Oxidation and Reduction of Molybdenum Disulfide Catalyst and their Effects on the Decomposition of 2-Propanol

Size: px
Start display at page:

Download "Oxidation and Reduction of Molybdenum Disulfide Catalyst and their Effects on the Decomposition of 2-Propanol"

Transcription

1 Oxidation and Reduction of Molybdenum Disulfide Catalyst and their Effects on the Decomposition of 2-Propanol Masatoshi SUGIOKA* and Fujimi KIMURA Faculty of Engineering, Hokkaido University, North 13, West 8, Kita-ku, Sapporo 060 (Received August 8, 1984) The catalytic activity and selectivity of variously pretreated molybdenum disulfide for the pretreatment of MoS2 with hydrogen and oxygen influenced remarkably the catalytic activity and selectivity of MoS2 in the decomposition of 2-propanol. The dehydrogenation of 2-propanol proceeded preferentially on the reduced MoS2 catalyst, and the dehydration proceeded on the oxidized MoS2 catalyst in the decomposition of 2-propanol. The active sites of reduced and oxidized MoS2 catalysts for the decomposition of 2-propanol were assumed to be the coordinatively unsaturated sites and the acidic sites of molybdenum oxysulfide on MoS2 surface formed by the reduction and oxidation of MoS2, respectively. 1. Introduction Recently, a number of articles have reported on the hydrodesulfurization reactions over molybdenum based catalysts. It has been reported that molybdenum disulfide acts as the principal constituent in the CoO-MoO3-Al2O3 and NiO-MoO3- Al2O3 hydrodesulfurization catalysts after presulfurization of these catalysts with H2/H2S mixture.1),2) However, little attention has been given to the acid property of MoS2.3) In the previous paper,4) one of authors reported on the catalytic decomposition of 2-propanol (2- PA), which has been widely employed as a test reaction for the acid-base catalysis,5) over MoS2 to clarify the acid property of MoS2 by use of a pulse reactor with helium as a carrier gas. It was found that the dehydration of 2-PA to propylene rather than the dehydrogenation to acetone proceeded predominantly over variously pretreated MoS2 catalysts. It was concluded that there were a great many acidic sites on MoS2 surface, which accelerate the dehydration of 2-PA. However, there existed some possibilities that the MoS2 surface was oxidized by a trace amount of oxygen contained in the carrier gas and, as a result, high dehydration activity of MoS2 was observed even after MoS2 catalyst was pretreated with hydrogen. Therefore, there still exist many points unclarified regarding * To whom correspondence should be addressed. the active site of MoS2 for the decomposition of 2-PA. In the present work, we studied again the decomposition of 2-PA over variously pretreated MoS2 catalysts by use of a closed circulation reactor system in order to clarify the effects of pretreatment conditions on the activity and selectivity of MoS2 catalyst and the catalyst active site for the decomposition of 2-PA. By use of a closed circulation system, the possibility of oxidation of MoS2 by a trace amount of oxygen contained in a carrier, which was encountered in the previous work, can be completely eliminated. Furthermore, the decomposition of 2-PA over MoS2 catalyst may be related to the fundamental research for the hydrodeoxygenation of organic oxygen compounds contained in heavy oil and coalderived liquids over sulfided CoO-MoO3-Al2O3 and NiO-MoO3-Al2O3 2. Experimental catalysts. 2.1 Experimental Apparatus and Procedure The catalytic decomposition of 2-PA over MoS2 closed circulation reactor system made from pyrex glass and 20torr of initial pressure of 2-PA. The dead volume of the apparatus including the reaction vessel is about 450ml. The reactor was U type glass tube. Circulation of 2-PA through the reactor was carried out by means of magnetic

2 307 pumping after 2-PA was introduced into the system. The analysis of reaction products in the decomposition of 2-PA was made on Hitachi 023 gaschromatograph using PEG-1000 column with flame ionization detector. 2.2 Catalyst Molybdenum disulfide, employed as a catalyst, was provided from Kanto Chemical Co., Tokyo, in powder form. The purity of MoS2 powder was above 99.2% and the impurities were silica, below 0.05%; ferric oxide, below 0.2%; cupric oxide, below 0.05%; water soluble substance, below 0.5%. The sample of MoS2 used in this work was found to have a hexagonal structure and preferred orientation parallel to the (001) plane by X-ray diffraction (XRD) analysis. MoS2 was evacuated at 10-5torr of hydrogen or 30torr of oxygen for 2hrs at various temperatures before use. 2.3 Reagents Super special grade 2-PA was provided from Wako Pure Chemical Co., Tokyo, and purified by trap-to-trap distillation after being dried with molecular sieve 5A. Hydrogen ( %) and oxygen (99.99%) were provided from Nippon Oxygen Co., Tokyo, and Hoxan Co., Sapporo. Hydrogen and oxygen were dried by passage through the molecular sieve 4A before storage. 3. Results and Discussion 3.1 Catalytic Activity and Selectivity of MoS2 Pretreated under Various Conditions The catalytic activity and selectivity of MoS2, which were pretreated under various conditions, for the decomposition of 2-PA were examined at of reaction products with reaction time in the decomposition of 2-PA over MoS2 catalyst evacuated and acetone, and no other products were formed. The ratio of propylene to acetone with reaction time was almost constant. As can be seen in Fig. 1, both dehydration and dehydrogenation of 2-PA catalytic reaction proceeded independently on the different active sites of the catalyst. The dehydration activity of MoS2 was higher than the dehydrogenation, indicating that the number of effective active sites for the dehydration is greater than that for dehydrogenation over MoS2 evacuated at 450 Fig. 3 Effect of Reduction Temperature on Catalytic Activity and Selectivity of MoS2 for Decomposition of 2-Propanol

3 308 catalyst. Fig. 3 shows the effects of reduction temperature on the catalytic activity and selectivity of MoS2 for the decomposition of 2-PA. Although the catalytic activity of MoS2 was little affected by the reduction temperature, the selectivity of the formation of acetone increased remarkably and that of propylene decreased with increase in the reduction temperature. These results indicate that the number of effective active sites of MoS2 for the dehydrogenation of 2-PA increased and that for dehydration decreased with the reduction treatment. Fig. 4 shows the changes in the composition of reaction products in the decomposition of 2-PA over MoS2 catalyst, which was oxidized at Fig. 5 Effect of Oxidation Temperature on Catalytic Activity and Selectivity of MoS2 Catalyst for crease in the oxidation temperature. These results suggest that the effective active sites of reduced MoS2 catalyst for the dehydrogenation of 2-PA were easily changed to those for the dehydration of 2-PA by oxidation with oxygen. Effects of various pretreatment conditions on the catalytic activity and selectivity of MoS2 for the decomposition of 2-PA are summarized in Table 1. Table 1 shows that the surface of MoS2 catalyst was very sensitive to the pretreatment conditions and that the catalytic activity and selectivity of the MoS2 catalyst for the decomposition of 2-PA were remarkably influenced by the pretreatment with hydrogen and oxygen. As the catalytic activity and selectivity of oxidized MoS2, for the decomposition of 2-PA, were restored again to those of initially reduced MoS2, after the oxidized MoS2 was reduced Decomposition of 2-Propanol

