evidence for DM ; CDM vs HDM 2) Surface brightness profile and v/σ of Disks, Bulges,

More information

Mpc scale effects on the inner pcs of galaxies

Mpc scale effects on the inner pcs of galaxies Mpc scale effects on the inner pcs of galaxies Nelson Padilla PUC-Chile Collaborators: Sofía Cora (U. N. La Plata), Andrés Ruiz, Dante Paz (U. N. Córdoba), Claudia Lagos (Durham U.), Federico Stasyszyn

More information

The Formation and Evolution of Galaxy Clusters

The Formation and Evolution of Galaxy Clusters IAU Joint Discussion # 10 Sydney, July, 2003 The Formation and Evolution of Galaxy Clusters Simon D.M. White Max Planck Institute for Astrophysics The WMAP of the whole CMB sky Bennett et al 2003 > 105

More information

Feedback flows of gas, energy and momentum in and out of galaxies

Feedback flows of gas, energy and momentum in and out of galaxies Feedback flows of gas, energy and momentum in and out of galaxies Matthijs H.D. van der Wiel March 10 th 2005 a part of the course Formation and Evolution of Galaxies Feedback accretion outflow Feedback

More information

Feedback in Galaxy Clusters

Feedback in Galaxy Clusters Feedback in Galaxy Clusters Brian Morsony University of Maryland 1 Not talking about Galaxy-scale feedback Local accretion disk feedback 2 Outline Galaxy cluster properties Cooling flows the need for feedback

More information

Next Generation (Semi-)Empirical galaxy formation models - Matching individual galaxies

Next Generation (Semi-)Empirical galaxy formation models - Matching individual galaxies Next Generation (Semi-)Empirical galaxy formation models - Matching individual galaxies Benjamin Moster (IoA/KICC)! Simon White, Thorsten Naab (MPA), Rachel Somerville (Rutgers), Frank van den Bosch (Yale),

More information

Are most galaxies in the Universe TSTS:Too shy to shine?

Are most galaxies in the Universe TSTS:Too shy to shine? Are most galaxies in the Universe TSTS:Too shy to shine? R. Giovanelli UAT Workshop @ AO is grand Jan 2015 Some statistical tools with paucity of flashy pix (* ): The HI mass function which tells us the

More information

The Merger History of Massive Galaxies: Observations and Theory

The Merger History of Massive Galaxies: Observations and Theory The Merger History of Massive Galaxies: Observations and Theory Christopher J. Conselice (University of Nottingham) Kuala Lumpur 2009 How/when do galaxies form/evolve? Some questions a. Do galaxies evolve

More information

AGN/Galaxy Co-Evolution. Fabio Fontanot (HITS) AGN10 11/09/12

AGN/Galaxy Co-Evolution. Fabio Fontanot (HITS) AGN10 11/09/12 AGN/Galaxy Co-Evolution Fabio Fontanot (HITS) AGN10 11/09/12 Outline of review talk AGNs in theoretical models of galaxy formation Outline of (biased) review talk AGNs in theoretical models of galaxy formation

More information

Numerical Cosmology & Galaxy Formation

Numerical Cosmology & Galaxy Formation Numerical Cosmology & Galaxy Formation Lecture 13: Example simulations Isolated galaxies, mergers & zooms Benjamin Moster 1 Outline of the lecture course Lecture 1: Motivation & Historical Overview Lecture

More information

Dwarf Galaxies as Cosmological Probes

Dwarf Galaxies as Cosmological Probes Dwarf Galaxies as Cosmological Probes Julio F. Navarro The Ursa Minor dwarf spheroidal First Light First Light The Planck Satellite The Cosmological Paradigm The Clustering of Dark Matter The Millennium

More information

Galaxy formation in WMAP1andWMAP7 cosmologies

Galaxy formation in WMAP1andWMAP7 cosmologies MNRAS 428, 1351 1365 (2013) doi:10.1093/mnras/sts115 Galaxy formation in WMAP1andWMAP7 cosmologies Qi Guo, 1,2,3 Simon White, 2 Raul E. Angulo, 2 Bruno Henriques, 2 Gerard Lemson, 2 Michael Boylan-Kolchin,

