In the previous chapters we have presented synthesis methods for optimal H 2 and

Size: px
Start display at page:

Download "In the previous chapters we have presented synthesis methods for optimal H 2 and"

Transcription

1 Chapter 8 Robust performance problems In the previous chapters we have presented synthesis methods for optimal H 2 and H1 control problems, and studied the robust stabilization problem with respect to both unstructured and structured normbounded uncertainties. However, in a realistic practical controller design problem the controller is in most cases required to satisfy both performance and robustness criteria. This leads in general to more complex design procedures than the synthesis methods described in the previous chapters. In this chapter some approaches which are used will be described. We consider the control system in Fig Here æ denotes a normbounded uncertainty, which may be structured or unstructured. Denote the closedloop transfer function from to by F P èp; K; æè, such that = F P èp; K; æè è8.1è æ v æ u P z æ y K Figure 8.1. holds for the control system in Fig The control objective is to minimize a performance measure JèF P èp; K; æèè related to the closedloop transfer function. Typically, the cost JèF P è denotes the H1 norm or èthe square ofè the H 2 norm. In contrast to the optimal control problems studied in chapters 4 and 5, the actual value of the cost depends on the uncertainty æ, which is unknown. Therefore, some assumptions on the 61

2 uncertainty should be made in the formulation of an optimal control problem for the uncertain plant. A minimum requirement of any controller for the uncertain plant in Fig. 8.1 is, of course, that it be robustly stabilizing. There are two main formulations of an optimal control problem for uncertain plants: robust performance optimization and nominal performance optimization subject to robust stability. In the robust performance problem the worst cost obtained in the assumed uncertainty set is minimized. The general robust performance problem is deæned as follows. Robust performance problem. Find a robustly stabilizing controller for the uncertain plant depicted in Fig. 8.1, which minimizes the worstcase cost J worst èp; Kè deæned as èunstructured uncertaintiesè, or J worst èp; Kè = sup n o JèF P èp; K; æèè : kæk1 æ J worst èp; Kè = sup n JèF P èp; K; æèè : æ 2 æ s èæè o è8.2è è8.3è èstructured uncertaintiesè, where æ s èæè denotes the structured normbounded uncertainty set è7.8è. A controller designed for robust performance which achieves a given performance bound such that J worst èp; Kè éæ, guarantees a cost less æ for all normbounded uncertainties. There are systematic controller synthesis procedures for both the robust H1 and the robust H 2 performance problems. The robust H1 performance problem can be shown to be equivalent toasynthesis problem. The robust H 2 performance problem is more complex, as it mixes two diæerent system norms; the H 2 norm associated with performance, and the H1 norm associated with robustness. This leads to a mixed H 2 =H1 problem, for which special solution methods have been developed. The worstcase nature of the costs in è8.2è and è8.3è may, on the other hand lead to a conservative design for 'average uncertainties', which are not worstcase with respect to the cost JèF è. For this reason, an alternatve formulation of the optimal control problem for uncertain plants may be stated as follows. Nominal performance problem subject to robust stability. Find a robustly stabilizing controller for the uncertain plant depicted in Fig. 8.1, which minimizes the nominal cost JèF P èp; K; 0èè deæned for the nominal plant with æ=0. Here, the nominal cost is minimized, and the uncertainty is taken into account only by requiring robust stability. A potential problem with this formulation is that even though nominal performance may be good, there is no guarantee of acceptable performance when there are uncertainties æ 6= 0. The nominal performance problems subject to robust stability are in general more complex to solve than the robust performance problems. In particular, they lack closed solutions, and must be solved by numerical optimization techniques. See Pensar è1995è for an extensive treatment of the problems involved. A possible method for both avoiding too conservative design and ensuring acceptable overall performance for all uncertainties could be to combine the robust performance 62

3 and the nominal performance problems by minimizing a combination of nominal and worstcase costs. Not much has been done on this type of problems, however. The next sections give brief discussions of the robust H1 and H 2 problems. 8.1 The robust H 1 performance problem In this section, we study the robust H1 performance problem deæned for the uncertain plant in Fig For convenience, it is assumed that the uncertainty belongs to the set æ s èæè in equation è7.8è. This implies no restriction, as an unstructured uncertainty can always be characterized by the set è7.8è with one uncertainty block ès= 1è. The robust H1 performance problem is deæned as follows. Robust H1 performance problem. Find a robustly stabilizing controller for the uncertain plant in Fig. 8.1, which achieves the robust H1 performance bound sup n kf P èp; K; æèk1 :æ2æ s èæè o éæ,1 è8.4è For convenience, the H1norm bound has been taken equal to the inverse of the uncertainty magnitude æ. This is not restrictive, as it can always be achieved by suitable scaling of the variables. F Figure 8.2. In order to solve the robust H1 performance problem, consider the plant in Fig It follows from the arguments in Chapter 6 that the plant in Fig. 8.2 satisæes the H1 norm bound kf k1 éæ,1 è8.5è æ P F Figure

4 if and only if the uncertain plant depicted in Fig. 8.3 is robustly stable with respect to normbounded èunstructuredè uncertainties æ P that satisfy the normbound kæ P k1 æ. Thus, an H1 performance problem is equivalent to a robust stability problem. Here, the uncertainty æ P is can be considered as a æctive uncertainty associated with the H1norm bound. Applying the equivalence of H1 performance and robust stability to the closedloop system in Fig. 8.1 shows that the control system in Fig. 8.1 satisæes the H1norm bound kf P èp; K; æèk1 éæ,1 è8.6è æ P æ v æ u P z æ y K Figure 8.4. if and only if the system in Fig. 8.4 is robustly stable with respect to normbounded èunstructuredè uncertainties æ P that satisfy the normbound kæ P k1 æ. Hence, the plant in Fig. 8.1 achieves the robust H1 performance bound è8.4è, or equivalently, satisæes the H1norm bound è8.6è for all æ 2 æ s èæè, if and only if the system in Fig. 8.4 is robustly stable with respect to all normbounded æ P which satisfy kæ P k1 æ and all æ 2 æ s èæè. But this is equivalent to robust stability with respect to the set æ P;s èæè of uncertainties deæned according to æ P;s èæè = n æ ~ = block diagèæ; æp è; æ 2 æ s ; æ P 2 H1 rpærp ; kæ P k1 æ o è8.7è where it is assumed that æ P is r p æ r p, cf. Fig Thus, the robust H1 performance problem is equivalent to a robust stability problem with respect to structured uncertainty belonging to the set æ P;s èæè, obtained by extending the original uncertainty set æ s èæè with a performancerelated uncertainty block æ P. To summarize, wehave the following result. Deæne the closedloop transfer function F = F èp; Kè in Fig. 8.5 from ëv T æ vt P ë T to ëz T æ zt P ë T, zæ væ = F èp; Kè è8.8è 64

