EXT /05/2000

Size: px
Start display at page:

Download "EXT /05/2000"

Transcription

1 On the Construction of Selfpolar and Selfpolar Hilbertian Norms on Inner Product Spaces EXT /05/2000 Gerald Hofmann Klaus Luig May 6, 2000 Abstract Noticing that the selfpolar Hilbertian norms are the appropriate substitutes for the canonical norms when a pre-hilbert space is replaced by a èpossibly indeæniteè inner product space, the Aronszajn-Schatten iteration of selfpolar norms is discussed. Furthermore, we discuss the question of how many non-equivalent selfpolar and selfpolar Hilbertian norms exist on ènon-degenerateè inner product spaces of countably inænite dimension by constructing a large subclass of such norms and deciding which of them are equivalent. As a preparation for this discussion, we give a complete and constructive classiæcation of all selfpolar and all selfpolar Hilbertian norms on two-dimensional Minkowski space. Introduction Spaces with indeænite inner product were ærst applied to quantum æeld theory èqftè by Dirac and Pauli about 70 years ago ècf. ë6ë, ë2ëè. Since the Gupta- Bleuler formalism of QED èquantum electro-dynamicsè it is clear that the use of indeænite metric is indispensable. As explained by Kugo, Nakanishi, Ojima, and Strocchi, now the use of indeænite metric is quite natural as the framework of QFT, and especially, of the operator formalism of gauge theories and quantum gravity ècf. ë7ë, ë8ë, ë9ë, ë25ëè. In those theories the Hilbert space of state vectors is replaced by some Krein space èë4ë, ë5ëè. Considering a pre-hilbert èunitaryè space E; ë:; :ë èi.e., the inner product ë:; :ë is positive deæniteè, a canonical norm pèxè = p ëx; xë; è.è x 2 E, exists on E. Recall that the following apply:

2 jëx;yëj èaè p is the unique selfpolar norm on E;ë:; :ë, i.e., pèxè = sup, 06=y2E pèyè x 2 E ècf. ë7, pp ëè. èbè p satisæes the parallelogram identity. ècè the completed hull E eçèpè endowed with the continuously extended inner product ë:; :ë ç is a Hilbert space, where çèpè denotes the topology deæned by the norm p. Motivated by the ærst paragraph, it is of interest to ænd the corresponding substitutes when the pre-hilbert space is replaced by some non-degenerate inner product space E;è:; :è, èi.e., E is a real or complex vector space equipped with a bilinear symmetric respective sesquilinear Hermitian form è:; :è which is non-degenerate; in the latter case it is assumed that the inner product è:; :è is antilinear in its ærst variableè. If the inner product è:; :è is indeænite, then è.è does not deæne a norm, and thus, no canonical norm is available. The role of the canonical norm è.è is now played by the selfpolar Hilbertian norms q on E, i.e., it holds qèxè = jèx; yèj sup ; è.2è 06=y2E qèyè and furthermore, there is a positive deænite inner product ë:; :ë one æ E such that p qèxè = ëx; xë ; è.3è x 2 E. Recall also that a norm is Hilbertian èi.e., è.3è appliesè if, and only if, it satisæes the parallelogram identity ècf. ë5, p. 24ëè. The above èaè, èbè show that the selfpolar Hilbertian norms are the natural generalization of the canonical norm when the class of pre-hilbert spaces is generalized to inner product spaces. The signiæcance of selfpolar and selfpolar Hilbertian norms is due to the following: èiè If q is a selfpolar norm on a non-degenerate inner product space E;è:; :è, then èiè the inner product è:; :è extends çèqè-continuously onto e E æ e E, èiiè the inner product space e E;è:; :è ç is non-degenerate. èiiè If q is a selfpolar Hilbertian norm on a non-degenerate inner product space E;è:; :è, then E;è:; e :è ç is a Krein space èë, Th.èiiiè, Prop. 2ëè, i.e., ee;ë:; :ëèqè:è = p ë:; :ëè is a Hilbert space and the Gram operator J deæned by èx; yè ç =ëx; Jyë, x; y 2 e E is a symmetry èj = J æ = J, è. Notice also that ècè is generalized from the case of positive deænite inner products ë:; :ë to èpossibly indeæniteè inner products in the following: 2

3 èc'è if q is a Hilbertian selfpolar norm on E, then the completed hull e E çèqè endowed with the continuously extended inner product è:; :è ç is a Krein space, ècf. ë2ëè. In generalization of the positive deænite case, where the canonical norm is uniquely deæned, the following is possible in the general case of an inner product space: èiè there is no selfpolar norm on E;è:; :è ècf. ë5, Example III.3.2ëè. èiiè there is exactly one normed self-polar topology ç on E; è:; :è, i.e., a selfpolar norm p deæning ç exists, and furthermore, every selfpolar norm on E deænes a topology equivalent to ç ècf. ë2ë, and references cited thereè. èiiiè there is a whole family of selfpolar norms deæning non-equivalent topologies on E; è:; :è èsuch a family of selfpolar norms was explicitely constructed by Araki in ë2ëè. Along these lines, it is known that if E; è:; :è is non-degenerate and quasi-deænite èi.e. quasi-positive or quasi-negative, where quasi-positive è-negativeè means that E has no negative èpositiveè deænite subspace of inænite dimensionè, then all selfpolar norms are equivalent to the same selfpolar Hilbertian norm ë5ë. While an operator description for selfpolar Hilbertian norms is developed by Hansen on the special class of inner product spaces which allow a complete Hilbertian majorant èë7ë, see Theorem 3.9è, the present paper is aimed at explicit constructions of as well selfpolar as selfpolar Hilbertian norms on non-degenerate inner product spaces. In section 2 the Aronszajn-Schatten iteration of such norms is given. Our results are a generalization of as well Aronszajn's iteration of selfpolar norms on inner product spaces as of Schatten's iteration of the ç-topology on the tensor product E æ E ècf. ë3ë, ë7ë, ë20ë, ë24ë, ë26ëè. It is shown in Theorem 2.8 that for each positively homogeneous functional p on a non-degenerate inner product space satisfying p 0 ç p èsee Notation 2.è, a selfpolar norm p is constructed by an iteration process starting from p. This iteration can be used for a numerical calculation, and as well a priori as a posteriori estimates are obtained in Lemma 2.2. Furthermore, if p is Hilbertian, then the selfpolar norm p is Hilbertian, too èsee Corollary 2.è. While the Aronszajn-Schatten iteration yields the existence of selfpolar norms, it does not answer the question whether or not all selfpolar norms are equivalent. Furthermore it is of interest whether a given selfpolar norm is equivalent to a Hilbertian selfpolar norm. Section 3 is devoted to these questions. For the class of inner product spaces of countable algebraic dimension and a huge family of selfpolar norms on them an answer is given in Theorem 3.2. These inner product spaces are of interest for the investigation of some special models of gauge-æeld theories èëë, ë8ë, ë9ë, ë0ë, ë3ë, ë4ë, è. 3

4 The analysis of section 3 relies on a complete classiæcation of the selfpolar and selfpolar Hilbertian norms on M 2 í the real Minkowski space of dimension two í only the results of which are given there. The proofs of these results are postponed until section 4, where all selfpolar and selfpolar Hilbertian norms on M 2 are explicitely constructed èsection 4 is to some extent independent of the rest of the paper and may be omitted, if the reader is not interested in the details of the two-dimensional caseè. It turns out that in contrast to the positive deænite case, where exactly one selfpolar Hilbertian norm exists, on M 2 there are as well non-denumerably many selfpolar as non-denumerably many selfpolar Hilbertian norms. The idea of the construction is to describe the norms p on M 2 by the p of their unit balls U p, p are convex curves. Polarization of p in M 2 then transforms to a Legendre-like transformation "*" of convex curves, which isintroduced in section 4.. In order to construct convex curves which are invariant under the *-operation, and thus describe selfpolar norms, it is shown that every arc connecting the two mass shells h := fx =èx 0 ;x è 2M 2 ; x 2 =;x 0 é 0g, h 2 := fx =èx 0 ;x è 2 M 2 ; x 2 =,;x é 0g, and lying completely between them èsee Figure 2è, completes to such a *-invariant curve onm 2. Furthermore, it is shown that every convex curve related to a selfpolar norm is obtained by that construction èsee Theorem 4.7è. The special case of selfpolar Hilbertian norms on M 2 is considered in Proposition Construction of selfpolar norms using the Aronszajn-Schatten iteration Letting E; è:; :è be a non-degenerate inner product space, the following is aimed at deæning selfpolar norms on E. Though p will mostly be a norm in the subsequent applications, it is ærst assumed that p only satisæes pèçxè = jçj pèxè; 0 ç pèxè é è2.è for each x 2 E; ç 2 C. Notice that U p = fx 2 E; pèxè ç g is circled and absorbent, but not necessarily absolutely convex, since it is not assumed that the triangle inequality applies to p. Setting R + = fç 2 R; ç ç 0g, the following is conærmed. 2. Notation. For an inner product space E;è:; :è, let P èresp. e Pè denote the set of all norms èresp. all functionals p : E! R + satisfying è2.è è on E. Itis obvious that Pçe P. 2.2 Notation. Let p; q 2 e P. aè Setting p è0è = p, deæne p ènè èxè := sup jèx; yèj = p èn,è èyèç 4 sup 06=y2E jèx; yèj p èn,è èyè ; è2.2è

5 x 2 E, n =; 2;:::, where for the last expression "0=0" is deæned to be zero. Here p ènè èx 0 è= is possible for certain x 0 2 E. For p èè and p è2è, it will also be written p 0 and p 00, respectively. bè Let p ç q denote that there is a constant 0écé such that pèxè ç cqèxè è2.3è for each x 2 E. Furthermore, let p ç q denote that è2.3è applies, and additionally, there is a sequence fx n g n=, x n 2 E, such that pèx n è= and qèx n è!as n!. cè For a norm p let çèpè denote the locally convex topology deæned py p. For two l.c. topologies ç j èj =; 2è, let ç ç ç 2 èresp. ç ç ç 2 è denote that ç 2 is æner èresp. strictly ænerè than ç. Considering the dual pair èe; Eè, where the pairing is given by the inner product è:; :è, the weak topology ç is deæned by the following set of seminorms x; y 2 E. x! q y èxè =jèx; yèj ; Some properties of p ènè è:è are collected in the following. Since the proofs are straightforward, they are omitted. 2.3 Lemma. Let p è0è è:è =pè:è, qè:è 2 e P on a non-degenerate inner product space E; è:; :è. Then, aè p ènè satisfy the triangle inequality and homogenity, i.e., p ènè èx + yè ç p ènè èxè+p ènè èyè; p ènè èçxè =jçj p ènè èxè for each x; y 2 E; ç 2 C ;n2n; bè for 0 éç2 R, it follows èçpè 0 èxè =ç, p 0 èxè; x2 E, cè if pèxè ç qèxè for each x 2 E, then p 0 èyè ç q 0 èyè for each y 2 E, c'è if p ç q, then q 0 ç p 0, dè it holds jèx; yèjçp ènè èxè p èn,è èyè è2.4è for each x; y 2 E; n 2 N; where the product on the right-hand side of è2.4è is deæned to be inænite whenever one factor is inænite. eè it holds for each x 2 E, fè the following are equivalent: pèxè ç p è2è èxè =p è4è èxè =:::; p èè èxè = p è3è èxè =p è5è èxè =::: 5

