Long-Time Simulation Of Spin Dynamics Of Superparamagnetic Particles

Size: px
Start display at page:

Download "Long-Time Simulation Of Spin Dynamics Of Superparamagnetic Particles"

Transcription

1 Poster 21 Long-Time Simulation Of Spin Dynamics Of Superparamagnetic Particles P. B.Visscher and Xiaoguang Deng Department of Physics and Astronomy The University of Alabama Supported by DOE grant No. DE-FG02-98ER45714 and NSF-MRSEC DMR ,

2 Motivation This work is motivated by the recent synthesis of very finegrained, high-coercivity media by the annealing of very small (4-6 nm) super-paramagnetic particles of FePt (Sun et al, IBM), FePd (Nikles&Chen, UA) and related materials. Before annealing, these particles are very mobile and form 2D colloidal crystalline arrays; the uniformity of these arrays is critical to the performance of the resulting annealed media. Our objective is to understand the formation ( self-assembly ) of these arrays. We believe that superparamagnetic fluctuations may be critical to the annealingout of defects in these arrays. Thus we need to simulate the magnetization dynamics of paramagnetic particles over very long time scales. FeCoPt particle array, courtesy M. Chen

3 Long-time Simulation of Superparamagnetic Dynamics This is a very difficult problem because of the disparity of time scales: if we follow precession of the magnetization in detail on a nanosecond time scale (as one would in a micromagnetic calculation) we can t model long-time diffusion of the particles. This problem has been solved in the past by a quasistatic approximation to Landau-Lifshitz dynamics in which the magnetization is assumed to relax instantly to the minimum of the Stoner-Wohlfarth energy. However, this leaves out superparamagnetic fluctuations, which are very important in this problem. We have tested several solutions to this problem. One possibility is to use Arrhenius-like jump dynamics.

4 Arrhenius ( jump ) dynamics Assumes M lies at minimum of Stoner-Wohlfarth energy M jumps between minima with probability ωexp(- E/k B T) where E(H, M) is the energy barrier and ω is an attempt frequency. Problem: what is ω? Practical problem: jumps send a discontinuous shock through the system that is difficult to deal with numerically. So we have tried other methods.

5 Averaging out precession Since the fast dynamics (precession) is hard to follow in detail, one possibility is to assume that the component of M transverse to the local field H averages to zero (even before it decays due to the LL damping.) The problem with this is that when the local field is small, precession is slow and the component does not average to zero. One has to make some arbitrary assumptions about the low-field dynamics. We have found a method that effectively averages out fast precession, but still treats slow precession correctly.

6 Large- t simulation In principle, the magnetization evolves according to the Landau- Lifshitz equation dm γα = γ M H dt M s M ( M H) where H includes the external field, a random thermal field, and the magnetostatic fields of the neighbors of this particle. We can divide a neighbor s field into a slowly varying part and (if the neighbor is subject to a large field) a rapidly varying part. The latter will affect the motion greatly only if the frequencies match (resonant energy transfer). We assume that in a superparamagnetic system with large fluctuations, resonant transfer can be neglected, and we replace the field by its slowly varying part. Specifically, we assume the field is constant and equal to its average value over the time interval [t, t+ t].

7 Using the Kikuchi exact solution Assuming the field to be constant over [t, t+ t], we can 1 solve the LL equation exactly (Kikuchi 1956): To calculate the fields acting on the neighbors 0 of this particle, we need its average -1 0 magnetization <M> over the interval. <M z > -0.5 M init 1 can be calculated analytically; the transverse Kikuchi trajectory -1 components cannot be integrated in closed (α=0.1) form but we have used a parameterized approximation whose error is less than 1%, far less than the other uncertainties in the problem. 0.5 M final The key advantage of this method is that it is accurate for both very small and very large fields: in the latter case the precession is rapid and the transverse magnetization averages almost to zero. H

8 Simulation of Particle Motion The procedure for modeling particle motion is similar to that we have used previously for acicular particles. Our superparamagnetic results so far are for spherical particles, but the code is designed to handle cylindrical particles with hemispherical end caps, of arbitrary aspect ratio (or distribution of aspect ratios) we have simply set the aspect ratio to unity. Thus we can also model the effects of polydispersity in both size and shape. Particle motions are followed using Newton s laws: total force F and total torque N on each particle are computed, and the motion (change in position r and angular momentum L are computed from dr(t)/dt = F(t)/m & dl(t)/dt = N(t) using a Verlet algorithm.

9 Summary We have developed an algorithm for following superparamagnetic dynamics over the long time scales of self-assembly, without following the precession in detail. This is done by using an exact constant-field solution to evolve the system over a time step that can be long compared to the precession period.