4 309 That is to say, the dehydrogenation of 2-PA to form acetone proceeds predominantly on the reduced MoS2 surface and the dehydration of 2-PA to propylene proceeds on the oxidized MoS2 surface. The selectivities of MoS2 catalyst for the dehydrogenation and dehydration of 2-PA are determined by the states of MoS2 surface, i.e, reduced or oxidized surface states. 3.2 Active Sites of MoS2 Catalysts We will, hereinafter, discuss the active sites of MoS2 catalysts, which were pretreated under various conditions, for the dehydration and dehydrogenation of 2-PA. As we showed in Figs. 1 and 4, tivity for 2-PA, we shall first discuss the active sites of evacuated and oxidized MoS2 catalysts for the dehydration of 2-PA. It is generally accepted that the dehydration of aliphatic alcohol to olefin proceeds preferentially over acidic site of solid acid catalysts.5) Furthermore, it has been thought that the acidic metal oxysulfide species is easily formed on metal sulfide surface when metal sulfides come into contact with oxygen or air.6) One of the authors examined previously the i.r. spectra of MoS2 after it was treated with air, and observed the absorption band at 1,050-1,150cm-1 which was assigned to SO42- or S=O bond.4) From these results, it can be concluded that the molybdenum oxysulfide species like MoS2O or MoO2S are present on evacuated and oxidized MoS2 surface, and the acidic sites of molybdenum oxysulfide species on the catalyst surface accelerate predominantly the dehydration of 2-PA. On the other hand, MoS2 catalyst reduced at decomposition of 2-PA as shown in Fig. 2, which is contrary to the case of evacuated and oxidized MoS2 catalysts. Next, we shall discuss the active site of reduced MoS2 catalyst for the dehydrogenation of 2-PA. It has been reported that the dehydrogenation of aliphatic alcohols, to form ketone or aldehyde, proceeds on the metallic catalysts and solid base catalysts.7) The possibility that metallic molybdenum on MoS2 surface, formed by the reduction of MoS2, acts as the active site for the dehydrogenation of 2-PA was denied by the facts that MoS2 is hardly reduced by hydrogen even at elevated temperature and XRD analysis of reduced MoS2 Fig. 6 Effect of Introduction of Hydrogen Sulfide on Decomposition of 2-Propanol over Reduced denum on MoS2 surface. We speculated previously that the sulfur anion, S2-, on MoS2 surface acts as the basic site for the dehydrogenation of 2-PA without any experimental evidence.4) However, since it has not been reported that MoS2 acts as the solid base catalyst, it would be unreasonable to assume that the sulfur anion acts as the basic site for the dehydrogenation of 2-PA. Thus, it would be necessary to consider active sites other than metallic site and basic site on MoS2 surface for the dehydrogenation of 2-PA. The MoS2 crystal possesses a hexagonal structure characterized by sandwich-like layer form. The molybdenum atom is surrounded by six sulfur atoms. The sulfur atom bonded with molybdenum atom at the crystal corner has a single bond. Since such sulfur atom at the crystal corner is unstable and can be easily removed as hydrogen sulfide by reduction with hydrogen, the coordinatively unsaturated sites on MoS2 surface are formed.8) One of the authors reported previously that the catalytic activity of MoS2 for the decomposition of hydrogen sulfide and methanol was remarkably enhanced by reduction with hydrogen but was not appreciably increased with increase in the evacuation temperature.9),10) In the decomposition of methanol over MoS2 catalyst,9) the selectivity for the methanol dehydrogenation to carbon monoxide and hydrogen was remarkably enhanced by the reduction of MoS2. Thus, we concluded that the catalytic decomposition of hydrogen sulfide and methanol proceeded on the coordinatively unsaturated site on MoS2 surface formed by hydrogen reduction. MoS2 Catalyst

5 310 On the other hand, Tanaka, et al.11) showed that 2-PA is dissociatively adsorbed on the coordinatively unsaturated site on MoS2 surface in the study of the hydrogen transfer reaction between 2- PA and 1,3-butadiene over MoS2 catalyst. Furthermore, the catalytic activities of reduced MoS2 for the dehydrogenation and dehydration in the decomposition of 2-PA were strongly suppressed by the introduction of hydrogen sulfide during the course of the decomposition of 2-PA as shown in Fig, 6. On the basis of these results, it can be concluded that the coordinatively unsaturated site on MoS2 surface also acts as the active site for the dehydrogenation of 2-PA. The dehydration of 2-PA was also suppressed by hydrogen sulfide as shown in Fig, 6, indicating that hydrogen sulfide also poisoned the acidic site of reduced MoS2 catalyst. The dehydration of 2-PA proceeded slightly even This result suggests that thiol groups (SH) on MoS2 surface formed by the reduction of MoS212) or the trace amount impurities contained in MoS2 act as the acidic site for the dehydration of 2-PA. 4. Conclusion The catalytic activity and selectivity of MoS2 for the decomposition of 2-PA were remarkably changed by the pretreatment with hydrogen or oxygen. The dehydration and dehydrogenation of 2-PA proceeded preferentially on the oxidized and reduced MoS2 catalyst, respectively. It is concluded that the active site of oxidized MoS2 catalyst for the dehydration of 2-PA is the acidic site of molybdenum oxysulfide species formed by the oxidation of MoS2, and the active site of reduced MoS2 catalyst for the dehydrogenation of 2-PA is the coordinatively unsaturated site formed by the reduction of MoS2. The detailed structure of molybdenum oxysulfide species formed by the oxidation of MoS2, the nature of thiol groups formed by the reduction of MoS2 and the effect of trace amount of impurities in MoS2 will be the subjects of future study. References 1) Massoth, F. E., MuraliDhar, G., Proceedings of Fourth International Conference of the Chemistry and Uses of Molybdenum, p. 343 (1982). 2) Ternan, M., Can. J. Chem. Eng., 61, 133 (1982). 3) Hou, P., Wise, H., J. Catal., 78, 469 (1982). 4) Sugioka, M., Sasaki, M., Hosotsubo, T., Aomura, K., Sekiyu Gakkaishi, 23, 218 (1980). 7) Hattori, H., Shokubai, 26, 250 (1984). 8) Tanaka, K., Okuhara, T., Catal. Rev., 15, 249 (1977). 9) Sugioka, M., Aomura, K., Proceedings of Fifth World Hydrogen Energy Conference, 2, 477 (1984). 10) Sugioka, M., Aomura, K., International J. Hydrogen Energy, 9, 891 (1984). 11) Tanaka, K., Yaegashi, I., Aomura, K., Bull. Fac. of Eng. Hokkaido Univ., No. 102, 113 (1981). 12) Ratanasamy, P., Fripiat, J., J. Chem. Soc. Faraday Trans., I, 66, 2897 (1970).