More information

The Seeds of Galaxy Clusters and their Galaxies

The Seeds of Galaxy Clusters and their Galaxies The Seeds of Galaxy Clusters and their Galaxies Roderik Overzier Max-Planck Institute for Astrophysics IPMU, Kashiwa, June 28 - July 2 2010 Talk Overview Motivation for Cluster Studies at z>2 Overview

More information

Gaia Revue des Exigences préliminaires 1

Gaia Revue des Exigences préliminaires 1 Gaia Revue des Exigences préliminaires 1 Global top questions 1. Which stars form and have been formed where? - Star formation history of the inner disk - Location and number of spiral arms - Extent of

More information

Cosmological Merger Rates

Cosmological Merger Rates Cosmological Merger Rates C. Brook, F. Governato, P. Jonsson Not Phil Hopkins Kelly Holley-Bockelmann Vanderbilt University and Fisk University k.holley@vanderbilt.edu Why do we care so much about the

More information

Outline. Walls, Filaments, Voids. Cosmic epochs. Jeans length I. Jeans length II. Cosmology AS7009, 2008 Lecture 10. λ =

Outline. Walls, Filaments, Voids. Cosmic epochs. Jeans length I. Jeans length II. Cosmology AS7009, 2008 Lecture 10. λ = Cosmology AS7009, 2008 Lecture 10 Outline Structure formation Jeans length, Jeans mass Structure formation with and without dark matter Cold versus hot dark matter Dissipation The matter power spectrum

More information

The Illustris simulation: a new look at galaxy black hole co-evolution. Debora Sijacki IoA & KICC Cambridge

The Illustris simulation: a new look at galaxy black hole co-evolution. Debora Sijacki IoA & KICC Cambridge The Illustris simulation: a new look at galaxy black hole co-evolution Debora Sijacki IoA & KICC Cambridge LSS conference July 23 2015 Cosmological simulations of galaxy and structure formation Hierarchical

More information

Galaxy Formation Made Simple thanks to Sloan! Sloan Science Symposium Sandra M. Faber August 1 5,

Galaxy Formation Made Simple thanks to Sloan! Sloan Science Symposium Sandra M. Faber August 1 5, Galaxy Formation Made Simple thanks to Sloan! Sloan Science Symposium Sandra M. Faber August 1 5, 2 0 0 8 Outline of talk Part I: Review of basic galaxy formation Part II: Emerging paradigm: mass sequence

More information

Simulating non-linear structure formation in dark energy cosmologies

Simulating non-linear structure formation in dark energy cosmologies Simulating non-linear structure formation in dark energy cosmologies Volker Springel Distribution of WIMPS in the Galaxy Early Dark Energy Models (Margherita Grossi) Coupled Dark Energy (Marco Baldi) Fifth

More information

The Alexandria Lectures

The Alexandria Lectures March 2006 The Alexandria Lectures Numerical Cosmology: Recreating the Universe in a Supercomputer Simon White Max Planck Institute for Astrophysics The Three-fold Way to Astrophysical Truth OBSERVATION

More information

Heating and Cooling in Clusters & Galaxies

Heating and Cooling in Clusters & Galaxies Physics 463, Spring 07 Lecture 12 Heating and Cooling in Clusters & Galaxies review of the white & rees model hydrodynamical simulations hot and cold flows multi-phase cooling feedback: photoionization,

More information

Gas accretion in Galaxies

Gas accretion in Galaxies Massive Galaxies Over Cosmic Time 3, Tucson 11/2010 Gas accretion in Galaxies Dušan Kereš TAC, UC Berkeley Hubble Fellow Collaborators: Romeel Davé, Mark Fardal, C.-A. Faucher-Giguere, Lars Hernquist,

More information

On the influence of environment on star-forming galaxies

On the influence of environment on star-forming galaxies On the influence of environment on star-forming galaxies Lizhi Xie 谢利智 Tianjin Normal University; INAF-OATS Collaborators: G. De Lucia; F. Fontanot; D. Wilman; M. Fossati Galaxy properties correlate with