5 væ u æ 0 0 æ P P zæ y K Figure 8.5. Condition for robust H1 performance. Consider the system in Fig. 8.1, where the uncertainty is assumed be in the set æ s èæè. The system is robustly stable and achieves the robust H1 performance bound è8.4è if and only if the closedloop tranfer function F = F èp; Kè from ëv T æ vt P ë T to ëz T æ zt P ë T in Fig. 8.5 is stable, and sup P èf èj!èè éæ,1! è8.9è where the structured singular value P èf è is taken to correspond to the structure of the extended uncertainty set æ P;s èæè in è8.7è. The problem of ænding a controller whichachieves robust H1 performance can thus be solved by the procedures for the robust stabilization problem described in Chapter The robust H 2 performance problem In the robust H 2 performance problem, the objective is to ænd a controller which achieves robust H 2 performance for the uncertain plant in Fig The robust H 2 performance problem. Find a robustly stabilizing controller for the uncertain plant in Fig. 8.1, which minimizes the worstcase cost H 2 cost as J 2;worst èp; Kè = sup n kf P èp; K; æèk 2 : o 2 kæk 1 æ è8.10è èunstructured uncertaintiesè, or J 2;worst èp; Kè = sup n kf P èp; K; æèk 2 2 :æ2æ s èæè o è8.11è èstructured uncertaintiesè, where æ s èæè denotes the structured normbounded uncertainty set è7.8è. The problem contains a mixture of a performancerelated H 2 cost and a robustnessrelated H1 cost, and in contrast to the robust H1 performance problem, it cannot be 65

6 reduced to any of the standard problems studied so far. Instead, the problem gives rise to a sort of mixed H 2 =H1 problem. In fact, the problem is too hard to solve exactly, but there is, however, a useful upper bound on the worstcase H 2 cost J 2;worst èp; Kè, which is minimized instead. The mixed H 2 =H1 optimal controller cannot be expressed in closed form. The structure of the optimal controller is, however, known, and its parameters can therefore be optimized with respect to the cost. The mixed H 2 =H1 optimal control problem and its relation to the robust H 2 performance problem has been discussed for example by Stoorvogel è1993è, Zhou et al. è1994è and Pensar è1995è. Khargonekar and Rotea è1991è have presented an eæcient optimizationbased solution procedure for the mixed H 2 =H1 optimal control problem. References Khargonekar, P. P. and M. A. Rotea è1991è. Mixed H 2 =H1 control: A convex optimization approach. IEEE Transactions on Automatic Control 36, 824í837. Pensar, J è1995è. Parametric Methods for Optimal and Robust Control. PhD Thesis. Process Control Laboratory, Abo Akademi University. Stoorvogel, A. A. è1993è. The robust H 2 control problem: A worstcase design. IEEE Transactions on Automatic Control 38, 1358í1370. Zhou, K., K. Glover, B. Bodenheimer and J. Doyle è1994è. Mixed H 2 and H1 performance objectives I: Robust performance analysis. IEEE Transactions on Automatic Control 39, 1564í

W 1 æw 2 G + 0 e? u K y Figure 5.1: Control of uncertain system. For MIMO systems, the normbounded uncertainty description is generalized by assuming

W 1 æw 2 G + 0 e? u K y Figure 5.1: Control of uncertain system. For MIMO systems, the normbounded uncertainty description is generalized by assuming Chapter 5 Robust stability and the H1 norm An important application of the H1 control problem arises when studying robustness against model uncertainties. It turns out that the condition that a control

More information

A.V. SAVKIN AND I.R. PETERSEN uncertain systems in which the uncertainty satisæes a certain integral quadratic constraint; e.g., see ë5, 6, 7ë. The ad

A.V. SAVKIN AND I.R. PETERSEN uncertain systems in which the uncertainty satisæes a certain integral quadratic constraint; e.g., see ë5, 6, 7ë. The ad Journal of Mathematical Systems, Estimation, and Control Vol. 6, No. 3, 1996, pp. 1í14 cæ 1996 Birkhíauser-Boston Robust H 1 Control of Uncertain Systems with Structured Uncertainty æ Andrey V. Savkin

More information

energy for systems subject to sector bounded nonlinear uncertainty ë15ë. An extension of this synthesis that incorporates generalized multipliers to c

energy for systems subject to sector bounded nonlinear uncertainty ë15ë. An extension of this synthesis that incorporates generalized multipliers to c Convergence Analysis of A Parametric Robust H Controller Synthesis Algorithm 1 David Banjerdpongchai Durand Bldg., Room 110 Dept. of Electrical Engineering Email: banjerd@isl.stanford.edu Jonathan P. How

More information

problem of detection naturally arises in technical diagnostics, where one is interested in detecting cracks, corrosion, or any other defect in a sampl

problem of detection naturally arises in technical diagnostics, where one is interested in detecting cracks, corrosion, or any other defect in a sampl In: Structural and Multidisciplinary Optimization, N. Olhoæ and G. I. N. Rozvany eds, Pergamon, 1995, 543í548. BOUNDS FOR DETECTABILITY OF MATERIAL'S DAMAGE BY NOISY ELECTRICAL MEASUREMENTS Elena CHERKAEVA

More information

An LQ R weight selection approach to the discrete generalized H 2 control problem

An LQ R weight selection approach to the discrete generalized H 2 control problem INT. J. CONTROL, 1998, VOL. 71, NO. 1, 93± 11 An LQ R weight selection approach to the discrete generalized H 2 control problem D. A. WILSON², M. A. NEKOUI² and G. D. HALIKIAS² It is known that a generalized

More information

A New Invariance Property of Lyapunov Characteristic Directions S. Bharadwaj and K.D. Mease Mechanical and Aerospace Engineering University of Califor

A New Invariance Property of Lyapunov Characteristic Directions S. Bharadwaj and K.D. Mease Mechanical and Aerospace Engineering University of Califor A New Invariance Property of Lyapunov Characteristic Directions S. Bharadwaj and K.D. Mease Mechanical and Aerospace Engineering University of California, Irvine, California, 92697-3975 Email: sanjay@eng.uci.edu,

More information

DESIGN OF ROBUST CONTROL SYSTEM FOR THE PMS MOTOR

DESIGN OF ROBUST CONTROL SYSTEM FOR THE PMS MOTOR Journal of ELECTRICAL ENGINEERING, VOL 58, NO 6, 2007, 326 333 DESIGN OF ROBUST CONTROL SYSTEM FOR THE PMS MOTOR Ahmed Azaiz Youcef Ramdani Abdelkader Meroufel The field orientation control (FOC) consists

More information

Is set modeling of white noise a good tool for robust 3.12 analysis?

