Permutation Test for Bayesian Variable Selection Method for Modelling Dose-Response Data Under Simple Order Restrictions

Size: px
Start display at page:

Download "Permutation Test for Bayesian Variable Selection Method for Modelling Dose-Response Data Under Simple Order Restrictions"

Transcription

1 Permutation Test for Bayesian Variable Selection Method for Modelling -Response Data Under Simple Order Restrictions Martin Otava International Hexa-Symposium on Biostatistics, Bioinformatics, and Epidemiology I-Biostat, UHasselt, Belgium

2 Research team Hasselt University (Belgium): Martin Otava Ziv Shkedy Interuniversity Institute for Biostatistics and statistical Bioinformatics Durham University (UK): Adetayo Kasim Tel Aviv University (Israel): Daniel Yekutieli Martin Otava 2

3 BVS model formulation Martin Otava 3

4 -response modeling Increasing dose of therapeutical compound. Variety of possible responses: Toxicity. Inhibition or stimulation. Gene expression level. Weight Goal: Determine if there is any relationship. If so, what is the shape of the profile. 0 Select 1 threshold 2 doses 3 (e.g. MED). Mutagenity Gene expression Gene expression Martin Otava 4

5 Order constraints Compound effect becomes stronger when dose is increased. Monotone restriction (non-decreasing or non-increasing). Zero effect is meaningful. Response No parametrical assumptions about dose-response curve shape Martin Otava 5

6 BVS model formulation Basic model: Y ij N(µ i, σ 2 ) Modeling of mean: i E(Y ij ) = µ i = µ 0 + z l δ l. Priors: l=1 Hyper Priors: σ 2 Γ(10 3, 10 3 ), η µ N(0, 10 6 ), σµ 2 Γ(10 3, 10 3 ), η δi N(0, 10 6 ), σ 2 δ i Γ(10 3, 10 3 ). π i U(0, 1). µ 0 N(η µ, σµ), 2 δ i N(η δi, σδ 2 i )I(0, A), z i Bernoulli(π i ), Martin Otava 6

7 Set of all models Response Response g_ g_ Response Response g_ g_ Model Up: Mean Structure z g 0 µ 0 = µ 1 = µ 2 = µ 3 (0,0,0) g 1 µ 0 < µ 1 = µ 2 = µ 3 (1,0,0) g 2 µ 0 = µ 1 < µ 2 = µ 3 (0,1,0) g 3 µ 0 < µ 1 < µ 2 = µ 3 (1,1,0) g 4 µ 0 = µ 1 = µ 2 < µ 3 (0,0,1) g 5 µ 0 < µ 1 = µ 2 < µ 3 (1,0,1) g 6 µ 0 = µ 1 < µ 2 < µ 3 (0,1,1) g 7 µ 0 < µ 1 < µ 2 < µ 3 (1,1,1) g_4 g_5 Response Response H up : µ 0 µ 1 µ 2... µ K 1 g_6 g_7 Response Response Martin Otava 7

8 Results of BVS Martin Otava 8

9 Example: BVS model Incorporating models with equal means results into less decreasing profile. Posterior means are averages of means of particular models at each MCMC iteration. ˆµ BV S = R P (g r data)ˆµ r r=0 Weight Order restricted BVS Connection to model averaging. Martin Otava 9

10 Posterior probability of model Vector z = (z 1,..., z K 1 ) = z r uniquely defines the model g r. In each MCMC iteration we sample one vector z = (z 1,..., z K 1 ). Posterior mean of indicator of z = z r translates into posterior probability of the model g r. = For posterior probabilities holds: P (z = z r data) = P (g r data). Martin Otava 10

11 Example: Posterior probabilities Posterior probabilities of particular models. Model g 0 represents H 0. Model g 1 is strongly supported by the data. Connection to model selection. g_0 g_1 g_2 g_3 g_4 g_5 g_6 g_7 Model Posterior probability Martin Otava 11

12 Results of BVS Model uncertainty taken into account! Model selection: P (gr data). Estimation of means: ˆµ = R r=0 P (g r data)ˆµ r. Inference: P (g0 data). BVS framework addresses all perspectives simultaneously. Martin Otava 12

13 Inference for BVS Martin Otava 13

14 Hypothesis testing Testing the hypothesis H 0 : µ 0 = µ 1 = µ 2 =... = µ K 1 against ordered alternative (one inequality strict) H up : µ 0 µ 1 µ 2... µ K 1 H dn : µ 0 µ 1 µ 2... µ K 1 Use P (g 0 data), estimation of P (H 0 data), to reject H 0. Depends on: data on hand, prior distributions, set of alternative hypotheses. Martin Otava 14

15 Hypothesis testing Testing the hypothesis H 0 : µ 0 = µ 1 = µ 2 =... = µ K 1 against ordered alternative (one inequality strict) H up : µ 0 µ 1 µ 2... µ K 1 H dn : µ 0 µ 1 µ 2... µ K 1 Use P (g 0 data), estimation of P (H 0 data), to reject H 0. Depends on: data on hand, prior distributions, set of alternative hypotheses. When to reject? Martin Otava 14

16 When to reject in Bayesian framework It boils down to same questions that arise for Bayes factor. Purely Bayesian: subjective choice. Martin Otava 15

17 When to reject in Bayesian framework It boils down to same questions that arise for Bayes factor. Purely Bayesian: subjective choice. No prior scientific knowledge: non-informative priors. But: how to define them. Can we do subjective decision then? Martin Otava 15

