CHAPTER 8 ISOLATION AND CHARACTERIZATION OF PHYTOCONSTITUENTS BY COLUMN CHROMATOGRAPHY

Size: px
Start display at page:

Download "CHAPTER 8 ISOLATION AND CHARACTERIZATION OF PHYTOCONSTITUENTS BY COLUMN CHROMATOGRAPHY"

Transcription

1 146 CHAPTER 8 ISLATIN AND CHARACTERIZATIN F PHYTCNSTITUENTS BY CLUMN CHRMATGRAPHY 8.1 INTRDUCTIN Column chromatography is an isolation technique in which the phytoconstituents are being eluted by adsorption. The principle involved in this separation of constituents is adsorption at the interface between solid and liquid. The component must have various degree of affinity towards adsorbent and also reversible interaction to achieve successful separation. No two compounds are alike in the above aspect. Low affinity compounds will elute first. The columns of different sizes were used for the present studies. Since the methanolic extract was found to possess significant pharmacological activity when compared to other extracts an attempt was made to fractionate the methanol extract by column chromatography. The elution was done by using solvents of different polarity like n- hexane, ethyl acetate and methanol. 8.2 MATERIALS AND METHDS Type of extract : Methanol extract Method : Dry packing method Packing material : Silica gel G

2 147 Procedure The methanol extract was subjected to Silica gel column chromatography for the isolation of the phytoconstituents. An appropriate column sized 5cm diameter and 50cm length was used. It was washed with water and rinsed with acetone and then dried completely. Little of pure cotton was placed at the bottom of column with the help of a big glass rod. Solvent hexane was poured into the column upto ¾ th level. Methanol extract was mixed with equal amount of graded silica gel until it became free flowing powder. When it reached a defined state it was slowly poured into the column containing hexane solvent with slight movement of stirring by glass rod to avoid clogging. Little cotton was placed on top of silica gel- extract mixture pack to get neat column pack. The knob at the bottom was slowly opened to release the solvent. The elution was done using hexane, ethyl acetate and methanol in different ratios like Hexane (100%- broad fraction 1), Hexane: Ethyl acetate (50:50- broad fraction 2), Ethyl acetate (100%- broad fraction 3), Ethyl acetate: Methanol (50:50 broad fraction 4) and methanol (100%- broad fraction 5). All the five broad fractions were collected separately and subjected to TLC. The solvents were evaporated by rotary vacuum evaporator. Since there was no yield in the Hexane fraction (100%) and very less yield in broad fractions 2 and 3, fractions 4, 5 were selected and again subjected to sub column fractionation.

3 148 Isolation of Compound I and II The 5 th fraction (methanol 100%) on concentrating on a rotary vacuum evaporator yielded light yellow sedimentation. It was then filtered and the light yellow powder was dried. The filtrate was concentrated and a brown semisolid was obtained. Both the fractions were subjected to thin layer chromatographic studies. The yellow coloured powder was named as compound I and the brown semisolid was named as compound II. Isolation of compound III The broad fraction 4 (Ethyl acetate: Methanol 50:50) was again subjected to sub column fractionation using different ratios of Iso propyl alcohol(ipa) and ethyl acetate. The fractions were collected and subjected to thin layer chromatographic studies. The similar fractions were mixed together and evaporated using rotary vacuum evaporator. The fractions (5% IPA and 95% Ethyl acetate) on evaporation yielded a light brown solid which was named as compound III. The pure compounds obtained were then subjected to spectral analysis for the determination of the structure of the compound. 8.3 TLC As soon as the fractions were eluted, it was analysed by using ready made TLC plate with suitable mobile solvent according to the polarity of elute. The developed chromatogram was observed under UV and also derivatized with detecting agent. 8.4 SPECTRAL ANALYSIS[ ] The isolated compounds were taken to determine the structure by instrumental spectral analysis such as

4 149 IR spectroscopy NMR - 1 H and 13 C IR Mass spectroscopy IR spectrum is considered as vibrational-rotational spectra. KBr pellet technique is used for solid compound, for liquid compound Nujol mull method is followed. It is very helpful record which would give information about functional group present in the organic compounds. Mechanism of bond stretching and bending is happened when electromagnetic radiation ranging from 500cm 1 to 4000 cm 1 passed through sample. Instrument used was ABD BWMEN Spectrometer NMR Nuclear magnetic spectrum is the most powerful spectral technique used to detect chemical structure of the molecules. The differences in the chemical environment around the different nuclei are exploited to obtain this information and is expressed in terms of chemical shifts in parts per million. When sample absorbs radiation at different radio frequency region which causes to excite type of proton or certain nuclei contained in the sample against magnetic field. The most commonly used NMR technique are the 1 H and 13 C. The instrument used was for detection is PRBHD Nuclear Magnetic Resonance spectrometer. 1 H NMR Most commonly used NMR is Proton NMR, because of the sensitivity and wide range of characteristic information. Range of chemical

5 150 shift ( ) from 0 14 ppm. Chemical shift of the test unknown compound was compared with TMS protons which are attributed at 0 ppm. But, the shift extends for the organic compound range 0 14 for the component. 13 C NMR It is new technique but natural abundance is very low 1.1%. So, this further reduces the sensitivity of the absorption. The range of chemical shift ) from ppm with use of TMS internal reference. An advantage is one can directly observe the functional group contained carbon atom Mass Spectroscopy It is an accurate method to determine the molecular mass of the compound. The main advantage is very small amount of sample is required for analysis than any other spectral methods. The mass spectroscopy uses the electric and magnetic fields to produce electrically charged ions of chemical substance under analysis. Instrument used to determine the spectrum was JEL Gcmate Mass spectrometer. The record spectrum tells about the mass, relative abundance of the molecular ions and positively charged fragments formed by electronic bombardment. Sample was dissolved in CDCl 3 and injected through direct probe inlet. Electronic impact ionization method was used.