Is set modeling of white noise a good tool for robust 3.12 analysis? Proceedings of the 37th IEEE Conference on Decision & Control Tampa, Florida USA December 1998 WP04 17:OO Is set modeling of white noise a good tool for robust 3.12 analysis? Mario Sznaier * Department

More information

Switching H 2/H Control of Singular Perturbation Systems

Switching H 2/H Control of Singular Perturbation Systems Australian Journal of Basic and Applied Sciences, 3(4): 443-45, 009 ISSN 1991-8178 Switching H /H Control of Singular Perturbation Systems Ahmad Fakharian, Fatemeh Jamshidi, Mohammad aghi Hamidi Beheshti

More information

Preface The purpose of these lecture notes is to present modern feedback control methods based on H 2 - and H1-optimal control theory in a concise way

Preface The purpose of these lecture notes is to present modern feedback control methods based on H 2 - and H1-optimal control theory in a concise way ROBUST CONTROL METHODS Hannu T. Toivonen Process Control Laboratory çabo Akademi University Turku èçaboè, Finland htoivone@abo.fi Preface The purpose of these lecture notes is to present modern feedback

More information

H-INFINITY CONTROLLER DESIGN FOR A DC MOTOR MODEL WITH UNCERTAIN PARAMETERS

H-INFINITY CONTROLLER DESIGN FOR A DC MOTOR MODEL WITH UNCERTAIN PARAMETERS Engineering MECHANICS, Vol. 18, 211, No. 5/6, p. 271 279 271 H-INFINITY CONTROLLER DESIGN FOR A DC MOTOR MODEL WITH UNCERTAIN PARAMETERS Lukáš Březina*, Tomáš Březina** The proposed article deals with

More information

1 Summary This paper outlines a general approach for the design of H 1 dynamic output feedback controllers and applies this method to designing contro

1 Summary This paper outlines a general approach for the design of H 1 dynamic output feedback controllers and applies this method to designing contro 1 Summary This paper outlines a general approach for the design of H 1 dynamic output feedback controllers and applies this method to designing controllers for the active mass driver èamdè benchmark problem.

More information

ThM06-2. Coprime Factor Based Closed-Loop Model Validation Applied to a Flexible Structure

ThM06-2. Coprime Factor Based Closed-Loop Model Validation Applied to a Flexible Structure Proceedings of the 42nd IEEE Conference on Decision and Control Maui, Hawaii USA, December 2003 ThM06-2 Coprime Factor Based Closed-Loop Model Validation Applied to a Flexible Structure Marianne Crowder

More information

FEL3210 Multivariable Feedback Control

FEL3210 Multivariable Feedback Control FEL3210 Multivariable Feedback Control Lecture 5: Uncertainty and Robustness in SISO Systems [Ch.7-(8)] Elling W. Jacobsen, Automatic Control Lab, KTH Lecture 5:Uncertainty and Robustness () FEL3210 MIMO

More information

Further results on Robust MPC using Linear Matrix Inequalities

Further results on Robust MPC using Linear Matrix Inequalities Further results on Robust MPC using Linear Matrix Inequalities M. Lazar, W.P.M.H. Heemels, D. Muñoz de la Peña, T. Alamo Eindhoven Univ. of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands,

More information

Quantitative Feedback Theory based Controller Design of an Unstable System

Quantitative Feedback Theory based Controller Design of an Unstable System Quantitative Feedback Theory based Controller Design of an Unstable System Chandrima Roy Department of E.C.E, Assistant Professor Heritage Institute of Technology, Kolkata, WB Kalyankumar Datta Department

More information

Robust Output Feedback Controller Design via Genetic Algorithms and LMIs: The Mixed H 2 /H Problem

Robust Output Feedback Controller Design via Genetic Algorithms and LMIs: The Mixed H 2 /H Problem Robust Output Feedback Controller Design via Genetic Algorithms and LMIs: The Mixed H 2 /H Problem Gustavo J. Pereira and Humberto X. de Araújo Abstract This paper deals with the mixed H 2/H control problem

More information

Actuator saturation has a signiæcant eæect on the overall stability of aircraft. The recent YF-22 crash èapril 1992è has been blamed on a pilot-induce

Actuator saturation has a signiæcant eæect on the overall stability of aircraft. The recent YF-22 crash èapril 1992è has been blamed on a pilot-induce Nonlinear Control of Mechanical Systems in the Presence of Magnitude and Rate Saturations Richard M. Murray Mechanical Engineering California Institute of Technology Summary Report, Grant N00014-96-1-0804

More information

also has x æ as a local imizer. Of course, æ is typically not known, but an algorithm can approximate æ as it approximates x æ èas the augmented Lagra

also has x æ as a local imizer. Of course, æ is typically not known, but an algorithm can approximate æ as it approximates x æ èas the augmented Lagra Introduction to sequential quadratic programg Mark S. Gockenbach Introduction Sequential quadratic programg èsqpè methods attempt to solve a nonlinear program directly rather than convert it to a sequence

More information

Robust fixed-order H Controller Design for Spectral Models by Convex Optimization

Robust fixed-order H Controller Design for Spectral Models by Convex Optimization Robust fixed-order H Controller Design for Spectral Models by Convex Optimization Alireza Karimi, Gorka Galdos and Roland Longchamp Abstract A new approach for robust fixed-order H controller design by

More information

APPLICATION OF D-K ITERATION TECHNIQUE BASED ON H ROBUST CONTROL THEORY FOR POWER SYSTEM STABILIZER DESIGN

APPLICATION OF D-K ITERATION TECHNIQUE BASED ON H ROBUST CONTROL THEORY FOR POWER SYSTEM STABILIZER DESIGN APPLICATION OF D-K ITERATION TECHNIQUE BASED ON H ROBUST CONTROL THEORY FOR POWER SYSTEM STABILIZER DESIGN Amitava Sil 1 and S Paul 2 1 Department of Electrical & Electronics Engineering, Neotia Institute

More information

α 1 α 2 α 3 α 4 k k k k weights (Eigenvector coefficients) comparison: k(x,x i sample x 1, x 2, x 3,... input vector x linear PCA kernel PCA

