New Insights and Perspectives on the Natural Gradient Method

Size: px
Start display at page:

Download "New Insights and Perspectives on the Natural Gradient Method"

Transcription

1 1 / 18 New Insights and Perspectives on the Natural Gradient Method Yoonho Lee Department of Computer Science and Engineering Pohang University of Science and Technology March 13, 2018

2 Motivation 2 / 18 In parameter space (µ, σ), each pair of distributions have the same distance.

3 Motivation 3 / 18 We often talk about the parameter space of a neural network, instead of the functions that those parameters represent.

4 Gradient Descent 4 / 18 The gradient descent update θ = α θ L is the solution to the following optimization problem: arg min [ θ L(θ) θ] θ s.t. θ δ. We are optimizing a linear approximation of L within a trust region defined by the Euclidean metric in parameter space.

5 Natural Gradient 5 / 18 Consider a family of density functions F : θ p(z) where θ R n : p θ (z) := F(θ)(z). We naturally obtain a notion of closeness among different values of θ: d(θ 1, θ 2 ) := KL(p θ1 (z) p θ2 (z)).

6 6 / 18 Natural Gradient d(θ 1, θ 2 ) := KL(p θ1 (z) p θ2 (z)). Let s see how d behaves near a given θ. KL(p θ (z) p θ+ θ (z)) = E z [log p θ ] E z [log p θ ] E z [ log p θ ] θ + O( θ 2 ) = O( θ 2 ), so no useful information from first order approximation.

7 Natural Gradient 7 / 18 d(θ 1, θ 2 ) := KL(p θ1 (z) p θ2 (z)). Let s see how d behaves near a given θ. KL(p θ (z) p θ+ θ (z)) = 1 2 θ E z [ 2 log p θ ] θ + O( θ 3 ) 1 2 θ F θ θ, where F θ = E z [ 2 log p θ ] = Ez [ log p θ log p θ ]. The Fisher Information Matrix is the expected negative Hessian of log p.

8 Natural Gradient We change the constraint of 8 / 18 arg min [ θ L(θ) θ] θ s.t. θ = const to s.t.kl(p θ (z) p θ+ θ (z)) = const.

9 Natural Gradient We change the constraint of 9 / 18 arg min [ θ L(θ) θ] θ s.t. θ = const to s.t.kl(p θ (z) p θ+ θ (z)) = const. Solution after using Lagrange multiplier is θ L(θ) θ λ θ F θ θ θ F 1 θ θ L

10 Natural Gradient 10 / 18 For η defined as η η 0 = F 1 2 (θ θ0 ), the Fisher ball is a unit circle. Thus in the parameter space of η, the natural gradient is the same as the gradient.

11 Second-order Optimization 11 / 18 θ = arg min M(δ), δ M(δ) := 1 2 δ Bδ + h(θ) δ + h(θ) The solution is θ = B 1 h.

12 12 / 18 Second-order Optimization θ = arg min M(δ), δ M(δ) := 1 2 δ Bδ + h(θ) δ + h(θ) The solution is θ = B 1 h. B = βi: Gradient Descent. B = H(θ): Newton s Method. Newton s method assumes h is convex, and fails otherwise.

13 Second-order Optimization The Generalized Gauss-Newton Matrix Let our loss function be L(f (x, θ)). 13 / 18 H ij = L(f (x, θ)) θ j θ i = n θ j f k (x, θ) = k=0 ( n n k=0 l=0 ( L (f (x, θ)) L 2 (f (x, θ)) f k (x, θ) f l (x, θ) ) f k (x, θ) θ i f k (x, θ) θ j n L (f (x, θ)) f k (x, θ) 2 + f k (x, θ) θ j θ i k=0 n H = Jf L H L J f + H fk Jf H L J f = G f k k=0 ) f k (x, θ) θ i

14 14 / 18 Second-order Optimization Why G instead of H G is positive semidefinite, H is not. Let s expand H further, assuming f is a feedforward neural network: Wi φ W i+1 s i ai si+1 H G = l m i ( a i L) Js i H [φ(si )] j J si i=1 j=1 The remaining term is the sum of curvature terms coming from each intermediate activation. These curvature terms are subject to more frequent change. In ReLU networks, H [φ(si )] = 0 a.e..

15 F and G Define the conditional distribution r to be 15 / 18 r(y z) = r(y f (x, θ)) We have θ log p(y; x, θ) = J f z log r(y z) [ F = E x log p(y; x, θ) log p(y; x, θ) ] [ ] = E x Jf z log r(y z) z log r(y z) J f [ ] = E x Jf F R J f [ ] G = E x Jf H L J f F = G when F R = H L.

16 16 / 18 F and G We know that F = G when F R = H L. When does this occur? Let L(y, z) = log r(y z). F R = E Ry f (x,θ) [H log r ] H L = E (x,y) [H log r ] F R = H L holds when E Ry f (x,θ) [H log r ] = E (x,y) [H log r ]

17 17 / 18 F and G We know that F = G when F R = H L. When does this occur? Let L(y, z) = log r(y z). F R = E Ry f (x,θ) [H log r ] H L = E (x,y) [H log r ] F R = H L holds when E Ry f (x,θ) [H log r ] = E (x,y) [H log r ] This holds when r(y z) is an exponential family: log r(y z) = z T (y) log Z(z) since in this case, the hessian H log r does not depend on y. Most commonly-used losses satisfy this property, including the MSE loss and cross-entropy loss.