6 èiè p 0 èxè é for each x 2 E, èiiè 0 ép ènè èzè é for each 0 6= z 2 E and n =; 2;:::: If furthermore p 2P, then èiè èand consequently also èiièè is equivalent to èiiiè çèpè ç ç: For Hilbertian norms, the following holds. 2.4 Lemma. If p is a Hilbertian norm on a non-degenerate inner product space satisfying ç ç çèpè, then all p ènè ;n=; 2;:::; are Hilbertian norms, too. Proof. Notice ærst that Lemma 2.3fè yields that all p ènè are norms on E, n 2 N. Assume then that there is an s 2 N such that p èsè is a Hilbertian norm. Then there is a positive deænite inner product ë:; :ë èsè on E such that p p èsè èxè = ëx; xë èsè ;x2 E: Noticing that E; ë:; :ë èsè is a pre-hilbert space, consider the completed hull E eçèp èsè è endowed with the continuously extented inner product, which is also denoted by ë:; :ë èsè. E; e ë:; :ë èsè then is a Hilbert space. Consider now the linear functionals ' y è:è =èy; :è; y2 E; deæned on E, and notice that their continuity relative toçèp èsè è follow from j' y èxèj = jèy; xèjçp ès,è èyè p èsè èxè =C y p èsè èxè ; where è2.4è with n = s was applied, and C y := p ès,è èyè é by Lemma 2.3fè. Considering then the çèp èsè è-continuous extensions f' y è:è of' y è:è onto the Hilbert space E; e ë:; :ë èsè, it follows kf' y k = k' y k ; where k:k denotes the norm of a linear functional. The Theorem of Frçechet-Riesz yields as well the existence of an element ~z 2 e E such that f' y è~xè =ë~z; ~xë èsè ; ~x 2 e E,askf'y k = k~zk èsè ; k:k èsè := p ë:; :ë èsè ; for the norm kf' y k of the linear functional f' y è:è. The latter now yields k~zk èsè = kf' y k = k' y k = jèy; xèj sup 06=x2E p èsè èxè = pès+è èyè : è2.5è Since the above mapping y 7! ~z is linear and k:k èsè is Hilbertian, è2.5è implies that the parallelogram identity applies to p ès+è. Hence, p ès+è is Hilbertian. Recalling that p = p è0è is assumed to be Hilbertian, the lemma under consideration is veriæed. Letting E; è:; :è be a non-degenerate inner product space, the present is aimed at constructing selfpolar norms on E; è:; :è. This construction is based on an iteration process, where the iteration uses a function æ : R + æ R +! R + satisfying the properties listed below. 6

7 2.5 Deænition. A function æ : R + æ R +! R + is called selfpolarly normiterating function if èiè æèa; bè =æèb; aè for each a; b 2 R +, èiiè æèa; cè ç æèa; bè, if c ç b and a; b; c 2 R +, èiiiè æèa; bè ç p ab for each a; b 2 R +, èivè æèça; çbè =çæèa; bè for each a; b; ç 2 R +, èvè the equation a =æèa; bè is solvable in R +, and if aé0, then there is the unique solution b = a. The following examples are of some special interest for applications. 2.6 Example. Consider aè æ èa; bè = èa + bè; 2 q bè æ 2 èa; bè = 2 èa2 + b 2 è; cè æ 3 èa; bè = p ab; a; b 2 R +. It is straightforward to check that æ j ;j =; 2; 3; are selfpolarly norm-iterating functions. Recalling Notation 2., let us conærm the following. 2.7 Notation. For a non-degenerate inner product space E; è:; :è, let us put Q := fp 2P; p 0 èxè ç pèxè; x2 Eg ; eq := fp 2 e P; p 0 èxè ç pèxè; x2 Eg : The Aronszajn-Schatten iteration of selfpolar norms is given in the following. 2.8 Theorem. Letting E; è:; :è be a non-degenerate inner product space, p 2 e Q, and æè:; :è a selfpolarly norm-iterating function, deæne recursively p n+ èxè :=æèp n èxè;p 0 n èxèè ; è2.6è p 0 èxè =pèxè; x2 E; n =0; ; 2;:::. Then, aè pèxè := lim n! p n èxè; p èè èxè :=lim n! p 0 nèxè exist, and pèxè = p èè èxè for each x 2 E, bè p 0 èxè ç p 0 èxè çæææç p0 n èxè ç p0 n+ èxè çæææç p èxè çæææç p n+ èxè ç p n èxè çæææç p èxè ç pèxè; x2 E; cè pè:è is a selfpolar norm on E. 7

8 Proof. aè, bè: Assuming that for some n 2 N 0, p n è:è 2 e Q. Then p 0 nèxè ç p n èxè é è2.7è holds for each x 2 E, and consequently, p n+ èxè =æèp n èxè;p 0 nèxèè èæè ç æèp n èxè;p n èxèè èææè ç p n èxè ; è2.8è where è*è follows from è2.7è and Deænition 2.5 èiiè, and è**è is a consequence of Deænition 2.5 èvè. Noticing that p n+ è:è also satisæes è2.è due to Deænition 2.5 èivè, Lemma 2.3cè applies to p n+ è:è and p n è:è, and thus è2.8è yields p 0 nèxè ç p 0 n+èxè : è2.9è Using è2.4è, it follows as well jèx; yèjçp 0 nèxè p n èyè asjèx; yèjçp n èxè p 0 nèyè; and then jèx; yèjç p p 0 nèxè p n èyè p n èxè p 0 nèyè ; è2.0è x; y 2 E; where all factors on the right-hand side of è2.0è are ænite due to è2.7è. Then, ç p 0 jèx; yèj ç è! è+è jèx; yèj n+èxè = sup ç sup p 06=y2E p n+ èyè 06=y2E p 0 nèyè p n èyè è++è ç p p 0 n èxè p n èyè p n èxè p 0 nèyè p p 0 n èyè p n èyè = p p 0 nèxè p n èxè è+è ç æèp n èxè;p 0 n èxèè = p n+èxè ; è2.è x; y 2 E, where both inequalities è+è follow from è2.6è and Deænition 2.5 èiiiè, and è++è is a consequence of è2.0è. Since p 0 è:è =pè:è 2 e Q by assumption of the theorem under consideration, è2.8è, è2.9è and è2.è hold for each n 2 N 0, and thus p 0 èxè ç 0 p0 èxè çæææç p0 n èxè ç p0 n+èxè ç ::: ç p n+ èxè ç p n èxè çæææç p èxè ç p 0 èxè : è2.2è For each x 0 2 E, consider now the two sequences of real numbers èp n èx 0 èè n=0 and èp 0 nèx 0 èè n=0. Since èp n èx 0 èè n=0 is monotonously decreasing and bounded from belowby p 0 0 èx 0è èresp. èp 0 n èx 0èè n=0 is monotonously increasing and bounded from above by p 0 èx 0 èè due to è2.2è, a theorem of classical analysis on the convergence of monotonous sequences yields the existence of real numbers pèx 0 è, p èè èx 0 è such that pèx 0 è = lim n! p nèx 0 è and p èè èx 0 è = lim n! p0 nèx 0 è : For varifying aè and bè, it remains to show that pèxè =p èè èxè; x2 E. If x 0 = 0, then obviously pè0è = p èè è0è = 0 by è2.2è and p 0 è0è = 0. Assuming 8

9 now x 0 6= 0, the assumption pè:è ç p 0 è:è of the theorem under consideration and Lemma 2.3fè èèiè è èiièè yield p 0 èx 0 è é 0 : è2.3è Considering the limit n!in è2.6è, it follows 0 ép 0 0 èx 0è ç pèx 0 è=æèpèx 0 è;p èè èx 0 èè ; and then pèx 0 è=p èè èx 0 èby èvè of Deænition 2.5. cè: For showing that pè:è =p èè è:è is a norm, notice ærst that for each n 2 N 0, p 0 n èx+yè ç p0 n èxè+p0 n èyè; p0 n èçxè =jçj p0 nèxè; x;y2 E; ç 2 C : Taking the limit n!in the above relations, it follows that pè:è is a seminorm. Taking è2.3è and è2.2è into account, it follows that pè:è even is a norm. For showing that pè:è is selfpolar, take p 0 nèxè ç pèxè ç p n èxè from bè. Using Lemma 2.3cè and Lemma 2.3eè, it follows p 0 nèxè ç p 0 èxè ç p 00 nèxè ç p n èxè ; è2.4è x 2 E; n 2 N 0. Considering the limit n!in è2.4è und using pè:è = p èè è:è, pèxè = lim n! p0 nèxè ç p 0 èxè ç lim n! p nèxè =pèxè ; x 2 E, are implied. The proof is complete. Sometimes it will be written p;æè:è instead of pè:è in order to refer explicitly to the function æ used in the iteration process è2.6è. 2.9 Corollary. Let E; è:; :è be a non-degenerate inner product space and p a norm on E. aè If çèp 0 è ç çèpè, then there is a selfpolar norm q on E;è:; :è such that çèp 0 è ç çèqè ç çèpè: bè If çèpè = çèp 0 è, then a selfpolar norm q exists on E;è:; :è such that çèpè =çèqè: Proof. aè Assuming çèp 0 è ç çèpè, there is a constant 0 é c é such that p 0 èxè ç cpèxè; x2 E. Setting qèxè := p cpèxè, it follows çèqè =çèpè and q 0 èxè èæè =è p cè, p 0 èxè ç p cpèxè =qèxè ; x 2 E, where è*è follows from Lemma 2.3bè. Applying Theorem 2.8 to the norm q, there is a selfpolar norm p satisfying q 0 èxè ç qèxè ç qèxè;x2 E. Hence, çèp 0 è=çèq 0 è ç çèqè ç çèqè =çèpè follow. bè is an immediate consequence of aè. 9

10 2.0 Corollary. Let E;è:; :è be a non-degenerate inner product space and p; q norms on E such that çèpè = çèqè and p 0 èxè ç pèxè; q 0 èxè ç qèxè for each x 2 E. For every selfpolarly norm-iterating function æ, take the selfpolar norms p;æ; q;æ from Theorem 2.8. It then follows ç èp;æè =ç èq;æè. Proof. Letting the assumptions of the corollary under consideration be satisæed, çèpè =çèqè implies the existence of constants 0 éc;dé such that cpèxè ç qèxè ç dpèxè; x2 E. Setting ç = maxfc, ;dg, it follows and then by Lemma 2.3bè, cè, ç, pèxè ç qèxè ç çpèxè ; ç, p 0 èxè ç q 0 èxè ç çp 0 èxè ; è2.5è è2.6è x 2 E. Considering the ærst step of the Aronszajn-Schatten iteration, it follows p èxè =æèpèxè;p 0 èxèè èæè ç æèçqèxè;çq 0 èxèè èææè = ç æèqèxè;q 0 èxèè = çq èxè ; and analogously, q èxè ç çp èxè, where è*è follows from è2.5è, è2.6è and Deænition 2.5 èiè, èiiè, and è**è is a consequence of Deænition 2.5 èivè. Hence, ç, p èxè ç q èxè ç çp èxè and ç, p 0 èxè ç q 0 èxè ç çp 0 èxè. Assuming now that there is an n 2 N such that ç, p n èxè ç q n èxè ç çp n èxè ; ç, p 0 nèxè ç q 0 nèxè ç çp 0 nèxè ; è2.7è the same reasoning as above yields ç, p n+ èxè ç q n+ èxè ç çp n+ èxè. Hence è2.7è holds for each n 2 N. Considering now the limit n!in è2.7è, it follows ç, p;æèxè ç q;æèxè ç çp;æèxè; x 2 E. Hence, çèp;æè = çèq;æè. 2. Corollary. Letting p be a Hilbertian norm on a non-degenerate inner product space E;è:; :è satisfying p 0 èxè ç pèxè; x2 E; and using the selfpolarly norm-iterating function æ 2, the Aronszajn-Schatten iteration yields a Hilbertian selfpolar norm p;æ 2 on E;è:; :è. Proof. Assume that there is an n 2 N 0 such that p 0 nèxè ç p n èxè; x2 E; and p n is a Hilbertian norm on E, where p n is taken from è2.6è using æ 2. Noticing that Lemma 2.3fè èèiè è èiiièè yields çèp n è ç ç, it follows from Lemma 2.4 that p 0 n is a Hilbertian norm on E, too. Hence the parallelogram identity applies to both norms p n and p 0 n, and thus, èp n+ èx + yèè 2 +èp n+ èx, yèè 2 =æ 2 èp n èx + yè;p 0 nèx + yèè 2 +æ 2 èp n èx, yè;p 0 nèx, yèè 2 = p n èx + yè 2 + p 0 n èx + yè2 + p n èx, yè 2 + p 0 nèx, yè2 =2èp n èxè 2 + p n èyè 2 + p 0 nèxè 2 + p 0 nèyè 2 è = 2 èæèp n èxè;p 0 nèxèè 2 +æèp n èyè;p 0 nèyèè 2 =2èp n+ èxè 2 + p n+ èyè 2 è ; è2.8è 0