6 Keywords Acid site, Dehydration, Dehydrogenation, Molybdenum disulfide, 2-Propanol

Title. Author(s)IIZUKA, Tokio; SAITO, Mitsuko; TANABE, Kozo. Issue Date Doc URL. Type. File Information DIFFERENT MAGNESIUM OXIDES

Title. Author(s)IIZUKA, Tokio; SAITO, Mitsuko; TANABE, Kozo. Issue Date Doc URL. Type. File Information DIFFERENT MAGNESIUM OXIDES Title THE DIFFERENCE IN SURFACE CRYSTAL FIELD STRENGTH AND DIFFERENT MAGNESIUM OXIDES Author(s)IIZUKA, Tokio; SAITO, Mitsuko; TANABE, Kozo CitationJOURNAL OF THE RESEARCH INSTITUTE FOR CATALYSIS HOKK Issue

More information

Catalytic Hydrodesulfurisation

Catalytic Hydrodesulfurisation CHAPTER 2 Catalytic Hydrodesulfurisation 1 The Process Although some of the organic sulfur compounds found in oil and other feedstocks can be removed by the absorption, adsorption and oxidation processes

More information

Title. Issue Date Doc URL. Type. File Information. List of Publications from the Research Institute for.

Title. Issue Date Doc URL. Type. File Information. List of Publications from the Research Institute for. Title List of Publications from the Research Institute for CitationJOURNAL OF THE RESEARCH INSTITUTE FOR CATALYSIS HOKK Issue Date 1979-05 Doc URL http://hdl.handle.net/2115/25058 Type bulletin File Information

More information

Hydrogenation of Butadiene for the Characterization of Co-Mo Sulfide Catalysts

Hydrogenation of Butadiene for the Characterization of Co-Mo Sulfide Catalysts [Regular Paper] Hydrogenation of Butadiene for the Characterization of Co-Mo Sulfide Catalysts Yasuaki OKAMOTO* and Takeshi KUBOTA Dept. of Material Science, Shimane University, Matsue, Shimane 690-8504

More information

The Oxidation Activity and Acid-base Properties of. V2O5-K2SO4-H2SO4 Catalysts* by Mamoru Ai**

The Oxidation Activity and Acid-base Properties of. V2O5-K2SO4-H2SO4 Catalysts* by Mamoru Ai** The Oxidation Activity and Acid-base Properties of V2O5-K2SO4-H2SO4 Catalysts* by Mamoru Ai** Summary: The vapor-phase oxidation of 1-butene, butadiene, and acetic acid were carried out in the presence

More information

Oxidative Dehydrogenation of Olefin*

Oxidative Dehydrogenation of Olefin* Surface Heterogenity of Bismuth-Molybdate Catalyst in Oxidative Dehydrogenation of Olefin* by Toru Watanabe** and Etsuro Echigoya** Summary: The oxidative dehydrogenation of C4, C5 olefins over bismuth

More information

Oxidative Cracking of Aromatic Compounds Related to Lignin Constituents with Steam Using ZrO2 Al2O3 FeOx Catalyst

Oxidative Cracking of Aromatic Compounds Related to Lignin Constituents with Steam Using ZrO2 Al2O3 FeOx Catalyst 178 Journal of the Japan Petroleum Institute, 53, (3), 178-183 (2010) [Regular Paper] Oxidative Cracking of Aromatic Compounds Related to Lignin Constituents with Steam Using ZrO2 Al2O3 FeOx Catalyst Takuya

More information

Studies on Mo/HZSM-5 Complex catalyst for Methane Aromatization

Studies on Mo/HZSM-5 Complex catalyst for Methane Aromatization Journal of Natural Gas Chemistry 13(2004)36 40 Studies on Mo/HZSM-5 Complex catalyst for Methane Aromatization Qun Dong 1, Xiaofei Zhao 1, Jian Wang 1, M Ichikawa 2 1. Department of Petrochemical Engineering,

More information

Title. Issue Date Doc URL. Type. File Information. List of Publications from the Research Institute for.

Title. Issue Date Doc URL. Type. File Information. List of Publications from the Research Institute for. Title from the Research Institute for CitationJOURNAL OF THE RESEARCH INSTITUTE FOR CATALYSIS HOKK Issue Date 1978-07 Doc URL http://hdl.handle.net/2115/25043 Type bulletin File Information 26(1)_P57-61.pdf

More information

Title. Author(s)MATSUZAKI, Isao; NITTA, Masahiro; TANABE, Kozo. Issue Date Doc URL. Type. File Information.

Title. Author(s)MATSUZAKI, Isao; NITTA, Masahiro; TANABE, Kozo. Issue Date Doc URL. Type. File Information. Title APPLICATION OF HAMMETT INDICATORS TO ESTIMATING COVE ALUMINA BY NITROGEN, ETHYLENE, WATER, ETHYL ALCOHOL, Author(s)MATSUZAKI, Isao; NITTA, Masahiro; TANABE, Kozo CitationJOURNAL OF THE RESEARCH INSTITUTE

More information

Mixtures 1 of 38 Boardworks Ltd 2016

Mixtures 1 of 38 Boardworks Ltd 2016 Mixtures 1 of 38 Boardworks Ltd 2016 Mixtures 2 of 38 Boardworks Ltd 2016 Pure and impure substances 3 of 38 Boardworks Ltd 2016 All materials can be classified as either a pure substance or an impure

More information

A Tunable Process: Catalytic Transformation of Renewable Furfural with. Aliphatic Alcohols in the Presence of Molecular Oxygen. Supporting Information

A Tunable Process: Catalytic Transformation of Renewable Furfural with. Aliphatic Alcohols in the Presence of Molecular Oxygen. Supporting Information Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2015 A Tunable Process: Catalytic Transformation of Renewable Furfural with Aliphatic

More information

Chromatography & instrumentation in Organic Chemistry

Chromatography & instrumentation in Organic Chemistry Chromatography & instrumentation in Organic Chemistry What is Chromatography? Chromatography is a technique for separating mixtures into their components in order to analyze, identify, purify, and/or quantify

More information

A Highly efficient Iron doped BaTiO 3 nanocatalyst for the catalytic reduction of nitrobenzene to azoxybenzene

A Highly efficient Iron doped BaTiO 3 nanocatalyst for the catalytic reduction of nitrobenzene to azoxybenzene Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 A Highly efficient Iron doped BaTiO 3 nanocatalyst for the catalytic reduction of nitrobenzene

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2014 69451 Weinheim, Germany Surfactant-Free Nonaqueous Synthesis of Plasmonic Molybdenum Oxide Nanosheets with Enhanced Catalytic Activity for Hydrogen Generation from

More information

Temperature-programmed desorption of water and ammonia on sulphated zirconia catalysts for measuring their strong acidity and acidity distribution

Temperature-programmed desorption of water and ammonia on sulphated zirconia catalysts for measuring their strong acidity and acidity distribution Proc. Indian Acad. Sci. (Chem. Sci.), Vol. 115, No. 4, August 2003, pp 281 286 Indian Academy of Sciences Temperature-programmed desorption of water and ammonia on sulphated zirconia catalysts for measuring

More information

PETE 203: Properties of oil

PETE 203: Properties of oil PETE 203: Properties of oil Prepared by: Mr. Brosk Frya Ali Koya University, Faculty of Engineering, Petroleum Engineering Department 2013 2014 Lecture no. (2): Crude oil chemistry and composition 5. Crude