18 18 / 18 Summary Roughly speaking, the natural gradient is the direction of steepest change of loss in function space. The natural gradient is invariant under reparameterization. For most neural networks of interest, natural gradient descent is identical to a second-order method (GGN).

19 References I 19 / 18 [1] Shun-Ichi Amari. Natural Gradient Works Efficiently in Learning. In: Neural Comput. (1998). [2] James Martens. Deep learning via Hessian-free optimization. In: Proceedings of the International Conference on Machine Learning (ICML) (2010). [3] James Martens. New insights and perspectives on the natural gradient method. Preprint arxiv: [4] James Martens and Roger B. Grosse. Optimizing Neural Networks with Kronecker-factored Approximate Curvature. In: Proceedings of the International Conference on Machine Learning (ICML) (2015). [5] Hyeyoung Park, Shun-Ichi Amari, and Kenji Fukumizu. Adaptive natural gradient learning algorithms for various stochastic models. In: Neural Networks (2000).

20 References II 20 / 18 [6] Razvan Pascanu and Yoshua Bengio. Revisiting Natural Gradient for Deep Networks. In: Proceedings of the International Conference on Learning Representations (ICLR) (2014). [7] Oriol Vinyals and Daniel Povey. Krylov Subspace Descent for Deep Learning. In: Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS) (2012).

21 Thank You 21 / 18

arxiv: v9 [cs.lg] 21 Nov 2017

arxiv: v9 [cs.lg] 21 Nov 2017 New insights and perspectives on the natural gradient method James Martens DeepMind London, United Kingdom james.martens@gmail.com arxiv:42.93v9 [cs.lg] 2 Nov 207 Editor: Abstract Natural gradient descent

More information

Tutorial on: Optimization I. (from a deep learning perspective) Jimmy Ba

Tutorial on: Optimization I. (from a deep learning perspective) Jimmy Ba Tutorial on: Optimization I (from a deep learning perspective) Jimmy Ba Outline Random search v.s. gradient descent Finding better search directions Design white-box optimization methods to improve computation

More information

The K-FAC method for neural network optimization

The K-FAC method for neural network optimization The K-FAC method for neural network optimization James Martens Thanks to my various collaborators on K-FAC research and engineering: Roger Grosse, Jimmy Ba, Vikram Tankasali, Matthew Johnson, Daniel Duckworth,

More information

CSC2541 Lecture 5 Natural Gradient

CSC2541 Lecture 5 Natural Gradient CSC2541 Lecture 5 Natural Gradient Roger Grosse Roger Grosse CSC2541 Lecture 5 Natural Gradient 1 / 12 Motivation Two classes of optimization procedures used throughout ML (stochastic) gradient descent,

More information

ONLINE VARIANCE-REDUCING OPTIMIZATION

ONLINE VARIANCE-REDUCING OPTIMIZATION ONLINE VARIANCE-REDUCING OPTIMIZATION Nicolas Le Roux Google Brain nlr@google.com Reza Babanezhad University of British Columbia rezababa@cs.ubc.ca Pierre-Antoine Manzagol Google Brain manzagop@google.com

More information

Feedforward Neural Networks. Michael Collins, Columbia University

Feedforward Neural Networks. Michael Collins, Columbia University Feedforward Neural Networks Michael Collins, Columbia University Recap: Log-linear Models A log-linear model takes the following form: p(y x; v) = exp (v f(x, y)) y Y exp (v f(x, y )) f(x, y) is the representation

More information

Information geometry of mirror descent

Information geometry of mirror descent Information geometry of mirror descent Geometric Science of Information Anthea Monod Department of Statistical Science Duke University Information Initiative at Duke G. Raskutti (UW Madison) and S. Mukherjee

More information

UNDERSTANDING LOCAL MINIMA IN NEURAL NET-

UNDERSTANDING LOCAL MINIMA IN NEURAL NET- UNDERSTANDING LOCAL MINIMA IN NEURAL NET- WORKS BY LOSS SURFACE DECOMPOSITION Anonymous authors Paper under double-blind review ABSTRACT To provide principled ways of designing proper Deep Neural Network

More information

arxiv: v2 [cs.lg] 16 Mar 2013

arxiv: v2 [cs.lg] 16 Mar 2013 Metric-Free Natural Gradient for Joint-Training of Boltzmann Machines arxiv:1301.3545v2 cs.lg 16 Mar 2013 Guillaume Desjardins, Razvan Pascanu, Aaron Courville and Yoshua Bengio Département d informatique

More information

Fast yet Simple Natural-Gradient Variational Inference in Complex Models

Fast yet Simple Natural-Gradient Variational Inference in Complex Models Fast yet Simple Natural-Gradient Variational Inference in Complex Models Mohammad Emtiyaz Khan RIKEN Center for AI Project, Tokyo, Japan http://emtiyaz.github.io Joint work with Wu Lin (UBC) DidrikNielsen,

More information

Normalization Techniques in Training of Deep Neural Networks

Normalization Techniques in Training of Deep Neural Networks Normalization Techniques in Training of Deep Neural Networks Lei Huang ( 黄雷 ) State Key Laboratory of Software Development Environment, Beihang University Mail:huanglei@nlsde.buaa.edu.cn August 17 th,