11 x; y 2 E, verifying that the parallelogram identity applies to p n+, too. Hence p n+ is a Hilbertian norm on E, and p 0 èxè ç n+ p n+èxè; x2 E by è2.è. Noticing that the assumption made at the beginning of the proof holds for n = 0 due to the assumptions of the corollary under consideration, è2.8è applies to each n 2 N 0. Considering the limit n!in è2.8è, it follows that the norm satisæes the parallelogram identity, and consequently it is Hilbertian. p;æ 2 Taking æ from Example 2.6, there are simple "a priori" and "a posteriori" estimates for the Aronszajn-Schatten iteration process. 2.2 Lemma. Letting p 2 e Q on a non-degenerate inner product space E;è:; :è, consider the Aronszajn-Schatten iteration p n èxè =æ èp n,èxè;p 0 n,èxèè = 2 èp n,èxè+p 0 n,èxèè ; è2.9è p 0 èxè =pèxè; n=; 2;:::; x2 E. Then, aè jp;æ èxè, p n èxèjç2,n èpèxè, p 0 èxèè èa priori estimateè, bè jp;æ èxè, p n èxèj ç p n èxè, p n,èxè èa posteriori estimateè for each x 2 E. Proof. aè Using Theorem 2.8bè and è2.9è, the a priori estimate follows from jp;æ èxè, p n èxèj ç p n èxè, p 0 nèxè ç 2 èp n,èxè+p 0 èxèè, n, p0 èxè n, = 2 èp n,èxè, p 0 n,èxèè ç ::: ç 2,n èp 0 èxè, p 0 0èxèè ; x 2 E: bè Again using Theorem 2.8bè and è2.9è, the a posteriori estimate follows from jp;æ èxè, p n èxèj ç p n èxè, p 0 nèxè ç p n èxè, p 0 n,èxè = p n èxè, è2p n èxè, p n,èxèè = p n,èxè, p n èxè ; x 2 E: 3 Selfpolar and selfpolar Hilbertian norms on inner product spaces of countable dimension While the existence and construction of selfpolar and selfpolar Hilbertian norms was considered in Theorem 2.8 and Corollary 2., resp., the question of whether or not all selfpolar norms are equivalent is not answered by those results. The aim of the present section is to give, for a certain class of inner product spaces, an explicit construction of inænitely many diæerent selfpolar topologies èin contrast to the deænite case í cf. èaè of the introductionè.

12 3. Inner product spaces of countable dimension Let E be a real vector space of countably inænite algebraic dimension endowed with an inner product è:; :è E so that E;è:; :è E is non-degenerate. If E is quasi-deænite, then all selfpolar norms are equivalent ècf. the introductionè. So, for the following E is supposed not to be quasi-deænite. Since there is an orthonormal basis fe n g n=, èe n ;e m è E = ææ nm ë5, Sect.IV.3ë, it is obvious that E;è:; :è E is isometrically isomorphic to dèrè, the space of all sequences of real numbers with a ænite number of non-zero members, endowed with the inner product, èx 0 ;x ;x 2 ;:::è; èy 0 ;y ;y 2 ;:::è æ d := X k=0 èx 2k y 2k, x 2k+ y 2k+ è: è3.è Letting M 2 denote the two dimensional Minkowski space, i.e. R 2 equipped with the inner product èx; yè :=x 0 y 0,x y, one can think of the abovedèrè; è:; :è d as composed of inænitely many copies of M 2 ; è:; :è. Hence, a large class of selfpolar norms on dèrè; è:;:è d can be constructed starting from sequences of selfpolar norms on M 2 ; è:; :è: 3. Proposition. aè Let p 0 ;p ;p 2 ;::: be asequence of selfpolar norms on M 2 ; è:; :è and deæne pèxè := vu u t X k=0 p 2 k èx2k ;x 2k+ è ; x =èx 0 ;x ;x 2 ;:::è 2 dèrè: è3.2è Then p is a selfpolar norm on dèrè; è:;:è d. If in addition all the p k are Hilbertian, then so is p. bè If p is any selfpolar norm on dèrè; è:; :è d, and U is an isometric or antiisometric automorphism of this space, then p U èxè :=pèu, xè is also a selfpolar norm. If p is Hilbertian, then so is p U. Proof. In order to show in aè that p is selfpolar, ærst observe that jèx; yè d jç pèxè pèyè. Now, given any x 2 dèrè, choose for each k a pair èy 2k ;y 2k+ è such that x 2k y 2k, x 2k+ y 2k+ = p 2 k èx2k ;x 2k+ è and p k èy 2k ;y 2k+ è=p k èx 2k ;x 2k+ è. Collecting all these pairs one obtains a y 2 dèrè satisfying èx; yè d = p 2 èxè and pèyè = pèxè. The rest of the proof is straightforward. Two norms p and q on dèrè, constructed as in Proposition 3. aè from diæerent sequences èp k è and èq k è might or might not be equivalent. There is a simple criterion to decide this question: 2

13 3.2 Lemma. Let p 0 ;p ;p 2 ;::: and q 0 ;q ;q 2 ;::: be two sequences of selfpolar norms on M 2 ; è:; :è and denote by p resp. q the corresponding norms on dèrè as in è3.2è. Set ç + k èp; qè = sup p kèxè 06=x2M 2 q, ç, kèxè k èp; qè = inf p kèxè 06=x2M 2 q. kèxè Then the following are equivalent: èiè p and q deæne the same topology on dèrè. èiiè ç + k èp; qè ç Céfor each k. èiiiè ç, k èp; qè ç cé0 for each k. Proof. Obviously, èiiè applies if and only if p is weaker than q, and èiiiè is equivalent toq being weaker than p. In the present case, both p and q are selfpolar. This means that if one of them is weaker than the other they must be equivalent ë5, Thm. IV.4.2ë. 3.2 Selfpolar norms on M 2 Since the aim is to use Proposition 3. and Lemma 3.2 in order to provide a èpartialè overview of the possible selfpolar and selfpolar Hilbertian topologies on dèrè, the following two sections are devoted to an investigation of the selfpolar and selfpolar Hilbertian norms on M 2. They are described in detail and a complete classiæcation is given. All the proofs of the assertions below and more details will be given in chapter 4. It turns out to be usefull, not to consider a norm p itself, but the p := fx 2M 2 j pèxè =g, i.e. the boundary of the corresponding unit ball U p. Curves in R 2 will be described in polar coordinates, i.e. by functions rè'è, where r gives the èeuclideanè length of a vector, and ' 2 S denotes the angle between the vector and the positive x 0 -axis. 3.3 Observation. There is the following bijection between the norms p on R 2 and the ç-periodic, convex, closed curves r : S! ër ;r 2 ëèr ;r 2 é 0è in R 2 : p 7! r p ; r p è'è :=pç, cos ' sin 'æç, ; '2 S ; r 7! p r ; p r èxè := ç rè'è ; x = ç, cos ' sin 'æ 2 R2 èç ç 0è: è3.3è The homogeneity of the norm includes its reæection invariance, and thus the ç-periodicity ofr p. The restriction of the image of r to some closed interval ër ;r 2 ë reæects both, the fact that the unit ball associated to p must be absorbing and that it must lie in some ænite Euclidean ball. Convexity ænally, which by deænition means that for any two points of the curve the straight line between these points lies completely inside the curve, comes from homogeneity and the triangle inequality for p. 3

14 h 2 t 2 ' 2 è 2 r 2 r 2 ' r r è h t Figure : The choice of èr ;' è and èr 2 ;' 2 è. coordinate axes at æ. The hyperbolae intersect the 3.4 Observation. The set of selfpolar norms on M 2 is invariant under Lorentz transformations. Consider any selfpolar norm p and let æ denote a linear isometry of M 2. Then p æ èxè :=pèæ, xè is a selfpolar norm as well. This remains true if æ is chosen to be an anti-isometry, èæx; æyè =,èx; yè. The curve which is associated to p æ is the image of the curve r p under æ. If, e.g., p is the Euclidean norm, i.e. r p è'è ç describes the unit circle, then under a Lorentz transformation, this circle turns into some ellipse, the axes of which lie along the bisectors of the ærst and second quadrants and for which the product of the half axes equals unity. The construction of selfpolar norms on M 2 which will now be described needs the following two ingredients: Deæne I. The ærst ingredient isapair of angles è' ;' 2 è 2 S æ S subject to the following conditions:, ç 4 é' é ç 4 ; ç 4 é' 2 é 3ç 4 ; è3.4è cos 2 è' + ' 2 è ç cosè2' è jcosè2' 2 èj: è3.5è r := p cos 2' ; r 2 := p ; è jcos 2'2j :=,' ; è 2 := ç, ' 2 : The condition è3.5è is now equivalent tor r 2 jcosè' + ' 2 èjç. Figure shows the situation: Each of the points èr ;' è and èr 2 ;' 2 è lies on one of the hyperbolae èx 0 è 2,èx è 2 = æ. Let us call them h and h 2 as shown in the picture. The tangents of h and h 2 in the given points ècalled t and t 2 resp.è 4

15 t 2 h 2 èr 2 ;' 2 è r0è'è èr ;' è h t Figure 2: The choice of r 0 è'è. are given by their respective normal directions è and è 2. The projections of r and r 2 onto the directions è and è 2 are =r and =r 2 respectively. According to condition è3.5è, the points on the hyperbolae have to be chosen in such away that èr ;' è lies ëbelow" or on t 2 and that èr 2 ;' 2 è lies ëto the left of" or on t. II. The second ingredient for the construction described below is an arbitrary convex arc r 0 :ë' ;' 2 ë! R satisfying r 0 è' è=r ; r 0 è' 2 è=r 2 ; è3.6è è èrè r 0 è' è èlè r 0 è' 2 è ç è 2 : è3.7è èl=rè r 0 è'è denotes the normal direction of the left resp. right derivative of the curve r 0 in the point ' ècf. Deænition 4.3è. The convexity in this case is to be understood in the same way as for closed curves. See Figure 2 for an illustration of the above conditions: The arc r 0 è'è must lie inside the triangle formed by t, t 2 and the line through èr ;' è and èr 2 ;' 2 è. The idea of the construction is, to extend the chosen arc r 0 è'è to a complete closed curve, which will represent the desired selfpolar norm. First, deæne ræ :ë' 2, ç; ' ë! R by ræèèè := sup '2ë' ;' 2ë r 0è'è cosèè + 'è ; è 2 ë' 2, ç; ' ë: 5

16 Now, the completed curve is given by r : S! R rè'è := 8 é é: r 0 è'è ræè'è r 0 è' + çè ræè', çè ; ' 2 ë' ;' 2 ë ; ' 2 ë' 2, ç; ' ë ; ' 2 ë', ç; ' 2, çë ; ' 2 ë' 2 ;' + çë: è3.8è This yields the desired selfpolar norm: 3.5 Proposition èsee Prop. 4.4è. The function rè'è is the representation in polar coordinates of a ç-periodic convex closed curve, i.e., it deænes a norm p r in R 2 ècf. è3.3èè. 3.6 Theorem èsee Thm. 4.5è. p r = p 0 r, p r is selfpolar è 0 : Polarization with respect to M 2 è. It is shown in chapter 4 that every selfpolar norm on M 2 can be constructed in the above described manner: 3.7 Theorem èsee Thm. 4.7è. Set P g := f è' ;' 2 è 2 S æ S j, ç 4 é' é ç 4 ; ç 4 é' 2 é 3ç 4 ; cos 2 è' + ' 2 è é cosè2' è jcosè2' 2 èjg æfç :ë0; ç 2 ë! Rj ç describes a convex arc from è; 0è to è; ç 2 è, completely lying inside the triangle è; 0è; è p 2; ç 4 è; è; ç 2 è g; P e := f è' ;' 2 è 2 S æ S j, ç 4 é' é ç 4 ; ç 4 é' 2 é 3ç 4 ; cos 2 è' + ' 2 è = cosè2' è jcosè2' 2 èjg: There is a bijection from P := P g ëp e èdisjoint unionè into the set of selfpolar norms on M 2 èessentially given by the above constructionè. 3.8 Remark èdescription of the admissible angles ', ' 2 è. The èangle parts of theè parameter sets P g and P e which occur in Theorem 3.7 are depicted in Figure 3. Using the transformation ææ := ' æ è' 2, ç=2è one calculates: cos 2 è' + ' 2 è = sin 2 èæ + è;, cosè2' è cosè2' 2 è = cos 2 èæ,è, sin 2 èæ + è. The condition for P g reads in these coordinates: sin 2 èæ + è é =2 cos 2 èæ,è. For P e : sin 2 èæ + è==2 cos 2 èæ,è. Hence, the points è' ;' 2 è belonging to P g form the interior of the gray lense, the elements of P e are exactly the points of its boundary. 3.3 Selfpolar Hilbertian norms on M 2 In this section it will be determined, which of the selfpolar norms described before are in addition Hilbertian èi.e. which of them are derived from scalar 6