More information

DEHYDRATION OF ALCOHOLS-GAS CHROMATOGRAPHY

DEHYDRATION OF ALCOHOLS-GAS CHROMATOGRAPHY DEHYDRATION OF ALCOHOLS-GAS CHROMATOGRAPHY OBJECTIVE In this lab, one will examine the phosphoric acid catalyzed dehydration of 2-methylcyclohexanol. Gas chromatography will be used to monitor the outcome

More information

Surface Chemistry & States of Matter

Surface Chemistry & States of Matter Surface Chemistry & States of Matter S. Sunil Kumar Lecturer in Chemistry 1. Adsorption is a. Colligative property b. Oxidation process c. Reduction process d. Surface phenomenon Ans. d 2. When adsorption

More information

The Analysis of Trace Contaminants in High Purity Ethylene and Propylene Using GC/MS. Application. Agilent Technologies/Wasson ECE Monomer Analyzer

The Analysis of Trace Contaminants in High Purity Ethylene and Propylene Using GC/MS. Application. Agilent Technologies/Wasson ECE Monomer Analyzer The Analysis of Trace Contaminants in High Purity Ethylene and Propylene Using GC/MS Agilent Technologies/Wasson ECE Monomer Analyzer Application Authors Fred Feyerherm 119 Forest Cove Dr. Kingwood, TX

More information

Supporting Information. Highly Efficient Aerobic Oxidation of Various Amines Using Pd 3 Pb Intermetallic Compound Catalysts

Supporting Information. Highly Efficient Aerobic Oxidation of Various Amines Using Pd 3 Pb Intermetallic Compound Catalysts Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supporting Information Highly Efficient Aerobic Oxidation of Various Amines Using Pd 3 Pb Intermetallic

More information

Heterogeneously catalyzed selective aerobic oxidative cross-coupling of terminal alkynes and amides with simple copper(ii) hydroxide

Heterogeneously catalyzed selective aerobic oxidative cross-coupling of terminal alkynes and amides with simple copper(ii) hydroxide Electronic Supplementary Information (ESI) for Heterogeneously catalyzed selective aerobic oxidative cross-coupling of terminal alkynes and amides with simple copper(ii) hydroxide Xiongjie Jin, Kazuya

More information

Elements, Compounds Mixtures Physical and Chemical Changes

Elements, Compounds Mixtures Physical and Chemical Changes Elements, Compounds Mixtures Physical and Chemical Changes Fundamentals of Chemistry 1 Classification of Matter Matter is any substance having distinct physical characteristics and chemical properties.

More information

Chemical Reactions and Kinetics of the Carbon Monoxide Coupling in the Presence of Hydrogen

Chemical Reactions and Kinetics of the Carbon Monoxide Coupling in the Presence of Hydrogen Journal of Natural Gas Chemistry 11(2002)145 150 Chemical Reactions and Kinetics of the Carbon Monoxide Coupling in the Presence of Hydrogen Fandong Meng 1,2, Genhui Xu 1, Zhenhua Li 1, Pa Du 1 1. State

More information

Monomer Analysis. Analysis by Gas Chromatography WASSON - ECE INSTRUMENTATION. Engineered Solutions, Guaranteed Results.

Monomer Analysis. Analysis by Gas Chromatography WASSON - ECE INSTRUMENTATION. Engineered Solutions, Guaranteed Results. Monomer Analysis Analysis by Gas Chromatography Engineered Solutions, Guaranteed Results. WASSON - ECE INSTRUMENTATION Polymer Grade Monomer Analysis Monomer Analysis Impurities in feedstocks can adversely

More information

Division of Fuel Cells, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese

Division of Fuel Cells, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2016 Supporting information Tuned Depositing Ag clusters on ZrO 2 Nanocrystals from Silver Mirror

More information

Reactive Adsorption of Thiophene on ZnNi/Diatomite- Pseudo-Boehmite Adsorbents

Reactive Adsorption of Thiophene on ZnNi/Diatomite- Pseudo-Boehmite Adsorbents Scientific Research 2012,Vol. 14, No. 3, pp 33-38 September 30, 2012 Reactive Adsorption of Thiophene on ZnNi/Diatomite- Pseudo-Boehmite Adsorbents Meng Xuan; Weng Huixin; Shi Li (The State Key Laboratory

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2015 Supplementary Information AgPd@Pd/TiO 2 nanocatalyst synthesis by microwave

More information

Title. Author(s)TAKEZAWA, Nobutsune; MIYAHARA, Koshiro; TOYOSHIMA, I. Issue Date Doc URL. Type. File Information

Title. Author(s)TAKEZAWA, Nobutsune; MIYAHARA, Koshiro; TOYOSHIMA, I. Issue Date Doc URL. Type. File Information Title INFRARED DIFFUSE REFLECTANCE SPECTRA OF SURFACE HYDR OXIDE Author(s)TAKEZAWA, Nobutsune; MIYAHARA, Koshiro; TOYOSHIMA, I CitationJOURNAL OF THE RESEARCH INSTITUTE FOR CATALYSIS HOKK Issue Date 1971-04

More information

Isopropyl Alcohol by Direct Hydration of Propylene*

Isopropyl Alcohol by Direct Hydration of Propylene* TECHNICAL PAPER Isopropyl Alcohol by Direct Hydration of Propylene* by Yasuharu Onoue**, Yukio Mizutani**, Sumio Akiyama**, Yusuke Izumi** and Hirofumi Ihara*** Summary: Tokuyama Soda has developed a new

More information

Introduction to Gas Chromatography

Introduction to Gas Chromatography Introduction to Gas Chromatography 31-1 Objectives To know what is chromatography To understand the mechanism of compound separation To know the basic of gas chromatography system 31-2 Chromatography Definition

More information

REACTION ANALYSIS OF AROMATIC RING METHYLATION WITH SUPERCRITICAL METHANOL IN THE PRESENCE OF ZEOLITE CATALYST

REACTION ANALYSIS OF AROMATIC RING METHYLATION WITH SUPERCRITICAL METHANOL IN THE PRESENCE OF ZEOLITE CATALYST REACTION ANALYSIS OF AROMATIC RING METHYLATION WITH SUPERCRITICAL METHANOL IN THE PRESENCE OF ZEOLITE CATALYST Yoshiteru Horikawa, Yuki Ucho, Takeshi Sako* (Shizuoka Univ.), D. S. Bulgarevich (AIST), Yasuji

More information

Influence of Functional Sulfonic Acid Group on Pyrolysis Characteristics for Cation

Influence of Functional Sulfonic Acid Group on Pyrolysis Characteristics for Cation Journal of NUCLEAR SCIENCE and TECHNOLOGY, 24[2], pp. 124~128 (February 1987) Influence of Functional Sulfonic Acid Group on Pyrolysis Characteristics for Cation Exchange Resin Masami MATSUDA, Kiyomi FUNABASHI,

More information

Module: 7. Lecture: 36

Module: 7. Lecture: 36 Module: 7 Lecture: 36 DIMETHYL FORMAMIDE INTRODUCTION Dimethylformamide is an organic compound and denotes as DMF. The name is derived from the fact that it is a derivative of formamide, the amide of formic

More information

Catalytic Aromatization of Methane

Catalytic Aromatization of Methane Catalytic Aromatization of Methane N.I.FAYZULLAYEV* 1, S.M.TUROBJONOV 2 1 Department of Natural Sciences, Division of Chemistry, Samarkand State University, Samarkand, Uzbekistan 2 Tashkent chemistry-technology

More information

CHEMISTRY HIGHER LEVEL

CHEMISTRY HIGHER LEVEL *P15* PRE-LEAVING CERTIFICATE EXAMINATION, 2008 CHEMISTRY HIGHER LEVEL TIME: 3 HOURS 400 MARKS Answer eight questions in all These must include at least two questions from Section A All questions carry

More information

Supporting Information for. Selectivity and Activity in Catalytic Methanol Oxidation in the Gas Phase

Supporting Information for. Selectivity and Activity in Catalytic Methanol Oxidation in the Gas Phase 1 / 5 Supporting Information for The Influence of Size-Induced Oxidation State of Platinum Nanoparticles on Selectivity and Activity in Catalytic Methanol Oxidation in the Gas Phase Hailiang Wang, Yihai

More information

Experiment 3. Condensation Reactions of Ketones and Aldehydes: The Aldol Condensation Reaction.