More information

Supplements to A Critical Supermassive Black Hole Mass Regulating Galaxy Evolution

Supplements to A Critical Supermassive Black Hole Mass Regulating Galaxy Evolution Supplements to A Critical Supermassive Black Hole Mass Regulating Galaxy Evolution 1 Galaxy Formation Modelling The main strategy behind the modelling approach we follow is to first calculate the collapse

More information

Building the Red Sequence

Building the Red Sequence Building the Red Sequence Jared Gabor University of Arizona Romeel Davé, Kristian Finlator, and Ben Oppenheimer See arxiv 1012.3166 Building the Red Sequence Jared Gabor University of Arizona Romeel Davé,

More information

The theoretical view of high-z Clusters. Nelson Padilla, PUC, Chile Pucón, November 2009

The theoretical view of high-z Clusters. Nelson Padilla, PUC, Chile Pucón, November 2009 The theoretical view of high-z Clusters Nelson Padilla, PUC, Chile Pucón, November 2009 The Plan: 1) To see what the observations are telling us using models that agree with the cosmology, and with other

More information

arxiv: v2 [astro-ph.co] 5 Feb 2013

arxiv: v2 [astro-ph.co] 5 Feb 2013 Mon. Not. R. Astron. Soc. 428, 1351 1365 (2013) Printed 21 May 2018 (MN LATEX style file v2.2) Galaxy formation in WMAP1 and WMAP7 cosmologies arxiv:1206.0052v2 [astro-ph.co] 5 Feb 2013 Qi Guo 1,2,3, Simon

More information

Hot Gas Around Elliptical Galaxies

Hot Gas Around Elliptical Galaxies Hot Gas Around Elliptical Galaxies Mike Anderson (MPA) Joel Bregman (Michigan), Xinyu Dai (Oklahoma), Massimo Gaspari (MPA), Simon White (MPA) Outline Very brief summary of properties of hot halos! Why

More information

The Formation and Evolution of Galaxy Clusters

The Formation and Evolution of Galaxy Clusters Distant Clusters of Galaxies Ringberg, October, 2005 The Formation and Evolution of Galaxy Clusters Simon D.M. White Max Planck Institute for Astrophysics Bennett et al 2003 > 105 near-independent 5 temperature

More information

Black Holes in the Early Universe Accretion and Feedback

Black Holes in the Early Universe Accretion and Feedback 1 1 Black Holes in the Early Universe Accretion and Feedback 1 1 Black Holes in the Early Universe Accretion and Feedback Geoff Bicknell & Alex Wagner Australian National University 1 1 High redshift radio

More information

SZYDAGIS / 14

SZYDAGIS / 14 GALACTIC STRUCTURE AND FORMATION SZYDAGIS 04.11.2018 1 / 14 CLICKER-STYLE QUESTIONS 1. What is one of the key ingredients needed for galaxy formation? a. dark energy b. clumps of gas c. supernovae d. neutron

More information

Dark matter and galaxy formation

Dark matter and galaxy formation Dark matter and galaxy formation Galaxy rotation The virial theorem Galaxy masses via K3 Mass-to-light ratios Rotation curves Milky Way Nearby galaxies Dark matter Baryonic or non-baryonic A problem with

More information

Cluster Thermodynamics: Entropy

Cluster Thermodynamics: Entropy Cluster Thermodynamics: Entropy Intracluster Entropy K = Pρ -5/3 Tn e -2/3 (kev cm 2 ) Entropy distribution in ICM determines a cluster s equilibrium structure Entropy distribution retains information

More information

Galaxy Evolution & Black-Hole Growth (review)

Galaxy Evolution & Black-Hole Growth (review) Galaxy Evolution & Black-Hole Growth (review) Avishai Dekel The Hebrew University of Jerusalem & UCSC Delivered by Fangzhou Jiang Dali, China, November 2018 See also Claude-Andre s talk and Joel s talk

More information

Theoretical ideas About Galaxy Wide Star Formation! Star Formation Efficiency!