17 ' 2 3ç 4 P e P g, ç 4 ç 4 ' P e Figure 3: The admissible values for è' ;' 2 è ç 4 productsè. The easiest way to do so is to use the following theorem due to Hansen ë7ë. 3.9 Theorem èhansenè. Let E; èæ; æè be a non-degenerate inner product space with an additional scalar product ëæ; æë. The corresponding norm kxk := p ëx; xë is supposed to satisfy jèx; yèj çckxkkyk for some Cé0 èi.e. kæk is to be a majorantè. On the Hilbert space H := e E kæk ècompletion with respect to the norm topologyè the extended inner product èæ; æè ç is assumed tobe non-degenerate. Let p be a norm on E. Then p is Hilbertian and selfpolar if and only if there is a positive and bounded operator T on H; ëæ; æë with the following properties: aè 0 is not an eigenvalue of T, bè JHçDèT, 2 è èthe operator J connects the two inner products: èx; yè =ëx; Jyëè, cè kt 2 xk = kt, 2 Jxk, x 2 E, dè pèxè =kt 2 xk, x 2 E. For two dimensional Minkowski space, E = M 2,ëx; yë =x 0 y 0 + x y,èx; yè = x 0 y 0, x y, J =, 0 0,æ, the theorem reads: The Hilbertian selfpolar norms p have the form pèxè =kt 2 xk, where T is any positive deænite matrix satisfying kt 2 xk = kt, 2 Jxk. The condition for T is in this case equivalent tot = JT, J. 3.0 Proposition. The Hilbertian selfpolar norms on M 2 are given by the formula pèxè = for any æé0. r æç æ ç2, ; ç æ := p 2 èx 0 æ x è èx 2M 2 è; 7

18 3. Remark. The curves pèxè = corresponding to the Hilbertian selfpolar norms p on M 2 are exactly the ellipses which were described in Observation 3.4 èand which can be derived from the unit circle by Lorentz transformationè. Proof of the Proposition. p must have the form p 2 èxè =ëx; T xë =x T Tx, where T satisæes T = JT, J. Let x ;x 2 denote an orthonormal basis of R 2,ëæ; æë, with Tx = t x, Tx 2 = t 2 x 2 èt ;t 2 é 0è. Then TJx = t, Jx,sot, is also an eigenvalue. Now, if t = t 2 then t, = t 2 = t, and so T =l. If t 6= t 2 then Jx, since it is an eigenvector, must be either parallel or perpendicular to x. In the former case, x 2 must also be an eigenvector of J èbecause it is perpendicular to x è and so t, = t and t, 2 = t 2, yielding t = t 2 =. In the latter case, èx ;x è=ëx ;Jx ë = 0, i.e., x èand with it x 2 è is lightlike and thus proportional to è; è or è;,è. The construction of T from its eigenvectors and the eigenvalues t, t 2 = t, yields the given form for pèxè. 3.4 Results for non-quasi-deænite spaces of countable dimension Collecting the results of the previous sections, one ænds the following properties of dèrè; è:;:è d which carry over to E;è:; :è E èas explained at the beginning of section 3.è. 3.2 Theorem. aè There is a non-denumerable set of diæerent selfpolar topologies. bè Even more, thereare non-denumerably many non-equivalent selfpolar Hilbertian norms. cè Every selfpolar norm which is constructed as in Proposition 3. aè and bè is equivalent to some non-selfpolar norm. dè Every selfpolar norm which is constructed as in Proposition 3. aè and bè is equivalent to some selfpolar Hilbertian norm. Proof. It suæces to consider norms of the form è3.2è, because all the properties are invariant under the transformations in 3. bè. These norms are given by sequences èp k è of norms on M 2, i.e. sequences of curves èr pk è ècf. Observation 3.3è. Given two such sequences èp k è and èq k è, the possible equivalence of the corresponding norms on dèrè, p and q, is determined by ç + k èp; qè = sup '2S èor alternatively ç, k èp; qè = inf '2S r qk è'è r pk è í cf. Lemma 3.2. è'è r qk è'è r pk è'è Now, it is easy to construct sequences of "selfpolar" curves èusing the construction of section 3.2è in such a way that the corresponding selfpolar norms on dèrè become mutually non-equivalent. It is also possible to do this using only 8

19 Figure 4: The allowed sector for the Lorentz transformed r pk èsee the proof of Thm. 3.2 dèè. The diagonal lines ètangents of the hyperbolae in èæ p 2; æèè are given by the points è0; æè, èæ p ; 2 0è. the ellipses which correspond to selfpolar Hilbertian norms èremark 3.è. This proves aè and bè. cè For any given norm of the form è3.2è it is possible to modify one or more of the curves r pk and thereby destroy the property of being selfpolar, e.g. by leaving the part of the curve between ' and ' 2 unchanged and deforming the part in ë' 2, ç; ' ë ècf. the construction in section 3.2è. If this is done in such a way that èiiè and èiiiè of Lemma 3.2 hold, then the given norm and the modiæed one are equivalent. dè Let p be any selfpolar norm of the form è3.2è. Denote for every k by èr 2 èkè;' 2 èkèè the point on h 2 which is touched by r pk èsince p k is selfpolar there is exactly one such point, because r pk can be recovered by the construction of section 3.2è í cf. e.g. Figure 2. Deæne q k as that selfpolar Hilbertian norm on M 2 which is described by the ellipse which touches èr 2 èkè;' 2 èkèè. The q k combine to a selfpolar Hilbertian norm q and it remains to show, that p and q are equivalent. To this end ç + k èp; qè èin the above formè has to be considered. Apply for each k to p k and q k that Lorentz transformation which maps the respective ellipse r qk to the unit circle. Since the transformation is linear, this does not change the ç + k, which thus can be calculated using the circle and the transformed r pk. The latter passes through è0; è and, since it is again selfpolar, it can be described by the construction of section 3.2. Now, the conditions of this construction strongly limit the possible course of the curve. It must lie inside the shaded area shown in Figure 4. This is valid for every k, so there are 9

20 bounds on ç + k which are independent ofk. Hence, the equivalence of p and q follows by Lemma Remark. aè It is known that there are selfpolar norms on dèrè; è:; :è d which are not equivalent to any Hilbertian norm. An example of such a norm can be derived from the Araki-Hansen example ë7, Ex. 2.0ë. More precisely, on dèrè endowed with the inner product h:j:i given in ë7, Eq. è2.35èë the `-norm èrestricted to dè is selfpolar, but it is not equivalent to any Hilbertian norm. Remember that dèrè; h:j:i is isometrically isomorphic to dèrè; è:; :è d. bè There are selfpolar norms on dèrè; è:; :è d which are not equivalent toany of the norms of Proposition 3. aè and bè, due to part aè and Theorem 3.2 dè. 4 Selfpolar norms on M 2 In this section the selfpolar norms on two dimensional Minkowski space M 2, i.e. R 2 equipped with the inner product èx; yè :=x 0 y 0, x y, are discussed in detail and a complete classiæcation is given. As pointed out in section 3.2 the idea is not to consider the norms on R 2 themselves but the boundaries of their unit balls í cf. Observation 3.3. In order to exploit the correspondence between norms and curves, a few general notions and facts about curves with the properties listed in Observation 3.3 are needed: 4. Convex curves Using periodicity would be no advantage here, so let for this entire section r : S! ër ;r 2 ëèr ;r 2 é 0è be the representation in polar coordinates of a convex, closed curve inr 2. For simplicity of notation the following conventions with respect to S will be used: aè A statement ' ç ' 2 ç ' 3 ::: involving three or more points ' i 2 S means that these points are lying in the given order anti-clockwise around the circle. The sign é instead of ç means that the points are in addition diæerent from each other. bè Intervals of S are denoted as follows: è' ;' 2 è:=f' 2 S j ' é'é' 2 g and ë' ;' 2 ë:=f' 2 S j ' ç ' ç ' 2 g if ' 6= ' 2.ë'; 'ë :=f'g. 20

21 rè' 0 è ' 0 è gè'è Figure 5: The deænition of a support line ècf. Deænition 4.è. cè For a given vector x 2 R 2,æèxè 2 S denotes the polar angle of x èwith respect to the positive x 0 -axisè. Now, the convexity of r èin the sense of the above deænitionè is equivalent to the following property ofçè'è :=rè'è, : çè' è sinè' 2, ' 3 è+çè' 2 è sinè' 3, ' è+çè' 3 è sinè', ' 2 è ç 0 for ' é' 2 é' 3 ; 0 é' 3, ' éç; as can be seen by an elementary calculation in polar coordinates. Thus, ç is a so-called trigonometrically convex function. In addition it is bounded from above and from below by positive constants. This has í similarly as in the case of convex functions in the usual sense í some very strong implications ècf. ë6ëè which directly carry over from ç to r : aè The function r is continuous, bè At every point, r possesses a left and a right derivative, cè The function r is everywhere diæerentiable, except on a countable set of points. The following deænitions and lemmas are merely adaptations of the discussion of usual convex functions to the present case ècf. ë22, ch.ië or ë23, ch.vëè. So, most of the proofs are only sketched or completely omitted. The reader is, however, invited to make the following statements clear to himself by simply drawing two dimensional sketches. 4. Deænition. The straight line gè'è = rè' 0è cosè' 0, èè cosè', èè ' 2 èè, ç 2 ;è+ ç 2 è; è4.è 2

22 which touches the curve inèrè' 0 è;' 0 è, is called a support line of rè'è in' 0,if its deæning angle è 2 S èits normal directionè satisæes rè'è cosè', èè ç rè' 0 è cosè' 0, èè 8' 2 S ; i.e., if the entire curve rè'è lies on one side of the line ècf. Figure 5è. 4.2 Lemma. The support lines of rè'è in ' 0 are exactly those lines given by è4.è, for which è satisæes " ç ç è " ç ç è d èlè rè'è cos ' æ, ç d' rè'è sin ' 2 ç è ç d èrè rè'è cos ' æ, ç d' rè'è sin ' 2 ; where dèlè d' dèrè and d' '=' 0 '=' 0 denote the left and the right derivative respectively. The subtraction of ç=2 is necessary here, in order to transform the directions of the extremal support lines given by the derivatives into their normal directions ècf. Deænition 4.è. This Lemma motivates the following deænition. 4.3 Deænition. aè èlè r : S h! S èrè r : S! S èl=rè d rè' 0 è:=æ èl=rè rè'è cos ' æ i, ç. 2 d' rè'è sin ' '=' 0 bè : S!fintervals of S g 0 è:=ë@ èlè rè' 0 è;@ èrè rè' 0 èë. 4.4 Lemma. aè Let ' é' 2 é' 3. èlè rè' è èrè rè' è èlè rè' 2 è èrè rè' 2 è èlè rè' 3 è èrè rè' 3 è. bè Let ' ;' 2 2 S. Then S '2ë' ;' =ë@èlè rè' è;@ èrè rè' 2 èë. Sketch of the proof. aè Consider the èsupportè lines given by the normal èl=rè rè' i è and add the lines which pass through the points èrè' è;' è, èrè' 2 è;' 2 è or èrè' 2 è;' 2 è, èrè' 3 è;' 3 è respectively. By deænition of convexity, the arcs between the points must lie ëbeyond" the latter lines. This yields the assertion. Cf. also ë23, Thm. 24.ë. bè follows from aè. Most important for the later application is the notion of the conjugate convex curve r æ : 22