Simulation Of Spin Wave Switching In Perpendicular Media

Simulation Of Spin Wave Switching In Perpendicular Media Simulation Of Spin Wave Switching In Perpendicular Media P. B.Visscher Department of Physics and Astronomy The University of Alabama Abstract We propose to build on our understanding of spin wave switching

More information

Fokker-Planck calculation of spintorque switching rates: comparison with telegraph-noise data

Fokker-Planck calculation of spintorque switching rates: comparison with telegraph-noise data Fokker-Planck calculation of spintorque switching rates: comparison with telegraph-noise data P. B.Visscher and D. M. Apalkov Department of Physics and Astronomy The University of Alabama This project

More information

Micromagnetic Modeling

Micromagnetic Modeling Micromagnetic Modeling P. B. Visscher Xuebing Feng, D. M. Apalkov, and Arkajyoti Misra Department of Physics and Astronomy Supported by NSF grants # ECS-008534 and DMR-0213985, and DOE grant # DE-FG02-98ER45714

More information

7. Basics of Magnetization Switching

7. Basics of Magnetization Switching Beyond CMOS computing 7. Basics of Magnetization Switching Dmitri Nikonov Dmitri.e.nikonov@intel.com 1 Outline Energies in a nanomagnet Precession in a magnetic field Anisotropies in a nanomagnet Hysteresis

More information

Thermal Effects in Magnetic Recording Media

Thermal Effects in Magnetic Recording Media Thermal Effects in Magnetic Recording Media J.W. Harrell MINT Center and Dept. of Physics & Astronomy University of Alabama Work supported by NSF-MRSEC MINT Fall Review, Nov. 21 Stability Problem in Granular

More information

Chemistry 431. Lecture 23

Chemistry 431. Lecture 23 Chemistry 431 Lecture 23 Introduction The Larmor Frequency The Bloch Equations Measuring T 1 : Inversion Recovery Measuring T 2 : the Spin Echo NC State University NMR spectroscopy The Nuclear Magnetic

More information

Microwave Assisted Magnetic Recording

Microwave Assisted Magnetic Recording Microwave Assisted Magnetic Recording, Xiaochun Zhu, and Yuhui Tang Data Storage Systems Center Dept. of Electrical and Computer Engineering Carnegie Mellon University IDEMA Dec. 6, 27 Outline Microwave

More information

Spin pumping in Ferromagnet-Topological Insulator-Ferromagnet Heterostructures Supplementary Information.

Spin pumping in Ferromagnet-Topological Insulator-Ferromagnet Heterostructures Supplementary Information. Spin pumping in Ferromagnet-Topological Insulator-Ferromagnet Heterostructures Supplementary Information. A.A. Baker,, 2 A.I. Figueroa, 2 L.J. Collins-McIntyre, G. van der Laan, 2 and T., a) Hesjedal )

More information

Magnetization Dynamics

Magnetization Dynamics Magnetization Dynamics Italian School on Magnetism Pavia - 6-10 February 2012 Giorgio Bertotti INRIM - Istituto Nazionale di Ricerca Metrologica, Torino, Italy Part I Free energy of a ferromagnetic body:

More information

arxiv: v1 [cond-mat.mtrl-sci] 7 Nov 2012

arxiv: v1 [cond-mat.mtrl-sci] 7 Nov 2012 Spin torque switching in perpendicular films at finite temperature, HP-13 Ru Zhu and P B Visscher arxiv:12111665v1 [cond-matmtrl-sci] 7 Nov 212 MINT Center and Department of Physics and Astronomy University

More information

MICROMAGNETICS OF EXCHANGE SPRING MEDIA: OPTIMIZATION AND LIMITS

MICROMAGNETICS OF EXCHANGE SPRING MEDIA: OPTIMIZATION AND LIMITS 1/49 MICROMAGNETICS OF EXCHANGE SPRING MEDIA: OPTIMIZATION AND LIMITS Dieter Suess dieter.suess@tuwien.ac.at Institut of Solid State Physics, Vienna University of Technology, Austria (submitted to Journal

More information

Damping of magnetization dynamics

Damping of magnetization dynamics Damping of magnetization dynamics Andrei Kirilyuk! Radboud University, Institute for Molecules and Materials, Nijmegen, The Netherlands 1 2 Landau-Lifshitz equation N Heff energy gain:! torque equation:

More information

A Hands on Introduction to NMR Lecture #1 Nuclear Spin and Magnetic Resonance

A Hands on Introduction to NMR Lecture #1 Nuclear Spin and Magnetic Resonance A Hands on Introduction to NMR 22.920 Lecture #1 Nuclear Spin and Magnetic Resonance Introduction - The aim of this short course is to present a physical picture of the basic principles of Nuclear Magnetic

More information

The Magnetic Properties of Superparamagnetic Particles by a Monte Carlo Method

The Magnetic Properties of Superparamagnetic Particles by a Monte Carlo Method The Magnetic Properties of Superparamagnetic Particles by a Monte Carlo Method D. A. Dimitrov and G. M. Wysin Department of Physics Kansas State University Manhattan, KS 6656-261 (June 19, 1996) We develop

More information

Chapter 3. Magnetic Model. 3.1 Magnetic interactions

Chapter 3. Magnetic Model. 3.1 Magnetic interactions Chapter 3 Magnetic Model In this chapter, the micromagnetic model for the description of the magnetic properties of a laterally nanostructured film during growth is presented. The main physical idea of