Theoretical ideas About Galaxy Wide Star Formation! Star Formation Efficiency! Theoretical ideas About Galaxy Wide Star Formation Theoretical predictions are that galaxy formation is most efficient near a mass of 10 12 M based on analyses of supernova feedback and gas cooling times

More information

AGN feedback and the connection to triggering

AGN feedback and the connection to triggering AGN feedback and the connection to triggering Ryan C. Hickox Dartmouth College The Triggering Mechanisms for Active Galactic Nuclei Lorentz Center, Leiden 26 July 2013 Illustration courtesy NASA Outline

More information

The Galaxy Content of Groups and Clusters

The Galaxy Content of Groups and Clusters The Galaxy Content of Groups and Clusters results from the SDSS Frank van den Bosch (MPIA) in collaboration with Xiaohu Yang (SHAO), Houjun Mo (UMass), Simone Weinmann (Zurich) Surhud More (MPIA), Marcello

More information

Orianne ROOS CEA-Saclay Collaborators : F. Bournaud, J. Gabor, S. Juneau

Orianne ROOS CEA-Saclay Collaborators : F. Bournaud, J. Gabor, S. Juneau Orianne ROOS CEA-Saclay Collaborators : F. Bournaud, J. Gabor, S. Juneau Bachelor of Physics, Master of Astrophysics Université de Strasbourg PhD, Université Paris-Diderot Observatoire de Strasbourg Les

More information

Fossil Galaxy Groups; Halo and all therein

Fossil Galaxy Groups; Halo and all therein Fossil Galaxy Groups; Halo and all therein Habib Khosroshahi School of Astronomy, Thanks to Mojtaba Raouf, Amin Farhang, Halime Miraghaei School of Astronomy, Ghassem Gozali, Alexi Finoguenov University

More information

The first black holes

The first black holes The first black holes Marta Volonteri Institut d Astrophysique de Paris M. Habouzit, Y. Dubois, M. Latif (IAP) A. Reines (NOAO) M. Tremmel (University of Washington) F. Pacucci (SNS) High-redshift quasars

More information

Clustering studies of ROSAT/SDSS AGN through cross-correlation functions with SDSS Galaxies

Clustering studies of ROSAT/SDSS AGN through cross-correlation functions with SDSS Galaxies Clustering studies of ROSAT/SDSS AGN through cross-correlation functions with SDSS Galaxies Mirko Krumpe (ESO, UCSD) mkrumpe@eso.org Collaborators: Takamitsu Miyaji (UNAM-E, UCSD), Alison L. Coil (UCSD),

More information

Black Holes and Active Galactic Nuclei

Black Holes and Active Galactic Nuclei Black Holes and Active Galactic Nuclei A black hole is a region of spacetime from which gravity prevents anything, including light, from escaping. The theory of general relativity predicts that a sufficiently

More information

Galaxy Formation. Physics 463, Spring 07

Galaxy Formation. Physics 463, Spring 07 Physics 463, Spring 07 Lecture 9 Galaxy Formation We see that scattered through space! out to in"nite distances! there exist similar systems of stars! and that all of creation! in the whole extent of its

More information

Astr 2320 Thurs. April 27, 2017 Today s Topics. Chapter 21: Active Galaxies and Quasars

Astr 2320 Thurs. April 27, 2017 Today s Topics. Chapter 21: Active Galaxies and Quasars Astr 2320 Thurs. April 27, 2017 Today s Topics Chapter 21: Active Galaxies and Quasars Emission Mechanisms Synchrotron Radiation Starburst Galaxies Active Galactic Nuclei Seyfert Galaxies BL Lac Galaxies

More information

The formation and evolution of globular cluster systems. Joel Pfeffer, Nate Bastian (Liverpool, LJMU)

The formation and evolution of globular cluster systems. Joel Pfeffer, Nate Bastian (Liverpool, LJMU) The formation and evolution of globular cluster systems Joel Pfeffer, Nate Bastian (Liverpool, LJMU) Introduction to stellar clusters Open clusters: few - 10 4 M few Myr - few Gyr solar metallicity disk