α 1 α 2 α 3 α 4 k k k k weights (Eigenvector coefficients) comparison: k(x,x i sample x 1, x 2, x 3,... input vector x linear PCA kernel PCA Kernel Principal Component Analysis Bernhard Schíolkopf, Aleander Smola 2, KlausíRobert Míuller 2 Ma-Planck-Institut f. biol. Kybernetik, Spemannstr. 38, 7276 Tíubingen, Germany 2 GMD FIRST, Rudower Chaussee

More information

The method of teepet decent i probably the bet known procedure for ænding aymptotic behavior of integral of the form Z è1è Ièè = gèzè e f èzè dz; C wh

The method of teepet decent i probably the bet known procedure for ænding aymptotic behavior of integral of the form Z è1è Ièè = gèzè e f èzè dz; C wh UNIFORM ASYMPTOTIC EXPANSIONS R. Wong Department of Mathematic City Univerity of Hong Kong Tat Chee Ave Kowloon, Hong Kong for NATOèASI Special Function 2000 1 The method of teepet decent i probably the

More information

StrucOpt manuscript No. èwill be inserted by the editorè Detecting the stress æelds in an optimal structure II: Three-dimensional case A. Cherkaev and

StrucOpt manuscript No. èwill be inserted by the editorè Detecting the stress æelds in an optimal structure II: Three-dimensional case A. Cherkaev and StrucOpt manuscript No. èwill be inserted by the editorè Detecting the stress æelds in an optimal structure II: Three-dimensional case A. Cherkaev and _I. Kíucíuk Abstract This paper is the second part

More information

9 Facta Universitatis ser.: Elect. and Energ. vol. 11, No.3 è1998è this paper we have considered shaping gain for two interesting quantization procedu

9 Facta Universitatis ser.: Elect. and Energ. vol. 11, No.3 è1998è this paper we have considered shaping gain for two interesting quantization procedu FACTA UNIVERSITATIS èniçsè Series: Electronics and Energetics vol. 11, No.3 è1998è, 91-99 NONLINEAR TRANSFORMATION OF ONEíDIMENSIONAL CONSTELLATION POINTS IN ORDER TO ERROR PROBABILITY DECREASING Zoran

More information

The total current injected in the system must be zero, therefore the sum of vector entries B j j is zero, è1;:::1èb j j =: Excluding j by means of è1è

The total current injected in the system must be zero, therefore the sum of vector entries B j j is zero, è1;:::1èb j j =: Excluding j by means of è1è 1 Optimization of networks 1.1 Description of electrical networks Consider an electrical network of N nodes n 1 ;:::n N and M links that join them together. Each linkl pq = l k joints the notes numbered

More information

Robust control of uncertain structures

Robust control of uncertain structures PERGAMON Computers and Structures 67 (1998) 165±174 Robust control of uncertain structures Paolo Venini Department of Structural Mechanics, University of Pavia, Via Ferrata 1, I-27100 Pavia, Italy Abstract

More information

Robust Tuning of Power System Stabilizers Using Coefficient Diagram Method

Robust Tuning of Power System Stabilizers Using Coefficient Diagram Method International Journal of Electrical Engineering. ISSN 0974-2158 Volume 7, Number 2 (2014), pp. 257-270 International Research Publication House http://www.irphouse.com Robust Tuning of Power System Stabilizers

More information

P.B. Stark. January 29, 1998

P.B. Stark. January 29, 1998 Statistics 210B, Spring 1998 Class Notes P.B. Stark stark@stat.berkeley.edu www.stat.berkeley.eduèçstarkèindex.html January 29, 1998 Second Set of Notes 1 More on Testing and Conædence Sets See Lehmann,

More information

Optimal discrete-time H /γ 0 filtering and control under unknown covariances

Optimal discrete-time H /γ 0 filtering and control under unknown covariances International Journal of Control ISSN: 0020-7179 (Print) 1366-5820 (Online) Journal homepage: http://www.tandfonline.com/loi/tcon20 Optimal discrete-time H filtering and control under unknown covariances

More information

University of California. November 16, Abstract

University of California. November 16, Abstract On the Complexity of Sparse Elimination æ Ioannis Z Emiris Computer Science Division University of California Berkeley, CA 90, USA emiris@csberkeleyedu November 1, 199 Abstract Sparse elimination exploits

More information

THIS paper deals with robust control in the setup associated

THIS paper deals with robust control in the setup associated IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL 50, NO 10, OCTOBER 2005 1501 Control-Oriented Model Validation and Errors Quantification in the `1 Setup V F Sokolov Abstract A priori information required for

More information

A new robust delay-dependent stability criterion for a class of uncertain systems with delay

A new robust delay-dependent stability criterion for a class of uncertain systems with delay A new robust delay-dependent stability criterion for a class of uncertain systems with delay Fei Hao Long Wang and Tianguang Chu Abstract A new robust delay-dependent stability criterion for a class of

More information

MRAGPC Control of MIMO Processes with Input Constraints and Disturbance

MRAGPC Control of MIMO Processes with Input Constraints and Disturbance Proceedings of the World Congress on Engineering and Computer Science 9 Vol II WCECS 9, October -, 9, San Francisco, USA MRAGPC Control of MIMO Processes with Input Constraints and Disturbance A. S. Osunleke,

More information

The Phase Transition 55. have a peculiar gravitation in which the probability of merging is

The Phase Transition 55. have a peculiar gravitation in which the probability of merging is The Phase Transition 55 from to + d there is a probability c 1 c 2 d that they will merge. Components have a peculiar gravitation in which the probability of merging is proportional to their sizes. With

More information

Set-based adaptive estimation for a class of nonlinear systems with time-varying parameters

Set-based adaptive estimation for a class of nonlinear systems with time-varying parameters Preprints of the 8th IFAC Symposium on Advanced Control of Chemical Processes The International Federation of Automatic Control Furama Riverfront, Singapore, July -3, Set-based adaptive estimation for

More information

H Estimation. Speaker : R.Lakshminarayanan Guide : Prof. K.Giridhar. H Estimation p.1/34

H Estimation. Speaker : R.Lakshminarayanan Guide : Prof. K.Giridhar. H Estimation p.1/34 H Estimation Speaker : R.Lakshminarayanan Guide : Prof. K.Giridhar H Estimation p.1/34 H Motivation The Kalman and Wiener Filters minimize the mean squared error between the true value and estimated values