More information

Optimization for Training I. First-Order Methods Training algorithm

Optimization for Training I. First-Order Methods Training algorithm Optimization for Training I First-Order Methods Training algorithm 2 OPTIMIZATION METHODS Topics: Types of optimization methods. Practical optimization methods breakdown into two categories: 1. First-order

More information

Optimizing Neural Networks with Kronecker-factored Approximate Curvature

Optimizing Neural Networks with Kronecker-factored Approximate Curvature Optimizing Neural Networks with Kronecker-factored Approximate Curvature James Martens and Roger Grosse arxiv:1503.05671v6 [cs.lg] 4 May 2016 Department of Computer Science, University of Toronto Abstract

More information

Natural Gradient for the Gaussian Distribution via Least Squares Regression

Natural Gradient for the Gaussian Distribution via Least Squares Regression Natural Gradient for the Gaussian Distribution via Least Squares Regression Luigi Malagò Department of Electrical and Electronic Engineering Shinshu University & INRIA Saclay Île-de-France 4-17-1 Wakasato,

More information

Learning Recurrent Neural Networks with Hessian-Free Optimization: Supplementary Materials

Learning Recurrent Neural Networks with Hessian-Free Optimization: Supplementary Materials Learning Recurrent Neural Networks with Hessian-Free Optimization: Supplementary Materials Contents 1 Pseudo-code for the damped Gauss-Newton vector product 2 2 Details of the pathological synthetic problems

More information

IPAM Summer School Optimization methods for machine learning. Jorge Nocedal

IPAM Summer School Optimization methods for machine learning. Jorge Nocedal IPAM Summer School 2012 Tutorial on Optimization methods for machine learning Jorge Nocedal Northwestern University Overview 1. We discuss some characteristics of optimization problems arising in deep

More information

Advanced Policy Gradient Methods: Natural Gradient, TRPO, and More. March 8, 2017

Advanced Policy Gradient Methods: Natural Gradient, TRPO, and More. March 8, 2017 Advanced Policy Gradient Methods: Natural Gradient, TRPO, and More March 8, 2017 Defining a Loss Function for RL Let η(π) denote the expected return of π [ ] η(π) = E s0 ρ 0,a t π( s t) γ t r t We collect

More information

Optimizing Neural Networks with Kronecker-factored Approximate Curvature

Optimizing Neural Networks with Kronecker-factored Approximate Curvature James Martens Roger Grosse Department of Computer Science, University of Toronto JMARTENS@CS.TORONTO.EDU RGROSSE@CS.TORONTO.EDU Abstract We propose an efficient method for approximating natural gradient

More information

Deep Learning & Artificial Intelligence WS 2018/2019

Deep Learning & Artificial Intelligence WS 2018/2019 Deep Learning & Artificial Intelligence WS 2018/2019 Linear Regression Model Model Error Function: Squared Error Has no special meaning except it makes gradients look nicer Prediction Ground truth / target

More information

Convex Optimization Algorithms for Machine Learning in 10 Slides

Convex Optimization Algorithms for Machine Learning in 10 Slides Convex Optimization Algorithms for Machine Learning in 10 Slides Presenter: Jul. 15. 2015 Outline 1 Quadratic Problem Linear System 2 Smooth Problem Newton-CG 3 Composite Problem Proximal-Newton-CD 4 Non-smooth,

More information

Slide credit from Hung-Yi Lee & Richard Socher

Slide credit from Hung-Yi Lee & Richard Socher Slide credit from Hung-Yi Lee & Richard Socher 1 Review Recurrent Neural Network 2 Recurrent Neural Network Idea: condition the neural network on all previous words and tie the weights at each time step

More information

Towards stability and optimality in stochastic gradient descent

Towards stability and optimality in stochastic gradient descent Towards stability and optimality in stochastic gradient descent Panos Toulis, Dustin Tran and Edoardo M. Airoldi August 26, 2016 Discussion by Ikenna Odinaka Duke University Outline Introduction 1 Introduction

More information

Lecture 10. Neural networks and optimization. Machine Learning and Data Mining November Nando de Freitas UBC. Nonlinear Supervised Learning

Lecture 10. Neural networks and optimization. Machine Learning and Data Mining November Nando de Freitas UBC. Nonlinear Supervised Learning Lecture 0 Neural networks and optimization Machine Learning and Data Mining November 2009 UBC Gradient Searching for a good solution can be interpreted as looking for a minimum of some error (loss) function

More information

Machine Learning. Lecture 04: Logistic and Softmax Regression. Nevin L. Zhang

Machine Learning. Lecture 04: Logistic and Softmax Regression. Nevin L. Zhang Machine Learning Lecture 04: Logistic and Softmax Regression Nevin L. Zhang lzhang@cse.ust.hk Department of Computer Science and Engineering The Hong Kong University of Science and Technology This set

More information

Diagonal Rescaling For Neural Networks

Diagonal Rescaling For Neural Networks Diagonal Rescaling For Neural Networks Jean Lafond, Nicolas Vasilache, Léon Bottou Facebook AI Research, New York lafondjean@gmailcom, ntv@fbcom, leon@bottouorg Abstract We define a second-order neural

More information

Deep Feedforward Networks

Deep Feedforward Networks Deep Feedforward Networks Liu Yang March 30, 2017 Liu Yang Short title March 30, 2017 1 / 24 Overview 1 Background A general introduction Example 2 Gradient based learning Cost functions Output Units 3

More information

Optimizing Neural Networks with Kronecker-factored Approximate Curvature

Optimizing Neural Networks with Kronecker-factored Approximate Curvature James Martens Roger Grosse Department of Computer Science, University of Toronto JMARTENS@CS.TORONTO.EDU RGROSSE@CS.TORONTO.EDU Abstract We propose an efficient method for approximating natural gradient

More information

Nonlinear Models. Numerical Methods for Deep Learning. Lars Ruthotto. Departments of Mathematics and Computer Science, Emory University.