6 RESULTS Column Chromatography Table 8.1 Broad fractions from methanol extract Eluent Solvent Ratio Compound n-hexane 100% - n-hexane: Ethyl acetate 50:50 - Ethyl acetate Ethyl acetate: Methanol 50:50 - Methanol 100 Compound-I Compound- II Table 8.2 Sub fractions from Ethyl acetate: Methanol(5:5) broad fraction Eluent Solvent Ratio Compound Ethyl acetate 100% - Ethyl acetate : IPA 95:5 Compound III Ethyl acetate : IPA 10:90 - Ethyl acetate: IPA 20:80 - Ethyl acetate: IPA 40: 60 - Ethyl acetate: IPA 60:40 - Ethyl acetate: IPA 80:20 - Ethyl acetate 100 -

7 152 SPECTRAL ANALYSIS The compounds (C-I, II and III) obtained with the methanol extract have identified and spectral data s were depicted in the Figures 8.1 to Characterization of Compound I Light yellow solid (1.5gm) was obtained which is soluble in methanol and water, the melting point was found to be C. The isolated compound answered the test for sugars. The various spectral data s obtained were given in Figures 8.1, 8.2, 8.3 and 8.4. Ir cm-1 : Nujol mull Wave Numbers (cm -1 ) Type CH 3, CH 2, CH 1695 C=C 1415 (C-) 1246 (C-) 1196 (C-) 1052 (C-) 897 (CH) 732 (CH)

8 153 Bruker NMR: 500MHz (solvent: D 2,,ppm), ppm: Parts per million Atom Carbon,, ppm Hydrogen,, ppm (d, 1H, J = 2.50 Hz) (d, 1H, J = 2.50 Hz) (t, 1H, J = 9.00 Hz) (t, 1H, J = 9.50 Hz) (m, 1H) Properties Name Glucuronic acid Molecular formula C 6 H 10 7 Molecular weight 194 Melting point C Mass (m/z) Colour Nature Solubility TLC studies 194[M+1] Yellow Solid Soluble in methanol and water Methanol: Ethyl acetate:water:acetic acid(2:6:1:1) Structure H 6 5 4

9 Figure 8.1 IR Spectrum of compound I 154

10 Figure H NMR Spectrum of compound I 155

11 Figure C NMR Spectrum of compound I 156

12 Figure 8.4 Mass spectrum of compound I 157

13 Characterization of Compound II Yellowish brown semisolid mass (2gm) was obtained which is soluble in methanol and water, the melting point was found to be C. The isolated compound answered the test for flavanoids. The various spectral data s obtained were given in the Figures 8.5, 8.6, 8.7 and 8.8. Ir cm-1 : Nujol mull WAVE NUMBERS (cm -1 ) TYPE CH 3, CH 2, CH 1686 C=C 1412 (C-) 1276 (C-) 1075 (C-) 913 (C-) 634 (CH) Bruker NMR (500MHz,,ppm in values):ppm:parts per million Atom Carbon,, ppm Hydrogen,, ppm (m, 1H) (m, 1H) (m, 1H) (m, 2H) (m, 1H) (m, 1H) (m, 1H) (m, 1H) (m, 1H) (m, 1H) (m, 1H) (m, 2H)

14 159 Properties Name Rhamnetin-3-- -D-Galactosyl D-galactopyranoside Molecular formula C 28 H Molecular weight 640 Melting point C Mass (m/z) 639( M ) + Colour Solubility TLC studies Nature Yellowish brown Soluble in methanol and water Methanol: Ethyl acetate:water:acetic acid(2:6:1:1) Semi-solid Structure H H H

15 Figure 8.5 IR Spectrum of compound II 160

16 Figure H NMR Spectrum of compound II 161

17 Figure C NMR Spectrum of compound II 162

18 Figure 8.8 Mass spectrum of compound II 163

19 Characterization of Compound III The compound III was obtained as brown solid and the melting point was found to be C. The isolated compound answered the test for triterpenoids. The various spectral data s obtained were given in the Figures 8.9, 8.10, 8.11 and Ir cm-1 : Nujol mull WAVE NUMBERS(cm -1 ) TYPE CH 3, CH 2, CH C= 1646 (C=C) 1367 (C-) 1076 (C-) 1035 (-CH) 824 (C-) 775 (C-H)

20 165 Bruker NMR (500MHz,, ppm in values) Atom Carbon,, ppm Hydrogen,, ppm

21 166 Atom Carbon,, ppm Hydrogen,, ppm Glycosides Linkages

22 167 Properties Name 3--[ -l-arabinopyranosyl-(1,4)-- -D- glucuronopyranosyl)]-31--( -D- glucopyranosyl) oleanolic acid Molecular formula C 48 H Molecular weight 932 Melting point C Mass (m/z) 825 ( M ) + Colour Nature Solubility Brown Sticky mass Soluble in water Structure ' H 17' 11' 10' 13' 14' 16' 15' 9' 7' ' H 1' 2' 3' 5' 4' 6'

23 Figure 8.9 IR Spectrum of compound III 168

24 Figure H NMR Spectrum of compound III 169

25 Figure C NMR Spetrum of compound III 170

26 Figure 8.12 Mass spectrum of compound III 171

27 DISCUSSIN Methanolic extract was found to possess significant pharmacological activity when compared to other extracts it was subjected to column chromatography for the isolation of phytoconstituents. Three compounds were isolated from the extract and their structures were identified by spectral studies. The structure of the isolated compound I was analysed by spectroscopic techniques like IR, NMR and mass spectroscopy. The melting point of the compound was found to be C and it answered the test for sugars. It had IR absorptions at 3391(hydroxyl), 2922 (C-H stretching of alkanes), 1686 (carbonyl group of acid), 1415, 1246, 1196 and 1052 (C- vibrations of alcohols). The 1 H NMR spectrum showed the presence of 5 protons on saturated carbon atoms. The value at 3.40 (d, 1H, J = 2.50Hz) and 3,92(d, 1H, J = 2.50Hz) showed the doublet protons. The other two protons were present as triplet with the value of 3.13(d, 1H, J = 9.00 Hz) and 3.48 (d, 1H, J = 2.50Hz). The value at 3.38 (M,1H) showed the presence of multiplet. The 13 C NMR spectrum showed peaks at 75.89, 95.85, 74.29, and corresponding to carbon connected to oxygen linkage. The peak at corresponds to the carbonyl carbon. Mass spectrum of the compound showed the molecular ion peak at m/z 194. From the spectral studies the possible structure of compound I may be glucoronic acid. The structure of the isolated compound II was analysed by spectroscopic techniques and the melting point of the compound was found to be C. It answered the test for flavanoids. It had IR absorptions at 3369(hydroxyl), 2930 (C-H stretching of alkanes), 1412,1276, 1075 and 913 (C- vibrations of alcohols) and 634 (C-H bending vibration of alkanes.