More information

The NMR Inverse Imaging Problem

The NMR Inverse Imaging Problem The NMR Inverse Imaging Problem Nuclear Magnetic Resonance Protons and Neutrons have intrinsic angular momentum Atoms with an odd number of proton and/or odd number of neutrons have a net magnetic moment=>

More information

Spin Relaxation and NOEs BCMB/CHEM 8190

Spin Relaxation and NOEs BCMB/CHEM 8190 Spin Relaxation and NOEs BCMB/CHEM 8190 T 1, T 2 (reminder), NOE T 1 is the time constant for longitudinal relaxation - the process of re-establishing the Boltzmann distribution of the energy level populations

More information

Magnetic domain theory in dynamics

Magnetic domain theory in dynamics Chapter 3 Magnetic domain theory in dynamics Microscale magnetization reversal dynamics is one of the hot issues, because of a great demand for fast response and high density data storage devices, for

More information

Dynamics of a magnetic nanoparticle with cubic anisotropy in a viscous liquid

Dynamics of a magnetic nanoparticle with cubic anisotropy in a viscous liquid Dynamics of a magnetic nanoparticle with cubic anisotropy in a viscous liquid N. A. Usov 1,2,4, M. L. Fdez-Gubieda 2, A. Muela 3 and J. M. Barandiarán 2 1 IKERBASQUE, The Basque Foundation for Science,

More information

Simplified Fast Multipole Methods for Micromagnetic Modeling

Simplified Fast Multipole Methods for Micromagnetic Modeling implified Fast Multipole Methods for Micromagnetic Modeling D. M. Apalkov and P. B.Visscher Department of Phsics and Astronom and MIT Center The Universit of Alabama This project was supported b F grants

More information

Chapter 8 Magnetic Resonance

Chapter 8 Magnetic Resonance Chapter 8 Magnetic Resonance 9.1 Electron paramagnetic resonance 9.2 Ferromagnetic resonance 9.3 Nuclear magnetic resonance 9.4 Other resonance methods TCD March 2007 1 A resonance experiment involves

More information

Magnetization reversal in the presence of thermal agitation and spin-transfer torques

Magnetization reversal in the presence of thermal agitation and spin-transfer torques Magnetization reversal in the presence of thermal agitation and spin-transfer torques Y.P. Kalmykov, W.T. Coffey, S.V. Titov, J.E. Wegrowe, D. Byrne Université de Perpignan Trinity College Dublin IREE

More information

Macroscopic properties II

Macroscopic properties II Paolo Allia DISAT Politecnico di Torino acroscopic properties II acroscopic properties II Crucial aspects of macroscopic ferromagnetism Crystalline magnetic anisotropy Shape anisotropy Ferromagnetic domains

More information

Magnetism and Magnetic Switching

Magnetism and Magnetic Switching Magnetism and Magnetic Switching Robert Stamps SUPA-School of Physics and Astronomy University of Glasgow A story from modern magnetism: The Incredible Shrinking Disk Instead of this: (1980) A story from

More information

Current-Induced Domain-Wall Dynamics in Ferromagnetic Nanowires

Current-Induced Domain-Wall Dynamics in Ferromagnetic Nanowires Current-Induced Domain-Wall Dynamics in Ferromagnetic Nanowires Benjamin Krüger 17.11.2006 1 Model The Micromagnetic Model Current Induced Magnetisation Dynamics Phenomenological Description Experimental

More information

Report submitted to Prof. P. Shipman for Math 540, Fall 2009

Report submitted to Prof. P. Shipman for Math 540, Fall 2009 Dynamics at the Horsetooth Volume 1, 009. Three-Wave Interactions of Spin Waves Aaron Hagerstrom Department of Physics Colorado State University aaronhag@rams.colostate.edu Report submitted to Prof. P.

More information

Correlations between spin accumulation and degree of time-inverse breaking for electron gas in solid

Correlations between spin accumulation and degree of time-inverse breaking for electron gas in solid Correlations between spin accumulation and degree of time-inverse breaking for electron gas in solid V.Zayets * Spintronic Research Center, National Institute of Advanced Industrial Science and Technology

More information

Physical fundamentals of magnetic resonance imaging

Physical fundamentals of magnetic resonance imaging Physical fundamentals of magnetic resonance imaging Stepan Sereda University of Bonn 1 / 26 Why? Figure 1 : Full body MRI scan (Source: [4]) 2 / 26 Overview Spin angular momentum Rotating frame and interaction

More information

Magnetic Dynamics of Nanoscale Magnets: From Classical to Quantum

Magnetic Dynamics of Nanoscale Magnets: From Classical to Quantum Magnetic Dynamics of Nanoscale Magnets: From Classical to Quantum Hua Chen Course: Solid State II, Instructor: Elbio Dagotto, Semester: Spring 2008 Department of Physics and Astronomy, the University of

More information

NMR Dynamics and Relaxation

NMR Dynamics and Relaxation NMR Dynamics and Relaxation Günter Hempel MLU Halle, Institut für Physik, FG Festkörper-NMR 1 Introduction: Relaxation Two basic magnetic relaxation processes: Longitudinal relaxation: T 1 Relaxation Return