Nonlinear Models. Numerical Methods for Deep Learning. Lars Ruthotto. Departments of Mathematics and Computer Science, Emory University. Nonlinear Models Numerical Methods for Deep Learning Lars Ruthotto Departments of Mathematics and Computer Science, Emory University Intro 1 Course Overview Intro 2 Course Overview Lecture 1: Linear Models

More information

Non-Convex Optimization in Machine Learning. Jan Mrkos AIC

Non-Convex Optimization in Machine Learning. Jan Mrkos AIC Non-Convex Optimization in Machine Learning Jan Mrkos AIC The Plan 1. Introduction 2. Non convexity 3. (Some) optimization approaches 4. Speed and stuff? Neural net universal approximation Theorem (1989):

More information

Feedforward Neural Networks

Feedforward Neural Networks Feedforward Neural Networks Michael Collins 1 Introduction In the previous notes, we introduced an important class of models, log-linear models. In this note, we describe feedforward neural networks, which

More information

CSC321 Lecture 5: Multilayer Perceptrons

CSC321 Lecture 5: Multilayer Perceptrons CSC321 Lecture 5: Multilayer Perceptrons Roger Grosse Roger Grosse CSC321 Lecture 5: Multilayer Perceptrons 1 / 21 Overview Recall the simple neuron-like unit: y output output bias i'th weight w 1 w2 w3

More information

Adaptive Gradient Methods AdaGrad / Adam

Adaptive Gradient Methods AdaGrad / Adam Case Study 1: Estimating Click Probabilities Adaptive Gradient Methods AdaGrad / Adam Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade 1 The Problem with GD (and SGD)

More information

Deep Recurrent Neural Networks

Deep Recurrent Neural Networks Deep Recurrent Neural Networks Artem Chernodub e-mail: a.chernodub@gmail.com web: http://zzphoto.me ZZ Photo IMMSP NASU 2 / 28 Neuroscience Biological-inspired models Machine Learning p x y = p y x p(x)/p(y)

More information

Gradient Estimation Using Stochastic Computation Graphs

Gradient Estimation Using Stochastic Computation Graphs Gradient Estimation Using Stochastic Computation Graphs Yoonho Lee Department of Computer Science and Engineering Pohang University of Science and Technology May 9, 2017 Outline Stochastic Gradient Estimation

More information

arxiv: v3 [cs.lg] 4 Jun 2016 Abstract

arxiv: v3 [cs.lg] 4 Jun 2016 Abstract Weight Normalization: A Simple Reparameterization to Accelerate Training of Deep Neural Networks Tim Salimans OpenAI tim@openai.com Diederik P. Kingma OpenAI dpkingma@openai.com arxiv:1602.07868v3 [cs.lg]

More information

On the saddle point problem for non-convex optimization

On the saddle point problem for non-convex optimization On the saddle point problem for non-convex optimization Razvan Pascanu Université de Montréal r.pascanu@gmail.com Surya Ganguli Stanford University sganguli@standford.edu Yann N. Dauphin Université de

More information

CSC321 Lecture 18: Learning Probabilistic Models

CSC321 Lecture 18: Learning Probabilistic Models CSC321 Lecture 18: Learning Probabilistic Models Roger Grosse Roger Grosse CSC321 Lecture 18: Learning Probabilistic Models 1 / 25 Overview So far in this course: mainly supervised learning Language modeling

More information

Normalization Techniques

Normalization Techniques Normalization Techniques Devansh Arpit Normalization Techniques 1 / 39 Table of Contents 1 Introduction 2 Motivation 3 Batch Normalization 4 Normalization Propagation 5 Weight Normalization 6 Layer Normalization

More information

Series 6, May 14th, 2018 (EM Algorithm and Semi-Supervised Learning)

Series 6, May 14th, 2018 (EM Algorithm and Semi-Supervised Learning) Exercises Introduction to Machine Learning SS 2018 Series 6, May 14th, 2018 (EM Algorithm and Semi-Supervised Learning) LAS Group, Institute for Machine Learning Dept of Computer Science, ETH Zürich Prof

More information

Bias-Variance Trade-Off in Hierarchical Probabilistic Models Using Higher-Order Feature Interactions

Bias-Variance Trade-Off in Hierarchical Probabilistic Models Using Higher-Order Feature Interactions - Trade-Off in Hierarchical Probabilistic Models Using Higher-Order Feature Interactions Simon Luo The University of Sydney Data61, CSIRO simon.luo@data61.csiro.au Mahito Sugiyama National Institute of

More information

Characterization of Gradient Dominance and Regularity Conditions for Neural Networks