More information

easy to make g by æ èp,1è=q where æ generates Zp. æ We can use a secure prime modulus p such that èp, 1è=2q is also prime or each prime factor of èp,

easy to make g by æ èp,1è=q where æ generates Zp. æ We can use a secure prime modulus p such that èp, 1è=2q is also prime or each prime factor of èp, Additional Notes to ëultimate Solution to Authentication via Memorable Password" May 1, 2000 version Taekyoung Kwon æ May 25, 2000 Abstract This short letter adds informative discussions to our previous

More information

Robustness Analysis and Controller Synthesis with Non-Normalized Coprime Factor Uncertainty Characterisation

Robustness Analysis and Controller Synthesis with Non-Normalized Coprime Factor Uncertainty Characterisation 211 5th IEEE onference on Decision and ontrol and European ontrol onference (D-E) Orlando, FL, USA, December 12-15, 211 Robustness Analysis and ontroller Synthesis with Non-Normalized oprime Factor Uncertainty

More information

A Linear Matrix Inequality Approach to Robust Filtering

A Linear Matrix Inequality Approach to Robust Filtering 2338 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 45, NO. 9, SEPTEMBER 1997 A Linear Matrix Inequality Approach to Robust Filtering Huaizhong Li Minyue Fu, Senior Member, IEEE Abstract In this paper, we

More information

Economics 472. Lecture 16. Binary Dependent Variable Models

Economics 472. Lecture 16. Binary Dependent Variable Models University of Illinois Fall 998 Department of Economics Roger Koenker Economics 472 Lecture 6 Binary Dependent Variable Models Let's begin with a model for an observed proportion, or frequency. We would

More information

Ill-conditioned Distillation Process Using ç-synthesis. Petter Lundstríom æ, Sigurd Skogestad y. Norwegian University of Science and Technology èntnuè

Ill-conditioned Distillation Process Using ç-synthesis. Petter Lundstríom æ, Sigurd Skogestad y. Norwegian University of Science and Technology èntnuè Two Degree of Freedom Controller Design for an Ill-conditioned Distillation Process Using ç-synthesis Petter Lundstríom æ, Sigurd Skogestad y Chemical Engineering Norwegian University of Science and Technology

More information

where Sènè stands for the set of n æ n real symmetric matrices, and æ is a bounded open set in IR n,typically with a suæciently regular boundary, mean

where Sènè stands for the set of n æ n real symmetric matrices, and æ is a bounded open set in IR n,typically with a suæciently regular boundary, mean GOOD AND VISCOSITY SOLUTIONS OF FULLY NONLINEAR ELLIPTIC EQUATIONS 1 ROBERT JENSEN 2 Department of Mathematical and Computer Sciences Loyola University Chicago, IL 60626, U.S.A. E-mail: rrj@math.luc.edu

More information

Abstract. subplans to arrive at a more eæcient implementation. Our algorithm improves upon the

Abstract. subplans to arrive at a more eæcient implementation. Our algorithm improves upon the An OèT 3 è algorithm for the economic lot-sizing problem with constant capacities C.P.M. van Hoesel æ A.P.M. Wagelmans y Revised June 1994 Abstract We develop an algorithm that solves the constant capacities

More information

Robust feedback linearization

Robust feedback linearization Robust eedback linearization Hervé Guillard Henri Bourlès Laboratoire d Automatique des Arts et Métiers CNAM/ENSAM 21 rue Pinel 75013 Paris France {herveguillardhenribourles}@parisensamr Keywords: Nonlinear

More information

Erik Frisk and Lars Nielsen

Erik Frisk and Lars Nielsen ROBUST RESIDUAL GENERATION FOR DIAGNOSIS INCLUDING A REFERENCE MODEL FOR RESIDUAL BEHAVIOR Erik Frisk and Lars Nielsen Dept. of Electrical Engineering, Linköping University Linköping, Sweden Email: frisk@isy.liu.se,

More information

Discrete-Time H Gaussian Filter

Discrete-Time H Gaussian Filter Proceedings of the 17th World Congress The International Federation of Automatic Control Discrete-Time H Gaussian Filter Ali Tahmasebi and Xiang Chen Department of Electrical and Computer Engineering,

More information

Optimization based robust control

Optimization based robust control Optimization based robust control Didier Henrion 1,2 Draft of March 27, 2014 Prepared for possible inclusion into The Encyclopedia of Systems and Control edited by John Baillieul and Tariq Samad and published

More information

A brief introduction to robust H control

A brief introduction to robust H control A brief introduction to robust H control Jean-Marc Biannic System Control and Flight Dynamics Department ONERA, Toulouse. http://www.onera.fr/staff/jean-marc-biannic/ http://jm.biannic.free.fr/ European

More information

Fixed-Order Robust H Controller Design with Regional Pole Assignment

Fixed-Order Robust H Controller Design with Regional Pole Assignment SUBMITTED 1 Fixed-Order Robust H Controller Design with Regional Pole Assignment Fuwen Yang, Mahbub Gani, and Didier Henrion Abstract In this paper, the problem of designing fixed-order robust H controllers

More information

Running head General Balanced Trees Author's address Arne Andersson Department of Computer Science Lund University BOX 118 S-1 00 Lund Sweden

Running head General Balanced Trees Author's address Arne Andersson Department of Computer Science Lund University BOX 118 S-1 00 Lund Sweden General Balanced Trees Arne Andersson Department of Computer Science Lund University Sweden 1 Running head General Balanced Trees Author's address Arne Andersson Department of Computer Science Lund University

More information

Analysis of robust performance for uncertain negative-imaginary systems using structured singular value

Analysis of robust performance for uncertain negative-imaginary systems using structured singular value 8th Mediterranean Conference on Control & Automation Congress Palace Hotel, Marrakech, Morocco June 3-5, 00 Analysis of robust performance for uncertain negative-imaginary systems using structured singular

More information

On Scalable H-infinity Control

On Scalable H-infinity Control On Scalable H-infinity Control Bergeling, Carolina 2016 Document Version: Publisher's PDF, also known as Version of record Link to publication Citation for published version (APA): Lidström, C. (2016).