Experiment 3. Condensation Reactions of Ketones and Aldehydes: The Aldol Condensation Reaction. Experiment 3. Condensation Reactions of Ketones and Aldehydes: The Aldol Condensation Reaction. References: Brown & Foote, Chapters 16, 19, 23 INTRODUCTION: This experiment continues the saga of carbon-carbon

More information

CHAPTER 9: Rate of Reaction

CHAPTER 9: Rate of Reaction CHAPTER 9: Rate of Reaction 9.1 Rate of Reaction 9.2 Factors Affecting Rate of Reaction 9.3 Catalysis Learning outcomes: (a) explain and use the terms: rate of reaction, activation energy and catalysis.

More information

Chapter 7: Alcohols, Phenols and Thiols

Chapter 7: Alcohols, Phenols and Thiols Chapter 7: Alcohols, Phenols and Thiols 45 -Alcohols have the general formula R-OH and are characterized by the presence of a hydroxyl group, -OH. -Phenols have a hydroxyl group attached directly to an

More information

Synthesis of Ethyl Isoamyl Ketone from sec-butyl Alcohol over Platinum Metals-Metal Oxides Catalysts*

Synthesis of Ethyl Isoamyl Ketone from sec-butyl Alcohol over Platinum Metals-Metal Oxides Catalysts* Synthesis of Ethyl Isoamyl Ketone from sec-butyl Alcohol over Platinum Metals-Metal Oxides Catalysts* by Hiroshi Miyake**, Fujio Suganuma**, Tadashi Matsumoto** and Hiroki Kamiyama** Summary: The synthesis

More information

Supporting Information

Supporting Information Supporting Information Nb 2 5 nh 2 as a heterogeneous catalyst with water-tolerant Lewis acid sites Kiyotaka Nakajima, Yusuke Baba, Ryouhei Noma, Masaaki Kitano, Junko N. Kondo, Shigenobu Hayashi, П,*

More information

METHODS OF MODIFICATION OF HYDROCARBONS LIQUID PHASE OXIDATION. S.P.Prokopchuk. (S.P.Prokopchuk, 12, Kosmonavtov avenue, flat 30, Vinnytsa-21,

METHODS OF MODIFICATION OF HYDROCARBONS LIQUID PHASE OXIDATION. S.P.Prokopchuk. (S.P.Prokopchuk, 12, Kosmonavtov avenue, flat 30, Vinnytsa-21, METHODS OF MODIFICATION OF HYDROCARBONS LIQUID PHASE OXIDATION S.P.Prokopchuk (S.P.Prokopchuk, 12, Kosmonavtov avenue, flat 30, Vinnytsa-21, Ukraine, 21021) Abstract: it gives a short description of influence

More information

Jordan M. Rhodes, Caleb A. Jones, Lucas B. Thal, Janet E. Macdonald*

Jordan M. Rhodes, Caleb A. Jones, Lucas B. Thal, Janet E. Macdonald* Supporting Information for: Jordan M. Rhodes, Caleb A. Jones, Lucas B. Thal, Janet E. Macdonald* Department of Chemistry and Vanderbilt Institute for Nanoscale Science and Engineering, Vanderbilt University,

More information

Supplementary Information for Efficient catalytic conversion of fructose into hydroxymethylfurfural by a novel carbon based solid acid

Supplementary Information for Efficient catalytic conversion of fructose into hydroxymethylfurfural by a novel carbon based solid acid Supplementary Information for Efficient catalytic conversion of fructose into hydroxymethylfurfural by a novel carbon based solid acid Jianjian Wang, Wenjie Xu, Jiawen Ren*, Xiaohui Liu, Guanzhong Lu,

More information

NO removal: influences of acidity and reducibility

NO removal: influences of acidity and reducibility Relationship between structure and activity of MoO 3 CeO 2 catalysts on NO removal: influences of acidity and reducibility Yue Peng, Ruiyang Qu, Xueying Zhang and Junhua Li*, 1 State Key Joint Laboratory

More information

CHAPTER 8 ISOLATION AND CHARACTERIZATION OF PHYTOCONSTITUENTS BY COLUMN CHROMATOGRAPHY

CHAPTER 8 ISOLATION AND CHARACTERIZATION OF PHYTOCONSTITUENTS BY COLUMN CHROMATOGRAPHY 146 CHAPTER 8 ISLATIN AND CHARACTERIZATIN F PHYTCNSTITUENTS BY CLUMN CHRMATGRAPHY 8.1 INTRDUCTIN Column chromatography is an isolation technique in which the phytoconstituents are being eluted by adsorption.

More information

Chemistry 283g- Experiment 4

Chemistry 283g- Experiment 4 EXPEIMENT 4: Alkenes: Preparations and eactions elevant sections in the text: Fox & Whitesell, 3 rd Ed. Elimination eactions of Alcohols: pg. 426-428, 431-432 Electrophilic Addition to Alkenes: pg. 484-488,

More information

Purification of 2-mercaptobenzothiazole by solvent extraction

Purification of 2-mercaptobenzothiazole by solvent extraction Korean J. Chem. Eng., 24(2), 282-287 (2007) SHORT COMMUNICATION Purification of 2-mercaptobenzothiazole by solvent extraction Prakorn Ramakul, Milan Hronec* and Ura Pancharoen Department of Chemical Engineering,

More information

Catalytic Decomposition of Formaldehyde on Nanometer Manganese Dioxide

Catalytic Decomposition of Formaldehyde on Nanometer Manganese Dioxide Modern Applied Science April, 29 Catalytic Decomposition of Formaldehyde on Nanometer Manganese Dioxide Xiujuan Chu & Hua Zhang (Corresponding author) Tianjin Municipal Key Lab of Fibres Modification and

More information

Module: 7. Lecture: 36

Module: 7. Lecture: 36 Module: 7 Lecture: 36 DIMETHYL FORMAMIDE INTRODUCTION Dimethylformamide is an organic compound and denotes as DMF. The name is derived from the fact that it is a derivative of formamide, the amide of formic

More information

Simultaneous Removal of COS and H 2 S at Low Temperatures over Nanoparticle α-feooh Based Catalysts

