Confident Bayesian Sequence Prediction. Tor Lattimore

Size: px
Start display at page:

Download "Confident Bayesian Sequence Prediction. Tor Lattimore"

Transcription

1 Confident Bayesian Sequence Prediction Tor Lattimore

2 Sequence Prediction Can you guess the next number? 1, 2, 3, 4, 5,... 3, 1, 4, 1, 5,... 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1,...

3 Sequence Prediction x is a sequence over countable alphabet X µ(x) is the µ-probability of observing x µ(a x) is the µ-probability of observing a X given x M is a countable set of measures (sequence generators) Hellinger 2 Distance h x (ρ, µ) := ( ρ(a x) ) 2 a X µ(a x) Total Variation Distance δ x (ρ, µ) := 1 2 a X ρ(a x) µ(a x) hx (ρ, µ) δ x (ρ, µ) X = {heads, tails} X = {rain, shine} X = {plague, smallpox, flu} X = {1, 2, 3, } Goal: Construct predictor ρ such that for all µ M when x is sampled from µ ρ( x <t ) fast µ( x <t )

4 Example X = {heads, tails} M = {µ θ } is a countable set of Bernoulli measures (coins) ρ(heads x <t ) = number of heads in x<t number of observations=t 1 Theorem (Law of Large Numbers) If µ M, then lim t h x<t (ρ, µ) = 0 with µ-probability 1

5 Example (continued) Theorem (Corollary of Hoeffding Bound) If µ M, then with µ-probability at least 1 δ ( t) ρ(heads x <t ) µ(heads x <t ) 1 2t(t + 1) log 2t δ Frequentist Confidence Optimal Confidence Error Time δ = 1 /10 and θ = 1 /2

6 Bayesian Predictors No assumption on M except that it is countable w : M (0, 1] is a prior on M ξ(x) := ν M w(ν)ν(x) is the Bayes measure Theorem (Solomonoff & Hutter) If µ M, then lim t h x<t (µ, ξ) = 0 with µ-probability 1 E µ t=1 h x <t (µ, ξ) ln 1 w(µ) Done? Not quite, h x<t (µ, ξ) is unknown. Can you construct a confidence bound on the error like in the Bernoulli case?

7 Posterior Convergence Theorem (Bayes Law) P (H D) = P (H) P (D H) P (D) Posterior belief in hypothesis ν M having observed x is w(ν x) := w(ν) ν(x) ξ(x) Conjecture The posterior w( x) concentrates about the truth as data is observed

8 Posterior Convergence Bayes predictive distribution 1/ Posterior at time 1 21 Bernoulli measures with true θ = 1 /2 and w(ν) = 1 /21

9 Posterior Convergence Bayes predictive distribution 1/ Posterior at time 2 21 Bernoulli measures with true θ = 1 /2 and w(ν) = 1 /21

10 Posterior Convergence Bayes predictive distribution 1/ Posterior at time 3 21 Bernoulli measures with true θ = 1 /2 and w(ν) = 1 /21

11 Posterior Convergence Bayes predictive distribution 1/ Posterior at time Bernoulli measures with true θ = 1 /2 and w(ν) = 1 /21

12 Posterior Convergence Bayes predictive distribution 1/ Posterior at time Bernoulli measures with true θ = 1 /2 and w(ν) = 1 /21

13 Bayesian Confidence Theorem (Ville) With µ-probability at least 1 δ ( n), w(µ x <n ) δw(µ) With high probability the posterior belief in true hypothesis µ never falls below δw(µ) Define set of plausible environments M(x <n ) := {ν M : η n, w(ν x <η ) δw(ν)} and confidence bound on error Theorem ĥ(x <n ) := max {h x<n (ν, ξ) : ν M(x <n )} With µ-probablity at least 1 δ it holds that ĥ(x <n) h x<n (µ, ξ) for all n

14 Posterior Convergence Bayes predictive distribution ν M(x <t ) maximising h x<t (ν, ξ) 1/ Posterior at time 1 21 Bernoulli measures with true θ = 1 /2 and w(ν) = 1 /21 and δ = 1 /10

15 Posterior Convergence Bayes predictive distribution ν M(x <t ) maximising h x<t (ν, ξ) 1/ Posterior at time 2 21 Bernoulli measures with true θ = 1 /2 and w(ν) = 1 /21 and δ = 1 /10

16 Posterior Convergence Bayes predictive distribution ν M(x <t ) maximising h x<t (ν, ξ) 1/ Posterior at time 3 21 Bernoulli measures with true θ = 1 /2 and w(ν) = 1 /21 and δ = 1 /10

17 Posterior Convergence Bayes predictive distribution ν M(x <t ) maximising h x<t (ν, ξ) 1/ Posterior at time Bernoulli measures with true θ = 1 /2 and w(ν) = 1 /21 and δ = 1 /10

18 Posterior Convergence Bayes predictive distribution ν M(x <t ) maximising h x<t (ν, ξ) 1/ Posterior at time Bernoulli measures with true θ = 1 /2 and w(ν) = 1 /21 and δ = 1 /10