More information

LMI Methods in Optimal and Robust Control

LMI Methods in Optimal and Robust Control LMI Methods in Optimal and Robust Control Matthew M. Peet Arizona State University Lecture 14: LMIs for Robust Control in the LF Framework ypes of Uncertainty In this Lecture, we will cover Unstructured,

More information

6.241 Dynamic Systems and Control

6.241 Dynamic Systems and Control 6.241 Dynamic Systems and Control Lecture 17: Robust Stability Readings: DDV, Chapters 19, 20 Emilio Frazzoli Aeronautics and Astronautics Massachusetts Institute of Technology April 6, 2011 E. Frazzoli

More information

ROBUST CONSTRAINED REGULATORS FOR UNCERTAIN LINEAR SYSTEMS

ROBUST CONSTRAINED REGULATORS FOR UNCERTAIN LINEAR SYSTEMS ROBUST CONSTRAINED REGULATORS FOR UNCERTAIN LINEAR SYSTEMS Jean-Claude HENNET Eugênio B. CASTELAN Abstract The purpose of this paper is to combine several control requirements in the same regulator design

More information

Lecture 1. Introduction. The importance, ubiquity, and complexity of embedded systems are growing

Lecture 1. Introduction. The importance, ubiquity, and complexity of embedded systems are growing Lecture 1 Introduction Karl Henrik Johansson The importance, ubiquity, and complexity of embedded systems are growing tremendously thanks to the revolution in digital technology. This has created a need

More information

Final exam: Computer-controlled systems (Datorbaserad styrning, 1RT450, 1TS250)

Final exam: Computer-controlled systems (Datorbaserad styrning, 1RT450, 1TS250) Uppsala University Department of Information Technology Systems and Control Professor Torsten Söderström Final exam: Computer-controlled systems (Datorbaserad styrning, RT450, TS250) Date: December 9,

More information

Identification for Control with Application to Ill-Conditioned Systems. Jari Böling

Identification for Control with Application to Ill-Conditioned Systems. Jari Böling Identification for Control with Application to Ill-Conditioned Systems Jari Böling Process Control Laboratory Faculty of Chemical Engineering Åbo Akademi University Åbo 2001 2 ISBN 952-12-0855-4 Painotalo

More information

On Optimal Performance for Linear Time-Varying Systems

On Optimal Performance for Linear Time-Varying Systems On Optimal Performance for Linear Time-Varying Systems Seddik M. Djouadi and Charalambos D. Charalambous Abstract In this paper we consider the optimal disturbance attenuation problem and robustness for

More information

Structured singular value and µ-synthesis

Structured singular value and µ-synthesis Structured singular value and µ-synthesis Robust Control Course Department of Automatic Control, LTH Autumn 2011 LFT and General Framework z P w z M w K z = F u (F l (P,K), )w = F u (M, )w. - Last week

More information

Lecture 13: Internal Model Principle and Repetitive Control

Lecture 13: Internal Model Principle and Repetitive Control ME 233, UC Berkeley, Spring 2014 Xu Chen Lecture 13: Internal Model Principle and Repetitive Control Big picture review of integral control in PID design example: 0 Es) C s) Ds) + + P s) Y s) where P s)

More information

Robust Stabilization of the Uncertain Linear Systems. Based on Descriptor Form Representation t. Toru ASAI* and Shinji HARA**

Robust Stabilization of the Uncertain Linear Systems. Based on Descriptor Form Representation t. Toru ASAI* and Shinji HARA** Robust Stabilization of the Uncertain Linear Systems Based on Descriptor Form Representation t Toru ASAI* and Shinji HARA** This paper proposes a necessary and sufficient condition for the quadratic stabilization

More information

A Scaled Diæerence Chi-square Test Statistic. Albert Satorra. Universitat Pompeu Fabra. and. Peter M. Bentler. August 3, 1999

A Scaled Diæerence Chi-square Test Statistic. Albert Satorra. Universitat Pompeu Fabra. and. Peter M. Bentler. August 3, 1999 A Scaled Diæerence Chi-square Test Statistic for Moment Structure Analysis æ Albert Satorra Universitat Pompeu Fabra and Peter M. Bentler University of California, Los Angeles August 3, 1999 æ Research

More information

322 HENDRA GUNAWAN AND MASHADI èivè kx; y + zk çkx; yk + kx; zk: The pair èx; kæ; ækè is then called a 2-normed space. A standard example of a 2-norme

322 HENDRA GUNAWAN AND MASHADI èivè kx; y + zk çkx; yk + kx; zk: The pair èx; kæ; ækè is then called a 2-normed space. A standard example of a 2-norme SOOCHOW JOURNAL OF MATHEMATICS Volume 27, No. 3, pp. 321-329, July 2001 ON FINITE DIMENSIONAL 2-NORMED SPACES BY HENDRA GUNAWAN AND MASHADI Abstract. In this note, we shall study ænite dimensional 2-normed

More information

instead of the loser. Surprisingly, this game has come up independently learning by Yoav Freund David Helbold, Manfred Warmuth and Nicolo

instead of the loser. Surprisingly, this game has come up independently learning by Yoav Freund David Helbold, Manfred Warmuth and Nicolo game and its reversal tend to be quite similar. The reversal of the Liar Game is particularly intriguing. Lets call it the Prediction Game: it has the same rules as the Liar Game except that if at the

More information

pairs. Such a system is a reinforcement learning system. In this paper we consider the case where we have a distribution of rewarded pairs of input an

pairs. Such a system is a reinforcement learning system. In this paper we consider the case where we have a distribution of rewarded pairs of input an Learning Canonical Correlations Hans Knutsson Magnus Borga Tomas Landelius knutte@isy.liu.se magnus@isy.liu.se tc@isy.liu.se Computer Vision Laboratory Department of Electrical Engineering Linkíoping University,

More information

Control For Hard Disk Drives With An Irregular Sampling Rate

Control For Hard Disk Drives With An Irregular Sampling Rate 211 American Control Conference on O'Farrell Street, San Francisco, CA, USA June 29 - July 1, 211 Optimal H Control For Hard Disk Drives With An Irregular Sampling Rate Jianbin Nie, Edgar Sheh, and Roberto

More information

Robust control for a multi-stage evaporation plant in the presence of uncertainties

Robust control for a multi-stage evaporation plant in the presence of uncertainties Preprint 11th IFAC Symposium on Dynamics and Control of Process Systems including Biosystems June 6-8 16. NTNU Trondheim Norway Robust control for a multi-stage evaporation plant in the presence of uncertainties

More information

the x's and the y's unlike the standard k-means clustering on the x's ë8ë. We then present results comparing EMRBF with standard RBF estimation method

the x's and the y's unlike the standard k-means clustering on the x's ë8ë. We then present results comparing EMRBF with standard RBF estimation method EMRBF: A Statistical Basis for Using Radial Basis Functions for Process Control Lyle H. Ungar Department of Chemical Engineering University ofpennsylvania ungar@cis.upenn.edu Richard D. De Veaux Mathematics