Simultaneous Removal of COS and H 2 S at Low Temperatures over Nanoparticle α-feooh Based Catalysts Journal of Natural Gas Chemistry 12(2003)37 42 Simultaneous Removal of COS and H 2 S at Low Temperatures over Nanoparticle α-feooh Based Catalysts Zhihua Gao, Chunhu Li, Kechang Xie State Key Lab of C1

More information

Microwave-assisted polyol synthesis of copper nanocrystals without additional protective agents

Microwave-assisted polyol synthesis of copper nanocrystals without additional protective agents Electronic Supporting Information Microwave-assisted polyol synthesis of copper nanocrystals without additional protective agents Hideya Kawasaki, a Yuka Kosaka, a Ryuichi Arakawa a Yuki Myoujin, a Takashi

More information

Very low temperature CO oxidation over colloidally deposited gold nanoparticles on Mg(OH) 2 and MgO

Very low temperature CO oxidation over colloidally deposited gold nanoparticles on Mg(OH) 2 and MgO Supporing Information Very low temperature CO oxidation over colloidally deposited gold nanoparticles on Mg(OH) 2 and MgO Chun-Jiang Jia, Yong Liu, Hans Bongard, Ferdi Schüth* Max-Planck-Institut für Kohlenforschung,

More information

Chemistry 110. Bettelheim, Brown, Campbell & Farrell. Ninth Edition

Chemistry 110. Bettelheim, Brown, Campbell & Farrell. Ninth Edition Chemistry 110 Bettelheim, Brown, Campbell & Farrell Ninth Edition Introduction to General, rganic and Biochemistry Chapter 14 Alcohols, Ethers and Thiols Alcohols have a ydroxyl Group, -, bonded to tetrahedral

More information

Supplementary Information. ZIF-8 Immobilized Ni(0) Nanoparticles: Highly Effective Catalysts for Hydrogen Generation from Hydrolysis of Ammonia Borane

Supplementary Information. ZIF-8 Immobilized Ni(0) Nanoparticles: Highly Effective Catalysts for Hydrogen Generation from Hydrolysis of Ammonia Borane Supplementary Information ZIF-8 Immobilized Ni() Nanoparticles: Highly Effective Catalysts for Hydrogen Generation from Hydrolysis of Ammonia Borane Pei-Zhou Li, a,b Kengo Aranishi, a and Qiang Xu* a,b

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Information Surfactant-free single-nano-sized colloidal Cu nanoparticles for use as an active catalyst of Ullmann-coupling reaction Yuto Isomura, a Takashi Narushima, b Hideya

More information

Molecular-Level Insight into Selective Catalytic Reduction of NO x with NH 3 to N 2

Molecular-Level Insight into Selective Catalytic Reduction of NO x with NH 3 to N 2 Supporting Information Molecular-Level Insight into Selective Catalytic Reduction of NO x with to N 2 over Highly Efficient Bifunctional V a Catalyst at Low Temperature Ying Xin, Hao Li, Nana Zhang, Qian

More information

Present State and Main Trends of Research on Liquid-Phase Oxidation of Organic Compounds

Present State and Main Trends of Research on Liquid-Phase Oxidation of Organic Compounds 1 Downloaded via 148.251.232.83 on July 10, 2018 at 19:07:56 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles. Present State and Main Trends

More information

Lab 6 Inorganic Syntheses using Mo catalysts

Lab 6 Inorganic Syntheses using Mo catalysts Lab 6 Inorganic Syntheses using Mo catalysts Literature References 1. Moore, F.W., et. al., "Dialkyldithiocarbamate Complexes of Molybdenum (V) and Molybdenum (VI)", Inorganic Chemistry 1967, 6, 998-1003.

More information

* Corresponding authors:

* Corresponding authors: Mechanism of Olefin Hydrogenation Catalysis Driven by Palladium-Dissolved Hydrogen Satoshi Ohno,*, Markus Wilde,*, Kozo Mukai, Jun Yoshinobu, and Katsuyuki Fukutani Institute of Industrial Science, The

More information

Determination of Metal Dispersion of Pt/CeO2 Catalyst by CO-pulse Method

Determination of Metal Dispersion of Pt/CeO2 Catalyst by CO-pulse Method Journal of the Japan Petroleum Institute, 48, (3), 173 177 (2005) 173 [Research Note] Determination of Metal Dispersion of Pt/CeO2 Catalyst by CO-pulse Method Shin ichi KOMAI 1), Yoshiteru YAZAWA 1), Atsushi

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2015 Catalytic performance of Keplerate polyoxomolybdates in green epoxidation of alkenes with hydrogen

More information

Alkylation of Isobutane by 1-Butene over H-beta Zeolite in CSTR (Part 3) Effect of Property of H-beta Zeolite

Alkylation of Isobutane by 1-Butene over H-beta Zeolite in CSTR (Part 3) Effect of Property of H-beta Zeolite Journal of the Japan Petroleum Institute, 56, (5), 349-355 (2013) 349 [Technical Report] Alkylation of Isobutane by 1-Butene over H-beta Zeolite in CSTR (Part 3) Effect of Property of H-beta Zeolite Yuki

More information

OBTAINING OF LIQUID FUEL FROM COAL IN THE PRESENCE OF THE POLYMERS

OBTAINING OF LIQUID FUEL FROM COAL IN THE PRESENCE OF THE POLYMERS Int. J. Chem. Sci.: 14(1), 2016, 261-268 ISSN 0972-768X www.sadgurupublications.com OBTAINING OF LIQUID FUEL FROM COAL IN THE PRESENCE OF THE POLYMERS D. A. BAISEITOV, SH. E. GABDRASHOVA, A. K. AKYLBAI,

More information

Supplementary Figure S1 Reactor setup Calcined catalyst (0.40 g) and silicon carbide powder (0.4g) were mixed thoroughly and inserted into a 4 mm

Supplementary Figure S1 Reactor setup Calcined catalyst (0.40 g) and silicon carbide powder (0.4g) were mixed thoroughly and inserted into a 4 mm Supplementary Figure S1 Reactor setup Calcined catalyst (.4 g) and silicon carbide powder (.4g) were mixed thoroughly and inserted into a 4 mm diameter silica reactor (G). The powder mixture was sandwiched

More information

Effects of Solvent Acidity on the Free-Radical-Initiated Synthesis of Methanesulfonic Acid from CH 4 and SO 3

Effects of Solvent Acidity on the Free-Radical-Initiated Synthesis of Methanesulfonic Acid from CH 4 and SO 3 Ind. Eng. Chem. Res. 2002, 41, 5901-5905 5901 APPLIED CHEMISTRY Effects of Solvent Acidity on the Free-Radical-Initiated Synthesis of Methanesulfonic Acid from CH 4 and SO 3 Sudip Mukhopadhyay and Alexis

More information

Aldehydes and Ketones : Aldol Reactions

Aldehydes and Ketones : Aldol Reactions Aldehydes and Ketones : Aldol Reactions The Acidity of the a Hydrogens of Carbonyl Compounds: Enolate Anions Hydrogens on carbons a to carbonyls are unusually acidic The resulting anion is stabilized by