28 173 The 1 H NMR spectrum showed the presence of 14 protons on saturated carbon atoms. The protons are multiplet with the value of (M,H) in up field and the value at (M,H) showed the protons in the down field. The peak appeared in the range between ppm corresponds to carbon connected to oxygen linkage. 1 H and 13 C NMR spectrum of the compound showed the peaks at 73.41, 73.62, 75.25, 71.82, 72.40, 76.46, and indicated the carbon connected to oxygen linkage. Mass spectrum of the compound showed the molecular ion peak at m/z 639. From the spectral studies the possible structure of compound II may be Rhamnetin-3-- -D-Galactosyl D-galactopyranoside. The melting point of the compound III was found to be C and it answered the test for triterpenoids. It had IR absorptions at 3392(hydroxyl), 2926 (C-H stretching of alkanes), 1726 (C= stretching vibration of ketones), 1646 (C=C stretching vibration of alkanes), 1367, 1076 (C- stretching vibraton of alcohols), 1035 (C-H bending vibration of alkenes), 824(C- bending vibration of alcohols) and 725 (C-H bending vibration of alkanes). The 1 H NMR spectrum showed the presence of 50 protons in which 8 methyl protons were present with value of the 1H NMR signal at 3.20 was found to be secondary hydroxyl group. It showed the presence of olefinic proton with 5.16ppm. 13 C NMR spectrum showed peaks at 82.94, corresponds to carbon connected to oxygen. The peak at showed the presence of carbonyl carbon and at , showed the presence of double bond. Mass spectrum of the compound III showed the molecular ion peak at m/z 825. From the spectral studies the possible structure of compound II may be oleanolic acid derivative.

7a. Structure Elucidation: IR and 13 C-NMR Spectroscopies (text , , 12.10)

7a. Structure Elucidation: IR and 13 C-NMR Spectroscopies (text , , 12.10) 2009, Department of Chemistry, The University of Western Ontario 7a.1 7a. Structure Elucidation: IR and 13 C-NMR Spectroscopies (text 11.1 11.5, 12.1 12.5, 12.10) A. Electromagnetic Radiation Energy is

More information

Advanced Pharmaceutical Analysis

Advanced Pharmaceutical Analysis Lecture 2 Advanced Pharmaceutical Analysis IR spectroscopy Dr. Baraa Ramzi Infrared Spectroscopy It is a powerful tool for identifying pure organic and inorganic compounds. Every molecular compound has

More information

Experiment 1: Thin Layer Chromatography

Experiment 1: Thin Layer Chromatography Experiment 1: Thin Layer Chromatography Part A: understanding R f values Part B: R f values & solvent polarity Part C: R f values & compound functionality Part D: identification of commercial food dye

More information

Lecture 11. IR Theory. Next Class: Lecture Problem 4 due Thin-Layer Chromatography

Lecture 11. IR Theory. Next Class: Lecture Problem 4 due Thin-Layer Chromatography Lecture 11 IR Theory Next Class: Lecture Problem 4 due Thin-Layer Chromatography This Week In Lab: Ch 6: Procedures 2 & 3 Procedure 4 (outside of lab) Next Week in Lab: Ch 7: PreLab Due Quiz 4 Ch 5 Final

More information

CHEM Chapter 13. Nuclear Magnetic Spectroscopy (Homework) W

CHEM Chapter 13. Nuclear Magnetic Spectroscopy (Homework) W CHEM 2423. Chapter 13. Nuclear Magnetic Spectroscopy (Homework) W Short Answer 1. For a nucleus to exhibit the nuclear magnetic resonance phenomenon, it must be magnetic. Magnetic nuclei include: a. all

More information

Introduction. The analysis of the outcome of a reaction requires that we know the full structure of the products as well as the reactants

Introduction. The analysis of the outcome of a reaction requires that we know the full structure of the products as well as the reactants Introduction The analysis of the outcome of a reaction requires that we know the full structure of the products as well as the reactants Spectroscopy and the Electromagnetic Spectrum Unlike mass spectrometry,

More information

E35 SPECTROSCOPIC TECHNIQUES IN ORGANIC CHEMISTRY

E35 SPECTROSCOPIC TECHNIQUES IN ORGANIC CHEMISTRY E35 SPECTRSCPIC TECNIQUES IN RGANIC CEMISTRY Introductory Comments. These notes are designed to introduce you to the basic spectroscopic techniques which are used for the determination of the structure

More information

Welcome to Organic Chemistry II

Welcome to Organic Chemistry II Welcome to Organic Chemistry II Erika Bryant, Ph.D. erika.bryant@hccs.edu Class Syllabus 3 CHAPTER 12: STRUCTURE DETERMINATION 4 What is this solution Soda Tea Coffee??? 5 What is this solution Soda Tea

More information

(2) After dissolving a solid in a solvent at high temperature, the solution is not filtered.

(2) After dissolving a solid in a solvent at high temperature, the solution is not filtered. Name Key 216 W13-Exam No. 1 Page 2 I. (10 points) The goal of recrystallization is to obtain purified material with a maximized recovery. For each of the following cases, indicate as to which of the two

More information

12. Structure Determination: Mass Spectrometry and Infrared Spectroscopy

12. Structure Determination: Mass Spectrometry and Infrared Spectroscopy 12. Structure Determination: Mass Spectrometry and Infrared Spectroscopy Determining the Structure of an Organic Compound The analysis of the outcome of a reaction requires that we know the full structure

More information

HWeb27 ( ; )

HWeb27 ( ; ) HWeb27 (9.1-9.2; 9.12-9.18) 28.1. Which of the following cannot be determined about a compound by mass spectrometry? [a]. boiling point [b]. molecular formula [c]. presence of heavy isotopes (e.g., 2 H,

More information

Spectroscopy and Chromatography

Spectroscopy and Chromatography Spectroscopy and Chromatography Introduction Visible light is one very small part of the electromagnetic spectrum. The different properties of the various types of radiation depend upon their wavelength.

More information

Supporting Information

Supporting Information Supporting Information Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2012 Subcellular Localization and Activity of Gambogic Acid Gianni Guizzunti,* [b] Ayse Batova, [a] Oraphin Chantarasriwong,

More information

CHEM 3.2 (AS91388) 3 credits. Demonstrate understanding of spectroscopic data in chemistry

CHEM 3.2 (AS91388) 3 credits. Demonstrate understanding of spectroscopic data in chemistry CHEM 3.2 (AS91388) 3 credits Demonstrate understanding of spectroscopic data in chemistry Spectroscopic data is limited to mass, infrared (IR) and 13 C nuclear magnetic resonance (NMR) spectroscopy. Organic

More information

SPECTROSCOPY MEASURES THE INTERACTION BETWEEN LIGHT AND MATTER

SPECTROSCOPY MEASURES THE INTERACTION BETWEEN LIGHT AND MATTER SPECTROSCOPY MEASURES THE INTERACTION BETWEEN LIGHT AND MATTER c = c: speed of light 3.00 x 10 8 m/s (lamda): wavelength (m) (nu): frequency (Hz) Increasing E (J) Increasing (Hz) E = h h - Planck s constant

More information

Supporting Information

Supporting Information Supporting Information Nano CuFe 2 O 4 as a Magnetically Separable and Reusable Catalyst for the Synthesis of Diaryl / Aryl Alkyl Sulfides via Cross-Coupling Process under Ligand Free Conditions Kokkirala

More information

Objective 4. Determine (characterize) the structure of a compound using IR, NMR, MS.