Characterization of Gradient Dominance and Regularity Conditions for Neural Networks Characterization of Gradient Dominance and Regularity Conditions for Neural Networks Yi Zhou Ohio State University Yingbin Liang Ohio State University Abstract zhou.1172@osu.edu liang.889@osu.edu The past

More information

Machine Learning Basics: Maximum Likelihood Estimation

Machine Learning Basics: Maximum Likelihood Estimation Machine Learning Basics: Maximum Likelihood Estimation Sargur N. srihari@cedar.buffalo.edu This is part of lecture slides on Deep Learning: http://www.cedar.buffalo.edu/~srihari/cse676 1 Topics 1. Learning

More information

A summary of Deep Learning without Poor Local Minima

A summary of Deep Learning without Poor Local Minima A summary of Deep Learning without Poor Local Minima by Kenji Kawaguchi MIT oral presentation at NIPS 2016 Learning Supervised (or Predictive) learning Learn a mapping from inputs x to outputs y, given

More information

Need for Deep Networks Perceptron. Can only model linear functions. Kernel Machines. Non-linearity provided by kernels

Need for Deep Networks Perceptron. Can only model linear functions. Kernel Machines. Non-linearity provided by kernels Need for Deep Networks Perceptron Can only model linear functions Kernel Machines Non-linearity provided by kernels Need to design appropriate kernels (possibly selecting from a set, i.e. kernel learning)

More information

OPTIMIZATION METHODS IN DEEP LEARNING

OPTIMIZATION METHODS IN DEEP LEARNING Tutorial outline OPTIMIZATION METHODS IN DEEP LEARNING Based on Deep Learning, chapter 8 by Ian Goodfellow, Yoshua Bengio and Aaron Courville Presented By Nadav Bhonker Optimization vs Learning Surrogate

More information

Natural Evolution Strategies for Direct Search

Natural Evolution Strategies for Direct Search Tobias Glasmachers Natural Evolution Strategies for Direct Search 1 Natural Evolution Strategies for Direct Search PGMO-COPI 2014 Recent Advances on Continuous Randomized black-box optimization Thursday

More information

Based on the original slides of Hung-yi Lee

Based on the original slides of Hung-yi Lee Based on the original slides of Hung-yi Lee Google Trends Deep learning obtains many exciting results. Can contribute to new Smart Services in the Context of the Internet of Things (IoT). IoT Services

More information

Adaptive Gradient Methods AdaGrad / Adam. Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade

Adaptive Gradient Methods AdaGrad / Adam. Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade Adaptive Gradient Methods AdaGrad / Adam Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade 1 Announcements: HW3 posted Dual coordinate ascent (some review of SGD and random

More information

Natural Gradients via the Variational Predictive Distribution

Natural Gradients via the Variational Predictive Distribution Natural Gradients via the Variational Predictive Distribution Da Tang Columbia University datang@cs.columbia.edu Rajesh Ranganath New York University rajeshr@cims.nyu.edu Abstract Variational inference

More information

Gradient-Based Learning. Sargur N. Srihari

Gradient-Based Learning. Sargur N. Srihari Gradient-Based Learning Sargur N. srihari@cedar.buffalo.edu 1 Topics Overview 1. Example: Learning XOR 2. Gradient-Based Learning 3. Hidden Units 4. Architecture Design 5. Backpropagation and Other Differentiation

More information

Learning Binary Classifiers for Multi-Class Problem

Learning Binary Classifiers for Multi-Class Problem Research Memorandum No. 1010 September 28, 2006 Learning Binary Classifiers for Multi-Class Problem Shiro Ikeda The Institute of Statistical Mathematics 4-6-7 Minami-Azabu, Minato-ku, Tokyo, 106-8569,

More information

Facilitating Bayesian Continual Learning by Natural Gradients and Stein Gradients

Facilitating Bayesian Continual Learning by Natural Gradients and Stein Gradients Facilitating Bayesian Continual Learning by Natural Gradients and Stein Gradients Yu Chen University of Bristol yc14600@bristol.ac.u Tom Diethe Amazon tdiethe@amazon.com Neil Lawrence Amazon lawrennd@amazon.com

More information

Deep Feedforward Networks

Deep Feedforward Networks Deep Feedforward Networks Liu Yang March 30, 2017 Liu Yang Short title March 30, 2017 1 / 24 Overview 1 Background A general introduction Example 2 Gradient based learning Cost functions Output Units 3

More information

Lecture 6: CS395T Numerical Optimization for Graphics and AI Line Search Applications

Lecture 6: CS395T Numerical Optimization for Graphics and AI Line Search Applications Lecture 6: CS395T Numerical Optimization for Graphics and AI Line Search Applications Qixing Huang The University of Texas at Austin huangqx@cs.utexas.edu 1 Disclaimer This note is adapted from Section

More information

ECS171: Machine Learning

ECS171: Machine Learning ECS171: Machine Learning Lecture 4: Optimization (LFD 3.3, SGD) Cho-Jui Hsieh UC Davis Jan 22, 2018 Gradient descent Optimization Goal: find the minimizer of a function min f (w) w For now we assume f

More information

Distributed Estimation, Information Loss and Exponential Families. Qiang Liu Department of Computer Science Dartmouth College

Distributed Estimation, Information Loss and Exponential Families. Qiang Liu Department of Computer Science Dartmouth College Distributed Estimation, Information Loss and Exponential Families Qiang Liu Department of Computer Science Dartmouth College Statistical Learning / Estimation Learning generative models from data Topic