More information

Mergers, AGN, and Quenching

Mergers, AGN, and Quenching Mergers, AGN, and Quenching Lars Hernquist, TJ Cox, Dusan Keres, Volker Springel, Philip Hopkins 05/21/07 Rachel Somerville (MPIA), Gordon Richards (JHU), Kevin Bundy (Caltech), Alison Coil (Arizona),

More information

Chapter 19 Galaxies. Hubble Ultra Deep Field: Each dot is a galaxy of stars. More distant, further into the past. halo

Chapter 19 Galaxies. Hubble Ultra Deep Field: Each dot is a galaxy of stars. More distant, further into the past. halo Chapter 19 Galaxies Hubble Ultra Deep Field: Each dot is a galaxy of stars. More distant, further into the past halo disk bulge Barred Spiral Galaxy: Has a bar of stars across the bulge Spiral Galaxy 1

More information

Active Galaxies & Quasars

Active Galaxies & Quasars Active Galaxies & Quasars Normal Galaxy Active Galaxy Galactic Nuclei Bright Active Galaxy NGC 5548 Galaxy Nucleus: Exact center of a galaxy and its immediate surroundings. If a spiral galaxy, it is the

More information

Radio emission from galaxies in the Bootes Voids

Radio emission from galaxies in the Bootes Voids Radio emission from galaxies in the Bootes Voids Mousumi Das, Indian Institute of Astrophysics, Bangalore Large Scale Structure and galaxy flows, Quy Nhon, July 3-9, 2016 Collaborators K.S. Dwarkanath

More information

Astronomy 730. Evolution

Astronomy 730. Evolution Astronomy 730 Evolution Outline } Evolution } Formation of structure } Processes on the galaxy scale } Gravitational collapse, merging, and infall } SF, feedback and chemical enrichment } Environment }

More information

THE BOLSHOI COSMOLOGICAL SIMULATIONS AND THEIR IMPLICATIONS

THE BOLSHOI COSMOLOGICAL SIMULATIONS AND THEIR IMPLICATIONS GALAXY FORMATION - Durham -18 July 2011 THE BOLSHOI COSMOLOGICAL SIMULATIONS AND THEIR IMPLICATIONS JOEL PRIMACK, UCSC ΛCDM Cosmological Parameters for Bolshoi and BigBolshoi Halo Mass Function is 10x

More information

What Can We Learn from Galaxy Clustering 1: Why Galaxy Clustering is Useful for AGN Clustering. Alison Coil UCSD

What Can We Learn from Galaxy Clustering 1: Why Galaxy Clustering is Useful for AGN Clustering. Alison Coil UCSD What Can We Learn from Galaxy Clustering 1: Why Galaxy Clustering is Useful for AGN Clustering Alison Coil UCSD Talk Outline 1. Brief review of what we know about galaxy clustering from observations 2.

More information

Empirical Evidence for AGN Feedback

Empirical Evidence for AGN Feedback Empirical Evidence for AGN Feedback Christy Tremonti MPIA (Heidelberg) / U. Wisconsin-Madison Aleks Diamond-Stanic (U. Arizona), John Moustakas (NYU) Much observational and theoretical evidence supports

More information

Other Galaxy Types. Active Galaxies. A diagram of an active galaxy, showing the primary components. Active Galaxies

Other Galaxy Types. Active Galaxies. A diagram of an active galaxy, showing the primary components. Active Galaxies Other Galaxy Types Active Galaxies Active Galaxies Seyfert galaxies Radio galaxies Quasars Origin??? Different in appearance Produce huge amount of energy Similar mechanism a Galactic mass black hole at

More information

Gravitational Radiation from Coalescing SMBH Binaries in a Hierarchical Galaxy Formation Model

Gravitational Radiation from Coalescing SMBH Binaries in a Hierarchical Galaxy Formation Model Gravitational Radiation from Coalescing SMBH Binaries in a Hierarchical Galaxy Formation Model Motohiro ENOKI (National Astronomical Observatory of Japan) Kaiki Taro INOUE (Kinki University) Masahiro NAGASHIMA