More information

Two dimensional spin transport and magnetism in layered organic crystals

Two dimensional spin transport and magnetism in layered organic crystals PhD thesis booklet Two dimensional spin transport and magnetism in layered organic crystals Ágnes Antal Supervisor: András Jánossy Budapest University of Technology and Economics Department of Physics

More information

Rotating vortex-antivortex dipoles in ferromagnets under spin-polarised current Stavros Komineas

Rotating vortex-antivortex dipoles in ferromagnets under spin-polarised current Stavros Komineas Rotating vortex-antivortex dipoles in ferromagnets under spin-polarised current Stavros Komineas Department of Applied Mathematics Archimedes Center for Modeling, Analysis & Computation University of Crete,

More information

Probing Magnetic Order with Neutron Scattering

Probing Magnetic Order with Neutron Scattering Probing Magnetic Order with Neutron Scattering G.J. Mankey, V.V. Krishnamurthy, F.D. Mackey and I. Zoto University of Alabama in collaboration with J.L. Robertson and M.L. Crow Oak Ridge National Laboratory

More information

Spectral Broadening Mechanisms

Spectral Broadening Mechanisms Spectral Broadening Mechanisms Lorentzian broadening (Homogeneous) Gaussian broadening (Inhomogeneous, Inertial) Doppler broadening (special case for gas phase) The Fourier Transform NC State University

More information

ELECTRONS AND HOLES Lecture 21

ELECTRONS AND HOLES Lecture 21 Solid State Physics ELECTRONS AND HOLES Lecture 21 A.H. Harker Physics and Astronomy UCL Electrons and Holes 8 Electrons and Holes 8.1 Equations of motion In one dimension, an electron with wave-vector

More information

Magnetism in Condensed Matter

Magnetism in Condensed Matter Magnetism in Condensed Matter STEPHEN BLUNDELL Department of Physics University of Oxford OXFORD 'UNIVERSITY PRESS Contents 1 Introduction 1.1 Magnetic moments 1 1 1.1.1 Magnetic moments and angular momentum

More information

My Vision for Particulate Magnetic Tape in the Year 2015

My Vision for Particulate Magnetic Tape in the Year 2015 My Vision for Particulate Magnetic Tape in the Year 2015 David E. Nikles Department of Chemistry and The University of Alabama MINT Fall Review, November 2001. Particulate Magnetic Tape in the Year 2015

More information

Dispersion and Scaling Law of Dynamic Hysteresis Based on the Landau-Lifshitz-Gilbert Model

Dispersion and Scaling Law of Dynamic Hysteresis Based on the Landau-Lifshitz-Gilbert Model Dispersion and Scaling Law of Dynamic Hysteresis Based on the Landau-Lifshitz-Gilbert Model Siying Liu, Hongyi Zhang, Hao Yu * Department of Mathematical Sciences, Xi an Jiaotong-Liverpool University,

More information

Celestial Mechanics of Asteroid Systems

Celestial Mechanics of Asteroid Systems Celestial Mechanics of Asteroid Systems D.J. Scheeres Department of Aerospace Engineering Sciences The University of Colorado scheeres@colorado.edu 1 Granular Mechanics and Asteroids Asteroid systems are

More information

Micromagnetic simulation of dynamic and thermal effects

Micromagnetic simulation of dynamic and thermal effects Micromagnetic simulation of dynamic and thermal effects T. Schrefl, J. Fidler, D. Suess, W. Scholz, V. Tsiantos Institute of Applied and Technical Physics Vienna University of Technology Wiedner Haupstr.

More information

Topics. The concept of spin Precession of magnetic spin Relaxation Bloch Equation. Bioengineering 280A Principles of Biomedical Imaging

Topics. The concept of spin Precession of magnetic spin Relaxation Bloch Equation. Bioengineering 280A Principles of Biomedical Imaging Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2006 MRI Lecture 1 Topics The concept of spin Precession of magnetic spin Relaxation Bloch Equation 1 Spin Intrinsic angular momentum of

More information

The Basics of Magnetic Resonance Imaging

The Basics of Magnetic Resonance Imaging The Basics of Magnetic Resonance Imaging Nathalie JUST, PhD nathalie.just@epfl.ch CIBM-AIT, EPFL Course 2013-2014-Chemistry 1 Course 2013-2014-Chemistry 2 MRI: Many different contrasts Proton density T1

More information

We have seen that the total magnetic moment or magnetization, M, of a sample of nuclear spins is the sum of the nuclear moments and is given by:

We have seen that the total magnetic moment or magnetization, M, of a sample of nuclear spins is the sum of the nuclear moments and is given by: Bloch Equations We have seen that the total magnetic moment or magnetization, M, of a sample of nuclear spins is the sum of the nuclear moments and is given by: M = [] µ i i In terms of the total spin

More information

Overview of Experiments for Magnetic Torque

Overview of Experiments for Magnetic Torque Overview of Experiments for Magnetic Torque General Description of Apparatus The Magnetic Torque instrument consists of a pair of Helmholtz like coils with a brass air bearing mounted in the middle. (The