More information

Natural Gradient Learning for Over- and Under-Complete Bases in ICA

Natural Gradient Learning for Over- and Under-Complete Bases in ICA NOTE Communicated by Jean-François Cardoso Natural Gradient Learning for Over- and Under-Complete Bases in ICA Shun-ichi Amari RIKEN Brain Science Institute, Wako-shi, Hirosawa, Saitama 351-01, Japan Independent

More information

Data Mining & Machine Learning

Data Mining & Machine Learning Data Mining & Machine Learning CS57300 Purdue University March 1, 2018 1 Recap of Last Class (Model Search) Forward and Backward passes 2 Feedforward Neural Networks Neural Networks: Architectures 2-layer

More information

CS229 Supplemental Lecture notes

CS229 Supplemental Lecture notes CS229 Supplemental Lecture notes John Duchi Binary classification In binary classification problems, the target y can take on at only two values. In this set of notes, we show how to model this problem

More information

Practical Gauss-Newton Optimisation for Deep Learning

Practical Gauss-Newton Optimisation for Deep Learning Aleksandar Botev 1 Hippolyt Ritter 1 David Barber 1 2 Abstract We present an efficient block-diagonal approximation to the Gauss-Newton matrix for feedforward neural networks. Our resulting algorithm is

More information

Neural Networks. Yan Shao Department of Linguistics and Philology, Uppsala University 7 December 2016

Neural Networks. Yan Shao Department of Linguistics and Philology, Uppsala University 7 December 2016 Neural Networks Yan Shao Department of Linguistics and Philology, Uppsala University 7 December 2016 Outline Part 1 Introduction Feedforward Neural Networks Stochastic Gradient Descent Computational Graph

More information

Eigen Vector Descent and Line Search for Multilayer Perceptron

Eigen Vector Descent and Line Search for Multilayer Perceptron igen Vector Descent and Line Search for Multilayer Perceptron Seiya Satoh and Ryohei Nakano Abstract As learning methods of a multilayer perceptron (MLP), we have the BP algorithm, Newton s method, quasi-

More information

Introduction to gradient descent

Introduction to gradient descent 6-1: Introduction to gradient descent Prof. J.C. Kao, UCLA Introduction to gradient descent Derivation and intuitions Hessian 6-2: Introduction to gradient descent Prof. J.C. Kao, UCLA Introduction Our

More information

Information Geometric view of Belief Propagation

Information Geometric view of Belief Propagation Information Geometric view of Belief Propagation Yunshu Liu 2013-10-17 References: [1]. Shiro Ikeda, Toshiyuki Tanaka and Shun-ichi Amari, Stochastic reasoning, Free energy and Information Geometry, Neural

More information

Actor-critic methods. Dialogue Systems Group, Cambridge University Engineering Department. February 21, 2017

Actor-critic methods. Dialogue Systems Group, Cambridge University Engineering Department. February 21, 2017 Actor-critic methods Milica Gašić Dialogue Systems Group, Cambridge University Engineering Department February 21, 2017 1 / 21 In this lecture... The actor-critic architecture Least-Squares Policy Iteration

More information

Long Short- Term Memory (LSTM) M1 Yuichiro Sawai Computa;onal Linguis;cs Lab. January 15, Deep Lunch

Long Short- Term Memory (LSTM) M1 Yuichiro Sawai Computa;onal Linguis;cs Lab. January 15, Deep Lunch Long Short- Term Memory (LSTM) M1 Yuichiro Sawai Computa;onal Linguis;cs Lab. January 15, 2015 @ Deep Lunch 1 Why LSTM? OJen used in many recent RNN- based systems Machine transla;on Program execu;on Can

More information

Lecture 6 Optimization for Deep Neural Networks

Lecture 6 Optimization for Deep Neural Networks Lecture 6 Optimization for Deep Neural Networks CMSC 35246: Deep Learning Shubhendu Trivedi & Risi Kondor University of Chicago April 12, 2017 Things we will look at today Stochastic Gradient Descent Things

More information

Deep Learning book, by Ian Goodfellow, Yoshua Bengio and Aaron Courville

Deep Learning book, by Ian Goodfellow, Yoshua Bengio and Aaron Courville Deep Learning book, by Ian Goodfellow, Yoshua Bengio and Aaron Courville Chapter 6 :Deep Feedforward Networks Benoit Massé Dionyssos Kounades-Bastian Benoit Massé, Dionyssos Kounades-Bastian Deep Feedforward

More information

The Extended Kalman Filter is a Natural Gradient Descent in Trajectory Space

The Extended Kalman Filter is a Natural Gradient Descent in Trajectory Space The Extended Kalman Filter is a Natural Gradient Descent in Trajectory Space Yann Ollivier Abstract The extended Kalman filter is perhaps the most standard tool to estimate in real time the state of a

More information

On stochas*c gradient descent, flatness and generaliza*on Yoshua Bengio

On stochas*c gradient descent, flatness and generaliza*on Yoshua Bengio On stochas*c gradient descent, flatness and generaliza*on Yoshua Bengio July 14, 2018 ICML 2018 Workshop on nonconvex op=miza=on Disentangling optimization and generalization The tradi=onal ML picture is

More information

Based on the original slides of Hung-yi Lee

Based on the original slides of Hung-yi Lee Based on the original slides of Hung-yi Lee New Activation Function Rectified Linear Unit (ReLU) σ z a a = z Reason: 1. Fast to compute 2. Biological reason a = 0 [Xavier Glorot, AISTATS 11] [Andrew L.