More information

A100H Exploring the Universe: Quasars, Dark Matter, Dark Energy. Martin D. Weinberg UMass Astronomy

A100H Exploring the Universe: Quasars, Dark Matter, Dark Energy. Martin D. Weinberg UMass Astronomy A100H Exploring the :, Dark Matter, Dark Energy Martin D. Weinberg UMass Astronomy astron100h-mdw@courses.umass.edu April 19, 2016 Read: Chaps 20, 21 04/19/16 slide 1 BH in Final Exam: Friday 29 Apr at

More information

The Different Physical Mechanisms that Drive the Star-formation Histories of Giant and Dwarf Galaxies

The Different Physical Mechanisms that Drive the Star-formation Histories of Giant and Dwarf Galaxies The Different Physical Mechanisms that Drive the Star-formation Histories of Giant and Dwarf Galaxies Chris Haines (University of Birmingham) Adriana Gargiulo, Gianni Busarello, Francesco La Barbera, Amata

More information

The Universe in the Cloud. Darren Croton Centre for Astrophysics and Supercomputing Swinburne University

The Universe in the Cloud. Darren Croton Centre for Astrophysics and Supercomputing Swinburne University PART III The Universe in the Cloud Darren Croton Centre for Astrophysics and Supercomputing Swinburne University dcroton@astro.swin.edu.au Let s recap... The skeleton The flesh Schmidt law star formation

More information

Probing the End of Dark Ages with High-redshift Quasars. Xiaohui Fan University of Arizona Dec 14, 2004

Probing the End of Dark Ages with High-redshift Quasars. Xiaohui Fan University of Arizona Dec 14, 2004 Probing the End of Dark Ages with High-redshift Quasars Xiaohui Fan University of Arizona Dec 14, 2004 High-redshift Quasars and the End of Cosmic Dark Ages Existence of SBHs at the end of Dark Ages BH

More information

FEEDBACK IN GALAXY FORMATION

FEEDBACK IN GALAXY FORMATION FEEDBACK IN GALAXY FORMATION Disks SMBH growth AGN and star formation Joe Silk IAP/JHU/Oxford Collaborators: Vincenzo Antonnucio-Deloglou, Volker Gaibler, Sadegh Khochfar Feedback is needed t cool t dyn

More information

SURVEYS: THE MASS ASSEMBLY AND STAR FORMATION HISTORY

SURVEYS: THE MASS ASSEMBLY AND STAR FORMATION HISTORY Lecture #4 SURVEYS: THE MASS ASSEMBLY AND STAR FORMATION HISTORY Observational facts Olivier Le Fèvre ON Rio de Janeiro School 2014 Putting it all together Clear survey strategies Instrumentation and observing

More information

Formation and cosmic evolution of supermassive black holes. Debora Sijacki

Formation and cosmic evolution of supermassive black holes. Debora Sijacki Formation and cosmic evolution of supermassive black holes Debora Sijacki Summer school: Black Holes at all scales Ioannina, Greece, Sept 16-19, 2013 Lecture 1: - formation of black hole seeds - low mass

More information

THE GALACTIC CORONA. In honor of. Jerry Ostriker. on his 80 th birthday. Chris McKee Princeton 5/13/2017. with Yakov Faerman Amiel Sternberg

THE GALACTIC CORONA. In honor of. Jerry Ostriker. on his 80 th birthday. Chris McKee Princeton 5/13/2017. with Yakov Faerman Amiel Sternberg THE GALACTIC CORONA In honor of Jerry Ostriker on his 80 th birthday Chris McKee Princeton 5/13/2017 with Yakov Faerman Amiel Sternberg A collaboration that began over 40 years ago and resulted in a lifelong

More information

High Redshift Universe

High Redshift Universe High Redshift Universe Finding high z galaxies Lyman break galaxies (LBGs) Photometric redshifts Deep fields Starburst galaxies Extremely red objects (EROs) Sub-mm galaxies Lyman α systems Finding high