More information

1 Magnetism, Curie s Law and the Bloch Equations

1 Magnetism, Curie s Law and the Bloch Equations 1 Magnetism, Curie s Law and the Bloch Equations In NMR, the observable which is measured is magnetization and its evolution over time. In order to understand what this means, let us first begin with some

More information

Polarized 3 He Target For Future Experiments

Polarized 3 He Target For Future Experiments Polarized 3 He Target For Future Experiments Kai Jin, University of Virginia, on behalf of JLab polarized 3 He group Hall C Winter Collaboration Meeting, January 20, 2017 Introduction to polarized 3 He

More information

Simulations of spectra and spin relaxation

Simulations of spectra and spin relaxation 43 Chapter 6 Simulations of spectra and spin relaxation Simulations of two-spin spectra We have simulated the noisy spectra of two-spin systems in order to characterize the sensitivity of the example resonator

More information

The Physics of Ferromagnetism

The Physics of Ferromagnetism Terunobu Miyazaki Hanmin Jin The Physics of Ferromagnetism Springer Contents Part I Foundation of Magnetism 1 Basis of Magnetism 3 1.1 Basic Magnetic Laws and Magnetic Quantities 3 1.1.1 Basic Laws of

More information

Introduction to magnetism of confined systems

Introduction to magnetism of confined systems Introduction to magnetism of confined systems P. Vavassori CIC nanogune Consolider, San Sebastian, Spain; nano@nanogune.eu Basics: diamagnetism and paramagnetism Every material which is put in a magnetic

More information

Monte Carlo technique with a quantified time step: Application to the motion of magnetic moments

Monte Carlo technique with a quantified time step: Application to the motion of magnetic moments Monte Carlo technique with a quantified time step: Application to the motion of magnetic moments O. Chubykalo Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-8049 Madrid, Spain U. Nowak

More information

3 Chemical exchange and the McConnell Equations

3 Chemical exchange and the McConnell Equations 3 Chemical exchange and the McConnell Equations NMR is a technique which is well suited to study dynamic processes, such as the rates of chemical reactions. The time window which can be investigated in

More information

NMR, the vector model and the relaxation

NMR, the vector model and the relaxation NMR, the vector model and the relaxation Reading/Books: One and two dimensional NMR spectroscopy, VCH, Friebolin Spin Dynamics, Basics of NMR, Wiley, Levitt Molecular Quantum Mechanics, Oxford Univ. Press,

More information

High-frequency measurements of spin-valve films and devices invited

High-frequency measurements of spin-valve films and devices invited JOURNAL OF APPLIED PHYSICS VOLUME 93, NUMBER 10 15 MAY 003 High-frequency measurements of spin-valve films and devices invited Shehzaad Kaka, John P. Nibarger, and Stephen E. Russek a) National Institute

More information

Physikalische Chemie IV (Magnetische Resonanz) HS Solution Set 2. Hand out: Hand in:

Physikalische Chemie IV (Magnetische Resonanz) HS Solution Set 2. Hand out: Hand in: Solution Set Hand out:.. Hand in:.. Repetition. The magnetization moves adiabatically during the application of an r.f. pulse if it is always aligned along the effective field axis. This behaviour is observed

More information

Physical Dynamics (SPA5304) Lecture Plan 2018

Physical Dynamics (SPA5304) Lecture Plan 2018 Physical Dynamics (SPA5304) Lecture Plan 2018 The numbers on the left margin are approximate lecture numbers. Items in gray are not covered this year 1 Advanced Review of Newtonian Mechanics 1.1 One Particle

More information

Lecture PowerPoints. Chapter 11. Physics for Scientists and Engineers, with Modern Physics, 4 th edition Giancoli

Lecture PowerPoints. Chapter 11. Physics for Scientists and Engineers, with Modern Physics, 4 th edition Giancoli Lecture PowerPoints Chapter 11 Physics for Scientists and Engineers, with Modern Physics, 4 th edition Giancoli 2009 Pearson Education, Inc. This work is protected by United States copyright laws and is

More information

EQUATION LANGEVIN. Physics, Chemistry and Electrical Engineering. World Scientific. With Applications to Stochastic Problems in. William T.

EQUATION LANGEVIN. Physics, Chemistry and Electrical Engineering. World Scientific. With Applications to Stochastic Problems in. William T. SHANGHAI HONG WorlrfScientific Series krtonttimfjorary Chemical Physics-Vol. 27 THE LANGEVIN EQUATION With Applications to Stochastic Problems in Physics, Chemistry and Electrical Engineering Third Edition

More information

2. Electric Dipole Start from the classical formula for electric dipole radiation. de dt = 2. 3c 3 d 2 (2.1) qr (2.2) charges q

2. Electric Dipole Start from the classical formula for electric dipole radiation. de dt = 2. 3c 3 d 2 (2.1) qr (2.2) charges q APAS 50. Internal Processes in Gases. Fall 999. Transition Probabilities and Selection Rules. Correspondence between Classical and Quantum Mechanical Transition Rates According to the correspondence principle