More information

Incremental Quasi-Newton methods with local superlinear convergence rate

Incremental Quasi-Newton methods with local superlinear convergence rate Incremental Quasi-Newton methods wh local superlinear convergence rate Aryan Mokhtari, Mark Eisen, and Alejandro Ribeiro Department of Electrical and Systems Engineering Universy of Pennsylvania Int. Conference

More information

Deep Learning Made Easier by Linear Transformations in Perceptrons

Deep Learning Made Easier by Linear Transformations in Perceptrons Deep Learning Made Easier by Linear Transformations in Perceptrons Tapani Raiko Aalto University School of Science Dept. of Information and Computer Science Espoo, Finland firstname.lastname@aalto.fi Harri

More information

ECE G: Special Topics in Signal Processing: Sparsity, Structure, and Inference

ECE G: Special Topics in Signal Processing: Sparsity, Structure, and Inference ECE 18-898G: Special Topics in Signal Processing: Sparsity, Structure, and Inference Neural Networks: A brief touch Yuejie Chi Department of Electrical and Computer Engineering Spring 2018 1/41 Outline

More information

Slow Dynamics Due to Singularities of Hierarchical Learning Machines

Slow Dynamics Due to Singularities of Hierarchical Learning Machines Progress of Theoretical Physics Supplement No. 157, 2005 275 Slow Dynamics Due to Singularities of Hierarchical Learning Machines Hyeyoung Par 1, Masato Inoue 2, and Masato Oada 3, 1 Computer Science Dept.,

More information

arxiv: v1 [cs.lg] 11 May 2015

arxiv: v1 [cs.lg] 11 May 2015 Improving neural networks with bunches of neurons modeled by Kumaraswamy units: Preliminary study Jakub M. Tomczak JAKUB.TOMCZAK@PWR.EDU.PL Wrocław University of Technology, wybrzeże Wyspiańskiego 7, 5-37,

More information

Deep Neural Networks (3) Computational Graphs, Learning Algorithms, Initialisation

Deep Neural Networks (3) Computational Graphs, Learning Algorithms, Initialisation Deep Neural Networks (3) Computational Graphs, Learning Algorithms, Initialisation Steve Renals Machine Learning Practical MLP Lecture 5 16 October 2018 MLP Lecture 5 / 16 October 2018 Deep Neural Networks

More information

CS60010: Deep Learning

CS60010: Deep Learning CS60010: Deep Learning Sudeshna Sarkar Spring 2018 16 Jan 2018 FFN Goal: Approximate some unknown ideal function f : X! Y Ideal classifier: y = f*(x) with x and category y Feedforward Network: Define parametric

More information

Machine Learning CS 4900/5900. Lecture 03. Razvan C. Bunescu School of Electrical Engineering and Computer Science

Machine Learning CS 4900/5900. Lecture 03. Razvan C. Bunescu School of Electrical Engineering and Computer Science Machine Learning CS 4900/5900 Razvan C. Bunescu School of Electrical Engineering and Computer Science bunescu@ohio.edu Machine Learning is Optimization Parametric ML involves minimizing an objective function

More information

Nonlinear Optimization Methods for Machine Learning

Nonlinear Optimization Methods for Machine Learning Nonlinear Optimization Methods for Machine Learning Jorge Nocedal Northwestern University University of California, Davis, Sept 2018 1 Introduction We don t really know, do we? a) Deep neural networks

More information

Conjugate Directions for Stochastic Gradient Descent

Conjugate Directions for Stochastic Gradient Descent Conjugate Directions for Stochastic Gradient Descent Nicol N Schraudolph Thore Graepel Institute of Computational Science ETH Zürich, Switzerland {schraudo,graepel}@infethzch Abstract The method of conjugate

More information

Trust-Region Optimization Methods Using Limited-Memory Symmetric Rank-One Updates for Off-The-Shelf Machine Learning

Trust-Region Optimization Methods Using Limited-Memory Symmetric Rank-One Updates for Off-The-Shelf Machine Learning Trust-Region Optimization Methods Using Limited-Memory Symmetric Rank-One Updates for Off-The-Shelf Machine Learning by Jennifer B. Erway, Joshua Griffin, Riadh Omheni, and Roummel Marcia Technical report

More information

Exponentiated Gradient Descent

Exponentiated Gradient Descent CSE599s, Spring 01, Online Learning Lecture 10-04/6/01 Lecturer: Ofer Dekel Exponentiated Gradient Descent Scribe: Albert Yu 1 Introduction In this lecture we review norms, dual norms, strong convexity,

More information

Lecture 2 Machine Learning Review

Lecture 2 Machine Learning Review Lecture 2 Machine Learning Review CMSC 35246: Deep Learning Shubhendu Trivedi & Risi Kondor University of Chicago March 29, 2017 Things we will look at today Formal Setup for Supervised Learning Things

More information

Gradient-Based Meta-Learning with Learned Layerwise Metric and Subspace

Gradient-Based Meta-Learning with Learned Layerwise Metric and Subspace Yoonho Lee 1 Seungjin Choi 1 Abstract Gradient-based meta-learning methods leverage gradient descent to learn the commonalities among various tasks. While previous such methods have been successful in