23 4.5 Deænition. r æ èèè := sup ' rè'è cosè',èè ; è 2 S : 4.6 Proposition. The function r æ : S! ër æ ;ræ 2ëèr æ ;ræ 2 é 0è is the representation in polar coordinates of a convex, closed curve in R 2. Sketch of the proof. In this instance it is appropriate to write r æ in the obviously equivalent form r æ èèè = inf '2èè,ç=2;è+ç=2èërè'è cosè', èèë,. Consider the family of lines fg ' èèè =ërè'è cosè', èèë, j ' 2 S g. Now, the curve r æ èèè arises as the inner boundary of that part of the plane, which iscovered by these lines. 4.7 Lemma. aè r æ èèè rè'è cosè', èè ç 8'; è. bè r æ èèè rè'è cosè', èè = èè è Sketch of the proof. aè follows directly from Deænition 4.5. bè is a consequence of Lemma 4.2 and Deænition 4.. The operation æ deænes an involution on the set of curves considered in this section: 4.8 Proposition. r ææ è'è =rè'è 8': Proof. The two parts of Lemma 4.7 imply: = sup r æ èèè cosèè, 'è = rè'è r ææ è'è : è 4.9 Remark ègeometrical interpretation of the involution r $ r æ è. The notion of the conjugate convex curve deæned above is an adaptation of the Legendre transformation for usual convex functions ècf. ë22, 23ëè. This is illustrated by Figure 6. Compare also the formula in Deænition 4.5, which reads in terms of the trigonometrically convex functions ç := r,, ç æ := èr æ è, : ç æ èèè = sup ' with the usual Legendre transformation cosèè, 'è ; çè'è f ë èxè = sup èxy, fèyèè: y 23

24 aè bè è ' rè'è r æ èèè support line in ' èè ë èmè fèxè x support line in x with slope m Figure 6: aè The æ -operation described in this section, bè the usual Legendre transformation ë ècf. Remark 4.9è. 4.0 Lemma èconnection to the polarization of normsè. aè Let 0 denote the polarization with respect to the Euclidean scalar product in R 2. Then r p 0è'è =èr p è æ è'è for all ' and any norm p. bè Now, let 0 denote the polarization with respect to the Minkowski scalar product èx; yè =x 0 y 0, x y. Then r p 0è'è =èr p è æ è,'è for all ' and any norm p. Proof. bè r p 0è'è = p0ç, cos ' æç sin ' = sup è pç, cos è sin è æç, æ ææ ç, cos ' æ, cos è ; ææ sin èæçæ sin ' = sup r p èèè jcosè' + èèj = è èr p è æ è,'è ècf. equation è3.3è and Deænition 4.5è. Part aè can be proven analogously. 4.2 Construction of selfpolar norms on M 2 As already mentioned in section 3.2, the construction which is to be described now, starts from two ingredients ècalled I. and II. thereè. Let, for the present section, these objects be given. Remember also the deænition of the quantities r ;r 2 ;è ;è 2 which are derived from the ingredients. The existence of an arc r 0 with the properties listed in II. is ensured by part cè of the following Lemma: 4. Lemma. aè ' ç è + ç 2 ç ' + ç, ' 2 ç è 2 + ç 2 ç ' 2 + ç. 24

25 bè è ç è 2 ç è + ç ç è 2 + ç. cè Let è 2 denote the normal direction of the line through èr ;' è and èr 2 ;' 2 è. Then è ç è 2 ç è 2. Proof. The restrictions è3.4è are imposed in order to insure aè and bè. Condition è3.5è implies cè. The idea of the construction is, to extend the chosen arc r 0 è'è to a complete closed curve, which will represent the desired selfpolar norm. First, deæne ræ :ë' 2, ç; ' ë! R by ræèèè := sup '2ë' ;' 2ë r 0è'è cosèè + 'è ; è 2 ë' 2, ç; ' ë: 4.2 Lemma. aè ræèèè describes a convex arc. bè ræèèè r 0 è'è cosè' + èè ç 8' 2 ë' ;' 2 ë;è2 ë' 2, ç; ' ë. cè ræèèè r 0 è'è cosè' + èè = èè,è 0 è'è 0 è' è:=ëè ;@ èrè r 0 è' èë 0 è' 2 è:=ë@ èlè r 0 è' 2 è;è 2 ëè. Sketch of the proof. aè Write ræ as ræèèè = inf '2è,è,ç=2;,è+ç=2èëë' ;' 2ëër 0 è'è cosè' + èèë,. Note that due to è3.4è the intersection in this formula is non-empty! Analogous to the situation in Proposition 4.6, the arc ræ is deæned by a family of lines. bè By deænition. cè Like in the proof of Lemma 4.7 bè. For the limit cases ' = ', ' = ' 2 use the fact that,è 2 ëè ;è 2 ë. 4.3 Lemma. ræè' è=r 0 è' è=r ; ræè' 2, çè =r 0 è' 2 è=r 2. Proof.,' = è 0 è' è è ræè' è r 0 è' è cosè2' è = èlemma 4.2 cèè è ræè' è= r èdef. of r è.,è' 2, çè =è 2 0 è' 2 è è ræè' 2, çè r 0 è' 2 è jcosè2' 2 èj = èlemma 4.2 cèè è ræè' 2, çè =r 2 èdef. of r 2 è. 25

26 Now, the completed curve is given by r : S! R rè'è := 8 é é: r 0 è'è ræè'è r 0 è' + çè ræè', çè ; ' 2 ë' ;' 2 ë ; ' 2 ë' 2, ç; ' ë ; ' 2 ë', ç; ' 2, çë ; ' 2 ë' 2 ;' + çë: è4.2è 4.4 Proposition. The function rè'è is the representation in polar coordinates of a ç-periodic convex closed curve, i.e., it deænes a norm p r in R 2 ècf. è3.3èè. Proof. Periodicity and closedness follow directly from the construction ècf. Lemma 4.3è. Convexity: The four arcs constituting the curve rè'è are convex èlemma 4.2 aèè. Now, the composed curve isconvex, because the lines t and t 2 are support lines of rè'è in' and ' 2 respectively èlemma 4.2 bèè. 4.5 Theorem. rè'è =r æ è,'è 8' 2 S ; i.e., p r = p 0 r, p r is selfpolar è 0 : Polarization with respect to M 2, cf. Lemma 4.0 bèè. Proof. Since r and r æ are ç-periodic, it is enough to consider ' 2 ë' 2, ç; ' 2 ë. Case : ' 2 ë' 2, ç; ' ë In this case,' 2 ëè ;è 2 ë. Consequently there is a è 2 ë' ;' 2 ë such that,' èlemma 4.4 bèè. Thus, Lemma 4.7 bè implies: r æ è,'è rèèè cosèè+'è =. On the other hand,' 0 èèè. Lemma 4.2 cè yields: = ræè'è r 0 èèè cosèè + 'è =rè'è rèèè cosèè + 'è. Thus, r æ è,'è =rè'è. Case 2: ' 2 ë' ;' 2 ë Here,' 2 ëè 2, ç; è ë. So, there must be a è 2 ë' 2, ç; ' ë such that,' èlemma 4.4 bèè. Lemma 4.7 bè implies again: r æ è,'è rèèè cosèè+'è =. On the other hand ' æ è,èè. Indeed, if è 2 è' 2, ç; ' è, æ è,èè =,@rèèè due to case. If è = ', then,' è ë ëè 2, ç; è ë=ë@ èlè rè' è;è ë. So, ' 2 ë' ;,@ èlè rè' èë = ë' ;@ èrè r æ è,èèë ècf. case è. Now, the inequality r æ èèè cosèè, ' è ç =r = r æ è,èè cosè,è,' è 8è èlemma 4.7 aèè shows, using Lemma 4.2, ' æ è,èè, or: ' 2 ë' ;@ èrè r æ è,èèë æ è,èè. The ænal case è = ' 2, ç can be treated analogously. Finally apply Lemma 4.7 bè to r æ and use Proposition 4.8: rè'è r æ è,èè cosèè + 'è =. An application of case yields rè'è rèèè cosèè + 'è =, and thus r æ è,'è =rè'è. 4.3 Uniqueness and completeness of the construction The aim of the present section is to show è that diæerent choices of the ingredients I, II for the construction lead to diæerent selfpolar norms and 2è that every selfpolar norm can be obtained by the above construction èthm. 4.7è. 26

27 4.6 Lemma. Let p denote any selfpolar norm on M 2. Then the curve r p è'è from eq. è3.3è touches each of the four hyperbolae èx 0 è 2, èx è 2 = æ in exactly one point. The tangents of the hyperbolae in these points are support lines of r p è'è. Proof. Uniqueness: The hypothesis means: r æ pè,'è =r p è'è for every '. By Lemma 4.7 aè it follows that ër p è'èë 2 çjcosè2'èj, for all '. Thus, the entire curve r p è'è must lie between the four hyperbolae. On the other hand it has to be convex, so there cannot be more than one point of intersection with each of the hyperbolae. Existence of points of intersection: Consider the hyperbola h := h in the quadrant, ç é'é ç. Set, similarly to 4 4 Deænition 4.3: h 0 è:=æ, ç =,' 2 0 ; ' 0 2 ë, ç ; ç ë: 4 4 d d', hè'è cos ' æ hè'è sin ' '=' 0 Now deæne æ : ë, ç 4 ; ç ë!fintervals of 4 S g by æè'è p S By Lemma 4.4 bè: æè'è '2è,ç=4 ;ç=4è =è@èrè r p è, ç ç è 4 4 ;@èlè r p è ç è, ç 4 èè=è@èrè r p è, ç è, ç 4 4 ;@èlè r p è ç è+ ç è. This latter interval contains the 4 4 zero angle, èrè r p è, ç è 2 è, 3ç ; ç è and 4 4 r p è ç è 2 è, ç ; 3ç è. Hence, there must be some ' 0 2 è, ç 4 ; ç è, for which 02 4 æè' 0è, 0 è p è' 0 è. The hyperbola considered here has the 0 è=,' 0. Using this, Lemma 4.7 bè implies: ër p è' 0 èë 2 cosè2' 0 è=rpè,' æ 0 è r p è' 0 è cosè2' 0 è =. Since the equation of the hyperbola is ëhè'èë 2 cosè2'è =, the above identity shows that r p è'è intersects hè'è in the direction ' 0. The 0 è p è' 0 è means that the tangent ofh in this point of intersection is a support line of r p. The remaining three hyperbolae can be treated in the same way because of symmetry. At this stage the main theorem of the present section can be proven: 4.7 Theorem. Set P g := f è' ;' 2 è 2 S æ S j, ç 4 é' é ç 4 ; ç 4 é' 2 é 3ç 4 ; cos 2 è' + ' 2 è é cosè2' è jcosè2' 2 èjg æfç :ë0; ç 2 ë! Rj ç describes a convex arc from è; 0è to è; ç 2 è, completely lying inside the triangle è; 0è; è p 2; ç 4 è; è; ç 2 è g; P e := f è' ;' 2 è 2 S æ S j, ç 4 é' é ç 4 ; ç 4 é' 2 é 3ç 4 ; cos 2 è' + ' 2 è = cosè2' è jcosè2' 2 èjg: There is a bijection from P := P g ëp e èdisjoint unionè into the set of selfpolar norms on M 2 èessentially given by the construction described insection 4.2è. 27

322 HENDRA GUNAWAN AND MASHADI èivè kx; y + zk çkx; yk + kx; zk: The pair èx; kæ; ækè is then called a 2-normed space. A standard example of a 2-norme

322 HENDRA GUNAWAN AND MASHADI èivè kx; y + zk çkx; yk + kx; zk: The pair èx; kæ; ækè is then called a 2-normed space. A standard example of a 2-norme SOOCHOW JOURNAL OF MATHEMATICS Volume 27, No. 3, pp. 321-329, July 2001 ON FINITE DIMENSIONAL 2-NORMED SPACES BY HENDRA GUNAWAN AND MASHADI Abstract. In this note, we shall study ænite dimensional 2-normed

More information

I teach myself... Hilbert spaces

I teach myself... Hilbert spaces I teach myself... Hilbert spaces by F.J.Sayas, for MATH 806 November 4, 2015 This document will be growing with the semester. Every in red is for you to justify. Even if we start with the basic definition

More information

Functional Analysis. Franck Sueur Metric spaces Definitions Completeness Compactness Separability...