More information

Spin orbit torque driven magnetic switching and memory. Debanjan Bhowmik

Spin orbit torque driven magnetic switching and memory. Debanjan Bhowmik Spin orbit torque driven magnetic switching and memory Debanjan Bhowmik Spin Transfer Torque Fixed Layer Free Layer Fixed Layer Free Layer Current coming out of the fixed layer (F2) is spin polarized in

More information

THE INFLUENCE OF A SURFACE ON HYSTERESIS LOOPS FOR SINGLE-DOMAIN FERROMAGNETIC NANOPARTICLES

THE INFLUENCE OF A SURFACE ON HYSTERESIS LOOPS FOR SINGLE-DOMAIN FERROMAGNETIC NANOPARTICLES THE INFLUENCE OF A SURFACE ON HYSTERESIS LOOPS FOR SINGLE-DOMAIN FERROMAGNETIC NANOPARTICLES A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science By Saad Alsari

More information

What is the susceptibility?

What is the susceptibility? What is the susceptibility? Answer which one? M Initial susceptibility Mean susceptibility M st M 0 0 m High field susceptibility i dm = dh H =0 H st H M M st M 0 0 m i H st H H What is the susceptibility?

More information

Fundamentals of Magnetism

Fundamentals of Magnetism Fundamentals of Magnetism Part II Albrecht Jander Oregon State University Real Magnetic Materials, Bulk Properties M-H Loop M M s M R B-H Loop B B s B R H ci H H c H M S - Saturation magnetization H ci

More information

16 Singular perturbations

16 Singular perturbations 18.354J Nonlinear Dynamics II: Continuum Systems Lecture 1 6 Spring 2015 16 Singular perturbations The singular perturbation is the bogeyman of applied mathematics. The fundamental problem is to ask: when

More information

Introduction to Relaxation Theory James Keeler

Introduction to Relaxation Theory James Keeler EUROMAR Zürich, 24 Introduction to Relaxation Theory James Keeler University of Cambridge Department of Chemistry What is relaxation? Why might it be interesting? relaxation is the process which drives

More information

Muon Spin Relaxation Functions

Muon Spin Relaxation Functions Muon Spin Relaxation Functions Bob Cywinski Department of Physics and Astronomy University of eeds eeds S 9JT Muon Training Course, February 005 Introduction Positive muon spin relaxation (µsr) is a point-like

More information

The Sun s Internal Magnetic Field

The Sun s Internal Magnetic Field The Sun s Internal Magnetic Field... and Rotation and Stratification Toby Wood & Michael McIntyre DAMTP, University of Cambridge Toby Wood & Michael McIntyre (DAMTP) The Sun s Internal Magnetic Field 1

More information

Magnetic properties of spherical fcc clusters with radial surface anisotropy

Magnetic properties of spherical fcc clusters with radial surface anisotropy Magnetic properties of spherical fcc clusters with radial surface anisotropy D. A. Dimitrov and G. M. Wysin Department of Physics Kansas State University Manhattan, KS 66506-2601 (December 6, 1994) We

More information

Chapter 8. Conservation Laws. 8.3 Magnetic Forces Do No Work

Chapter 8. Conservation Laws. 8.3 Magnetic Forces Do No Work Chapter 8. Conservation Laws 8.3 Magnetic Forces Do No Work 8.2 Momentum of EM fields 8.2.1 Newton's Third Law in Electrodynamics Consider two charges, q 1 and q 2, moving with speeds v 1 and v 2 magnetic

More information

Second Year Electromagnetism Summer 2018 Caroline Terquem. Vacation work: Problem set 0. Revisions

Second Year Electromagnetism Summer 2018 Caroline Terquem. Vacation work: Problem set 0. Revisions Second Year Electromagnetism Summer 2018 Caroline Terquem Vacation work: Problem set 0 Revisions At the start of the second year, you will receive the second part of the Electromagnetism course. This vacation

More information

Vortices in Superfluid MODD-Problems

Vortices in Superfluid MODD-Problems Vortices in Superfluid MODD-Problems May 5, 2017 A. Steady filament (0.75) Consider a cylindrical beaker (radius R 0 a) of superfluid helium and a straight vertical vortex filament in its center Fig. 2.

More information

Let us go back to what you knew in high school, or even earlier...