More information

H Loop Shaping for Systems with Hard Bounds

H Loop Shaping for Systems with Hard Bounds H Loop Shaping for Systems with Hard Bounds Wolfgang Reinelt Department of Electrical Engineering Linköping University, S-581 83 Linköping, Sweden WWW: http://www.control.isy.liu.se/~wolle/ Email: wolle@isy.liu.se

More information

' 'UMENTATION PAGE omgnoi lo. REPO FINAL/Ol NOV 89 TO 31 OCT 92 AT 3. REPORT TYPE AND DATES COVERED

' 'UMENTATION PAGE omgnoi lo. REPO FINAL/Ol NOV 89 TO 31 OCT 92 AT 3. REPORT TYPE AND DATES COVERED AD-A267 152~:sj~::1 2,C, ' 'UMENTATION PAGE omgnoi 704-0188 lo 3nd "to In.,- %., "te)... ir d J )De f. i 0 % Re.' 1 ",... " - 5C3" AT 3. REPORT TYPE AND DATES COVERED REPO FINAL/Ol NOV 89 TO 31 OCT 92

More information

Lecture 6. Chapter 8: Robust Stability and Performance Analysis for MIMO Systems. Eugenio Schuster.

Lecture 6. Chapter 8: Robust Stability and Performance Analysis for MIMO Systems. Eugenio Schuster. Lecture 6 Chapter 8: Robust Stability and Performance Analysis for MIMO Systems Eugenio Schuster schuster@lehigh.edu Mechanical Engineering and Mechanics Lehigh University Lecture 6 p. 1/73 6.1 General

More information

THE PARAMETERIZATION OF ALL ROBUST STABILIZING MULTI-PERIOD REPETITIVE CONTROLLERS FOR MIMO TD PLANTS WITH THE SPECIFIED INPUT-OUTPUT CHARACTERISTIC

THE PARAMETERIZATION OF ALL ROBUST STABILIZING MULTI-PERIOD REPETITIVE CONTROLLERS FOR MIMO TD PLANTS WITH THE SPECIFIED INPUT-OUTPUT CHARACTERISTIC International Journal of Innovative Computing, Information Control ICIC International c 218 ISSN 1349-4198 Volume 14, Number 2, April 218 pp. 387 43 THE PARAMETERIZATION OF ALL ROBUST STABILIZING MULTI-PERIOD

More information

AFAULT diagnosis procedure is typically divided into three

AFAULT diagnosis procedure is typically divided into three 576 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 47, NO. 4, APRIL 2002 A Robust Detection and Isolation Scheme for Abrupt and Incipient Faults in Nonlinear Systems Xiaodong Zhang, Marios M. Polycarpou,

More information

CHAPTER 6 : LITERATURE REVIEW

CHAPTER 6 : LITERATURE REVIEW CHAPTER 6 : LITERATURE REVIEW Chapter : LITERATURE REVIEW 77 M E A S U R I N G T H E E F F I C I E N C Y O F D E C I S I O N M A K I N G U N I T S A B S T R A C T A n o n l i n e a r ( n o n c o n v e

More information

P E R E N C O - C H R I S T M A S P A R T Y

P E R E N C O - C H R I S T M A S P A R T Y L E T T I C E L E T T I C E I S A F A M I L Y R U N C O M P A N Y S P A N N I N G T W O G E N E R A T I O N S A N D T H R E E D E C A D E S. B A S E D I N L O N D O N, W E H A V E T H E P E R F E C T R

More information

Radial Basis Functions for Process Control Lyle H. Ungar Tom Johnson Richard D. De Veaux University ofpennsylvania Voice Processing Corp. Princeton Un

Radial Basis Functions for Process Control Lyle H. Ungar Tom Johnson Richard D. De Veaux University ofpennsylvania Voice Processing Corp. Princeton Un Radial Basis Functions for Process Control Lyle H. Ungar Tom Johnson Richard D. De Veaux University ofpennsylvania Voice Processing Corp. Princeton University Abstract Radial basis function èrbfsè neural

More information

+ - cos ( ω t) V I R 1. V Cos( ω t + φ)

+ - cos ( ω t) V I R 1. V Cos( ω t + φ) Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.002 í Electronic Circuits Homework è10 Handout F98052 Issued 11è10è98 í Due 11è18è98 Exercise 101: Determine

More information

StrucOpt manuscript No. èwill be inserted by the editorè Detecting stress æelds in an optimal structure I Two-dimensional case and analyzer A. Cherkae

StrucOpt manuscript No. èwill be inserted by the editorè Detecting stress æelds in an optimal structure I Two-dimensional case and analyzer A. Cherkae StrucOpt manuscript No. èwill be inserted by the editorè Detecting stress æelds in an optimal structure I Two-dimensional case and analyzer A. Cherkaev and _I. Kíucíuk Abstract In this paper, weinvestigate

More information

IN THIS paper, we will consider the analysis and synthesis

IN THIS paper, we will consider the analysis and synthesis 1654 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 42, NO. 12, DECEMBER 1997 Robustness Analysis and Synthesis for Nonlinear Uncertain Systems Wei-Min Lu, Member, IEEE, and John C. Doyle Abstract A state-space

More information

SYNTHESIS OF LOW ORDER MULTI-OBJECTIVE CONTROLLERS FOR A VSC HVDC TERMINAL USING LMIs

SYNTHESIS OF LOW ORDER MULTI-OBJECTIVE CONTROLLERS FOR A VSC HVDC TERMINAL USING LMIs SYNTHESIS OF LOW ORDER MULTI-OBJECTIVE CONTROLLERS FOR A VSC HVDC TERMINAL USING LMIs Martyn Durrant, Herbert Werner, Keith Abbott Control Institute, TUHH, Hamburg Germany; m.durrant@tu-harburg.de; Fax:

More information

Economics Midterm Answer Key. Q1 èiè In this question we have a Marshallian demand function with arguments Cèp;mè =

Economics Midterm Answer Key. Q1 èiè In this question we have a Marshallian demand function with arguments Cèp;mè = Economics 7 997 Midterm Answer Key PART A Q èiè In this question we have a Marshallian demand function with arguments Cè;mè = Cè; w; w Lè. We can determine this function from the solution to max fc;lg

More information

Research Article An Equivalent LMI Representation of Bounded Real Lemma for Continuous-Time Systems