Functional Analysis. Franck Sueur Metric spaces Definitions Completeness Compactness Separability... Functional Analysis Franck Sueur 2018-2019 Contents 1 Metric spaces 1 1.1 Definitions........................................ 1 1.2 Completeness...................................... 3 1.3 Compactness......................................

More information

APPENDIX E., where the boundary values on the sector are given by = 0. n=1. a 00 n + 1 r a0 n, n2

APPENDIX E., where the boundary values on the sector are given by = 0. n=1. a 00 n + 1 r a0 n, n2 APPENDIX E Solutions to Problem Set 5. èproblem 4.5.4 in textè èaè Use a series expansion to nd èèr;è satisfying èe.è è rr + r è r + r 2 è =, r 2 cosèè in the sector éré3, 0 éé 2, where the boundary values

More information

Finite-dimensional spaces. C n is the space of n-tuples x = (x 1,..., x n ) of complex numbers. It is a Hilbert space with the inner product

Finite-dimensional spaces. C n is the space of n-tuples x = (x 1,..., x n ) of complex numbers. It is a Hilbert space with the inner product Chapter 4 Hilbert Spaces 4.1 Inner Product Spaces Inner Product Space. A complex vector space E is called an inner product space (or a pre-hilbert space, or a unitary space) if there is a mapping (, )

More information

Math 350 Fall 2011 Notes about inner product spaces. In this notes we state and prove some important properties of inner product spaces.

Math 350 Fall 2011 Notes about inner product spaces. In this notes we state and prove some important properties of inner product spaces. Math 350 Fall 2011 Notes about inner product spaces In this notes we state and prove some important properties of inner product spaces. First, recall the dot product on R n : if x, y R n, say x = (x 1,...,

More information

Part V. 17 Introduction: What are measures and why measurable sets. Lebesgue Integration Theory

Part V. 17 Introduction: What are measures and why measurable sets. Lebesgue Integration Theory Part V 7 Introduction: What are measures and why measurable sets Lebesgue Integration Theory Definition 7. (Preliminary). A measure on a set is a function :2 [ ] such that. () = 2. If { } = is a finite

More information

Optimization and Optimal Control in Banach Spaces

Optimization and Optimal Control in Banach Spaces Optimization and Optimal Control in Banach Spaces Bernhard Schmitzer October 19, 2017 1 Convex non-smooth optimization with proximal operators Remark 1.1 (Motivation). Convex optimization: easier to solve,

More information

Spectral Theory, with an Introduction to Operator Means. William L. Green

Spectral Theory, with an Introduction to Operator Means. William L. Green Spectral Theory, with an Introduction to Operator Means William L. Green January 30, 2008 Contents Introduction............................... 1 Hilbert Space.............................. 4 Linear Maps

More information

LECTURE Review. In this lecture we shall study the errors and stability properties for numerical solutions of initial value.

LECTURE Review. In this lecture we shall study the errors and stability properties for numerical solutions of initial value. LECTURE 24 Error Analysis for Multi-step Methods 1. Review In this lecture we shall study the errors and stability properties for numerical solutions of initial value problems of the form è24.1è dx = fèt;

More information

P.B. Stark. January 29, 1998

P.B. Stark. January 29, 1998 Statistics 210B, Spring 1998 Class Notes P.B. Stark stark@stat.berkeley.edu www.stat.berkeley.eduèçstarkèindex.html January 29, 1998 Second Set of Notes 1 More on Testing and Conædence Sets See Lehmann,

More information

An introduction to some aspects of functional analysis

An introduction to some aspects of functional analysis An introduction to some aspects of functional analysis Stephen Semmes Rice University Abstract These informal notes deal with some very basic objects in functional analysis, including norms and seminorms

More information

Hilbert Spaces. Hilbert space is a vector space with some extra structure. We start with formal (axiomatic) definition of a vector space.

Hilbert Spaces. Hilbert space is a vector space with some extra structure. We start with formal (axiomatic) definition of a vector space. Hilbert Spaces Hilbert space is a vector space with some extra structure. We start with formal (axiomatic) definition of a vector space. Vector Space. Vector space, ν, over the field of complex numbers,

More information

Recall that any inner product space V has an associated norm defined by

Recall that any inner product space V has an associated norm defined by Hilbert Spaces Recall that any inner product space V has an associated norm defined by v = v v. Thus an inner product space can be viewed as a special kind of normed vector space. In particular every inner

More information

Part III. 10 Topological Space Basics. Topological Spaces

Part III. 10 Topological Space Basics. Topological Spaces Part III 10 Topological Space Basics Topological Spaces Using the metric space results above as motivation we will axiomatize the notion of being an open set to more general settings. Definition 10.1.

More information

Functional Analysis. Martin Brokate. 1 Normed Spaces 2. 2 Hilbert Spaces The Principle of Uniform Boundedness 32

Functional Analysis. Martin Brokate. 1 Normed Spaces 2. 2 Hilbert Spaces The Principle of Uniform Boundedness 32 Functional Analysis Martin Brokate Contents 1 Normed Spaces 2 2 Hilbert Spaces 2 3 The Principle of Uniform Boundedness 32 4 Extension, Reflexivity, Separation 37 5 Compact subsets of C and L p 46 6 Weak

More information

Introduction to Real Analysis Alternative Chapter 1

Introduction to Real Analysis Alternative Chapter 1 Christopher Heil Introduction to Real Analysis Alternative Chapter 1 A Primer on Norms and Banach Spaces Last Updated: March 10, 2018 c 2018 by Christopher Heil Chapter 1 A Primer on Norms and Banach Spaces

More information

Vector Spaces. Vector space, ν, over the field of complex numbers, C, is a set of elements a, b,..., satisfying the following axioms.

Vector Spaces. Vector space, ν, over the field of complex numbers, C, is a set of elements a, b,..., satisfying the following axioms. Vector Spaces Vector space, ν, over the field of complex numbers, C, is a set of elements a, b,..., satisfying the following axioms. For each two vectors a, b ν there exists a summation procedure: a +

More information

PROBLEMS. (b) (Polarization Identity) Show that in any inner product space

PROBLEMS. (b) (Polarization Identity) Show that in any inner product space 1 Professor Carl Cowen Math 54600 Fall 09 PROBLEMS 1. (Geometry in Inner Product Spaces) (a) (Parallelogram Law) Show that in any inner product space x + y 2 + x y 2 = 2( x 2 + y 2 ). (b) (Polarization

More information

On John type ellipsoids

On John type ellipsoids On John type ellipsoids B. Klartag Tel Aviv University Abstract Given an arbitrary convex symmetric body K R n, we construct a natural and non-trivial continuous map u K which associates ellipsoids to

More information

x

x Macmí36 è98-è Solutions Homework è èdue January 6, 998è Exercise Set.. èaè witèplotsè: f:=è-expèxè+*xèè3; f := 3, 3 ex + 3 x?abs plotèabsèfè,x=0..è; 0.6 0. 0. 0. 0.38 0.36 0.3 0 0. 0. 0.6 0.8 x By moving

More information

David Hilbert was old and partly deaf in the nineteen thirties. Yet being a diligent

David Hilbert was old and partly deaf in the nineteen thirties. Yet being a diligent Chapter 5 ddddd dddddd dddddddd ddddddd dddddddd ddddddd Hilbert Space The Euclidean norm is special among all norms defined in R n for being induced by the Euclidean inner product (the dot product). A

More information

FORM 1 Physics 240 í Fall Exam 1 CONTI COULTER GRAFE SKALSEY ZORN. Please æll in the information requested on the scantron answer sheet

FORM 1 Physics 240 í Fall Exam 1 CONTI COULTER GRAFE SKALSEY ZORN. Please æll in the information requested on the scantron answer sheet FORM 1 Physics 240 í Fall 1999 Exam 1 Name: Discussion section instructor and time: ècircle ONE TIMEè CONTI COULTER GRAFE SKALSEY ZORN MW 10-11 èè23è MW 8-9 èè4è MW 2-3 èè7è MW 11-12 èè6è MW 9-10 èè12è

More information

problem of detection naturally arises in technical diagnostics, where one is interested in detecting cracks, corrosion, or any other defect in a sampl

problem of detection naturally arises in technical diagnostics, where one is interested in detecting cracks, corrosion, or any other defect in a sampl In: Structural and Multidisciplinary Optimization, N. Olhoæ and G. I. N. Rozvany eds, Pergamon, 1995, 543í548. BOUNDS FOR DETECTABILITY OF MATERIAL'S DAMAGE BY NOISY ELECTRICAL MEASUREMENTS Elena CHERKAEVA

More information

Functional Analysis I

Functional Analysis I Functional Analysis I Course Notes by Stefan Richter Transcribed and Annotated by Gregory Zitelli Polar Decomposition Definition. An operator W B(H) is called a partial isometry if W x = X for all x (ker

More information

Topological vectorspaces

Topological vectorspaces (July 25, 2011) Topological vectorspaces Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ garrett/ Natural non-fréchet spaces Topological vector spaces Quotients and linear maps More topological

More information

LECTURE 17. Algorithms for Polynomial Interpolation

LECTURE 17. Algorithms for Polynomial Interpolation LECTURE 7 Algorithms for Polynomial Interpolation We have thus far three algorithms for determining the polynomial interpolation of a given set of data.. Brute Force Method. Set and solve the following

More information

Hilbert spaces. 1. Cauchy-Schwarz-Bunyakowsky inequality

Hilbert spaces. 1. Cauchy-Schwarz-Bunyakowsky inequality (October 29, 2016) Hilbert spaces Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ garrett/ [This document is http://www.math.umn.edu/ garrett/m/fun/notes 2016-17/03 hsp.pdf] Hilbert spaces are

More information

where Sènè stands for the set of n æ n real symmetric matrices, and æ is a bounded open set in IR n,typically with a suæciently regular boundary, mean

where Sènè stands for the set of n æ n real symmetric matrices, and æ is a bounded open set in IR n,typically with a suæciently regular boundary, mean GOOD AND VISCOSITY SOLUTIONS OF FULLY NONLINEAR ELLIPTIC EQUATIONS 1 ROBERT JENSEN 2 Department of Mathematical and Computer Sciences Loyola University Chicago, IL 60626, U.S.A. E-mail: rrj@math.luc.edu

More information

Chapter One. The Calderón-Zygmund Theory I: Ellipticity

Chapter One. The Calderón-Zygmund Theory I: Ellipticity Chapter One The Calderón-Zygmund Theory I: Ellipticity Our story begins with a classical situation: convolution with homogeneous, Calderón- Zygmund ( kernels on R n. Let S n 1 R n denote the unit sphere

More information

Extreme points of compact convex sets

Extreme points of compact convex sets Extreme points of compact convex sets In this chapter, we are going to show that compact convex sets are determined by a proper subset, the set of its extreme points. Let us start with the main definition.