Let us go back to what you knew in high school, or even earlier... Lecture I Quantum-Mechanical Way of Thinking To cultivate QM way of thinking, we will not start with the fascinating historical approach, but instead begin with one of the most important expt, that sends

More information

Diffusion during Plasma Formation

Diffusion during Plasma Formation Chapter 6 Diffusion during Plasma Formation Interesting processes occur in the plasma formation stage of the Basil discharge. This early stage has particular interest because the highest plasma densities

More information

Simulation of Magnetization Switching in Nanoparticle Systems

Simulation of Magnetization Switching in Nanoparticle Systems Simulation of Magnetization Switching in Nanoparticle Systems D. Hinzke and U. Nowak Theoretische Physik, Gerhard-Mercator-Universität 47048 Duisburg, Germany Pacs-numbers: 75.10.Hk; 75.40.Mg; 75.40.Gb

More information

Polarized 3 He Target Updates

Polarized 3 He Target Updates Polarized 3 He Target Updates Kai Jin, University of Virginia, on behalf of JLab polarized 3 He group Hall A Winter Collaboration Meeting, January 19, 2017 Introduction to polarized 3He target Target upgrade

More information

Examples of Lifshitz topological transition in interacting fermionic systems

Examples of Lifshitz topological transition in interacting fermionic systems Examples of Lifshitz topological transition in interacting fermionic systems Joseph Betouras (Loughborough U. Work in collaboration with: Sergey Slizovskiy (Loughborough, Sam Carr (Karlsruhe/Kent and Jorge

More information

On the Ultimate Speed of Magnetic Switching

On the Ultimate Speed of Magnetic Switching On the Ultimate Speed of Magnetic Switching Joachim Stöhr Stanford Synchrotron Radiation Laboratory Collaborators: H. C. Siegmann, C. Stamm, I. Tudosa, Y. Acremann ( Stanford ) A. Vaterlaus (ETH Zürich)

More information

Likewise, any operator, including the most generic Hamiltonian, can be written in this basis as H11 H

Likewise, any operator, including the most generic Hamiltonian, can be written in this basis as H11 H Finite Dimensional systems/ilbert space Finite dimensional systems form an important sub-class of degrees of freedom in the physical world To begin with, they describe angular momenta with fixed modulus

More information

Dynamic Self Assembly of Magnetic Colloids

Dynamic Self Assembly of Magnetic Colloids Institute of Physics, University of Bayreuth Advanced Practical Course in Physics Dynamic Self Assembly of Magnetic Colloids A. Ray and Th. M. Fischer 3 2012 Contents 1. Abstract 3 2. Introduction 3 3.

More information

ABSTRACT INTRODUCTION

ABSTRACT INTRODUCTION Mat. Res. Soc. Symp. Proc. Vol. 696 22 Materials Research Society Surface reconstruction and induced uniaxial magnetic fields on Ni films R. A. Lukaszew, B. McNaughton 1, V. Stoica 2 and R. Clarke 2 Department

More information

V27: RF Spectroscopy

V27: RF Spectroscopy Martin-Luther-Universität Halle-Wittenberg FB Physik Advanced Lab Course V27: RF Spectroscopy ) Electron spin resonance (ESR) Investigate the resonance behaviour of two coupled LC circuits (an active rf

More information

Chapter 11 Angular Momentum; General Rotation. Copyright 2009 Pearson Education, Inc.

Chapter 11 Angular Momentum; General Rotation. Copyright 2009 Pearson Education, Inc. Chapter 11 Angular Momentum; General Rotation ! L = I!! Units of Chapter 11 Angular Momentum Objects Rotating About a Fixed Axis Vector Cross Product; Torque as a Vector Angular Momentum of a Particle

More information

SUPPLEMENTARY NOTE 1: ADDITIONAL CHARACTERIZATION OF NANODIAMOND SOLUTIONS AND THE OVERHAUSER EFFECT

SUPPLEMENTARY NOTE 1: ADDITIONAL CHARACTERIZATION OF NANODIAMOND SOLUTIONS AND THE OVERHAUSER EFFECT 1 SUPPLEMENTARY NOTE 1: ADDITIONAL CHARACTERIZATION OF NANODIAMOND SOLUTIONS AND THE OVERHAUSER EFFECT Nanodiamond (ND) solutions were prepared using high power probe sonication and analyzed by dynamic

More information

Specific Absorption Rate of Assembly of Magnetite Nanoparticles with Cubic Magnetic Anisotropy

Specific Absorption Rate of Assembly of Magnetite Nanoparticles with Cubic Magnetic Anisotropy The 2nd International Symposium on Physics, Engineering and Technologies for Biomedicine Volume 2018 Conference Paper Specific Absorption Rate of Assembly of Magnetite Nanoparticles with Cubic Magnetic

More information

Non equilibrium Ferromagnetism and Stoner transition in an ultracold Fermi gas

Non equilibrium Ferromagnetism and Stoner transition in an ultracold Fermi gas Non equilibrium Ferromagnetism and Stoner transition in an ultracold Fermi gas Gareth Conduit, Ehud Altman Weizmann Institute of Science See: Phys. Rev. A 82, 043603 (2010) and arxiv: 0911.2839 Disentangling

More information

Linear and nonlinear spectroscopy

Linear and nonlinear spectroscopy Linear and nonlinear spectroscopy We ve seen that we can determine molecular frequencies and dephasing rates (for electronic, vibrational, or spin degrees of freedom) from frequency-domain or timedomain

More information

NMR Studies of 3 He Impurities in 4 He in the Proposed Supersolid Phase

NMR Studies of 3 He Impurities in 4 He in the Proposed Supersolid Phase Journal of Low Temperature Physics manuscript No. (will be inserted by the editor) NMR Studies of 3 He Impurities in 4 He in the Proposed Supersolid Phase S. S. Kim 1 C. Huan 1 L. Yin 1 J. S. Xia 1 D.