18 When to reject in Bayesian framework It boils down to same questions that arise for Bayes factor. Purely Bayesian: subjective choice. No prior scientific knowledge: non-informative priors. But: how to define them. Can we do subjective decision then? Is there quantity to use that does not depend on priors? Could we control errors? Martin Otava 15

19 Permutation test 1. Consider T = P (g 0 data) as test statistics. 2. Permute dose labels (under H 0 ) B times and perform BVS on new data. 3. Get collection of T b. 4. More against H 0 smaller T b, b = 1,..., B. 5. Compute quantity [ p Bayes = 1 B ] B I (T b < T ) b=1 6. Reject H 0 if p Bayes < α. Martin Otava 16

20 Example: Permutation test Weight Order restricted BVS g_0 g_1 g_2 g_3 g_4 g_5 g_6 g_7 Model Posterior probability Method p MCT Williams MCT Marcus LRT Permutation Martin Otava 17

21 Simulation study Martin Otava 18

22 Setting Simulated 10 5 experiments, 1400 under each of models g 1,..., g 7, rest under g 0. Permutation test was applied and H 0 rejected for p Bayes < Frequentist procedures LRT and MCTs were applied (α = 0.05). Is permutation test maintaining type I error in same way as LRT and MCTs? How powerful is the permutation test in comparison with LRT and MCTs? Martin Otava 19

23 Simulation study - Results Power by true profile Williams Marcus LRT Permutation Profile Martin Otava 20

24 Discussion Martin Otava 21

25 Comments Difficult to asses test statistics properties. Does not depend on priors put on hypotheses. Number of permutations depends on value of P (g 0 data). Computationally intensive. Simulation results suggest good behaviour. Martin Otava 22

26 Conclusions Alternative to frequentist tests with respect to objectivity. Unified framework. Impulse to further research. Martin Otava 23

27 Thank you for your attention! Martin Otava 24

Controlling Bayes Directional False Discovery Rate in Random Effects Model 1

Controlling Bayes Directional False Discovery Rate in Random Effects Model 1 Controlling Bayes Directional False Discovery Rate in Random Effects Model 1 Sanat K. Sarkar a, Tianhui Zhou b a Temple University, Philadelphia, PA 19122, USA b Wyeth Pharmaceuticals, Collegeville, PA

More information

Bayesian Applications in Biomarker Detection. Dr. Richardus Vonk Head, Research and Clinical Sciences Statistics

Bayesian Applications in Biomarker Detection. Dr. Richardus Vonk Head, Research and Clinical Sciences Statistics Bayesian Applications in Biomarker Detection Dr. Richardus Vonk Head, Research and Clinical Sciences Statistics Disclaimer The views expressed in this presentation are the personal views of the author,

More information

Bios 6649: Clinical Trials - Statistical Design and Monitoring

Bios 6649: Clinical Trials - Statistical Design and Monitoring Bios 6649: Clinical Trials - Statistical Design and Monitoring Spring Semester 2015 John M. Kittelson Department of Biostatistics & nformatics Colorado School of Public Health University of Colorado Denver

More information

High-throughput Testing

High-throughput Testing High-throughput Testing Noah Simon and Richard Simon July 2016 1 / 29 Testing vs Prediction On each of n patients measure y i - single binary outcome (eg. progression after a year, PCR) x i - p-vector

More information

A Bayesian Multiple Comparison Procedure for Order-Restricted Mixed Models

A Bayesian Multiple Comparison Procedure for Order-Restricted Mixed Models A Bayesian Multiple Comparison Procedure for Order-Restricted Mixed Models Junfeng Shang 1, Joseph E. Cavanaugh 2, Farroll T. Wright 3, 1 Department of Mathematics and Statistics, 450 Math Science Building,

More information

Confidence Distribution

Confidence Distribution Confidence Distribution Xie and Singh (2013): Confidence distribution, the frequentist distribution estimator of a parameter: A Review Céline Cunen, 15/09/2014 Outline of Article Introduction The concept

More information

A GENERAL DECISION THEORETIC FORMULATION OF PROCEDURES CONTROLLING FDR AND FNR FROM A BAYESIAN PERSPECTIVE

A GENERAL DECISION THEORETIC FORMULATION OF PROCEDURES CONTROLLING FDR AND FNR FROM A BAYESIAN PERSPECTIVE A GENERAL DECISION THEORETIC FORMULATION OF PROCEDURES CONTROLLING FDR AND FNR FROM A BAYESIAN PERSPECTIVE Sanat K. Sarkar 1, Tianhui Zhou and Debashis Ghosh Temple University, Wyeth Pharmaceuticals and

More information

STAT 499/962 Topics in Statistics Bayesian Inference and Decision Theory Jan 2018, Handout 01

STAT 499/962 Topics in Statistics Bayesian Inference and Decision Theory Jan 2018, Handout 01 STAT 499/962 Topics in Statistics Bayesian Inference and Decision Theory Jan 2018, Handout 01 Nasser Sadeghkhani a.sadeghkhani@queensu.ca There are two main schools to statistical inference: 1-frequentist

More information

Multiple testing: Intro & FWER 1

Multiple testing: Intro & FWER 1 Multiple testing: Intro & FWER 1 Mark van de Wiel mark.vdwiel@vumc.nl Dep of Epidemiology & Biostatistics,VUmc, Amsterdam Dep of Mathematics, VU 1 Some slides courtesy of Jelle Goeman 1 Practical notes