Objective 4. Determine (characterize) the structure of a compound using IR, NMR, MS. Objective 4. Determine (characterize) the structure of a compound using IR, NMR, MS. Skills: Draw structure IR: match bond type to IR peak NMR: ID number of non-equivalent H s, relate peak splitting to

More information

3.15 Nuclear Magnetic Resonance Spectroscopy, NMR

3.15 Nuclear Magnetic Resonance Spectroscopy, NMR 3.15 Nuclear Magnetic Resonance Spectroscopy, NMR What is Nuclear Magnetic Resonance - NMR Developed by chemists and physicists together it works by the interaction of magnetic properties of certain nuclei

More information

Spectroscopy. Empirical Formula: Chemical Formula: Index of Hydrogen Deficiency (IHD)

Spectroscopy. Empirical Formula: Chemical Formula: Index of Hydrogen Deficiency (IHD) Spectroscopy Empirical Formula: Chemical Formula: Index of Hydrogen Deficiency (IHD) A)From a structure: B)From a molecular formula, C c H h N n O o X x, Formula for saturated hydrocarbons: Subtract the

More information

Prelab Reading Assignment: Laboratory Techniques in Organic Chemistry, 4 th Ed. Chapter 19

Prelab Reading Assignment: Laboratory Techniques in Organic Chemistry, 4 th Ed. Chapter 19 CHEM 213 Technique Experiments Experiment 5: Column Chromatography Number of labs - one Reactions performed None Chemicals used: Fluorene-fluorenone mixture, hexanes, methylene chloride, silica gel Supplies

More information

Electronic Supplementary Material

Electronic Supplementary Material Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Material A Novel Functionalized Pillar[5]arene: Synthesis, Assembly

More information

Infrared Spectroscopy: Identification of Unknown Substances

Infrared Spectroscopy: Identification of Unknown Substances Infrared Spectroscopy: Identification of Unknown Substances Suppose a white powder is one of the four following molecules. How can they be differentiated? H N N H H H H Na H H H H H A technique that is

More information

Principles of Molecular Spectroscopy: Electromagnetic Radiation and Molecular structure. Nuclear Magnetic Resonance (NMR)

Principles of Molecular Spectroscopy: Electromagnetic Radiation and Molecular structure. Nuclear Magnetic Resonance (NMR) Principles of Molecular Spectroscopy: Electromagnetic Radiation and Molecular structure Nuclear Magnetic Resonance (NMR) !E = h" Electromagnetic radiation is absorbed when the energy of photon corresponds

More information

Red Color CPL Emission of Chiral 1,2-DACH-based Polymers via. Chiral Transfer of the Conjugated Chain Backbone Structure

Red Color CPL Emission of Chiral 1,2-DACH-based Polymers via. Chiral Transfer of the Conjugated Chain Backbone Structure Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2015 Red Color CPL Emission of Chiral 1,2-DACH-based Polymers via Chiral Transfer of the Conjugated

More information

Chromatography and Functional Group Analysis

Chromatography and Functional Group Analysis Chromatography Chromatography separates individual substances from a mixture. - to find out how many components there are - to match the components with known reference materials - to use additional analytical

More information

Infrared Spectroscopy

Infrared Spectroscopy Infrared Spectroscopy Introduction Spectroscopy is an analytical technique which helps determine structure. It destroys little or no sample. The amount of light absorbed by the sample is measured as wavelength

More information

OAT Organic Chemistry - Problem Drill 19: NMR Spectroscopy and Mass Spectrometry

OAT Organic Chemistry - Problem Drill 19: NMR Spectroscopy and Mass Spectrometry OAT Organic Chemistry - Problem Drill 19: NMR Spectroscopy and Mass Spectrometry Question No. 1 of 10 Question 1. Which statement concerning NMR spectroscopy is incorrect? Question #01 (A) Only nuclei

More information

SYNTHESIS OF A 3-THIOMANNOSIDE

SYNTHESIS OF A 3-THIOMANNOSIDE Supporting Information SYNTHESIS OF A 3-THIOMANNOSIDE María B Comba, Alejandra G Suárez, Ariel M Sarotti, María I Mangione* and Rolando A Spanevello and Enrique D V Giordano Instituto de Química Rosario,

More information

NUCLEAR MAGNETIC RESONANCE AND INTRODUCTION TO MASS SPECTROMETRY

NUCLEAR MAGNETIC RESONANCE AND INTRODUCTION TO MASS SPECTROMETRY NUCLEAR MAGNETIC RESONANCE AND INTRODUCTION TO MASS SPECTROMETRY A STUDENT SHOULD BE ABLE TO: 1. Identify and explain the processes involved in proton ( 1 H) and carbon-13 ( 13 C) nuclear magnetic resonance

More information

Structure Determination: Nuclear Magnetic Resonance Spectroscopy

Structure Determination: Nuclear Magnetic Resonance Spectroscopy Structure Determination: Nuclear Magnetic Resonance Spectroscopy Why This Chapter? NMR is the most valuable spectroscopic technique used for structure determination More advanced NMR techniques are used

More information

Chapter 9. Nuclear Magnetic Resonance. Ch. 9-1

Chapter 9. Nuclear Magnetic Resonance. Ch. 9-1 Chapter 9 Nuclear Magnetic Resonance Ch. 9-1 1. Introduction Classic methods for organic structure determination Boiling point Refractive index Solubility tests Functional group tests Derivative preparation

More information

CHEM 241 UNIT 5: PART A DETERMINATION OF ORGANIC STRUCTURES BY SPECTROSCOPIC METHODS [MASS SPECTROMETRY]

CHEM 241 UNIT 5: PART A DETERMINATION OF ORGANIC STRUCTURES BY SPECTROSCOPIC METHODS [MASS SPECTROMETRY] CHEM 241 UNIT 5: PART A DETERMINATION OF ORGANIC STRUCTURES BY SPECTROSCOPIC METHODS [MASS SPECTROMETRY] 1 Introduction Outline Mass spectrometry (MS) 2 INTRODUCTION The analysis of the outcome of a reaction

More information

Synthesis of Secondary and Tertiary Amine- Containing MOFs: C-N Bond Cleavage during MOF Synthesis

Synthesis of Secondary and Tertiary Amine- Containing MOFs: C-N Bond Cleavage during MOF Synthesis Electronic Supplementary Material (ESI) for CrystEngComm. This journal is The Royal Society of Chemistry 2015 Supporting Information Synthesis of Secondary and Tertiary Amine- Containing MFs: C-N Bond

More information

Selective Formation of Benzo[c]cinnoline by Photocatalytic Reduction of 2,2 Dinitrobiphenyl with TiO 2 and UV light irradiation

Selective Formation of Benzo[c]cinnoline by Photocatalytic Reduction of 2,2 Dinitrobiphenyl with TiO 2 and UV light irradiation Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2015 Content: Selective Formation of Benzo[c]cinnoline by Photocatalytic Reduction of

More information

Isolation of (Z)-7-methoxy-1, 5-dihydrobenzo[c] oxepine from Curcuma caesia Roxb.