19 Bayesian Confidence M(x <n ) := {ν M : η n, w(ν x <η ) δw(ν)} ĥ(x <n ) := max {h x<n (ν, ξ) : ν M(x <n )} Frequentist Confidence Bayes Confidence Optimal Confidence Error δ = 1 /10 and θ = 1 /2. Time

20 Bayesian Confidence M(x <n ) := {ν M : η n, w(ν x <η ) δw(ν)} ĥ(x <n ) := max {h x<n (ν, ξ) : ν M(x <n )} Theorem If w is uniform, then with µ-probability at least 1 δ n=1 ( ĥ(x <n ) M ln M + ln M ) δ Therefore ĥ(x <n) converges fast to zero

21 Knows What It Knows Framework Environment agent fails no h x<t (ρ, µ) ɛ? yes present x t to agent Start choose µ M output ρ( x <t) output Agent yes Am I confident? no

22 Knows What It Knows Algorithm 1 Inputs: ε, δ and M := { ν 1, ν 2,, ν M }. 2 t 1 and x <t ɛ and w : M [0, 1] is uniform 3 loop 4 if ĥt(x <t ) ε then 5 output ξ( x <t ) 6 else 7 output 8 observe x t and t t + 1 Theorem The following hold: 1 The agent fails with probability at most δ 2 The number of times action is taken is at most ( M O log M ) ɛ δ with probability at last 1 δ

23 Summary Constructed frequentist-style confidence intervals for discrete non-i.i.d. Bayes Works well in theory and in practise Leads to state-of-the-art bounds for KWIK learning Generic and applicable elsewhere (Bandits/RL) Also have bounds for KL divergence Countable case also covered

Online Prediction: Bayes versus Experts

Online Prediction: Bayes versus Experts Marcus Hutter - 1 - Online Prediction Bayes versus Experts Online Prediction: Bayes versus Experts Marcus Hutter Istituto Dalle Molle di Studi sull Intelligenza Artificiale IDSIA, Galleria 2, CH-6928 Manno-Lugano,

More information

Universal Convergence of Semimeasures on Individual Random Sequences

Universal Convergence of Semimeasures on Individual Random Sequences Marcus Hutter - 1 - Convergence of Semimeasures on Individual Sequences Universal Convergence of Semimeasures on Individual Random Sequences Marcus Hutter IDSIA, Galleria 2 CH-6928 Manno-Lugano Switzerland

More information

Consensus and Distributed Inference Rates Using Network Divergence

Consensus and Distributed Inference Rates Using Network Divergence DIMACS August 2017 1 / 26 Consensus and Distributed Inference Rates Using Network Divergence Anand D. Department of Electrical and Computer Engineering, The State University of New Jersey August 23, 2017

More information

On the Foundations of Universal Sequence Prediction

On the Foundations of Universal Sequence Prediction Marcus Hutter - 1 - Universal Sequence Prediction On the Foundations of Universal Sequence Prediction Marcus Hutter Istituto Dalle Molle di Studi sull Intelligenza Artificiale IDSIA, Galleria 2, CH-6928

More information

Asymptotics of Discrete MDL for Online Prediction

Asymptotics of Discrete MDL for Online Prediction Technical Report IDSIA-13-05 Asymptotics of Discrete MDL for Online Prediction arxiv:cs.it/0506022 v1 8 Jun 2005 Jan Poland and Marcus Hutter IDSIA, Galleria 2, CH-6928 Manno-Lugano, Switzerland {jan,marcus}@idsia.ch

More information

On the Relation between Realizable and Nonrealizable Cases of the Sequence Prediction Problem

On the Relation between Realizable and Nonrealizable Cases of the Sequence Prediction Problem Journal of Machine Learning Research 2 (20) -2 Submitted 2/0; Published 6/ On the Relation between Realizable and Nonrealizable Cases of the Sequence Prediction Problem INRIA Lille-Nord Europe, 40, avenue

More information

Universal Knowledge-Seeking Agents for Stochastic Environments

Universal Knowledge-Seeking Agents for Stochastic Environments Universal Knowledge-Seeking Agents for Stochastic Environments Laurent Orseau 1, Tor Lattimore 2, and Marcus Hutter 2 1 AgroParisTech, UMR 518 MIA, F-75005 Paris, France INRA, UMR 518 MIA, F-75005 Paris,

More information

Optimality of Universal Bayesian Sequence Prediction for General Loss and Alphabet

Optimality of Universal Bayesian Sequence Prediction for General Loss and Alphabet Journal of Machine Learning Research 4 (2003) 971-1000 Submitted 2/03; Published 11/03 Optimality of Universal Bayesian Sequence Prediction for General Loss and Alphabet Marcus Hutter IDSIA, Galleria 2

More information

Optimality of Universal Bayesian Sequence Prediction for General Loss and Alphabet

Optimality of Universal Bayesian Sequence Prediction for General Loss and Alphabet Technical Report IDSIA-02-02 February 2002 January 2003 Optimality of Universal Bayesian Sequence Prediction for General Loss and Alphabet Marcus Hutter IDSIA, Galleria 2, CH-6928 Manno-Lugano, Switzerland