More information

Minimum Message Length Analysis of the Behrens Fisher Problem

Minimum Message Length Analysis of the Behrens Fisher Problem Analysis of the Behrens Fisher Problem Enes Makalic and Daniel F Schmidt Centre for MEGA Epidemiology The University of Melbourne Solomonoff 85th Memorial Conference, 2011 Outline Introduction 1 Introduction

More information

Optimal exact tests for complex alternative hypotheses on cross tabulated data

Optimal exact tests for complex alternative hypotheses on cross tabulated data Optimal exact tests for complex alternative hypotheses on cross tabulated data Daniel Yekutieli Statistics and OR Tel Aviv University CDA course 29 July 2017 Yekutieli (TAU) Optimal exact tests for complex

More information

Including historical data in the analysis of clinical trials using the modified power priors: theoretical overview and sampling algorithms

Including historical data in the analysis of clinical trials using the modified power priors: theoretical overview and sampling algorithms Including historical data in the analysis of clinical trials using the modified power priors: theoretical overview and sampling algorithms Joost van Rosmalen 1, David Dejardin 2,3, and Emmanuel Lesaffre

More information

Statistical Methods for Astronomy

Statistical Methods for Astronomy Statistical Methods for Astronomy Probability (Lecture 1) Statistics (Lecture 2) Why do we need statistics? Useful Statistics Definitions Error Analysis Probability distributions Error Propagation Binomial

More information

Variational Bayesian Inference for Parametric and Non-Parametric Regression with Missing Predictor Data

Variational Bayesian Inference for Parametric and Non-Parametric Regression with Missing Predictor Data for Parametric and Non-Parametric Regression with Missing Predictor Data August 23, 2010 Introduction Bayesian inference For parametric regression: long history (e.g. Box and Tiao, 1973; Gelman, Carlin,

More information

Introduction to Machine Learning. Maximum Likelihood and Bayesian Inference. Lecturers: Eran Halperin, Yishay Mansour, Lior Wolf

Introduction to Machine Learning. Maximum Likelihood and Bayesian Inference. Lecturers: Eran Halperin, Yishay Mansour, Lior Wolf 1 Introduction to Machine Learning Maximum Likelihood and Bayesian Inference Lecturers: Eran Halperin, Yishay Mansour, Lior Wolf 2013-14 We know that X ~ B(n,p), but we do not know p. We get a random sample

More information

High-Throughput Sequencing Course. Introduction. Introduction. Multiple Testing. Biostatistics and Bioinformatics. Summer 2018

High-Throughput Sequencing Course. Introduction. Introduction. Multiple Testing. Biostatistics and Bioinformatics. Summer 2018 High-Throughput Sequencing Course Multiple Testing Biostatistics and Bioinformatics Summer 2018 Introduction You have previously considered the significance of a single gene Introduction You have previously

More information

Testing Simple Hypotheses R.L. Wolpert Institute of Statistics and Decision Sciences Duke University, Box Durham, NC 27708, USA

Testing Simple Hypotheses R.L. Wolpert Institute of Statistics and Decision Sciences Duke University, Box Durham, NC 27708, USA Testing Simple Hypotheses R.L. Wolpert Institute of Statistics and Decision Sciences Duke University, Box 90251 Durham, NC 27708, USA Summary: Pre-experimental Frequentist error probabilities do not summarize

More information

MIT Spring 2016

MIT Spring 2016 MIT 18.655 Dr. Kempthorne Spring 2016 1 MIT 18.655 Outline 1 2 MIT 18.655 Decision Problem: Basic Components P = {P θ : θ Θ} : parametric model. Θ = {θ}: Parameter space. A{a} : Action space. L(θ, a) :

More information

A BAYESIAN MATHEMATICAL STATISTICS PRIMER. José M. Bernardo Universitat de València, Spain

A BAYESIAN MATHEMATICAL STATISTICS PRIMER. José M. Bernardo Universitat de València, Spain A BAYESIAN MATHEMATICAL STATISTICS PRIMER José M. Bernardo Universitat de València, Spain jose.m.bernardo@uv.es Bayesian Statistics is typically taught, if at all, after a prior exposure to frequentist

More information

Bayesian Regression (1/31/13)

Bayesian Regression (1/31/13) STA613/CBB540: Statistical methods in computational biology Bayesian Regression (1/31/13) Lecturer: Barbara Engelhardt Scribe: Amanda Lea 1 Bayesian Paradigm Bayesian methods ask: given that I have observed

More information

New Bayesian methods for model comparison

New Bayesian methods for model comparison Back to the future New Bayesian methods for model comparison Murray Aitkin murray.aitkin@unimelb.edu.au Department of Mathematics and Statistics The University of Melbourne Australia Bayesian Model Comparison

More information

Optimal Hypothesis Testing: From Semi to Fully Bayes Factors

Optimal Hypothesis Testing: From Semi to Fully Bayes Factors Noname manuscript No. (will be inserted by the editor) Optimal Hypothesis Testing: From Semi to Fully Bayes Factors Optimal Hypothesis Testing Albert Vexler Chengqing Wu Kai Fun Yu Received: date / Accepted:

More information

Statistical Decision Theory and Bayesian Analysis Chapter1 Basic Concepts. Outline. Introduction. Introduction(cont.) Basic Elements (cont.

Statistical Decision Theory and Bayesian Analysis Chapter1 Basic Concepts. Outline. Introduction. Introduction(cont.) Basic Elements (cont. Statistical Decision Theory and Bayesian Analysis Chapter Basic Concepts 939 Outline Introduction Basic Elements Bayesian Epected Loss Frequentist Risk Randomized Decision Rules Decision Principles Misuse

More information

Statistical Inference

Statistical Inference Statistical Inference Robert L. Wolpert Institute of Statistics and Decision Sciences Duke University, Durham, NC, USA Week 12. Testing and Kullback-Leibler Divergence 1. Likelihood Ratios Let 1, 2, 2,...