Isolation of (Z)-7-methoxy-1, 5-dihydrobenzo[c] oxepine from Curcuma caesia Roxb. 2013; 2 (4): 795-801 Available online at: www.jsirjournal.com Research Article ISSN 2320-4818 JSIR 2013; 2(4): 795-801 2013, All rights reserved Received: 10-08-2013 Accepted: 24-09-2013 Arghya Ghosh Plant

More information

11. Proton NMR (text , 12.11, 12.12)

11. Proton NMR (text , 12.11, 12.12) 2009, Department of Chemistry, The University of Western Ontario 11.1 11. Proton NMR (text 12.6 12.9, 12.11, 12.12) A. Proton Signals Like 13 C, 1 H atoms have spins of ±½, and when they are placed in

More information

Isolation of Polyphenolic Compounds from the Green Coconut (cocos nucifera) Shell and Characterization of their Benzoyl Ester Derivatives

Isolation of Polyphenolic Compounds from the Green Coconut (cocos nucifera) Shell and Characterization of their Benzoyl Ester Derivatives Available nline Publications J. Sci. Res. 2 (1), 186-190 (2010) JURNAL F SCIENTIFIC RESEARCH www.banglajol.info/index.php/jsr Short Communication Isolation of Polyphenolic Compounds from the Green Coconut

More information

Learning Guide for Chapter 3 - Infrared Spectroscopy

Learning Guide for Chapter 3 - Infrared Spectroscopy Learning Guide for hapter 3 - Infrared Spectroscopy I. Introduction to spectroscopy - p 1 II. Molecular vibrations - p 3 III. Identifying functional groups - p 6 IV. Interpreting an IR spectrum - p 12

More information

William H. Brown & Christopher S. Foote

William H. Brown & Christopher S. Foote Requests for permission to make copies of any part of the work should be mailed to:permissions Department, Harcourt Brace & Company, 6277 Sea Harbor Drive, Orlando, Florida 32887-6777 William H. Brown

More information

Infrared Spectroscopy

Infrared Spectroscopy Reminder: These notes are meant to supplement, not replace, the laboratory manual. Infrared Spectroscopy History and Application: Infrared (IR) radiation is simply one segment of the electromagnetic spectrum

More information

Aluminum Foil: A Highly Efficient and Environment- Friendly Tea Bag Style Catalyst with High TON

Aluminum Foil: A Highly Efficient and Environment- Friendly Tea Bag Style Catalyst with High TON Supporting Information Pd @ Aluminum Foil: A Highly Efficient and Environment- Friendly Tea Bag Style Catalyst with High TON Fan Lei, Yi Rong, Yu Lei,* Wu Yulan, Chen Tian, and Guo Rong General Remarks.

More information

Supporting Information for

Supporting Information for Page of 0 0 0 0 Submitted to The Journal of Organic Chemistry S Supporting Information for Syntheses and Spectral Properties of Functionalized, Water-soluble BODIPY Derivatives Lingling Li, Junyan Han,

More information

Supporting Information. Table of Contents. 1. General Notes Experimental Details 3-12

Supporting Information. Table of Contents. 1. General Notes Experimental Details 3-12 Supporting Information Table of Contents page 1. General Notes 2 2. Experimental Details 3-12 3. NMR Support for Timing of Claisen/Diels-Alder/Claisen 13 4. 1 H and 13 C NMR 14-37 General Notes All reagents

More information

Electronic Supplementary Information (ESI)

Electronic Supplementary Information (ESI) Electronic Supplementary Information (ESI) A thin-layered chromatography plate prepared from naphthalimide-based receptor immobilized SiO 2 nanoparticles as a portable chemosensor and adsorbent for Pb

More information

Open Column Chromatography, GC, TLC, and HPLC

Open Column Chromatography, GC, TLC, and HPLC Open Column Chromatography, GC, TLC, and HPLC Murphy, B. (2017). Introduction to Chromatography: Lecture 1. Lecture presented at PHAR 423 Lecture in UIC College of Pharmacy, Chicago. USES OF CHROMATOGRAPHY

More information

Chapter 12 Mass Spectrometry and Infrared Spectroscopy

Chapter 12 Mass Spectrometry and Infrared Spectroscopy Organic Chemistry, 6 th Edition L. G. Wade, Jr. Chapter 12 Mass Spectrometry and Infrared Spectroscopy Jo Blackburn Richland College, Dallas, TX Dallas County Community College District 2006, Prentice

More information

Certificate Of Analysis

Certificate Of Analysis Certificate f Analysis Compound: -Hydroxy Propranolol Molecular Formula: C H N. (mw base =.) Structure: MW =. base H 8 0 H C H N -Hydroxy Propranolol "FR CHEMICAL USE NLY" Synonyms: (CA index name) -[(-Methylethyl)amino]--(-{-hydroxy}-naphthalenyloxy)--Propanol

More information

CHM 223 Organic Chemistry I Prof. Chad Landrie. Lecture 10: September 20, 2018 Ch. 12: Spectroscopy mass spectrometry infrared spectroscopy

CHM 223 Organic Chemistry I Prof. Chad Landrie. Lecture 10: September 20, 2018 Ch. 12: Spectroscopy mass spectrometry infrared spectroscopy M 223 Organic hemistry I Prof. had Landrie Lecture 10: September 20, 2018 h. 12: Spectroscopy mass spectrometry infrared spectroscopy i>licker Question onsider a solution that contains 65g R enantiomer

More information

Electronic Supplementary Information for. A Redox-Nucleophilic Dual-Reactable Probe for Highly Selective