More information

A PECULIAR COIN-TOSSING MODEL

A PECULIAR COIN-TOSSING MODEL A PECULIAR COIN-TOSSING MODEL EDWARD J. GREEN 1. Coin tossing according to de Finetti A coin is drawn at random from a finite set of coins. Each coin generates an i.i.d. sequence of outcomes (heads or

More information

(1) Introduction to Bayesian statistics

(1) Introduction to Bayesian statistics Spring, 2018 A motivating example Student 1 will write down a number and then flip a coin If the flip is heads, they will honestly tell student 2 if the number is even or odd If the flip is tails, they

More information

Universal probability distributions, two-part codes, and their optimal precision

Universal probability distributions, two-part codes, and their optimal precision Universal probability distributions, two-part codes, and their optimal precision Contents 0 An important reminder 1 1 Universal probability distributions in theory 2 2 Universal probability distributions

More information

Machine Learning CMPT 726 Simon Fraser University. Binomial Parameter Estimation

Machine Learning CMPT 726 Simon Fraser University. Binomial Parameter Estimation Machine Learning CMPT 726 Simon Fraser University Binomial Parameter Estimation Outline Maximum Likelihood Estimation Smoothed Frequencies, Laplace Correction. Bayesian Approach. Conjugate Prior. Uniform

More information

Bayesian Models in Machine Learning

Bayesian Models in Machine Learning Bayesian Models in Machine Learning Lukáš Burget Escuela de Ciencias Informáticas 2017 Buenos Aires, July 24-29 2017 Frequentist vs. Bayesian Frequentist point of view: Probability is the frequency of

More information

Point Estimation. Vibhav Gogate The University of Texas at Dallas

Point Estimation. Vibhav Gogate The University of Texas at Dallas Point Estimation Vibhav Gogate The University of Texas at Dallas Some slides courtesy of Carlos Guestrin, Chris Bishop, Dan Weld and Luke Zettlemoyer. Basics: Expectation and Variance Binary Variables

More information

Computational and Statistical Learning Theory

Computational and Statistical Learning Theory Computational and Statistical Learning Theory TTIC 31120 Prof. Nati Srebro Lecture 4: MDL and PAC-Bayes Uniform vs Non-Uniform Bias No Free Lunch: we need some inductive bias Limiting attention to hypothesis

More information

Accouncements. You should turn in a PDF and a python file(s) Figure for problem 9 should be in the PDF

Accouncements. You should turn in a PDF and a python file(s) Figure for problem 9 should be in the PDF Accouncements You should turn in a PDF and a python file(s) Figure for problem 9 should be in the PDF Please do not zip these files and submit (unless there are >5 files) 1 Bayesian Methods Machine Learning

More information

Stratégies bayésiennes et fréquentistes dans un modèle de bandit

Stratégies bayésiennes et fréquentistes dans un modèle de bandit Stratégies bayésiennes et fréquentistes dans un modèle de bandit thèse effectuée à Telecom ParisTech, co-dirigée par Olivier Cappé, Aurélien Garivier et Rémi Munos Journées MAS, Grenoble, 30 août 2016

More information

Outline. Binomial, Multinomial, Normal, Beta, Dirichlet. Posterior mean, MAP, credible interval, posterior distribution

Outline. Binomial, Multinomial, Normal, Beta, Dirichlet. Posterior mean, MAP, credible interval, posterior distribution Outline A short review on Bayesian analysis. Binomial, Multinomial, Normal, Beta, Dirichlet Posterior mean, MAP, credible interval, posterior distribution Gibbs sampling Revisit the Gaussian mixture model

More information

Frequentist Statistics and Hypothesis Testing Spring

Frequentist Statistics and Hypothesis Testing Spring Frequentist Statistics and Hypothesis Testing 18.05 Spring 2018 http://xkcd.com/539/ Agenda Introduction to the frequentist way of life. What is a statistic? NHST ingredients; rejection regions Simple

More information

Lecture 3: More on regularization. Bayesian vs maximum likelihood learning

Lecture 3: More on regularization. Bayesian vs maximum likelihood learning Lecture 3: More on regularization. Bayesian vs maximum likelihood learning L2 and L1 regularization for linear estimators A Bayesian interpretation of regularization Bayesian vs maximum likelihood fitting

More information

Hypothesis Testing. Rianne de Heide. April 6, CWI & Leiden University

Hypothesis Testing. Rianne de Heide. April 6, CWI & Leiden University Hypothesis Testing Rianne de Heide CWI & Leiden University April 6, 2018 Me PhD-student Machine Learning Group Study coordinator M.Sc. Statistical Science Peter Grünwald Jacqueline Meulman Projects Bayesian

More information

Bayesian Methods. David S. Rosenberg. New York University. March 20, 2018

Bayesian Methods. David S. Rosenberg. New York University. March 20, 2018 Bayesian Methods David S. Rosenberg New York University March 20, 2018 David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 March 20, 2018 1 / 38 Contents 1 Classical Statistics 2 Bayesian