More information

CS 340 Fall 2007: Homework 3

CS 340 Fall 2007: Homework 3 CS 34 Fall 27: Homework 3 1 Marginal likelihood for the Beta-Bernoulli model We showed that the marginal likelihood is the ratio of the normalizing constants: p(d) = B(α 1 + N 1, α + N ) B(α 1, α ) = Γ(α

More information

(1) Introduction to Bayesian statistics

(1) Introduction to Bayesian statistics Spring, 2018 A motivating example Student 1 will write down a number and then flip a coin If the flip is heads, they will honestly tell student 2 if the number is even or odd If the flip is tails, they

More information

Uniformly Most Powerful Bayesian Tests and Standards for Statistical Evidence

Uniformly Most Powerful Bayesian Tests and Standards for Statistical Evidence Uniformly Most Powerful Bayesian Tests and Standards for Statistical Evidence Valen E. Johnson Texas A&M University February 27, 2014 Valen E. Johnson Texas A&M University Uniformly most powerful Bayes

More information

Introduction to Machine Learning. Maximum Likelihood and Bayesian Inference. Lecturers: Eran Halperin, Lior Wolf

Introduction to Machine Learning. Maximum Likelihood and Bayesian Inference. Lecturers: Eran Halperin, Lior Wolf 1 Introduction to Machine Learning Maximum Likelihood and Bayesian Inference Lecturers: Eran Halperin, Lior Wolf 2014-15 We know that X ~ B(n,p), but we do not know p. We get a random sample from X, a

More information

Dose-response modeling with bivariate binary data under model uncertainty

Dose-response modeling with bivariate binary data under model uncertainty Dose-response modeling with bivariate binary data under model uncertainty Bernhard Klingenberg 1 1 Department of Mathematics and Statistics, Williams College, Williamstown, MA, 01267 and Institute of Statistics,

More information

Unfolding techniques for neutron spectrometry

Unfolding techniques for neutron spectrometry Uncertainty Assessment in Computational Dosimetry: A comparison of Approaches Unfolding techniques for neutron spectrometry Physikalisch-Technische Bundesanstalt Braunschweig, Germany Contents of the talk

More information

Asymptotic efficiency of simple decisions for the compound decision problem

Asymptotic efficiency of simple decisions for the compound decision problem Asymptotic efficiency of simple decisions for the compound decision problem Eitan Greenshtein and Ya acov Ritov Department of Statistical Sciences Duke University Durham, NC 27708-0251, USA e-mail: eitan.greenshtein@gmail.com

More information

AST 418/518 Instrumentation and Statistics

AST 418/518 Instrumentation and Statistics AST 418/518 Instrumentation and Statistics Class Website: http://ircamera.as.arizona.edu/astr_518 Class Texts: Practical Statistics for Astronomers, J.V. Wall, and C.R. Jenkins Measuring the Universe,

More information

Bayesian analysis of the Hardy-Weinberg equilibrium model

Bayesian analysis of the Hardy-Weinberg equilibrium model Bayesian analysis of the Hardy-Weinberg equilibrium model Eduardo Gutiérrez Peña Department of Probability and Statistics IIMAS, UNAM 6 April, 2010 Outline Statistical Inference 1 Statistical Inference

More information

STATS 200: Introduction to Statistical Inference. Lecture 29: Course review

STATS 200: Introduction to Statistical Inference. Lecture 29: Course review STATS 200: Introduction to Statistical Inference Lecture 29: Course review Course review We started in Lecture 1 with a fundamental assumption: Data is a realization of a random process. The goal throughout

More information

Review. DS GA 1002 Statistical and Mathematical Models. Carlos Fernandez-Granda

Review. DS GA 1002 Statistical and Mathematical Models.   Carlos Fernandez-Granda Review DS GA 1002 Statistical and Mathematical Models http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall16 Carlos Fernandez-Granda Probability and statistics Probability: Framework for dealing with

More information

Principles of Bayesian Inference

Principles of Bayesian Inference Principles of Bayesian Inference Sudipto Banerjee and Andrew O. Finley 2 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department of Forestry & Department

More information

BTRY 4830/6830: Quantitative Genomics and Genetics

BTRY 4830/6830: Quantitative Genomics and Genetics BTRY 4830/6830: Quantitative Genomics and Genetics Lecture 23: Alternative tests in GWAS / (Brief) Introduction to Bayesian Inference Jason Mezey jgm45@cornell.edu Nov. 13, 2014 (Th) 8:40-9:55 Announcements

More information

Bayesian phylogenetics. the one true tree? Bayesian phylogenetics

Bayesian phylogenetics. the one true tree? Bayesian phylogenetics Bayesian phylogenetics the one true tree? the methods we ve learned so far try to get a single tree that best describes the data however, they admit that they don t search everywhere, and that it is difficult

More information

Or How to select variables Using Bayesian LASSO

Or How to select variables Using Bayesian LASSO Or How to select variables Using Bayesian LASSO x 1 x 2 x 3 x 4 Or How to select variables Using Bayesian LASSO x 1 x 2 x 3 x 4 Or How to select variables Using Bayesian LASSO On Bayesian Variable Selection