Electronic Supplementary Information for. A Redox-Nucleophilic Dual-Reactable Probe for Highly Selective Electronic Supplementary Information for A Redox-Nucleophilic Dual-Reactable Probe for Highly Selective and Sensitive Detection of H 2 S: Synthesis, Spectra and Bioimaging Changyu Zhang, 1 Runyu Wang,

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2016 Supporting Information TEMPO-catalyzed Synthesis of 5-Substituted Isoxazoles from Propargylic

More information

Supporting Information. Enantioselective Organocatalyzed Henry Reaction with Fluoromethyl Ketones

Supporting Information. Enantioselective Organocatalyzed Henry Reaction with Fluoromethyl Ketones Supporting Information Enantioselective Organocatalyzed Henry Reaction with Fluoromethyl Ketones Marco Bandini,* Riccardo Sinisi, Achille Umani-Ronchi* Dipartimento di Chimica Organica G. Ciamician, Università

More information

Spectroscopy in Organic Chemistry. Types of Spectroscopy in Organic

Spectroscopy in Organic Chemistry. Types of Spectroscopy in Organic Spectroscopy in Organic Chemistry Spectroscopy Spectrum dealing with light, or more specifically, radiation Scope to see Organic Spectroscopy therefore deals with examining how organic molecules interact

More information

Synthetic Studies on Norissolide; Enantioselective Synthesis of the Norrisane Side Chain

Synthetic Studies on Norissolide; Enantioselective Synthesis of the Norrisane Side Chain rganic Lett. (Supporting Information) 1 Synthetic Studies on Norissolide; Enantioselective Synthesis of the Norrisane Side Chain Charles Kim, Richard Hoang and Emmanuel A. Theodorakis* Department of Chemistry

More information

Supporting Information

Supporting Information Supporting Information Chemo-selectivity of IBX oxidation of hydroxybenzyl alcohols in the presence of Hemicucurbit[6]uril Hang Cong, a,b Takehiko Yamato* a and Zhu Tao b a Department of Applied Chemistry,

More information

Indium Triflate-Assisted Nucleophilic Aromatic Substitution Reactions of. Nitrosobezene-Derived Cycloadducts with Alcohols

Indium Triflate-Assisted Nucleophilic Aromatic Substitution Reactions of. Nitrosobezene-Derived Cycloadducts with Alcohols Supporting Information Indium Triflate-Assisted ucleophilic Aromatic Substitution Reactions of itrosobezene-derived Cycloadducts with Alcohols Baiyuan Yang and Marvin J. Miller* Department of Chemistry

More information

Experiment 2 - NMR Spectroscopy

Experiment 2 - NMR Spectroscopy Experiment 2 - NMR Spectroscopy OBJECTIVE to understand the important role of nuclear magnetic resonance spectroscopy in the study of the structures of organic compounds to develop an understanding of

More information

CHE 325 SPECTROSCOPY (A) CHAP 13A ASSIGN CH 2 CH CH 2 CH CHCH 3

CHE 325 SPECTROSCOPY (A) CHAP 13A ASSIGN CH 2 CH CH 2 CH CHCH 3 CE 325 SPECTRSCPY (A) CAP 13A ASSIGN 1. Which compound would have a UV absorption band at longest wavelength? A. I B. II C. III D. IV E. V C CC 3 CC C 2 C CC 3 I II III C 2 C C 2 C CC 3 IV V 2. Select

More information

The resonance frequency of the H b protons is dependent upon the orientation of the H a protons with respect to the external magnetic field:

The resonance frequency of the H b protons is dependent upon the orientation of the H a protons with respect to the external magnetic field: Spin-Spin Splitting in Alkanes The signal arising from a proton or set of protons is split into (N+1) lines by the presence of N adjacent nuclei Example 1: Bromoethane The resonance frequency of the H

More information

Synthesis and Use of QCy7-derived Modular Probes for Detection and. Imaging of Biologically Relevant Analytes. Supplementary Methods

Synthesis and Use of QCy7-derived Modular Probes for Detection and. Imaging of Biologically Relevant Analytes. Supplementary Methods Synthesis and Use of QCy7-derived Modular Probes for Detection and Imaging of Biologically Relevant Analytes Supplementary Methods Orit Redy a, Einat Kisin-Finfer a, Shiran Ferber b Ronit Satchi-Fainaro

More information

IGCSE (9-1) Edexcel - Chemistry

IGCSE (9-1) Edexcel - Chemistry IGCSE (9-1) Edexcel - Chemistry Principles of Chemistry Element, Compounds and Mixtures NOTES 1.8: Understand how to classify a substance as an element, compound or mixture Classifications: S Class Element

More information

PAPER No.12 :Organic Spectroscopy MODULE No.29: Combined problem on UV, IR, 1 H NMR, 13 C NMR and Mass - Part I

PAPER No.12 :Organic Spectroscopy MODULE No.29: Combined problem on UV, IR, 1 H NMR, 13 C NMR and Mass - Part I Subject Chemistry Paper No and Title Module No and Title Module Tag 12: rganic Spectroscopy 29: Combined problem on UV, IR, 1 H NMR, 13 C NMR and Mass - Part I CHE_P12_M29 TABLE F CNTENTS 1. Learning utcomes

More information

Unit 2 Organic Chemistry. 2.3 Structural Analysis Part 2:

Unit 2 Organic Chemistry. 2.3 Structural Analysis Part 2: CFE ADVANCED HIGHER Unit 2 Organic Chemistry 2.3 Structural Analysis Part 2: Mass Spectroscopy Infra-red Spectroscopy NMR Proton Spectroscopy Answers to Questions in Notes Learning Outcomes Exam Questions

More information

Nuclear Magnetic Resonance (NMR) Spectroscopy Introduction:

Nuclear Magnetic Resonance (NMR) Spectroscopy Introduction: Nuclear Magnetic Resonance (NMR) Spectroscopy Introduction: Nuclear magnetic resonance spectroscopy (NMR) is the most powerful tool available for organic structure determination. Like IR spectroscopy,

More information

Total Synthesis of Gonytolides C and G, Lachnone C, and. Formal Synthesis of Blennolide C and Diversonol

Total Synthesis of Gonytolides C and G, Lachnone C, and. Formal Synthesis of Blennolide C and Diversonol . This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry Total Synthesis of Gonytolides C and G, Lachnone C, and Formal Synthesis

More information

Supporting Information:

Supporting Information: Electronic Supplementary Material (ESI) for Green Chemistry. This journal is The Royal Society of Chemistry 2016 Supporting Information: A metal free reduction of aryl-n-nitrosamines to corresponding hydrazines

More information

Figure S1 - Enzymatic titration of HNE and GS-HNE.