More information

Computational Perception. Bayesian Inference

Computational Perception. Bayesian Inference Computational Perception 15-485/785 January 24, 2008 Bayesian Inference The process of probabilistic inference 1. define model of problem 2. derive posterior distributions and estimators 3. estimate parameters

More information

Universal Learning Theory

Universal Learning Theory Universal Learning Theory Marcus Hutter RSISE @ ANU and SML @ NICTA Canberra, ACT, 0200, Australia marcus@hutter1.net www.hutter1.net 25 May 2010 Abstract This encyclopedic article gives a mini-introduction

More information

DS-GA 1003: Machine Learning and Computational Statistics Homework 7: Bayesian Modeling

DS-GA 1003: Machine Learning and Computational Statistics Homework 7: Bayesian Modeling DS-GA 1003: Machine Learning and Computational Statistics Homework 7: Bayesian Modeling Due: Tuesday, May 10, 2016, at 6pm (Submit via NYU Classes) Instructions: Your answers to the questions below, including

More information

Why (Bayesian) inference makes (Differential) privacy easy

Why (Bayesian) inference makes (Differential) privacy easy Why (Bayesian) inference makes (Differential) privacy easy Christos Dimitrakakis 1 Blaine Nelson 2,3 Aikaterini Mitrokotsa 1 Benjamin Rubinstein 4 Zuhe Zhang 4 1 Chalmers university of Technology 2 University

More information

Some Asymptotic Bayesian Inference (background to Chapter 2 of Tanner s book)

Some Asymptotic Bayesian Inference (background to Chapter 2 of Tanner s book) Some Asymptotic Bayesian Inference (background to Chapter 2 of Tanner s book) Principal Topics The approach to certainty with increasing evidence. The approach to consensus for several agents, with increasing

More information

A Formal Solution to the Grain of Truth Problem

A Formal Solution to the Grain of Truth Problem A Formal Solution to the Grain of Truth Problem Jan Leike Australian National University jan.leike@anu.edu.au Jessica Taylor Machine Intelligence Research Inst. jessica@intelligence.org Benya Fallenstein

More information

COMP90051 Statistical Machine Learning

COMP90051 Statistical Machine Learning COMP90051 Statistical Machine Learning Semester 2, 2017 Lecturer: Trevor Cohn 2. Statistical Schools Adapted from slides by Ben Rubinstein Statistical Schools of Thought Remainder of lecture is to provide

More information

Introduction to Machine Learning CMU-10701

Introduction to Machine Learning CMU-10701 Introduction to Machine Learning CMU-10701 2. MLE, MAP, Bayes classification Barnabás Póczos & Aarti Singh 2014 Spring Administration http://www.cs.cmu.edu/~aarti/class/10701_spring14/index.html Blackboard

More information

ECE521 W17 Tutorial 6. Min Bai and Yuhuai (Tony) Wu

ECE521 W17 Tutorial 6. Min Bai and Yuhuai (Tony) Wu ECE521 W17 Tutorial 6 Min Bai and Yuhuai (Tony) Wu Agenda knn and PCA Bayesian Inference k-means Technique for clustering Unsupervised pattern and grouping discovery Class prediction Outlier detection

More information

Introduction to Statistical Learning Theory

Introduction to Statistical Learning Theory Introduction to Statistical Learning Theory In the last unit we looked at regularization - adding a w 2 penalty. We add a bias - we prefer classifiers with low norm. How to incorporate more complicated

More information

Online Learning and Sequential Decision Making

Online Learning and Sequential Decision Making Online Learning and Sequential Decision Making Emilie Kaufmann CNRS & CRIStAL, Inria SequeL, emilie.kaufmann@univ-lille.fr Research School, ENS Lyon, Novembre 12-13th 2018 Emilie Kaufmann Sequential Decision

More information

Machine Learning CSE546 Carlos Guestrin University of Washington. September 30, 2013

Machine Learning CSE546 Carlos Guestrin University of Washington. September 30, 2013 Bayesian Methods Machine Learning CSE546 Carlos Guestrin University of Washington September 30, 2013 1 What about prior n Billionaire says: Wait, I know that the thumbtack is close to 50-50. What can you

More information

The PAC Learning Framework -II

The PAC Learning Framework -II The PAC Learning Framework -II Prof. Dan A. Simovici UMB 1 / 1 Outline 1 Finite Hypothesis Space - The Inconsistent Case 2 Deterministic versus stochastic scenario 3 Bayes Error and Noise 2 / 1 Outline

More information

Bayesian Methods: Naïve Bayes

Bayesian Methods: Naïve Bayes Bayesian Methods: aïve Bayes icholas Ruozzi University of Texas at Dallas based on the slides of Vibhav Gogate Last Time Parameter learning Learning the parameter of a simple coin flipping model Prior

More information

Approximate Universal Artificial Intelligence

Approximate Universal Artificial Intelligence Approximate Universal Artificial Intelligence A Monte-Carlo AIXI Approximation Joel Veness Kee Siong Ng Marcus Hutter David Silver University of New South Wales National ICT Australia The Australian National

More information

How Much Evidence Should One Collect?