More information

Bayesian inference J. Daunizeau

Bayesian inference J. Daunizeau Bayesian inference J. Daunizeau Brain and Spine Institute, Paris, France Wellcome Trust Centre for Neuroimaging, London, UK Overview of the talk 1 Probabilistic modelling and representation of uncertainty

More information

Statistical Inference

Statistical Inference Statistical Inference Robert L. Wolpert Institute of Statistics and Decision Sciences Duke University, Durham, NC, USA Spring, 2006 1. DeGroot 1973 In (DeGroot 1973), Morrie DeGroot considers testing the

More information

Basic of Probability Theory for Ph.D. students in Education, Social Sciences and Business (Shing On LEUNG and Hui Ping WU) (May 2015)

Basic of Probability Theory for Ph.D. students in Education, Social Sciences and Business (Shing On LEUNG and Hui Ping WU) (May 2015) Basic of Probability Theory for Ph.D. students in Education, Social Sciences and Business (Shing On LEUNG and Hui Ping WU) (May 2015) This is a series of 3 talks respectively on: A. Probability Theory

More information

Multiple QTL mapping

Multiple QTL mapping Multiple QTL mapping Karl W Broman Department of Biostatistics Johns Hopkins University www.biostat.jhsph.edu/~kbroman [ Teaching Miscellaneous lectures] 1 Why? Reduce residual variation = increased power

More information

Two examples of the use of fuzzy set theory in statistics. Glen Meeden University of Minnesota.

Two examples of the use of fuzzy set theory in statistics. Glen Meeden University of Minnesota. Two examples of the use of fuzzy set theory in statistics Glen Meeden University of Minnesota http://www.stat.umn.edu/~glen/talks 1 Fuzzy set theory Fuzzy set theory was introduced by Zadeh in (1965) as

More information

Previous lecture. P-value based combination. Fixed vs random effects models. Meta vs. pooled- analysis. New random effects testing.

Previous lecture. P-value based combination. Fixed vs random effects models. Meta vs. pooled- analysis. New random effects testing. Previous lecture P-value based combination. Fixed vs random effects models. Meta vs. pooled- analysis. New random effects testing. Interaction Outline: Definition of interaction Additive versus multiplicative

More information

Bayesian Analysis. Bayesian Analysis: Bayesian methods concern one s belief about θ. [Current Belief (Posterior)] (Prior Belief) x (Data) Outline

Bayesian Analysis. Bayesian Analysis: Bayesian methods concern one s belief about θ. [Current Belief (Posterior)] (Prior Belief) x (Data) Outline Bayesian Analysis DuBois Bowman, Ph.D. Gordana Derado, M. S. Shuo Chen, M. S. Department of Biostatistics and Bioinformatics Center for Biomedical Imaging Statistics Emory University Outline I. Introduction

More information

A CONDITION TO OBTAIN THE SAME DECISION IN THE HOMOGENEITY TEST- ING PROBLEM FROM THE FREQUENTIST AND BAYESIAN POINT OF VIEW

A CONDITION TO OBTAIN THE SAME DECISION IN THE HOMOGENEITY TEST- ING PROBLEM FROM THE FREQUENTIST AND BAYESIAN POINT OF VIEW A CONDITION TO OBTAIN THE SAME DECISION IN THE HOMOGENEITY TEST- ING PROBLEM FROM THE FREQUENTIST AND BAYESIAN POINT OF VIEW Miguel A Gómez-Villegas and Beatriz González-Pérez Departamento de Estadística

More information

BAYESIAN METHODS FOR VARIABLE SELECTION WITH APPLICATIONS TO HIGH-DIMENSIONAL DATA

BAYESIAN METHODS FOR VARIABLE SELECTION WITH APPLICATIONS TO HIGH-DIMENSIONAL DATA BAYESIAN METHODS FOR VARIABLE SELECTION WITH APPLICATIONS TO HIGH-DIMENSIONAL DATA Intro: Course Outline and Brief Intro to Marina Vannucci Rice University, USA PASI-CIMAT 04/28-30/2010 Marina Vannucci

More information

Frequentist Statistics and Hypothesis Testing Spring

Frequentist Statistics and Hypothesis Testing Spring Frequentist Statistics and Hypothesis Testing 18.05 Spring 2018 http://xkcd.com/539/ Agenda Introduction to the frequentist way of life. What is a statistic? NHST ingredients; rejection regions Simple

More information

Computer Vision Group Prof. Daniel Cremers. 11. Sampling Methods

Computer Vision Group Prof. Daniel Cremers. 11. Sampling Methods Prof. Daniel Cremers 11. Sampling Methods Sampling Methods Sampling Methods are widely used in Computer Science as an approximation of a deterministic algorithm to represent uncertainty without a parametric

More information

Bayesian Decision Theory

Bayesian Decision Theory Bayesian Decision Theory Dr. Shuang LIANG School of Software Engineering TongJi University Fall, 2012 Today s Topics Bayesian Decision Theory Bayesian classification for normal distributions Error Probabilities

More information

Use of frequentist and Bayesian approaches for extrapolating from adult efficacy data to design and interpret confirmatory trials in children

Use of frequentist and Bayesian approaches for extrapolating from adult efficacy data to design and interpret confirmatory trials in children Use of frequentist and Bayesian approaches for extrapolating from adult efficacy data to design and interpret confirmatory trials in children Lisa Hampson, Franz Koenig and Martin Posch Department of Mathematics

More information

Decision theory. 1 We may also consider randomized decision rules, where δ maps observed data D to a probability distribution over