More information

Linear Models in Machine Learning

Linear Models in Machine Learning CS540 Intro to AI Linear Models in Machine Learning Lecturer: Xiaojin Zhu jerryzhu@cs.wisc.edu We briefly go over two linear models frequently used in machine learning: linear regression for, well, regression,

More information

Non-convex optimization. Issam Laradji

Non-convex optimization. Issam Laradji Non-convex optimization Issam Laradji Strongly Convex Objective function f(x) x Strongly Convex Objective function Assumptions Gradient Lipschitz continuous f(x) Strongly convex x Strongly Convex Objective

More information

Computational statistics

Computational statistics Computational statistics Lecture 3: Neural networks Thierry Denœux 5 March, 2016 Neural networks A class of learning methods that was developed separately in different fields statistics and artificial

More information

Riemannian Stein Variational Gradient Descent for Bayesian Inference

Riemannian Stein Variational Gradient Descent for Bayesian Inference Riemannian Stein Variational Gradient Descent for Bayesian Inference Chang Liu, Jun Zhu 1 Dept. of Comp. Sci. & Tech., TNList Lab; Center for Bio-Inspired Computing Research State Key Lab for Intell. Tech.

More information

= w 2. w 1. B j. A j. C + j1j2

= w 2. w 1. B j. A j. C + j1j2 Local Minima and Plateaus in Multilayer Neural Networks Kenji Fukumizu and Shun-ichi Amari Brain Science Institute, RIKEN Hirosawa 2-, Wako, Saitama 35-098, Japan E-mail: ffuku, amarig@brain.riken.go.jp

More information

Lecture 3 - Linear and Logistic Regression

Lecture 3 - Linear and Logistic Regression 3 - Linear and Logistic Regression-1 Machine Learning Course Lecture 3 - Linear and Logistic Regression Lecturer: Haim Permuter Scribe: Ziv Aharoni Throughout this lecture we talk about how to use regression

More information

Algorithmic Stability and Generalization Christoph Lampert

Algorithmic Stability and Generalization Christoph Lampert Algorithmic Stability and Generalization Christoph Lampert November 28, 2018 1 / 32 IST Austria (Institute of Science and Technology Austria) institute for basic research opened in 2009 located in outskirts

More information

Advanced Machine Learning

Advanced Machine Learning Advanced Machine Learning Lecture 4: Deep Learning Essentials Pierre Geurts, Gilles Louppe, Louis Wehenkel 1 / 52 Outline Goal: explain and motivate the basic constructs of neural networks. From linear

More information

CSE 591: Introduction to Deep Learning in Visual Computing. - Parag S. Chandakkar - Instructors: Dr. Baoxin Li and Ragav Venkatesan

CSE 591: Introduction to Deep Learning in Visual Computing. - Parag S. Chandakkar - Instructors: Dr. Baoxin Li and Ragav Venkatesan CSE 591: Introduction to Deep Learning in Visual Computing - Parag S. Chandakkar - Instructors: Dr. Baoxin Li and Ragav Venkatesan Overview Background Why another network structure? Vanishing and exploding

More information

Course 10. Kernel methods. Classical and deep neural networks.

Course 10. Kernel methods. Classical and deep neural networks. Course 10 Kernel methods. Classical and deep neural networks. Kernel methods in similarity-based learning Following (Ionescu, 2018) The Vector Space Model ò The representation of a set of objects as vectors

More information

Optimization for neural networks

Optimization for neural networks 0 - : Optimization for neural networks Prof. J.C. Kao, UCLA Optimization for neural networks We previously introduced the principle of gradient descent. Now we will discuss specific modifications we make

More information

Series 7, May 22, 2018 (EM Convergence)

Series 7, May 22, 2018 (EM Convergence) Exercises Introduction to Machine Learning SS 2018 Series 7, May 22, 2018 (EM Convergence) Institute for Machine Learning Dept. of Computer Science, ETH Zürich Prof. Dr. Andreas Krause Web: https://las.inf.ethz.ch/teaching/introml-s18

More information

ORIE 6326: Convex Optimization. Quasi-Newton Methods

ORIE 6326: Convex Optimization. Quasi-Newton Methods ORIE 6326: Convex Optimization Quasi-Newton Methods Professor Udell Operations Research and Information Engineering Cornell April 10, 2017 Slides on steepest descent and analysis of Newton s method adapted

More information

arxiv: v7 [cs.lg] 30 Nov 2014

arxiv: v7 [cs.lg] 30 Nov 2014 Fast large-scale optimization by unifying stochastic gradient and quasi-newton methods Jascha Sohl-Dickstein Ben Poole Surya Ganguli JASCHA@{STANFORD.EDU,KHANACADEMY.ORG} POOLE@CS.STANFORD.EDU SGANGULI@STANFORD.EDU

More information

Mollifying Networks. ICLR,2017 Presenter: Arshdeep Sekhon & Be

Mollifying Networks. ICLR,2017 Presenter: Arshdeep Sekhon & Be Mollifying Networks Caglar Gulcehre 1 Marcin Moczulski 2 Francesco Visin 3 Yoshua Bengio 1 1 University of Montreal, 2 University of Oxford, 3 Politecnico di Milano ICLR,2017 Presenter: Arshdeep Sekhon

More information