More information

08a. Operators on Hilbert spaces. 1. Boundedness, continuity, operator norms

08a. Operators on Hilbert spaces. 1. Boundedness, continuity, operator norms (February 24, 2017) 08a. Operators on Hilbert spaces Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ garrett/ [This document is http://www.math.umn.edu/ garrett/m/real/notes 2016-17/08a-ops

More information

In the previous chapters we have presented synthesis methods for optimal H 2 and

In the previous chapters we have presented synthesis methods for optimal H 2 and Chapter 8 Robust performance problems In the previous chapters we have presented synthesis methods for optimal H 2 and H1 control problems, and studied the robust stabilization problem with respect to

More information

1. Subspaces A subset M of Hilbert space H is a subspace of it is closed under the operation of forming linear combinations;i.e.,

1. Subspaces A subset M of Hilbert space H is a subspace of it is closed under the operation of forming linear combinations;i.e., Abstract Hilbert Space Results We have learned a little about the Hilbert spaces L U and and we have at least defined H 1 U and the scale of Hilbert spaces H p U. Now we are going to develop additional

More information

Parabolic Layers, II

Parabolic Layers, II Discrete Approximations for Singularly Perturbed Boundary Value Problems with Parabolic Layers, II Paul A. Farrell, Pieter W. Hemker, and Grigori I. Shishkin Computer Science Program Technical Report Number

More information

1 Inner Product Space

1 Inner Product Space Ch - Hilbert Space 1 4 Hilbert Space 1 Inner Product Space Let E be a complex vector space, a mapping (, ) : E E C is called an inner product on E if i) (x, x) 0 x E and (x, x) = 0 if and only if x = 0;

More information

Problem Set 6: Solutions Math 201A: Fall a n x n,

Problem Set 6: Solutions Math 201A: Fall a n x n, Problem Set 6: Solutions Math 201A: Fall 2016 Problem 1. Is (x n ) n=0 a Schauder basis of C([0, 1])? No. If f(x) = a n x n, n=0 where the series converges uniformly on [0, 1], then f has a power series

More information

Economics Midterm Answer Key. Q1 èiè In this question we have a Marshallian demand function with arguments Cèp;mè =

Economics Midterm Answer Key. Q1 èiè In this question we have a Marshallian demand function with arguments Cèp;mè = Economics 7 997 Midterm Answer Key PART A Q èiè In this question we have a Marshallian demand function with arguments Cè;mè = Cè; w; w Lè. We can determine this function from the solution to max fc;lg

More information

Overview of normed linear spaces

Overview of normed linear spaces 20 Chapter 2 Overview of normed linear spaces Starting from this chapter, we begin examining linear spaces with at least one extra structure (topology or geometry). We assume linearity; this is a natural

More information

A New Invariance Property of Lyapunov Characteristic Directions S. Bharadwaj and K.D. Mease Mechanical and Aerospace Engineering University of Califor

A New Invariance Property of Lyapunov Characteristic Directions S. Bharadwaj and K.D. Mease Mechanical and Aerospace Engineering University of Califor A New Invariance Property of Lyapunov Characteristic Directions S. Bharadwaj and K.D. Mease Mechanical and Aerospace Engineering University of California, Irvine, California, 92697-3975 Email: sanjay@eng.uci.edu,

More information

Math Linear Algebra II. 1. Inner Products and Norms

Math Linear Algebra II. 1. Inner Products and Norms Math 342 - Linear Algebra II Notes 1. Inner Products and Norms One knows from a basic introduction to vectors in R n Math 254 at OSU) that the length of a vector x = x 1 x 2... x n ) T R n, denoted x,

More information

In English, this means that if we travel on a straight line between any two points in C, then we never leave C.

In English, this means that if we travel on a straight line between any two points in C, then we never leave C. Convex sets In this section, we will be introduced to some of the mathematical fundamentals of convex sets. In order to motivate some of the definitions, we will look at the closest point problem from

More information

transitions in matter. This gives us the beauty of color and is the reason why our eyes

transitions in matter. This gives us the beauty of color and is the reason why our eyes 8 CHAPTER 1. FOUNDATIONS OF NANO-OPTICS 1.3 Macroscopic Electrodynamics Light embraces the most fascinating spectrum of electromagnetic radiation. This is mainly due to the fact that the energy of light

More information

J. TSINIAS In the present paper we extend previous results on the same problem for interconnected nonlinear systems èsee ë1-18ë and references therein

J. TSINIAS In the present paper we extend previous results on the same problem for interconnected nonlinear systems èsee ë1-18ë and references therein Journal of Mathematical Systems, Estimation, and Control Vol. 6, No. 1, 1996, pp. 1í17 cæ 1996 Birkhíauser-Boston Versions of Sontag's Input to State Stability Condition and Output Feedback Global Stabilization

More information

Representations of moderate growth Paul Garrett 1. Constructing norms on groups

Representations of moderate growth Paul Garrett 1. Constructing norms on groups (December 31, 2004) Representations of moderate growth Paul Garrett Representations of reductive real Lie groups on Banach spaces, and on the smooth vectors in Banach space representations,

More information

(c) For each α R \ {0}, the mapping x αx is a homeomorphism of X.

(c) For each α R \ {0}, the mapping x αx is a homeomorphism of X. A short account of topological vector spaces Normed spaces, and especially Banach spaces, are basic ambient spaces in Infinite- Dimensional Analysis. However, there are situations in which it is necessary

More information

Linear Algebra I. Ronald van Luijk, 2015

Linear Algebra I. Ronald van Luijk, 2015 Linear Algebra I Ronald van Luijk, 2015 With many parts from Linear Algebra I by Michael Stoll, 2007 Contents Dependencies among sections 3 Chapter 1. Euclidean space: lines and hyperplanes 5 1.1. Definition

More information

l(y j ) = 0 for all y j (1)

l(y j ) = 0 for all y j (1) Problem 1. The closed linear span of a subset {y j } of a normed vector space is defined as the intersection of all closed subspaces containing all y j and thus the smallest such subspace. 1 Show that

More information

Notes on Ordered Sets

Notes on Ordered Sets Notes on Ordered Sets Mariusz Wodzicki September 10, 2013 1 Vocabulary 1.1 Definitions Definition 1.1 A binary relation on a set S is said to be a partial order if it is reflexive, x x, weakly antisymmetric,

More information

Mathematics 530. Practice Problems. n + 1 }

Mathematics 530. Practice Problems. n + 1 } Department of Mathematical Sciences University of Delaware Prof. T. Angell October 19, 2015 Mathematics 530 Practice Problems 1. Recall that an indifference relation on a partially ordered set is defined

More information

Real Analysis Notes. Thomas Goller

Real Analysis Notes. Thomas Goller Real Analysis Notes Thomas Goller September 4, 2011 Contents 1 Abstract Measure Spaces 2 1.1 Basic Definitions........................... 2 1.2 Measurable Functions........................ 2 1.3 Integration..............................

More information

Chapter 2. Linear Algebra. rather simple and learning them will eventually allow us to explain the strange results of

Chapter 2. Linear Algebra. rather simple and learning them will eventually allow us to explain the strange results of Chapter 2 Linear Algebra In this chapter, we study the formal structure that provides the background for quantum mechanics. The basic ideas of the mathematical machinery, linear algebra, are rather simple

More information

Exercise Solutions to Functional Analysis

Exercise Solutions to Functional Analysis Exercise Solutions to Functional Analysis Note: References refer to M. Schechter, Principles of Functional Analysis Exersize that. Let φ,..., φ n be an orthonormal set in a Hilbert space H. Show n f n

More information

Norm-induced partially ordered vector spaces

Norm-induced partially ordered vector spaces Stefan van Lent Norm-induced partially ordered vector spaces Bachelor thesis Thesis Supervisor: dr. O.W. van Gaans Date Bachelor Exam: 30th of June 016 Mathematisch Instituut, Universiteit Leiden Contents

More information

A.V. SAVKIN AND I.R. PETERSEN uncertain systems in which the uncertainty satisæes a certain integral quadratic constraint; e.g., see ë5, 6, 7ë. The ad

A.V. SAVKIN AND I.R. PETERSEN uncertain systems in which the uncertainty satisæes a certain integral quadratic constraint; e.g., see ë5, 6, 7ë. The ad Journal of Mathematical Systems, Estimation, and Control Vol. 6, No. 3, 1996, pp. 1í14 cæ 1996 Birkhíauser-Boston Robust H 1 Control of Uncertain Systems with Structured Uncertainty æ Andrey V. Savkin

More information

Course 212: Academic Year Section 1: Metric Spaces

Course 212: Academic Year Section 1: Metric Spaces Course 212: Academic Year 1991-2 Section 1: Metric Spaces D. R. Wilkins Contents 1 Metric Spaces 3 1.1 Distance Functions and Metric Spaces............. 3 1.2 Convergence and Continuity in Metric Spaces.........

More information

Seminorms and locally convex spaces

Seminorms and locally convex spaces (April 23, 2014) Seminorms and locally convex spaces Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ garrett/ [This document is http://www.math.umn.edu/ garrett/m/fun/notes 2012-13/07b seminorms.pdf]

More information

Combinatorics in Banach space theory Lecture 12

Combinatorics in Banach space theory Lecture 12 Combinatorics in Banach space theory Lecture The next lemma considerably strengthens the assertion of Lemma.6(b). Lemma.9. For every Banach space X and any n N, either all the numbers n b n (X), c n (X)

More information

4 Hilbert spaces. The proof of the Hilbert basis theorem is not mathematics, it is theology. Camille Jordan

4 Hilbert spaces. The proof of the Hilbert basis theorem is not mathematics, it is theology. Camille Jordan The proof of the Hilbert basis theorem is not mathematics, it is theology. Camille Jordan Wir müssen wissen, wir werden wissen. David Hilbert We now continue to study a special class of Banach spaces,

More information

October 25, 2013 INNER PRODUCT SPACES

October 25, 2013 INNER PRODUCT SPACES October 25, 2013 INNER PRODUCT SPACES RODICA D. COSTIN Contents 1. Inner product 2 1.1. Inner product 2 1.2. Inner product spaces 4 2. Orthogonal bases 5 2.1. Existence of an orthogonal basis 7 2.2. Orthogonal

More information

C.6 Adjoints for Operators on Hilbert Spaces

C.6 Adjoints for Operators on Hilbert Spaces C.6 Adjoints for Operators on Hilbert Spaces 317 Additional Problems C.11. Let E R be measurable. Given 1 p and a measurable weight function w: E (0, ), the weighted L p space L p s (R) consists of all

More information

Chapter 1. Preliminaries. The purpose of this chapter is to provide some basic background information. Linear Space. Hilbert Space.

Chapter 1. Preliminaries. The purpose of this chapter is to provide some basic background information. Linear Space. Hilbert Space. Chapter 1 Preliminaries The purpose of this chapter is to provide some basic background information. Linear Space Hilbert Space Basic Principles 1 2 Preliminaries Linear Space The notion of linear space

More information

Chapter 2 Metric Spaces

Chapter 2 Metric Spaces Chapter 2 Metric Spaces The purpose of this chapter is to present a summary of some basic properties of metric and topological spaces that play an important role in the main body of the book. 2.1 Metrics

More information

ISOMETRIES AND THE LINEAR ALGEBRA OF QUADRATIC FORMS.

ISOMETRIES AND THE LINEAR ALGEBRA OF QUADRATIC FORMS. ISOMETRIES AND THE LINEAR ALGEBRA OF QUADRATIC FORMS. Please review basic linear algebra, specifically the notion of spanning, of being linearly independent and of forming a basis as applied to a finite

More information

2. Review of Linear Algebra

2. Review of Linear Algebra 2. Review of Linear Algebra ECE 83, Spring 217 In this course we will represent signals as vectors and operators (e.g., filters, transforms, etc) as matrices. This lecture reviews basic concepts from linear

More information

Analysis II Lecture notes

Analysis II Lecture notes Analysis II Lecture notes Christoph Thiele (lectures 11,12 by Roland Donninger lecture 22 by Diogo Oliveira e Silva) Summer term 2015 Universität Bonn July 5, 2016 Contents 1 Analysis in several variables

More information

November 9, Abstract. properties change in response to the application of a magnetic æeld. These æuids typically

November 9, Abstract. properties change in response to the application of a magnetic æeld. These æuids typically On the Eæective Magnetic Properties of Magnetorheological Fluids æ November 9, 998 Tammy M. Simon, F. Reitich, M.R. Jolly, K. Ito, H.T. Banks Abstract Magnetorheological èmrè æuids represent a class of

More information

FUNCTIONAL ANALYSIS LECTURE NOTES: COMPACT SETS AND FINITE-DIMENSIONAL SPACES. 1. Compact Sets

FUNCTIONAL ANALYSIS LECTURE NOTES: COMPACT SETS AND FINITE-DIMENSIONAL SPACES. 1. Compact Sets FUNCTIONAL ANALYSIS LECTURE NOTES: COMPACT SETS AND FINITE-DIMENSIONAL SPACES CHRISTOPHER HEIL 1. Compact Sets Definition 1.1 (Compact and Totally Bounded Sets). Let X be a metric space, and let E X be

More information

Spheres with maximum inner diameter

Spheres with maximum inner diameter Carnegie Mellon University Research Showcase @ CMU Department of Mathematical Sciences Mellon College of Science 1970 Spheres with maximum inner diameter Juan Jorge Schäffer Carnegie Mellon University,

More information

The following definition is fundamental.