Decision theory. 1 We may also consider randomized decision rules, where δ maps observed data D to a probability distribution over Point estimation Suppose we are interested in the value of a parameter θ, for example the unknown bias of a coin. We have already seen how one may use the Bayesian method to reason about θ; namely, we

More information

Surrogate marker evaluation when data are small, large, or very large Geert Molenberghs

Surrogate marker evaluation when data are small, large, or very large Geert Molenberghs Surrogate marker evaluation when data are small, large, or very large Geert Molenberghs Interuniversity Institute for Biostatistics and statistical Bioinformatics (I-BioStat) Universiteit Hasselt & KU

More information

The combined model: A tool for simulating correlated counts with overdispersion. George KALEMA Samuel IDDI Geert MOLENBERGHS

The combined model: A tool for simulating correlated counts with overdispersion. George KALEMA Samuel IDDI Geert MOLENBERGHS The combined model: A tool for simulating correlated counts with overdispersion George KALEMA Samuel IDDI Geert MOLENBERGHS Interuniversity Institute for Biostatistics and statistical Bioinformatics George

More information

Bayesian Inference: Concept and Practice

Bayesian Inference: Concept and Practice Inference: Concept and Practice fundamentals Johan A. Elkink School of Politics & International Relations University College Dublin 5 June 2017 1 2 3 Bayes theorem In order to estimate the parameters of

More information

Bayesian model selection for computer model validation via mixture model estimation

Bayesian model selection for computer model validation via mixture model estimation Bayesian model selection for computer model validation via mixture model estimation Kaniav Kamary ATER, CNAM Joint work with É. Parent, P. Barbillon, M. Keller and N. Bousquet Outline Computer model validation

More information

Bayesian Linear Regression

Bayesian Linear Regression Bayesian Linear Regression Sudipto Banerjee 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. September 15, 2010 1 Linear regression models: a Bayesian perspective

More information

Bayesian inference. Justin Chumbley ETH and UZH. (Thanks to Jean Denizeau for slides)

Bayesian inference. Justin Chumbley ETH and UZH. (Thanks to Jean Denizeau for slides) Bayesian inference Justin Chumbley ETH and UZH (Thanks to Jean Denizeau for slides) Overview of the talk Introduction: Bayesian inference Bayesian model comparison Group-level Bayesian model selection

More information

Consensus and Distributed Inference Rates Using Network Divergence

Consensus and Distributed Inference Rates Using Network Divergence DIMACS August 2017 1 / 26 Consensus and Distributed Inference Rates Using Network Divergence Anand D. Department of Electrical and Computer Engineering, The State University of New Jersey August 23, 2017

More information

Prentice Hall Mathematics, Geometry 2009 Correlated to: Connecticut Mathematics Curriculum Framework Companion, 2005 (Grades 9-12 Core and Extended)

Prentice Hall Mathematics, Geometry 2009 Correlated to: Connecticut Mathematics Curriculum Framework Companion, 2005 (Grades 9-12 Core and Extended) Grades 9-12 CORE Algebraic Reasoning: Patterns And Functions GEOMETRY 2009 Patterns and functional relationships can be represented and analyzed using a variety of strategies, tools and technologies. 1.1

More information

Lecture 13 Fundamentals of Bayesian Inference

Lecture 13 Fundamentals of Bayesian Inference Lecture 13 Fundamentals of Bayesian Inference Dennis Sun Stats 253 August 11, 2014 Outline of Lecture 1 Bayesian Models 2 Modeling Correlations Using Bayes 3 The Universal Algorithm 4 BUGS 5 Wrapping Up

More information

Primer on statistics:

Primer on statistics: Primer on statistics: MLE, Confidence Intervals, and Hypothesis Testing ryan.reece@gmail.com http://rreece.github.io/ Insight Data Science - AI Fellows Workshop Feb 16, 018 Outline 1. Maximum likelihood

More information

Bayesian Hypothesis Testing in GLMs: One-Sided and Ordered Alternatives. 1(w i = h + 1)β h + ɛ i,

Bayesian Hypothesis Testing in GLMs: One-Sided and Ordered Alternatives. 1(w i = h + 1)β h + ɛ i, Bayesian Hypothesis Testing in GLMs: One-Sided and Ordered Alternatives Often interest may focus on comparing a null hypothesis of no difference between groups to an ordered restricted alternative. For

More information

Discussion of Predictive Density Combinations with Dynamic Learning for Large Data Sets in Economics and Finance

Discussion of Predictive Density Combinations with Dynamic Learning for Large Data Sets in Economics and Finance Discussion of Predictive Density Combinations with Dynamic Learning for Large Data Sets in Economics and Finance by Casarin, Grassi, Ravazzolo, Herman K. van Dijk Dimitris Korobilis University of Essex,

More information

Bayesian Models in Machine Learning

Bayesian Models in Machine Learning Bayesian Models in Machine Learning Lukáš Burget Escuela de Ciencias Informáticas 2017 Buenos Aires, July 24-29 2017 Frequentist vs. Bayesian Frequentist point of view: Probability is the frequency of

More information

Definition 3.1 A statistical hypothesis is a statement about the unknown values of the parameters of the population distribution.