How Much Evidence Should One Collect? How Much Evidence Should One Collect? Remco Heesen October 10, 2013 Abstract This paper focuses on the question how much evidence one should collect before deciding on the truth-value of a proposition.

More information

Probabilistic and Bayesian Machine Learning

Probabilistic and Bayesian Machine Learning Probabilistic and Bayesian Machine Learning Lecture 1: Introduction to Probabilistic Modelling Yee Whye Teh ywteh@gatsby.ucl.ac.uk Gatsby Computational Neuroscience Unit University College London Why a

More information

Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems, Part I. Sébastien Bubeck Theory Group

Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems, Part I. Sébastien Bubeck Theory Group Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems, Part I Sébastien Bubeck Theory Group i.i.d. multi-armed bandit, Robbins [1952] i.i.d. multi-armed bandit, Robbins [1952] Known

More information

On Bayesian bandit algorithms

On Bayesian bandit algorithms On Bayesian bandit algorithms Emilie Kaufmann joint work with Olivier Cappé, Aurélien Garivier, Nathaniel Korda and Rémi Munos July 1st, 2012 Emilie Kaufmann (Telecom ParisTech) On Bayesian bandit algorithms

More information

Minimum Message Length Analysis of the Behrens Fisher Problem

Minimum Message Length Analysis of the Behrens Fisher Problem Analysis of the Behrens Fisher Problem Enes Makalic and Daniel F Schmidt Centre for MEGA Epidemiology The University of Melbourne Solomonoff 85th Memorial Conference, 2011 Outline Introduction 1 Introduction

More information

Inconsistency of Bayesian inference when the model is wrong, and how to repair it

Inconsistency of Bayesian inference when the model is wrong, and how to repair it Inconsistency of Bayesian inference when the model is wrong, and how to repair it Peter Grünwald Thijs van Ommen Centrum Wiskunde & Informatica, Amsterdam Universiteit Leiden June 3, 2015 Outline 1 Introduction

More information

Chapter 4 HOMEWORK ASSIGNMENTS. 4.1 Homework #1

Chapter 4 HOMEWORK ASSIGNMENTS. 4.1 Homework #1 Chapter 4 HOMEWORK ASSIGNMENTS These homeworks may be modified as the semester progresses. It is your responsibility to keep up to date with the correctly assigned homeworks. There may be some errors in

More information

Sequence prediction in realizable and non-realizable cases

Sequence prediction in realizable and non-realizable cases Sequence prediction in realizable and non-realizable cases Daniil Ryabko To cite this version: Daniil Ryabko. Sequence prediction in realizable and non-realizable cases. Conference on Learning Theory,

More information

Monotone Conditional Complexity Bounds on Future Prediction Errors

Monotone Conditional Complexity Bounds on Future Prediction Errors Technical Report IDSIA-16-05 Monotone Conditional Complexity Bounds on Future Prediction Errors Alexey Chernov and Marcus Hutter IDSIA, Galleria 2, CH-6928 Manno-Lugano, Switzerland {alexey,marcus}@idsia.ch,

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Model-Based Reinforcement Learning Model-based, PAC-MDP, sample complexity, exploration/exploitation, RMAX, E3, Bayes-optimal, Bayesian RL, model learning Vien Ngo MLR, University

More information

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz Uncertainty & Probabilities & Bandits Daniel Hennes 16.11.2017 (WS 2017/18) University Stuttgart - IPVS - Machine Learning & Robotics 1 Today Uncertainty Probability

More information

Plausible Values for Latent Variables Using Mplus

Plausible Values for Latent Variables Using Mplus Plausible Values for Latent Variables Using Mplus Tihomir Asparouhov and Bengt Muthén August 21, 2010 1 1 Introduction Plausible values are imputed values for latent variables. All latent variables can

More information

Solomonoff Induction Violates Nicod s Criterion

Solomonoff Induction Violates Nicod s Criterion Solomonoff Induction Violates Nicod s Criterion Jan Leike and Marcus Hutter http://jan.leike.name/ ALT 15 6 October 2015 Outline The Paradox of Confirmation Solomonoff Induction Results Resolving the Paradox

More information

Predictive MDL & Bayes

Predictive MDL & Bayes Predictive MDL & Bayes Marcus Hutter Canberra, ACT, 0200, Australia http://www.hutter1.net/ ANU RSISE NICTA Marcus Hutter - 2 - Predictive MDL & Bayes Contents PART I: SETUP AND MAIN RESULTS PART II: FACTS,

More information

Computational Cognitive Science

Computational Cognitive Science Computational Cognitive Science Lecture 8: Frank Keller School of Informatics University of Edinburgh keller@inf.ed.ac.uk Based on slides by Sharon Goldwater October 14, 2016 Frank Keller Computational

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Generative Models Varun Chandola Computer Science & Engineering State University of New York at Buffalo Buffalo, NY, USA chandola@buffalo.edu Chandola@UB CSE 474/574 1