More information

List of Comprehensive Exams Topics

List of Comprehensive Exams Topics List of Comprehensive Exams Topics Mechanics 1. Basic Mechanics Newton s laws and conservation laws, the virial theorem 2. The Lagrangian and Hamiltonian Formalism The Lagrange formalism and the principle

More information

Lecture D10 - Angular Impulse and Momentum

Lecture D10 - Angular Impulse and Momentum J. Peraire 6.07 Dynamics Fall 2004 Version.2 Lecture D0 - Angular Impulse and Momentum In addition to the equations of linear impulse and momentum considered in the previous lecture, there is a parallel

More information

Dynamics and performance optimization of spin-torque switching in magnetic tunnel junctions

Dynamics and performance optimization of spin-torque switching in magnetic tunnel junctions Dynamics and performance optimization of spin-torque switching in magnetic tunnel junctions A THESIS SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY Thomas Edward Dunn

More information

Supplementary Figure 1: Spin noise spectra of 55 Mn in bulk sample at BL =10.5 mt, before subtraction of the zero-frequency line. a, Contour plot of

Supplementary Figure 1: Spin noise spectra of 55 Mn in bulk sample at BL =10.5 mt, before subtraction of the zero-frequency line. a, Contour plot of 1 Supplementary Figure 1: Spin noise spectra of 55 Mn in bulk sample at BL =10.5 mt, before subtraction of the zero-frequency line. a, Contour plot of the spin noise spectra calculated with Eq. (2) for

More information

Magnetic Resonance Imaging (MRI)

Magnetic Resonance Imaging (MRI) Magnetic Resonance Imaging Introduction The Components The Technology (MRI) Physics behind MR Most slides taken from http:// www.slideworld.org/ viewslides.aspx/magnetic- Resonance-Imaging- %28MRI%29-MR-Imaging-

More information

Dynamics of Rotational Motion

Dynamics of Rotational Motion Chapter 10 Dynamics of Rotational Motion PowerPoint Lectures for University Physics, 14th Edition Hugh D. Young and Roger A. Freedman Lectures by Jason Harlow Learning Goals for Chapter 10 Looking forward

More information

Josh Deutsch. University of California. Santa Cruz

Josh Deutsch. University of California. Santa Cruz Nonequilibrium symmetry breaking and pattern formation in magnetic films. p. 1/6 Nonequilibrium symmetry breaking and pattern formation in magnetic films Josh Deutsch University of California Santa Cruz

More information

More NMR Relaxation. Longitudinal Relaxation. Transverse Relaxation

More NMR Relaxation. Longitudinal Relaxation. Transverse Relaxation More NMR Relaxation Longitudinal Relaxation Transverse Relaxation Copyright Peter F. Flynn 2017 Experimental Determination of T1 Gated Inversion Recovery Experiment The gated inversion recovery pulse sequence

More information

Angular Momentum Transport in Quasi-Keplerian Accretion Disks

Angular Momentum Transport in Quasi-Keplerian Accretion Disks J. Astrophys. Astr. 004) 5, 81 91 Angular Momentum Transport in Quasi-Keplerian Accretion Disks Prasad Subramanian, 1 B. S. Pujari & Peter A. Becker 3 1 Inter-University Center for Astronomy and Astrophysics,

More information

arxiv:cond-mat/ v1 1 Dec 1999

arxiv:cond-mat/ v1 1 Dec 1999 Impurity relaxation mechanism for dynamic magnetization reversal in a single domain grain Vladimir L. Safonov and H. Neal Bertram Center for Magnetic Recording Research, University of California San arxiv:cond-mat/9912014v1

More information

Precursors of a phase transition in a simple model system

Precursors of a phase transition in a simple model system Precursors of a phase transition in a simple model system V. Halpern Department of Physics, Bar-Ilan University, Ramat-Gan 52900, Israel halpeh@mail.biu.ac.il Abstract Most theoretical and numerical studies

More information

Diffuse Interface Field Approach (DIFA) to Modeling and Simulation of Particle-based Materials Processes

Diffuse Interface Field Approach (DIFA) to Modeling and Simulation of Particle-based Materials Processes Diffuse Interface Field Approach (DIFA) to Modeling and Simulation of Particle-based Materials Processes Yu U. Wang Department Michigan Technological University Motivation Extend phase field method to

More information

Ferromagnetic resonance in Yttrium Iron Garnet

Ferromagnetic resonance in Yttrium Iron Garnet Author:. Facultat de Física, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain. Advisor: Joan Manel Hernàndez Ferràs Abstract: his work presents a study of the ferromagnetic resonance of an

More information

Longitudinal Beam Dynamics

Longitudinal Beam Dynamics Longitudinal Beam Dynamics Shahin Sanaye Hajari School of Particles and Accelerators, Institute For Research in Fundamental Science (IPM), Tehran, Iran IPM Linac workshop, Bahman 28-30, 1396 Contents 1.

More information