Definition 3.1 A statistical hypothesis is a statement about the unknown values of the parameters of the population distribution. Hypothesis Testing Definition 3.1 A statistical hypothesis is a statement about the unknown values of the parameters of the population distribution. Suppose the family of population distributions is indexed

More information

The Particle Filter. PD Dr. Rudolph Triebel Computer Vision Group. Machine Learning for Computer Vision

The Particle Filter. PD Dr. Rudolph Triebel Computer Vision Group. Machine Learning for Computer Vision The Particle Filter Non-parametric implementation of Bayes filter Represents the belief (posterior) random state samples. by a set of This representation is approximate. Can represent distributions that

More information

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA, 00 MODULE : Statistical Inference Time Allowed: Three Hours Candidates should answer FIVE questions. All questions carry equal marks. The

More information

David Giles Bayesian Econometrics

David Giles Bayesian Econometrics 9. Model Selection - Theory David Giles Bayesian Econometrics One nice feature of the Bayesian analysis is that we can apply it to drawing inferences about entire models, not just parameters. Can't do

More information

False Discovery Control in Spatial Multiple Testing

False Discovery Control in Spatial Multiple Testing False Discovery Control in Spatial Multiple Testing WSun 1,BReich 2,TCai 3, M Guindani 4, and A. Schwartzman 2 WNAR, June, 2012 1 University of Southern California 2 North Carolina State University 3 University

More information

Bayesian Regression of Piecewise Constant Functions

Bayesian Regression of Piecewise Constant Functions Marcus Hutter - 1 - Bayesian Regression of Piecewise Constant Functions Bayesian Regression of Piecewise Constant Functions Marcus Hutter Istituto Dalle Molle di Studi sull Intelligenza Artificiale IDSIA,

More information

the unification of statistics its uses in practice and its role in Objective Bayesian Analysis:

the unification of statistics its uses in practice and its role in Objective Bayesian Analysis: Objective Bayesian Analysis: its uses in practice and its role in the unification of statistics James O. Berger Duke University and the Statistical and Applied Mathematical Sciences Institute Allen T.

More information

Bayesian Learning Extension

Bayesian Learning Extension Bayesian Learning Extension This document will go over one of the most useful forms of statistical inference known as Baye s Rule several of the concepts that extend from it. Named after Thomas Bayes this

More information

Parametric Techniques Lecture 3

Parametric Techniques Lecture 3 Parametric Techniques Lecture 3 Jason Corso SUNY at Buffalo 22 January 2009 J. Corso (SUNY at Buffalo) Parametric Techniques Lecture 3 22 January 2009 1 / 39 Introduction In Lecture 2, we learned how to

More information

Principles of Bayesian Inference

Principles of Bayesian Inference Principles of Bayesian Inference Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department of Forestry & Department

More information

Bayesian inference J. Daunizeau

Bayesian inference J. Daunizeau Bayesian inference J. Daunizeau Brain and Spine Institute, Paris, France Wellcome Trust Centre for Neuroimaging, London, UK Overview of the talk 1 Probabilistic modelling and representation of uncertainty

More information

Chapter 2. Binary and M-ary Hypothesis Testing 2.1 Introduction (Levy 2.1)

Chapter 2. Binary and M-ary Hypothesis Testing 2.1 Introduction (Levy 2.1) Chapter 2. Binary and M-ary Hypothesis Testing 2.1 Introduction (Levy 2.1) Detection problems can usually be casted as binary or M-ary hypothesis testing problems. Applications: This chapter: Simple hypothesis

More information

arxiv: v1 [stat.ap] 27 Mar 2015

arxiv: v1 [stat.ap] 27 Mar 2015 Submitted to the Annals of Applied Statistics A NOTE ON THE SPECIFIC SOURCE IDENTIFICATION PROBLEM IN FORENSIC SCIENCE IN THE PRESENCE OF UNCERTAINTY ABOUT THE BACKGROUND POPULATION By Danica M. Ommen,

More information

FDR and ROC: Similarities, Assumptions, and Decisions

FDR and ROC: Similarities, Assumptions, and Decisions EDITORIALS 8 FDR and ROC: Similarities, Assumptions, and Decisions. Why FDR and ROC? It is a privilege to have been asked to introduce this collection of papers appearing in Statistica Sinica. The papers

More information

Sequential Monitoring of Clinical Trials Session 4 - Bayesian Evaluation of Group Sequential Designs

Sequential Monitoring of Clinical Trials Session 4 - Bayesian Evaluation of Group Sequential Designs Sequential Monitoring of Clinical Trials Session 4 - Bayesian Evaluation of Group Sequential Designs Presented August 8-10, 2012 Daniel L. Gillen Department of Statistics University of California, Irvine

More information

Uniformly and Restricted Most Powerful Bayesian Tests

Uniformly and Restricted Most Powerful Bayesian Tests Uniformly and Restricted Most Powerful Bayesian Tests Valen E. Johnson and Scott Goddard Texas A&M University June 6, 2014 Valen E. Johnson and Scott Goddard Texas A&MUniformly University Most Powerful

More information

Data Mining Chapter 4: Data Analysis and Uncertainty Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University

Data Mining Chapter 4: Data Analysis and Uncertainty Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University Data Mining Chapter 4: Data Analysis and Uncertainty Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University Why uncertainty? Why should data mining care about uncertainty? We

More information

Space Telescope Science Institute statistics mini-course. October Inference I: Estimation, Confidence Intervals, and Tests of Hypotheses

Space Telescope Science Institute statistics mini-course. October Inference I: Estimation, Confidence Intervals, and Tests of Hypotheses Space Telescope Science Institute statistics mini-course October 2011 Inference I: Estimation, Confidence Intervals, and Tests of Hypotheses James L Rosenberger Acknowledgements: Donald Richards, William