More information

Machine Learning. Probability Basics. Marc Toussaint University of Stuttgart Summer 2014

Machine Learning. Probability Basics. Marc Toussaint University of Stuttgart Summer 2014 Machine Learning Probability Basics Basic definitions: Random variables, joint, conditional, marginal distribution, Bayes theorem & examples; Probability distributions: Binomial, Beta, Multinomial, Dirichlet,

More information

Introduction to Bayesian Statistics

Introduction to Bayesian Statistics Bayesian Parameter Estimation Introduction to Bayesian Statistics Harvey Thornburg Center for Computer Research in Music and Acoustics (CCRMA) Department of Music, Stanford University Stanford, California

More information

Multi-armed bandit models: a tutorial

Multi-armed bandit models: a tutorial Multi-armed bandit models: a tutorial CERMICS seminar, March 30th, 2016 Multi-Armed Bandit model: general setting K arms: for a {1,..., K}, (X a,t ) t N is a stochastic process. (unknown distributions)

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Probabilities Marc Toussaint University of Stuttgart Winter 2018/19 Motivation: AI systems need to reason about what they know, or not know. Uncertainty may have so many sources:

More information

Statistical Concepts

Statistical Concepts Statistical Concepts Ad Feelders May 19, 2015 1 Introduction Statistics is the science of collecting, organizing and drawing conclusions from data. How to properly produce and collect data is studied in

More information

Predictive Hypothesis Identification

Predictive Hypothesis Identification Marcus Hutter - 1 - Predictive Hypothesis Identification Predictive Hypothesis Identification Marcus Hutter Canberra, ACT, 0200, Australia http://www.hutter1.net/ ANU RSISE NICTA Marcus Hutter - 2 - Predictive

More information

On the Foundations of Universal Sequence Prediction

On the Foundations of Universal Sequence Prediction Technical Report IDSIA-03-06 On the Foundations of Universal Sequence Prediction Marcus Hutter IDSIA, Galleria 2, CH-6928 Manno-Lugano, Switzerland marcus@idsia.ch http://www.idsia.ch/ marcus 8 February

More information

Homework 5: Conditional Probability Models

Homework 5: Conditional Probability Models Homework 5: Conditional Probability Models Instructions: Your answers to the questions below, including plots and mathematical work, should be submitted as a single PDF file. It s preferred that you write

More information

Learning distributions and hypothesis testing via social learning

Learning distributions and hypothesis testing via social learning UMich EECS 2015 1 / 48 Learning distributions and hypothesis testing via social learning Anand D. Department of Electrical and Computer Engineering, The State University of New Jersey September 29, 2015

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2018 (Many figures from C. M. Bishop, "Pattern Recognition and ") 1of 143 Part IV

More information

Automatic Speech Recognition (CS753)

Automatic Speech Recognition (CS753) Automatic Speech Recognition (CS753) Lecture 6: Hidden Markov Models (Part II) Instructor: Preethi Jyothi Aug 10, 2017 Recall: Computing Likelihood Problem 1 (Likelihood): Given an HMM l =(A, B) and an

More information

Generalization Bounds

Generalization Bounds Generalization Bounds Here we consider the problem of learning from binary labels. We assume training data D = x 1, y 1,... x N, y N with y t being one of the two values 1 or 1. We will assume that these

More information

On the Optimality of General Reinforcement Learners

On the Optimality of General Reinforcement Learners Journal of Machine Learning Research 1 (2015) 1-9 Submitted 0/15; Published 0/15 On the Optimality of General Reinforcement Learners Jan Leike Australian National University Canberra, ACT, Australia Marcus

More information

Bayesian Inference: Posterior Intervals

Bayesian Inference: Posterior Intervals Bayesian Inference: Posterior Intervals Simple values like the posterior mean E[θ X] and posterior variance var[θ X] can be useful in learning about θ. Quantiles of π(θ X) (especially the posterior median)

More information

Machine Learning CSE546 Carlos Guestrin University of Washington. September 30, What about continuous variables?

Machine Learning CSE546 Carlos Guestrin University of Washington. September 30, What about continuous variables? Linear Regression Machine Learning CSE546 Carlos Guestrin University of Washington September 30, 2014 1 What about continuous variables? n Billionaire says: If I am measuring a continuous variable, what

More information

Introduction to Systems Analysis and Decision Making Prepared by: Jakub Tomczak

Introduction to Systems Analysis and Decision Making Prepared by: Jakub Tomczak Introduction to Systems Analysis and Decision Making Prepared by: Jakub Tomczak 1 Introduction. Random variables During the course we are interested in reasoning about considered phenomenon. In other words,

More information

Quiz 2 Date: Monday, November 21, 2016

Quiz 2 Date: Monday, November 21, 2016 10-704 Information Processing and Learning Fall 2016 Quiz 2 Date: Monday, November 21, 2016 Name: Andrew ID: Department: Guidelines: 1. PLEASE DO NOT TURN THIS PAGE UNTIL INSTRUCTED. 2. Write your name,