More information

Alcohols. Ethanol Production. 182 minutes. 181 marks. Page 1 of 25

Alcohols. Ethanol Production. 182 minutes. 181 marks. Page 1 of 25 3..10 Alcohols Ethanol Production 18 minutes 181 marks Page 1 of 5 Q1. Ethanol is produced commercially by fermentation of aqueous glucose, C 6 H 1 O 6 State two conditions, other than temperature, which

More information

Solvent Free Synthesis Of N,N-Diethyl Hydroxyl Amine Using Glycerol-Stabilized Nano TiO2 As An Efficient Catalyst

Solvent Free Synthesis Of N,N-Diethyl Hydroxyl Amine Using Glycerol-Stabilized Nano TiO2 As An Efficient Catalyst Solvent Free Synthesis Of N,N-Diethyl Hydroxyl Amine Using Glycerol-Stabilized Nano TiO2 As An Efficient Catalyst Bahramyadollahi 1, Raminsaeedi 2, Alihassanzadeh 3 Department of Physical Chemistry, Faculty

More information

Synthesis of renewable diesel with hydroxyacetone and 2-methyl-furan

Synthesis of renewable diesel with hydroxyacetone and 2-methyl-furan Supporting Information Synthesis of renewable diesel with hydroxyacetone and 2-methyl-furan Guangyi Li, a,b Ning Li, a Shanshan Li, a,b Aiqin Wang, a Yu Cong, a Xiaodong Wang a and Tao Zhang a * a State

More information

Title. Author(s)SUBRAMANYAM, K.; RAO, M. R. A. Issue Date Doc URL. Type. File Information. on promoted and unpromoted iron catalysts

Title. Author(s)SUBRAMANYAM, K.; RAO, M. R. A. Issue Date Doc URL. Type. File Information. on promoted and unpromoted iron catalysts Title ADSORPTION OF HYDROGEN AND CARBON MONOXIDE AND THEIR TROPSCH CATALYSTS:Part Ⅰ: Synthesis experiments and on promoted and unpromoted iron catalysts Author(s)SUBRAMANYAM, K.; RAO, M. R. A. CitationJOURNAL

More information

THE NEW QUANTITATIVE ANALYTICAL METHOD FOR ULTRATRACE SULFUR COMPOUNDS IN NATURAL GAS

THE NEW QUANTITATIVE ANALYTICAL METHOD FOR ULTRATRACE SULFUR COMPOUNDS IN NATURAL GAS International Gas Union Research Conference 14 THE NEW QUANTITATIVE ANALYTICAL METHOD FOR ULTRATRACE SULFUR COMPOUNDS IN NATURAL GAS Main author Hironori IMANISHI Tokyo Gas Co., Ltd. JAPAN himanishi@tokyo-.co.jp

More information

Experiment 6 Simple and Fractional Distillation

Experiment 6 Simple and Fractional Distillation Experiment 6 Simple and Fractional Distillation Vapor Pressure vs Temperature of Water Vapor Pressure vs Temperature of Water 25 Vapor Pressure vs Temperature of Water 25 Vapor Pressure (kpa) (kpa) 2 2

More information

XAFS Analysis for Calcination Process of Supported Mn Catalysts on Silica

XAFS Analysis for Calcination Process of Supported Mn Catalysts on Silica XAFS Analysis for Calcination Process of Supported Mn Catalysts on Silica Kazutaka Furusato, Misaki Katayama, and Yasuhiro Inada Department of Applied Chemistry, Graduate School of Life Sciences, Ritsumeikan

More information

Insights into Interfacial Synergistic Catalysis over Catalyst toward Water-Gas Shift Reaction

Insights into Interfacial Synergistic Catalysis over Catalyst toward Water-Gas Shift Reaction Supporting Information Insights into Interfacial Synergistic Catalysis over Ni@TiO2-x Catalyst toward Water-Gas Shift Reaction Ming Xu, 1 Siyu Yao, 2 Deming Rao, 1 Yiming Niu, 3 Ning Liu, 1 Mi Peng, 2

More information

Product Brief. - Hydrocarbons alkanes, alkenes, alkynes, dienes including natural gas, refinery gas, liquified petroleum gas

Product Brief. - Hydrocarbons alkanes, alkenes, alkynes, dienes including natural gas, refinery gas, liquified petroleum gas Agilent Porous Polymer PLOT Columns: New Products, Expanded Uses, Prices Cut in Half! Product Brief Need improved resolution of small volatile compounds? Didn't try a PLOT column due to high price, short

More information

CHEMISTRY HIGHER LEVEL

CHEMISTRY HIGHER LEVEL *P15* Pre-Leaving Certificate Examination, 2012 Triailscrúdú na hardteistiméireachta, 2012 CHEMISTRY HIGHER LEVEL TIME: 3 HOURS 400 MARKS Answer eight questions in all These must include at least two questions

More information

Research on Direct Epoxidation of Propylene over Modified Au/Ts-1. Catalysts. Lina Wang1, a

Research on Direct Epoxidation of Propylene over Modified Au/Ts-1. Catalysts. Lina Wang1, a Advances in Engineering Research (AER), volume 107 2nd International Conference on Materials Engineering and Information Technology Applications (MEITA 2016) Research on Direct Epoxidation of Propylene

More information

Dehydration of Alcohols-Gas Chromatography

Dehydration of Alcohols-Gas Chromatography Dehydration of Alcohols-Gas Chromatography OBJECTIVE In this lab, we will examine the phosphoric acid catalyzed dehydration of 2-methylcyclohexanol. Gas chromatography will be used to monitor the outcome

More information

(a) Name the alcohol and catalyst which would be used to make X. (2)

(a) Name the alcohol and catalyst which would be used to make X. (2) 1 The chemical X is an ester with formula CH 3 COOC(CH 3 ) 3 which occurs in raspberries and pears. It can be prepared in the laboratory by refluxing ethanoic acid with an alcohol in the presence of a

More information

PRINCIPLES AND APPLICATION OF CHROMATOGRAPHY. Dr. P. Jayachandra Reddy Mpharm PhD Principal & professor KTPC

PRINCIPLES AND APPLICATION OF CHROMATOGRAPHY. Dr. P. Jayachandra Reddy Mpharm PhD Principal & professor KTPC PRINCIPLES AND APPLICATION OF CHROMATOGRAPHY Dr. P. Jayachandra Reddy Mpharm PhD Principal & professor KTPC CHROMATOGRAPHY Laboratory technique for the Separation of mixtures Chroma -"color" and graphein

More information

Title. Author(s)BALASUBRAMANIAN, K.; KURIACOSE, J. C. Issue Date Doc URL. Type. File Information FERRITE SPINEL

Title. Author(s)BALASUBRAMANIAN, K.; KURIACOSE, J. C. Issue Date Doc URL. Type. File Information FERRITE SPINEL Title KINETICS OF REACTIONS OF ACETIC ACID AND 2-PROPANOL FERRITE SPINEL Author(s)BALASUBRAMANIAN, K.; KURIACOSE, J. C. CitationJOURNAL OF THE RESEARCH INSTITUTE FOR CATALYSIS HOKK Issue Date 1983-11 Doc

More information

Strategic use of CuAlO 2 as a sustained release catalyst for production of hydrogen from methanol steam reforming