The following definition is fundamental. 1. Some Basics from Linear Algebra With these notes, I will try and clarify certain topics that I only quickly mention in class. First and foremost, I will assume that you are familiar with many basic

More information

If Y and Y 0 satisfy (1-2), then Y = Y 0 a.s.

If Y and Y 0 satisfy (1-2), then Y = Y 0 a.s. 20 6. CONDITIONAL EXPECTATION Having discussed at length the limit theory for sums of independent random variables we will now move on to deal with dependent random variables. An important tool in this

More information

Journal of Universal Computer Science, vol. 3, no. 11 (1997), submitted: 8/8/97, accepted: 16/10/97, appeared: 28/11/97 Springer Pub. Co.

Journal of Universal Computer Science, vol. 3, no. 11 (1997), submitted: 8/8/97, accepted: 16/10/97, appeared: 28/11/97 Springer Pub. Co. Journal of Universal Computer Science, vol. 3, no. 11 (1997), 1250-1254 submitted: 8/8/97, accepted: 16/10/97, appeared: 28/11/97 Springer Pub. Co. Sequential Continuity of Linear Mappings in Constructive

More information

Mic ael Flohr Representation theory of semi-simple Lie algebras: Example su(3) 6. and 20. June 2003

Mic ael Flohr Representation theory of semi-simple Lie algebras: Example su(3) 6. and 20. June 2003 Handout V for the course GROUP THEORY IN PHYSICS Mic ael Flohr Representation theory of semi-simple Lie algebras: Example su(3) 6. and 20. June 2003 GENERALIZING THE HIGHEST WEIGHT PROCEDURE FROM su(2)

More information

The goal of this chapter is to study linear systems of ordinary differential equations: dt,..., dx ) T

The goal of this chapter is to study linear systems of ordinary differential equations: dt,..., dx ) T 1 1 Linear Systems The goal of this chapter is to study linear systems of ordinary differential equations: ẋ = Ax, x(0) = x 0, (1) where x R n, A is an n n matrix and ẋ = dx ( dt = dx1 dt,..., dx ) T n.

More information

Categories and Quantum Informatics: Hilbert spaces

Categories and Quantum Informatics: Hilbert spaces Categories and Quantum Informatics: Hilbert spaces Chris Heunen Spring 2018 We introduce our main example category Hilb by recalling in some detail the mathematical formalism that underlies quantum theory:

More information

Citation Osaka Journal of Mathematics. 43(2)

Citation Osaka Journal of Mathematics. 43(2) TitleIrreducible representations of the Author(s) Kosuda, Masashi Citation Osaka Journal of Mathematics. 43(2) Issue 2006-06 Date Text Version publisher URL http://hdl.handle.net/094/0396 DOI Rights Osaka

More information

Algebra II. Paulius Drungilas and Jonas Jankauskas

Algebra II. Paulius Drungilas and Jonas Jankauskas Algebra II Paulius Drungilas and Jonas Jankauskas Contents 1. Quadratic forms 3 What is quadratic form? 3 Change of variables. 3 Equivalence of quadratic forms. 4 Canonical form. 4 Normal form. 7 Positive

More information

Locally convex spaces, the hyperplane separation theorem, and the Krein-Milman theorem

Locally convex spaces, the hyperplane separation theorem, and the Krein-Milman theorem 56 Chapter 7 Locally convex spaces, the hyperplane separation theorem, and the Krein-Milman theorem Recall that C(X) is not a normed linear space when X is not compact. On the other hand we could use semi

More information

CHAPTER 7. Connectedness

CHAPTER 7. Connectedness CHAPTER 7 Connectedness 7.1. Connected topological spaces Definition 7.1. A topological space (X, T X ) is said to be connected if there is no continuous surjection f : X {0, 1} where the two point set

More information

ADJOINTS, ABSOLUTE VALUES AND POLAR DECOMPOSITIONS

ADJOINTS, ABSOLUTE VALUES AND POLAR DECOMPOSITIONS J. OPERATOR THEORY 44(2000), 243 254 c Copyright by Theta, 2000 ADJOINTS, ABSOLUTE VALUES AND POLAR DECOMPOSITIONS DOUGLAS BRIDGES, FRED RICHMAN and PETER SCHUSTER Communicated by William B. Arveson Abstract.

More information

Extensions of pure states

Extensions of pure states Extensions of pure M. Anoussis 07/ 2016 1 C algebras 2 3 4 5 C -algebras Definition Let A be a Banach algebra. An involution on A is a map a a on A s.t. (a + b) = a + b (λa) = λa, λ C a = a (ab) = b a

More information

1 Functional Analysis

1 Functional Analysis 1 Functional Analysis 1 1.1 Banach spaces Remark 1.1. In classical mechanics, the state of some physical system is characterized as a point x in phase space (generalized position and momentum coordinates).

More information

Analysis Finite and Infinite Sets The Real Numbers The Cantor Set

Analysis Finite and Infinite Sets The Real Numbers The Cantor Set Analysis Finite and Infinite Sets Definition. An initial segment is {n N n n 0 }. Definition. A finite set can be put into one-to-one correspondence with an initial segment. The empty set is also considered

More information

Advanced Probability

Advanced Probability Advanced Probability Perla Sousi October 10, 2011 Contents 1 Conditional expectation 1 1.1 Discrete case.................................. 3 1.2 Existence and uniqueness............................ 3 1

More information

Fuchsian groups. 2.1 Definitions and discreteness

Fuchsian groups. 2.1 Definitions and discreteness 2 Fuchsian groups In the previous chapter we introduced and studied the elements of Mob(H), which are the real Moebius transformations. In this chapter we focus the attention of special subgroups of this

More information

Chapter 1. Introduction

Chapter 1. Introduction Chapter 1 Introduction Functional analysis can be seen as a natural extension of the real analysis to more general spaces. As an example we can think at the Heine - Borel theorem (closed and bounded is

More information

HILBERT SPACES AND THE RADON-NIKODYM THEOREM. where the bar in the first equation denotes complex conjugation. In either case, for any x V define

HILBERT SPACES AND THE RADON-NIKODYM THEOREM. where the bar in the first equation denotes complex conjugation. In either case, for any x V define HILBERT SPACES AND THE RADON-NIKODYM THEOREM STEVEN P. LALLEY 1. DEFINITIONS Definition 1. A real inner product space is a real vector space V together with a symmetric, bilinear, positive-definite mapping,

More information

LECTURE 1: SOURCES OF ERRORS MATHEMATICAL TOOLS A PRIORI ERROR ESTIMATES. Sergey Korotov,

LECTURE 1: SOURCES OF ERRORS MATHEMATICAL TOOLS A PRIORI ERROR ESTIMATES. Sergey Korotov, LECTURE 1: SOURCES OF ERRORS MATHEMATICAL TOOLS A PRIORI ERROR ESTIMATES Sergey Korotov, Institute of Mathematics Helsinki University of Technology, Finland Academy of Finland 1 Main Problem in Mathematical

More information

Aliprantis, Border: Infinite-dimensional Analysis A Hitchhiker s Guide

Aliprantis, Border: Infinite-dimensional Analysis A Hitchhiker s Guide aliprantis.tex May 10, 2011 Aliprantis, Border: Infinite-dimensional Analysis A Hitchhiker s Guide Notes from [AB2]. 1 Odds and Ends 2 Topology 2.1 Topological spaces Example. (2.2) A semimetric = triangle

More information

1 Sets of real numbers

1 Sets of real numbers 1 Sets of real numbers Outline Sets of numbers, operations, functions Sets of natural, integer, rational and real numbers Operations with real numbers and their properties Representations of real numbers

More information

THEODORE VORONOV DIFFERENTIABLE MANIFOLDS. Fall Last updated: November 26, (Under construction.)

THEODORE VORONOV DIFFERENTIABLE MANIFOLDS. Fall Last updated: November 26, (Under construction.) 4 Vector fields Last updated: November 26, 2009. (Under construction.) 4.1 Tangent vectors as derivations After we have introduced topological notions, we can come back to analysis on manifolds. Let M

More information

B. Appendix B. Topological vector spaces

B. Appendix B. Topological vector spaces B.1 B. Appendix B. Topological vector spaces B.1. Fréchet spaces. In this appendix we go through the definition of Fréchet spaces and their inductive limits, such as they are used for definitions of function

More information

Measurable functions are approximately nice, even if look terrible.

Measurable functions are approximately nice, even if look terrible. Tel Aviv University, 2015 Functions of real variables 74 7 Approximation 7a A terrible integrable function........... 74 7b Approximation of sets................ 76 7c Approximation of functions............

More information

Examples of Dual Spaces from Measure Theory

Examples of Dual Spaces from Measure Theory Chapter 9 Examples of Dual Spaces from Measure Theory We have seen that L (, A, µ) is a Banach space for any measure space (, A, µ). We will extend that concept in the following section to identify an

More information

582 A. Fedeli there exist U 2B x, V 2B y such that U ë V = ;, and let f : X!Pèçè bethe map dened by fèxè =B x for every x 2 X. Let A = ç ëfs; X; ç; ç;

582 A. Fedeli there exist U 2B x, V 2B y such that U ë V = ;, and let f : X!Pèçè bethe map dened by fèxè =B x for every x 2 X. Let A = ç ëfs; X; ç; ç; Comment.Math.Univ.Carolinae 39,3 è1998è581í585 581 On the cardinality of Hausdor spaces Alessandro Fedeli Abstract. The aim of this paper is to show, using the reection principle, three new cardinal inequalities.

More information

also has x æ as a local imizer. Of course, æ is typically not known, but an algorithm can approximate æ as it approximates x æ èas the augmented Lagra

also has x æ as a local imizer. Of course, æ is typically not known, but an algorithm can approximate æ as it approximates x æ èas the augmented Lagra Introduction to sequential quadratic programg Mark S. Gockenbach Introduction Sequential quadratic programg èsqpè methods attempt to solve a nonlinear program directly rather than convert it to a sequence

More information

PERIODIC POINTS OF THE FAMILY OF TENT MAPS

PERIODIC POINTS OF THE FAMILY OF TENT MAPS PERIODIC POINTS OF THE FAMILY OF TENT MAPS ROBERTO HASFURA-B. AND PHILLIP LYNCH 1. INTRODUCTION. Of interest in this article is the dynamical behavior of the one-parameter family of maps T (x) = (1/2 x

More information

DS-GA 1002 Lecture notes 0 Fall Linear Algebra. These notes provide a review of basic concepts in linear algebra.

DS-GA 1002 Lecture notes 0 Fall Linear Algebra. These notes provide a review of basic concepts in linear algebra. DS-GA 1002 Lecture notes 0 Fall 2016 Linear Algebra These notes provide a review of basic concepts in linear algebra. 1 Vector spaces You are no doubt familiar with vectors in R 2 or R 3, i.e. [ ] 1.1

More information

Set, functions and Euclidean space. Seungjin Han

Set, functions and Euclidean space. Seungjin Han Set, functions and Euclidean space Seungjin Han September, 2018 1 Some Basics LOGIC A is necessary for B : If B holds, then A holds. B A A B is the contraposition of B A. A is sufficient for B: If A holds,

More information

RIGIDITY IN THE HARMONIC MAP HEAT FLOW. We establish various uniformity properties of the harmonic map heat æow,

RIGIDITY IN THE HARMONIC MAP HEAT FLOW. We establish various uniformity properties of the harmonic map heat æow, j. differential geometry 45 è1997è 593-610 RIGIDITY IN THE HARMONIC MAP HEAT FLOW PETER MILES TOPPING Abstract We establish various uniformity properties of the harmonic map heat æow, including uniform

More information