Figure S1 - Enzymatic titration of HNE and GS-HNE. Figure S1 - Enzymatic titration of HNE and GS-HNE. Solutions of HNE and GS-HNE were titrated through their reduction to the corresponding alchools catalyzed by AR, monitoring the decrease in absorbance

More information

Simple Isolation and characterization of P-coumaric acid from Cynodon dactylon Linn. (Pers)

Simple Isolation and characterization of P-coumaric acid from Cynodon dactylon Linn. (Pers) IJPAR Vol.6 Issue 2 April - June -2017 Journal Home page: ISSN:2320-2831 Research article Open Access Simple Isolation and characterization of P-coumaric acid from Cynodon dactylon Linn. (Pers) A.Viswanath

More information

pyrazoles/isoxazoles library using ketene dithioacetals

pyrazoles/isoxazoles library using ketene dithioacetals Water mediated construction of trisubstituted pyrazoles/isoxazoles library using ketene dithioacetals Mahesh M. Savant, Akshay M. Pansuriya, Chirag V. Bhuva, Naval Kapuriya, Anil S. Patel, Vipul B. Audichya,

More information

Paper 12: Organic Spectroscopy

Paper 12: Organic Spectroscopy Subject hemistry Paper No and Title Module No and Title Module Tag Paper 12: Organic Spectroscopy 34: ombined problem on UV, IR, 1 H NMR, 13 NMR and Mass- Part 6 HE_P12_M34 TABLE OF ONTENTS 1. Learning

More information

Supplementary Material

Supplementary Material 10.1071/CH13324_AC CSIRO 2013 Australian Journal of Chemistry 2013, 66(12), 1570-1575 Supplementary Material A Mild and Convenient Synthesis of 1,2,3-Triiodoarenes via Consecutive Iodination/Diazotization/Iodination

More information

Paper 12: Organic Spectroscopy

Paper 12: Organic Spectroscopy Subject Chemistry Paper No and Title Module No and Title Module Tag Paper 12: Organic Spectroscopy 31: Combined problem on UV, IR, 1 H NMR, 13 C NMR and Mass - Part III CHE_P12_M31 TABLE OF CONTENTS 1.

More information

Structure Determination

Structure Determination There are more than 5 million organic compounds, the great majority of which are colourless liquids or white solids. Identifying or at least characterising determining some of its properties and features

More information

Increasing energy. ( 10 4 cm -1 ) ( 10 2 cm -1 )

Increasing energy. ( 10 4 cm -1 ) ( 10 2 cm -1 ) The branch of science which deals with the interaction of electromagnetic radiation with matter is called spectroscopy The energy absorbed or emitted in each transition corresponds to a definite frequency

More information

Light irradiation experiments with coumarin [1]

Light irradiation experiments with coumarin [1] Materials and instruments All the chemicals were purchased from commercial suppliers and used as received. Thin-layer chromatography (TLC) analysis was carried out on pre-coated silica plates. Column chromatography

More information

hydroxyanthraquinones related to proisocrinins

hydroxyanthraquinones related to proisocrinins Supporting Information for Regiodefined synthesis of brominated hydroxyanthraquinones related to proisocrinins Joyeeta Roy, Tanushree Mal, Supriti Jana and Dipakranjan Mal* Address: Department of Chemistry,

More information

Unit 11 Instrumentation. Mass, Infrared and NMR Spectroscopy

Unit 11 Instrumentation. Mass, Infrared and NMR Spectroscopy Unit 11 Instrumentation Mass, Infrared and NMR Spectroscopy Spectroscopic identification of organic compounds Qualitative analysis: presence but not quantity (i.e. PEDs) Quantitative analysis: quantity

More information

Basic Concepts of NMR: Identification of the Isomers of C 4 O 2. by 1 H NMR Spectroscopy

Basic Concepts of NMR: Identification of the Isomers of C 4 O 2. by 1 H NMR Spectroscopy Basic Concepts of NM: Identification of the Isomers of C H 8 O by H NM Spectroscopy Objectives NM spectroscopy is a powerful tool in determining the structure of compounds. Not only is it able to give

More information

16.1 Introduction to NMR Spectroscopy. Spectroscopy. Spectroscopy. Spectroscopy. Spectroscopy. Spectroscopy 4/11/2013

16.1 Introduction to NMR Spectroscopy. Spectroscopy. Spectroscopy. Spectroscopy. Spectroscopy. Spectroscopy 4/11/2013 What is spectroscopy? NUCLEAR MAGNETIC RESONANCE (NMR) spectroscopy may be the most powerful method of gaining structural information about organic compounds. NMR involves an interaction between electromagnetic

More information

Synthesis of Glaucogenin D, a Structurally Unique. Disecopregnane Steroid with Potential Antiviral Activity

Synthesis of Glaucogenin D, a Structurally Unique. Disecopregnane Steroid with Potential Antiviral Activity Supporting Information for Synthesis of Glaucogenin D, a Structurally Unique Disecopregnane Steroid with Potential Antiviral Activity Jinghan Gui,* Hailong Tian, and Weisheng Tian* Key Laboratory of Synthetic

More information

IR, MS, UV, NMR SPECTROSCOPY

IR, MS, UV, NMR SPECTROSCOPY CHEMISTRY 318 IR, MS, UV, NMR SPECTROSCOPY PROBLEM SET All Sections CHEMISTRY 318 IR, MS, UV, NMR SPECTROSCOPY PROBLEM SET General Instructions for the 318 Spectroscopy Problem Set Consult the Lab Manual,

More information

Unit 3 Organic Chemistry. 3.3 Structural Analysis Part 2:

Unit 3 Organic Chemistry. 3.3 Structural Analysis Part 2: Unit 3 Organic Chemistry 3.3 Structural Analysis Part 2: Mass Spectroscopy Infra-red Spectroscopy NMR Proton Spectroscopy Answers to Questions in Notes Learning Outcomes Exam Questions & Answers MODIFIED

More information

MOLECULAR SPECTROSCOPY AND PHOTOCHEMISTRY

MOLECULAR SPECTROSCOPY AND PHOTOCHEMISTRY 20 CHAPTER MOLECULAR SPECTROSCOPY AND PHOTOCHEMISTRY 20.1 Introduction to Molecular Spectroscopy 20.2 Experimental Methods in Molecular Spectroscopy 20.3 Rotational and Vibrational Spectroscopy 20.4 Nuclear

More information

Nuclear Magnetic Resonance Spectroscopy (NMR)