More information

Lecture 9. Quasars, Active Galaxies and AGN

Lecture 9. Quasars, Active Galaxies and AGN Lecture 9 Quasars, Active Galaxies and AGN Quasars look like stars but have huge redshifts. object with a spectrum much like a dim star highly red-shifted enormous recessional velocity huge distance (Hubble

More information

Observing the Formation of Dense Stellar Nuclei at Low and High Redshift (?) Roderik Overzier Max-Planck-Institute for Astrophysics

Observing the Formation of Dense Stellar Nuclei at Low and High Redshift (?) Roderik Overzier Max-Planck-Institute for Astrophysics Observing the Formation of Dense Stellar Nuclei at Low and High Redshift (?) Roderik Overzier Max-Planck-Institute for Astrophysics with: Tim Heckman (JHU) GALEX Science Team (PI: Chris Martin), Lee Armus,

More information

THE CONNECTION BETWEEN STAR FORMATION AND DARK MATTER HALOS AS SEEN IN THE INFRARED

THE CONNECTION BETWEEN STAR FORMATION AND DARK MATTER HALOS AS SEEN IN THE INFRARED ESLAB 2013 04/04/2013 Noordwijk THE CONNECTION BETWEEN STAR FORMATION AND DARK MATTER HALOS AS SEEN IN THE INFRARED Material at http://irfu.cea.fr/sap/phocea/page/index.php?id=537 Matthieu Béthermin In

More information

Cold Clouds in Cool Cores

Cold Clouds in Cool Cores Becky Canning NGC 1275, Perseus Cluster Cold Clouds in Cool Cores 1 Snowcluster 2015 Cold Clouds in Cool Cores Excitation mechanisms of the multi-phase cool/cold gas Why should we care? Heard that X-ray

More information

arxiv:astro-ph/ v1 19 Nov 1999

arxiv:astro-ph/ v1 19 Nov 1999 Where are the First Stars now? Simon D.M. White & Volker Springel Max-Planck-Institute for Astrophysics, Garching bei München, Germany arxiv:astro-ph/9911378v1 19 Nov 1999 Abstract. We use high-resolution

More information

Large-Scale Structure

Large-Scale Structure Large-Scale Structure Evidence for Dark Matter Dark Halos in Ellipticals Hot Gas in Ellipticals Clusters Hot Gas in Clusters Cluster Galaxy Velocities and Masses Large-Scale Distribution of Galaxies 1

More information

Suppressing the Cooling Flows in Massive Galaxies with Turbulent Stirring

Suppressing the Cooling Flows in Massive Galaxies with Turbulent Stirring Snow Cluster 2018 Suppressing the Cooling Flows in Massive Galaxies with Turbulent Stirring Kung-Yi Su TAPIR, California Institute of Technology Collaborators Prof. Philip F. Hopkins Chris Hayward Prof.

More information

Monte Carlo Markov Chain parameter estimation in semi-analytic models of galaxy formation

Monte Carlo Markov Chain parameter estimation in semi-analytic models of galaxy formation Mon. Not. R. Astron. Soc. 396, 535 547 (9 doi:./j.365-966.9.473.x Monte Carlo Markov Chain parameter estimation in semi-analytic models of galaxy formation Bruno M. B. Henriques, Peter A. Thomas, Seb Oliver

More information

ASTRON 449: Stellar (Galactic) Dynamics. Fall 2014

ASTRON 449: Stellar (Galactic) Dynamics. Fall 2014 ASTRON 449: Stellar (Galactic) Dynamics Fall 2014 In this course, we will cover the basic phenomenology of galaxies (including dark matter halos, stars clusters, nuclear black holes) theoretical tools

More information

The Los Cabos Lectures

The Los Cabos Lectures January 2009 The Los Cabos Lectures Dark Matter Halos: 2 Simon White Max Planck Institute for Astrophysics EPS statistics for the standard ΛCDM cosmology Millennium Simulation cosmology: Ωm = 0.25, ΩΛ

More information