More information

Computational Biology Lecture #3: Probability and Statistics. Bud Mishra Professor of Computer Science, Mathematics, & Cell Biology Sept

Computational Biology Lecture #3: Probability and Statistics. Bud Mishra Professor of Computer Science, Mathematics, & Cell Biology Sept Computational Biology Lecture #3: Probability and Statistics Bud Mishra Professor of Computer Science, Mathematics, & Cell Biology Sept 26 2005 L2-1 Basic Probabilities L2-2 1 Random Variables L2-3 Examples

More information

Estimation of reliability parameters from Experimental data (Parte 2) Prof. Enrico Zio

Estimation of reliability parameters from Experimental data (Parte 2) Prof. Enrico Zio Estimation of reliability parameters from Experimental data (Parte 2) This lecture Life test (t 1,t 2,...,t n ) Estimate θ of f T t θ For example: λ of f T (t)= λe - λt Classical approach (frequentist

More information

Bandit models: a tutorial

Bandit models: a tutorial Gdt COS, December 3rd, 2015 Multi-Armed Bandit model: general setting K arms: for a {1,..., K}, (X a,t ) t N is a stochastic process. (unknown distributions) Bandit game: a each round t, an agent chooses

More information

Mathematics Ph.D. Qualifying Examination Stat Probability, January 2018

Mathematics Ph.D. Qualifying Examination Stat Probability, January 2018 Mathematics Ph.D. Qualifying Examination Stat 52800 Probability, January 2018 NOTE: Answers all questions completely. Justify every step. Time allowed: 3 hours. 1. Let X 1,..., X n be a random sample from

More information

Statistics: Learning models from data

Statistics: Learning models from data DS-GA 1002 Lecture notes 5 October 19, 2015 Statistics: Learning models from data Learning models from data that are assumed to be generated probabilistically from a certain unknown distribution is a crucial

More information

Naïve Bayes classification

Naïve Bayes classification Naïve Bayes classification 1 Probability theory Random variable: a variable whose possible values are numerical outcomes of a random phenomenon. Examples: A person s height, the outcome of a coin toss

More information

Bayesian Computation

Bayesian Computation Bayesian Computation CAS Centennial Celebration and Annual Meeting New York, NY November 10, 2014 Brian M. Hartman, PhD ASA Assistant Professor of Actuarial Science University of Connecticut CAS Antitrust

More information

Mathematics Qualifying Examination January 2015 STAT Mathematical Statistics

Mathematics Qualifying Examination January 2015 STAT Mathematical Statistics Mathematics Qualifying Examination January 2015 STAT 52800 - Mathematical Statistics NOTE: Answer all questions completely and justify your derivations and steps. A calculator and statistical tables (normal,

More information

Subsampling, Concentration and Multi-armed bandits

Subsampling, Concentration and Multi-armed bandits Subsampling, Concentration and Multi-armed bandits Odalric-Ambrym Maillard, R. Bardenet, S. Mannor, A. Baransi, N. Galichet, J. Pineau, A. Durand Toulouse, November 09, 2015 O-A. Maillard Subsampling and

More information

Bayesian and Frequentist Methods in Bandit Models

Bayesian and Frequentist Methods in Bandit Models Bayesian and Frequentist Methods in Bandit Models Emilie Kaufmann, Telecom ParisTech Bayes In Paris, ENSAE, October 24th, 2013 Emilie Kaufmann (Telecom ParisTech) Bayesian and Frequentist Bandits BIP,

More information

Using Localization and Factorization to Reduce the Complexity of Reinforcement Learning

Using Localization and Factorization to Reduce the Complexity of Reinforcement Learning Using Localization and Factorization to Reduce the Complexity of Reinforcement Learning Peter Sunehag 1,2 and Marcus Hutter 1 Sunehag@google.com, Marcus.Hutter@anu.edu.au 1 Research School of Computer

More information

Introduction to Intelligent Data Analysis. Ad Feelders

Introduction to Intelligent Data Analysis. Ad Feelders Introduction to Intelligent Data Analysis Ad Feelders November 18, 2003 Contents 1 Probability 7 1.1 Random Experiments....................... 7 1.2 Classical definition of probability................

More information

COMPUTATIONAL LEARNING THEORY

COMPUTATIONAL LEARNING THEORY COMPUTATIONAL LEARNING THEORY XIAOXU LI Abstract. This paper starts with basic concepts of computational learning theory and moves on with examples in monomials and learning rays to the final discussion

More information

Bayesian data analysis using JASP

Bayesian data analysis using JASP Bayesian data analysis using JASP Dani Navarro compcogscisydney.com/jasp-tute.html Part 1: Theory Philosophy of probability Introducing Bayes rule Bayesian reasoning A simple example Bayesian hypothesis

More information

Supervised Machine Learning (Spring 2014) Homework 2, sample solutions

Supervised Machine Learning (Spring 2014) Homework 2, sample solutions 58669 Supervised Machine Learning (Spring 014) Homework, sample solutions Credit for the solutions goes to mainly to Panu Luosto and Joonas Paalasmaa, with some additional contributions by Jyrki Kivinen

More information

01 Probability Theory and Statistics Review

01 Probability Theory and Statistics Review NAVARCH/EECS 568, ROB 530 - Winter 2018 01 Probability Theory and Statistics Review Maani Ghaffari January 08, 2018 Last Time: Bayes Filters Given: Stream of observations z 1:t and action data u 1:t Sensor/measurement

More information

(a) (3 points) Construct a 95% confidence interval for β 2 in Equation 1.