Nuclear Magnetic Resonance Spectroscopy (NMR) OCR Chemistry A 432 Spectroscopy (NMR) What is it? An instrumental method that gives very detailed structural information about molecules. It can tell us - how many of certain types of atom a molecule

More information

PAPER No.12 :Organic Spectroscopy MODULE No.30: Combined problem on UV, IR, 1 H NMR, 13 C NMR and Mass - Part II

PAPER No.12 :Organic Spectroscopy MODULE No.30: Combined problem on UV, IR, 1 H NMR, 13 C NMR and Mass - Part II Subject Chemistry Paper No and Title Module No and Title Module Tag 12 : rganic Spectroscopy 30: Combined problem on UV, IR, 1 H NMR, 13 C NMR and Mass Part-II CHE_P12_M30 TABLE F CNTENTS 1. Learning utcomes

More information

PRINCIPLES AND APPLICATION OF CHROMATOGRAPHY. Dr. P. Jayachandra Reddy Mpharm PhD Principal & professor KTPC

PRINCIPLES AND APPLICATION OF CHROMATOGRAPHY. Dr. P. Jayachandra Reddy Mpharm PhD Principal & professor KTPC PRINCIPLES AND APPLICATION OF CHROMATOGRAPHY Dr. P. Jayachandra Reddy Mpharm PhD Principal & professor KTPC CHROMATOGRAPHY Laboratory technique for the Separation of mixtures Chroma -"color" and graphein

More information

Supporting Information for

Supporting Information for Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017 Supporting Information for

More information

Tetrahydrofuran (THF) was distilled from benzophenone ketyl radical under an argon

Tetrahydrofuran (THF) was distilled from benzophenone ketyl radical under an argon SUPPLEMENTARY METHODS Solvents, reagents and synthetic procedures All reactions were carried out under an argon atmosphere unless otherwise specified. Tetrahydrofuran (THF) was distilled from benzophenone

More information

Supplementary Information

Supplementary Information Supplementary Information C aryl -C alkyl bond formation from Cu(ClO 4 ) 2 -mediated oxidative cross coupling reaction between arenes and alkyllithium reagents through structurally well-defined Ar-Cu(III)

More information

A Sumanene-based Aryne, Sumanyne

A Sumanene-based Aryne, Sumanyne A Sumanene-based Aryne, Sumanyne Niti Ngamsomprasert, Yumi Yakiyama, and Hidehiro Sakurai* Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871

More information

Radiant energy is proportional to its frequency (cycles/s = Hz) as a wave (Amplitude is its height) Different types are classified by frequency or

Radiant energy is proportional to its frequency (cycles/s = Hz) as a wave (Amplitude is its height) Different types are classified by frequency or CHEM 241 UNIT 5: PART B INFRA-RED RED SPECTROSCOPY 1 Spectroscopy of the Electromagnetic Spectrum Radiant energy is proportional to its frequency (cycles/s = Hz) as a wave (Amplitude is its height) Different

More information

16.1 Introduction to NMR. Spectroscopy

16.1 Introduction to NMR. Spectroscopy 16.1 Introduction to NMR What is spectroscopy? Spectroscopy NUCLEAR MAGNETIC RESNANCE (NMR) spectroscopy may be the most powerful method of gaining structural information about organic compounds. NMR involves

More information

The Reformatsky reaction (n 27)

The Reformatsky reaction (n 27) Tatiana Pachova BSc 2, chemistry Assistant : Chandan Dey Sciences II lab. A 7/12/11 The Reformatsky reaction (n 27) 1. INTRDUCTIN 1.1) Purpose The objective of this experiment is to synthesize the ethyl

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2006 69451 Weinheim, Germany A Highly Enantioselective Brønsted Acid Catalyst for the Strecker Reaction Magnus Rueping, * Erli Sugiono and Cengiz Azap General: Unless otherwise

More information

Lab 10 Guide: Column Chromatography (Nov 3 9)

Lab 10 Guide: Column Chromatography (Nov 3 9) Lab 10 Guide: Column Chromatography (Nov 3 9) Column Chromatography/ Isolation of Caffeine from Tea, Exp. 7B, pages 67-72 in Taber After an organic reaction it s common to get a mixture of products. Usually

More information

Halogen halogen interactions in diiodo-xylenes

Halogen halogen interactions in diiodo-xylenes Electronic Supplementary Material (ESI) for CrystEngComm. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information (ESI) for CrystEngComm. This journal is The Royal Society

More information

ORGANIC - CLUTCH CH ANALYTICAL TECHNIQUES: IR, NMR, MASS SPECT

ORGANIC - CLUTCH CH ANALYTICAL TECHNIQUES: IR, NMR, MASS SPECT !! www.clutchprep.com CONCEPT: PURPOSE OF ANALYTICAL TECHNIQUES Classical Methods (Wet Chemistry): Chemists needed to run dozens of chemical reactions to determine the type of molecules in a compound.

More information

CHROMATOGRAPHY, AND MASS SPECTRAL. FRACTIONS OF Lasianthus

CHROMATOGRAPHY, AND MASS SPECTRAL. FRACTIONS OF Lasianthus f^ l^ltt^^p^^* V^ COLUMN CHROMATOGRAPHY, HPLC AND MASS SPECTRAL ANALYSIS OF SOME FRACTIONS OF Lasianthus lucldus Biume 8.1 Column Chromatography 8.2 HPLC 8.3 Preparatory TLC 8.4 Mass Spectral Analysis

More information

Chemistry 283g- Experiment 3

Chemistry 283g- Experiment 3 EXPERIMENT 3: xidation of Alcohols: Solid-Supported xidation and Qualitative Tests Relevant sections in the text: Fox & Whitesell, 3 rd Ed. pg. 448-452. A portion of this experiment is based on a paper

More information

ORGANIC - CLUTCH CH ANALYTICAL TECHNIQUES: IR, NMR, MASS SPECT

ORGANIC - CLUTCH CH ANALYTICAL TECHNIQUES: IR, NMR, MASS SPECT !! www.clutchprep.com CONCEPT: PURPOSE OF ANALYTICAL TECHNIQUES Classical Methods (Wet Chemistry): Chemists needed to run dozens of chemical reactions to determine the type of molecules in a compound.

More information

Reduction-free synthesis of stable acetylide cobalamins. Table of Contents. General information. Preparation of compound 1

Reduction-free synthesis of stable acetylide cobalamins. Table of Contents. General information. Preparation of compound 1 Electronic Supporting Information Reduction-free synthesis of stable acetylide cobalamins Mikołaj Chromiński, a Agnieszka Lewalska a and Dorota Gryko* a Table of Contents General information Numbering

More information