Strategic use of CuAlO 2 as a sustained release catalyst for production of hydrogen from methanol steam reforming Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information Strategic use of CuAlO 2 as a sustained release catalyst for

More information

What type of samples are common? Time spent on different operations during LC analyses. Number of samples? Aims. Sources of error. Sample preparation

What type of samples are common? Time spent on different operations during LC analyses. Number of samples? Aims. Sources of error. Sample preparation What type of samples are common? Sample preparation 1 2 Number of samples? Time spent on different operations during LC analyses 3 4 Sources of error Aims Sample has to be representative Sample has to

More information

Synthesis and Sustainable Chemistry

Synthesis and Sustainable Chemistry Synthesis and Sustainable Chemistry Considering % yield and % Atom Economy: high % yield means very efficient conversion from reactants to products increasing % yield means more efficient use of starting

More information

Fischer-Tropsch Synthesis over Co/ɣ-Al 2 O 3 Catalyst: Activation by Synthesis Gas

Fischer-Tropsch Synthesis over Co/ɣ-Al 2 O 3 Catalyst: Activation by Synthesis Gas , July 5-7, 2017, London, U.K. Fischer-Tropsch Synthesis over Co/ɣ-Al 2 O 3 Catalyst: Activation by Synthesis Gas Ditlhobolo Seanokeng, Achtar Iloy, Kalala Jalama Abstract This study aimed at investigating

More information

Cyanide Analysis of Wastewater Samples from FCC and Hydrocracking Operations

Cyanide Analysis of Wastewater Samples from FCC and Hydrocracking Operations Cyanide Analysis of Wastewater Samples from FCC and Hydrocracking Operations Introduction Fluid catalytic cracking (FCC) is a major unit operation in refineries around the world. FCC is used to convert

More information

The temp. at which a liquid distills is a definite value at a given pressure, for every pure organic cpd called boiling point.

The temp. at which a liquid distills is a definite value at a given pressure, for every pure organic cpd called boiling point. Distillation It is a process of separation & purification of liquid organic cpd.s by selective evaporation & condensation. It may result in complete separation ( nearly pure ), or,a partial separation

More information

Purification Influence of Synthesis Gas Derived from Methanol Cracking on the Performance of Cobalt Catalyst in Fischer-Tropsch Synthesis

Purification Influence of Synthesis Gas Derived from Methanol Cracking on the Performance of Cobalt Catalyst in Fischer-Tropsch Synthesis Journal of Natural Gas Chemistry 14(2005)193 198 Purification Influence of Synthesis Gas Derived from Methanol Cracking on the Performance of Cobalt Catalyst in Fischer-Tropsch Synthesis Wei Zhou 1,2,

More information

Alcohols Oxidation by oxygen O 2 in presence of vanadoheteropolyacid (H 5 PMo 10 V 2 O 40 ) as green catalyst

Alcohols Oxidation by oxygen O 2 in presence of vanadoheteropolyacid (H 5 PMo 10 V 2 O 40 ) as green catalyst International Journal of ChemTech Research CODEN( USA): IJCRGG ISSN : 0974-4290 Vol.2, No.3, pp 1666-1672, July-Sept 2010 Alcohols Oxidation by oxygen O 2 in presence of vanadoheteropolyacid (H 5 PMo 10

More information

Effect of Concentration of Hydrogen Chloride Gas on Chlorination Treatment of Waste Containing Antimony-Uranium Composite Oxide Catalyst

Effect of Concentration of Hydrogen Chloride Gas on Chlorination Treatment of Waste Containing Antimony-Uranium Composite Oxide Catalyst Effect of Concentration of Hydrogen Chloride Gas on Chlorination Treatment of Waste Containing Antimony-Uranium Composite Oxide Catalyst - 11274 Kayo Sawada and Youichi Enokida EcoTopia Science Institute,

More information

Hydrogenation of CO Over a Cobalt/Cerium Oxide Catalyst for Production of Lower Olefins

Hydrogenation of CO Over a Cobalt/Cerium Oxide Catalyst for Production of Lower Olefins Hydrogenation of CO Over a Cobalt/Cerium Oxide Catalyst for Production of Lower Olefins Proceedings of European Congress of Chemical Engineering (ECCE-6) Copenhagen, 16-2 September 27 Hydrogenation of

More information

Preparation of Titania Microballoons by Sol-Gel Process in Reverse Dispersion

Preparation of Titania Microballoons by Sol-Gel Process in Reverse Dispersion 1/20 Preparation of Titania Microballoons by Sol-Gel Process in Reverse Dispersion Isao Kimura a,*, Yu Isono a, and Masato Tanaka b a Graduate School of Science and Technology, Niigata University, Ikarashi

More information

PREPARATION, CHARACTERIZATION OF OXIDATION-REDUCTION PROPERTIES AND APPLICATION OF Fe-ZSM-5 CATALYSTS

PREPARATION, CHARACTERIZATION OF OXIDATION-REDUCTION PROPERTIES AND APPLICATION OF Fe-ZSM-5 CATALYSTS PREPARATION, CHARACTERIZATION OF OXIDATION-REDUCTION PROPERTIES AND APPLICATION OF Fe-ZSM-5 CATALYSTS D. Szalay*, G. Horváth**, J. Halász** and I. Kiricsi** Department of Environmental Engineering, Széchenyi

More information

Surface Oxidation Mechanism of Ni(0) Particle Supported on Silica

Surface Oxidation Mechanism of Ni(0) Particle Supported on Silica Surface Oxidation Mechanism of Ni(0) Particle Supported on Silica Shohei Yamashita, Yusaku Yamamoto, Misaki Katayama, and Yasuhiro Inada Department of Applied Chemistry, Graduate School of Life Sciences,

More information

Experiment 2 Solvent-free Aldol Condensation between 3,4-dimethoxybenzaldehyde and 1-indanone

Experiment 2 Solvent-free Aldol Condensation between 3,4-dimethoxybenzaldehyde and 1-indanone Experiment 2 Solvent-free Aldol Condensation between 3,4-dimethoxybenzaldehyde and 1-indanone Chemical Concepts Carbonyl chemistry, base catalyzed aldol reaction, melting point, recrystallization Green

More information

Supporting Information

Supporting Information Supporting Information Nano CuFe 2 O 4 as a Magnetically Separable and Reusable Catalyst for the Synthesis of Diaryl / Aryl Alkyl Sulfides via Cross-Coupling Process under Ligand Free Conditions Kokkirala

More information

Pickering emulsion engineering: Fabrication of materials with multiple cavities

Pickering emulsion engineering: Fabrication of materials with multiple cavities Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 014 Electronic Supplementary Infomaton Pickering emulsion engineering: Fabrication of materials

More information

Room Temperature Hydrogen Generation from Hydrous Hydrazine for Chemical Hydrogen Storage

Room Temperature Hydrogen Generation from Hydrous Hydrazine for Chemical Hydrogen Storage (Supporting Information) Room Temperature Hydrogen Generation from Hydrous Hydrazine for Chemical Hydrogen Storage Sanjay Kumar Singh, Xin-Bo Zhang, and Qiang Xu* National Institute of Advanced Industrial

More information