Research Article An Equivalent LMI Representation of Bounded Real Lemma for Continuous-Time Systems Hindawi Publishing Corporation Journal of Inequalities and Applications Volume 28, Article ID 67295, 8 pages doi:1.1155/28/67295 Research Article An Equivalent LMI Representation of Bounded Real Lemma

More information

A Design Method of Compensator to Minimize Model Error

A Design Method of Compensator to Minimize Model Error SICE Journal of Control, Measurement, and System Integration, Vol. 6, No. 4, pp. 267 275, July 2013 A Design Method of Compensator to Minimize Model Error Hiroshi OKAJIMA, Hironori UMEI, Nobutomo MATSUNAGA,

More information

IN THIS paper we will consider nonlinear systems of the

IN THIS paper we will consider nonlinear systems of the IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 44, NO. 1, JANUARY 1999 3 Robust Stabilization of Nonlinear Systems Pointwise Norm-Bounded Uncertainties: A Control Lyapunov Function Approach Stefano Battilotti,

More information

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists 3,350 108,000 1.7 M Open access books available International authors and editors Downloads Our

More information

Robust Input-Output Energy Decoupling for Uncertain Singular Systems

Robust Input-Output Energy Decoupling for Uncertain Singular Systems International Journal of Automation and Computing 1 (25) 37-42 Robust Input-Output Energy Decoupling for Uncertain Singular Systems Xin-Zhuang Dong, Qing-Ling Zhang Institute of System Science, Northeastern

More information

LECTURE Review. In this lecture we shall study the errors and stability properties for numerical solutions of initial value.

LECTURE Review. In this lecture we shall study the errors and stability properties for numerical solutions of initial value. LECTURE 24 Error Analysis for Multi-step Methods 1. Review In this lecture we shall study the errors and stability properties for numerical solutions of initial value problems of the form è24.1è dx = fèt;

More information

International Journal of PharmTech Research CODEN (USA): IJPRIF, ISSN: Vol.8, No.7, pp , 2015

International Journal of PharmTech Research CODEN (USA): IJPRIF, ISSN: Vol.8, No.7, pp , 2015 International Journal of PharmTech Research CODEN (USA): IJPRIF, ISSN: 0974-4304 Vol.8, No.7, pp 99-, 05 Lotka-Volterra Two-Species Mutualistic Biology Models and Their Ecological Monitoring Sundarapandian

More information

University of Twente. Faculty of Mathematical Sciences. On stability robustness with respect to LTV uncertainties

University of Twente. Faculty of Mathematical Sciences. On stability robustness with respect to LTV uncertainties Faculty of Mathematical Sciences University of Twente University for Technical and Social Sciences P.O. Box 17 75 AE Enschede The Netherlands Phone: +31-53-48934 Fax: +31-53-4893114 Email: memo@math.utwente.nl

More information

Control of an Autonomous Underwater Vehicle subject to robustness constraints

Control of an Autonomous Underwater Vehicle subject to robustness constraints Control of an Autonomous Underwater Vehicle subject to robustness constraints Juan Luis Rosendo Dominique Monnet Benoit Clement Fabricio Garelli Jordan Ninin GCA, LEICI, University of La Plata (UNLP),

More information

On the Correctness of Parallel Bisection in Floating Point. Computer Science Division and Department of Mathematics. University of California

On the Correctness of Parallel Bisection in Floating Point. Computer Science Division and Department of Mathematics. University of California On the Correctness of Parallel Bisection in Floating Point James W. Demmel æ Computer Science Division and Department of Mathematics University of California Berkeley, California 94720 Inderjit Dhillon

More information

Chapter Robust Performance and Introduction to the Structured Singular Value Function Introduction As discussed in Lecture 0, a process is better desc

Chapter Robust Performance and Introduction to the Structured Singular Value Function Introduction As discussed in Lecture 0, a process is better desc Lectures on Dynamic Systems and Control Mohammed Dahleh Munther A Dahleh George Verghese Department of Electrical Engineering and Computer Science Massachuasetts Institute of Technology c Chapter Robust

More information

Actuator and sensor selection for an active vehicle suspension aimed at robust performance

Actuator and sensor selection for an active vehicle suspension aimed at robust performance INT. J. CONTROL, 1998, VOL. 70, NO. 5, 703± 720 Actuator and sensor selection for an active vehicle suspension aimed at robust performance MARC VAN DE WAL², PATRICK PHILIPS² and BRAM DE JAGER² * A recently

More information

Journal of Universal Computer Science, vol. 3, no. 11 (1997), submitted: 8/8/97, accepted: 16/10/97, appeared: 28/11/97 Springer Pub. Co.

Journal of Universal Computer Science, vol. 3, no. 11 (1997), submitted: 8/8/97, accepted: 16/10/97, appeared: 28/11/97 Springer Pub. Co. Journal of Universal Computer Science, vol. 3, no. 11 (1997), 1250-1254 submitted: 8/8/97, accepted: 16/10/97, appeared: 28/11/97 Springer Pub. Co. Sequential Continuity of Linear Mappings in Constructive

More information

Distance Measures for Uncertain Linear Systems: A General Theory Alexander Lanzon, Senior Member, IEEE, and George Papageorgiou, Member, IEEE

Distance Measures for Uncertain Linear Systems: A General Theory Alexander Lanzon, Senior Member, IEEE, and George Papageorgiou, Member, IEEE 1532 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 54, NO. 7, JULY 2009 Distance Measures for Uncertain Linear Systems: A General Theory Alexer Lanzon, Senior Member, IEEE, George Papageorgiou, Member,

More information

Control and Robustness for Quantum Linear Systems

Control and Robustness for Quantum Linear Systems CCC 2013 1 Control and Robustness for Quantum Linear Systems Ian R. Petersen School of Engineering and Information Technology, UNSW Canberra CCC 2013 2 Introduction Developments in quantum technology and

More information

Learning-Based Modular Indirect Adaptive Control for a Class of Nonlinear Systems

Learning-Based Modular Indirect Adaptive Control for a Class of Nonlinear Systems MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com Learning-Based Modular Indirect Adaptive Control for a Class of Nonlinear Systems Benosman, M.; Farahmand, A.-M. TR2016-055 July 2016 Abstract

More information

Keywords: machine learning, reinforcement learning, dynamic programming, Markov decision processes èmdpsè, linear programming, convex programming, fun

Keywords: machine learning, reinforcement learning, dynamic programming, Markov decision processes èmdpsè, linear programming, convex programming, fun Approximate Solutions to Markov Decision Processes Geoærey J. Gordon June 1999 CMU-CS-99-143 School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213 Submitted in partial fulællment of

More information