More information

Parametric Techniques

Parametric Techniques Parametric Techniques Jason J. Corso SUNY at Buffalo J. Corso (SUNY at Buffalo) Parametric Techniques 1 / 39 Introduction When covering Bayesian Decision Theory, we assumed the full probabilistic structure

More information

Bios 6649: Clinical Trials - Statistical Design and Monitoring

Bios 6649: Clinical Trials - Statistical Design and Monitoring Bios 6649: Clinical Trials - Statistical Design and Monitoring Spring Semester 2015 John M. Kittelson Department of Biostatistics & Informatics Colorado School of Public Health University of Colorado Denver

More information

(4) One-parameter models - Beta/binomial. ST440/550: Applied Bayesian Statistics

(4) One-parameter models - Beta/binomial. ST440/550: Applied Bayesian Statistics Estimating a proportion using the beta/binomial model A fundamental task in statistics is to estimate a proportion using a series of trials: What is the success probability of a new cancer treatment? What

More information

Pattern Classification

Pattern Classification Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley & Sons, 2000 with the permission of the authors

More information

Statistical Methods for Discovery and Limits in HEP Experiments Day 3: Exclusion Limits

Statistical Methods for Discovery and Limits in HEP Experiments Day 3: Exclusion Limits Statistical Methods for Discovery and Limits in HEP Experiments Day 3: Exclusion Limits www.pp.rhul.ac.uk/~cowan/stat_freiburg.html Vorlesungen des GK Physik an Hadron-Beschleunigern, Freiburg, 27-29 June,

More information

I. Bayesian econometrics

I. Bayesian econometrics I. Bayesian econometrics A. Introduction B. Bayesian inference in the univariate regression model C. Statistical decision theory Question: once we ve calculated the posterior distribution, what do we do

More information

Chapter 9: Hypothesis Testing Sections

Chapter 9: Hypothesis Testing Sections Chapter 9: Hypothesis Testing Sections 9.1 Problems of Testing Hypotheses 9.2 Testing Simple Hypotheses 9.3 Uniformly Most Powerful Tests Skip: 9.4 Two-Sided Alternatives 9.6 Comparing the Means of Two

More information

Supplementary Materials for Molecular QTL Discovery Incorporating Genomic Annotations using Bayesian False Discovery Rate Control

Supplementary Materials for Molecular QTL Discovery Incorporating Genomic Annotations using Bayesian False Discovery Rate Control Supplementary Materials for Molecular QTL Discovery Incorporating Genomic Annotations using Bayesian False Discovery Rate Control Xiaoquan Wen Department of Biostatistics, University of Michigan A Model

More information

Statistical Inference

Statistical Inference Statistical Inference Liu Yang Florida State University October 27, 2016 Liu Yang, Libo Wang (Florida State University) Statistical Inference October 27, 2016 1 / 27 Outline The Bayesian Lasso Trevor Park

More information

MODULE -4 BAYEIAN LEARNING

MODULE -4 BAYEIAN LEARNING MODULE -4 BAYEIAN LEARNING CONTENT Introduction Bayes theorem Bayes theorem and concept learning Maximum likelihood and Least Squared Error Hypothesis Maximum likelihood Hypotheses for predicting probabilities

More information

Hypothesis Testing. BS2 Statistical Inference, Lecture 11 Michaelmas Term Steffen Lauritzen, University of Oxford; November 15, 2004

Hypothesis Testing. BS2 Statistical Inference, Lecture 11 Michaelmas Term Steffen Lauritzen, University of Oxford; November 15, 2004 Hypothesis Testing BS2 Statistical Inference, Lecture 11 Michaelmas Term 2004 Steffen Lauritzen, University of Oxford; November 15, 2004 Hypothesis testing We consider a family of densities F = {f(x; θ),

More information

Bayesian Learning (II)

Bayesian Learning (II) Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Bayesian Learning (II) Niels Landwehr Overview Probabilities, expected values, variance Basic concepts of Bayesian learning MAP

More information

Spatial inference. Spatial inference. Accounting for spatial correlation. Multivariate normal distributions

Spatial inference. Spatial inference. Accounting for spatial correlation. Multivariate normal distributions Spatial inference I will start with a simple model, using species diversity data Strong spatial dependence, Î = 0.79 what is the mean diversity? How precise is our estimate? Sampling discussion: The 64

More information

Use of Bayesian multivariate prediction models to optimize chromatographic methods

Use of Bayesian multivariate prediction models to optimize chromatographic methods Use of Bayesian multivariate prediction models to optimize chromatographic methods UCB Pharma! Braine lʼalleud (Belgium)! May 2010 Pierre Lebrun, ULg & Arlenda Bruno Boulanger, ULg & Arlenda Philippe Lambert,

More information

The Jackknife-Like Method for Assessing Uncertainty of Point Estimates for Bayesian Estimation in a Finite Gaussian Mixture Model

The Jackknife-Like Method for Assessing Uncertainty of Point Estimates for Bayesian Estimation in a Finite Gaussian Mixture Model Thai Journal of Mathematics : 45 58 Special Issue: Annual Meeting in Mathematics 207 http://thaijmath.in.cmu.ac.th ISSN 686-0209 The Jackknife-Like Method for Assessing Uncertainty of Point Estimates for

More information

Computer Vision Group Prof. Daniel Cremers. 14. Sampling Methods

Computer Vision Group Prof. Daniel Cremers. 14. Sampling Methods Prof. Daniel Cremers 14. Sampling Methods Sampling Methods Sampling Methods are widely used in Computer Science as an approximation of a deterministic algorithm to represent uncertainty without a parametric

More information