(a) (3 points) Construct a 95% confidence interval for β 2 in Equation 1. Problem 1 (21 points) An economist runs the regression y i = β 0 + x 1i β 1 + x 2i β 2 + x 3i β 3 + ε i (1) The results are summarized in the following table: Equation 1. Variable Coefficient Std. Error

More information

Midterm Examination. STA 215: Statistical Inference. Due Wednesday, 2006 Mar 8, 1:15 pm

Midterm Examination. STA 215: Statistical Inference. Due Wednesday, 2006 Mar 8, 1:15 pm Midterm Examination STA 215: Statistical Inference Due Wednesday, 2006 Mar 8, 1:15 pm This is an open-book take-home examination. You may work on it during any consecutive 24-hour period you like; please

More information

Classical and Bayesian inference

Classical and Bayesian inference Classical and Bayesian inference AMS 132 Claudia Wehrhahn (UCSC) Classical and Bayesian inference January 8 1 / 11 The Prior Distribution Definition Suppose that one has a statistical model with parameter

More information

Theorem 1.7 [Bayes' Law]: Assume that,,, are mutually disjoint events in the sample space s.t.. Then Pr( )

Theorem 1.7 [Bayes' Law]: Assume that,,, are mutually disjoint events in the sample space s.t.. Then Pr( ) Theorem 1.7 [Bayes' Law]: Assume that,,, are mutually disjoint events in the sample space s.t.. Then Pr Pr = Pr Pr Pr() Pr Pr. We are given three coins and are told that two of the coins are fair and the

More information

Swarthmore Honors Exam 2012: Statistics

Swarthmore Honors Exam 2012: Statistics Swarthmore Honors Exam 2012: Statistics 1 Swarthmore Honors Exam 2012: Statistics John W. Emerson, Yale University NAME: Instructions: This is a closed-book three-hour exam having six questions. You may

More information

Foundations of Nonparametric Bayesian Methods

Foundations of Nonparametric Bayesian Methods 1 / 27 Foundations of Nonparametric Bayesian Methods Part II: Models on the Simplex Peter Orbanz http://mlg.eng.cam.ac.uk/porbanz/npb-tutorial.html 2 / 27 Tutorial Overview Part I: Basics Part II: Models

More information

Are Bayesian Inferences Weak for Wasserman s Example?

Are Bayesian Inferences Weak for Wasserman s Example? Are Bayesian Inferences Weak for Wasserman s Example? Longhai Li longhai@math.usask.ca Department of Mathematics and Statistics University of Saskatchewan Saskatoon, Saskatchewan, S7N 5E6 Canada Quebec

More information

Overview of Course. Nevin L. Zhang (HKUST) Bayesian Networks Fall / 58

Overview of Course. Nevin L. Zhang (HKUST) Bayesian Networks Fall / 58 Overview of Course So far, we have studied The concept of Bayesian network Independence and Separation in Bayesian networks Inference in Bayesian networks The rest of the course: Data analysis using Bayesian

More information

Differential Privacy for Bayesian Inference through Posterior Sampling

Differential Privacy for Bayesian Inference through Posterior Sampling Journal of Machine Learning Research 8 (07) -39 Submitted 5/5; Revised /7; Published 3/7 Differential Privacy for Bayesian Inference through Posterior Sampling Christos Dimitrakakis christos.dimitrakakis@gmail.com

More information

Priors for the frequentist, consistency beyond Schwartz

Priors for the frequentist, consistency beyond Schwartz Victoria University, Wellington, New Zealand, 11 January 2016 Priors for the frequentist, consistency beyond Schwartz Bas Kleijn, KdV Institute for Mathematics Part I Introduction Bayesian and Frequentist

More information

Learning Bayesian network : Given structure and completely observed data

Learning Bayesian network : Given structure and completely observed data Learning Bayesian network : Given structure and completely observed data Probabilistic Graphical Models Sharif University of Technology Spring 2017 Soleymani Learning problem Target: true distribution

More information

MDL Convergence Speed for Bernoulli Sequences

MDL Convergence Speed for Bernoulli Sequences Technical Report IDSIA-04-06 MDL Convergence Speed for Bernoulli Sequences Jan Poland and Marcus Hutter IDSIA, Galleria CH-698 Manno (Lugano), Switzerland {jan,marcus}@idsia.ch http://www.idsia.ch February

More information

Data Mining Chapter 4: Data Analysis and Uncertainty Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University

Data Mining Chapter 4: Data Analysis and Uncertainty Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University Data Mining Chapter 4: Data Analysis and Uncertainty Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University Why uncertainty? Why should data mining care about uncertainty? We

More information