Algebraic and topological perspectives on semi-supervised learning

Size: px
Start display at page:

Download "Algebraic and topological perspectives on semi-supervised learning"

Transcription

1 Algebraic and topological perspectives on semi-supervised learning Mikael Vejdemo-Johansson and Primoz Skraba Jozef Stefan Institute 1

2 Learning First introduce the types of learning problems Unsupervised (exploratory) Semi-supervised Supervised 2

3 Supervised Learning Given fully-labelled data, learn a classifier, a mapping, etc. Example Given document correspondences, learn a map between corpora 3

4 Supervised Learning Wikipedia Treat documents as vectors I have some relevant pictures if we want to elaborate Corpora are low dimensional subspaces Find map between spaces Least-squares or related optimization techniques Assumes a model - linear space representation Parameter fitting 4

5 Unsupervised Learning Exploratory data analysis Here we need to just go over the idea of clustering/structure of data... The structure of the data Canonical example: clustering 5

6 Semi-Supervised Learning broad definition of semisupervised Between supervised and unsupervised Use underlying structure of data together with limited label data 6

7 Semi-Supervised Learning Example example: given two classes find a classifier i give you 2 labelled points Find a classifier 7

8 Semi-Supervised Learning Example a reasonable choice Find a classifier 8

9 Semi-Supervised Learning Example Find a classifier what if my unlabeled data looks like this? is that still a reasonable choice 9

10 Semi-Supervised Learning Example maybe this is better Find a classifier 10

11 Goals What is the topological structure/interpretation of semi-supervised learning? How can we take advantage of this? Topics of the talk concentrate on first one 11

12 Main Idea Separate structure and label information - if both are correct they should be coherent 12

13 Clustering and Topologysome examples and justification needed. Clusters are 0-dimensional homology groups Connected components of an underlying topological structure Points belonging to the same cluster are close to each other are connected to each other 13

14 Structure of the Data can be combined with previous slide We assume data takes on the shape of some collection of observations with some measure of similarity We will build clustering schemes that use persistent homology 14

15 These act as relations... gluing pieces together - Structure of the Labels set up next slide on quotient spaces Given: data set X set of admissible labels L partial labeling function X L Labels will act as relations, gluing clusters to each other, and as a consistency measure, helping find clustering parameters 15

16 Combining Labels with Data Quotient spaces are a natural model...i will draw an example first thing tomorrow for nnclassifiers. Quotient spaces in topology are spaces with some points forcibly identified. Quotient relation dictates which parts are fused together Here, we glue points that are tagged with same labels 16

17 Presentations Algebraic structure of quotient spaces 0 R G M 0 Persistent homology produces a vector space with extra structure: a persistence module. Persistence modules can be presented with generators and relations Generators ~ data points Relations ~ clustering co-occurrence relations Labels produce additional relations to those generated by persistent homology 17

18 Injectivity is crucial Information in the Map 0 R G M 0 L Map from labels to clusters must be injective Only one type of label can map into a generator/cluster 18

19 Example good example 19

20 Example clustering 20

21 Example labels and clustering 21

22 Example injective map 22

23 Example non-injective map 23

24 Example to get injectivity we may need a finer clustering 24

25 Example bad case - the structure of the data and the labels are very incoherent To resolve this we need a very fine clustering 25

26 Two Clustering Schemes Distance-based examples brief descriptions Density-based Both will use persistence 26

27 Distance Filtration All points are introduced at the beginning Edge x y is introduced when the filtration parameter exceeds d(x,y), possibly fusing two clusters 27

28 Density Filtration Points are introduced in decreasing order of estimated density Globally fixed k Each point is at introduction connected to its k nearest neighbors possibly fusing clusters 28

29 Stability Both these approaches obey Stability theorems: If points perturb by at most epsilon, the persistence diagrams perturb by at most epsilon. This will be important to estimating reliability of labels. 29

30 Example: Four Gaussians first example 4 gaussians 30

31 Single Linkage Persistence Diagram 20 single linkage

32 only yields outliers with 4 clusters Single Linkage Persistence Diagram

33 Single Linkage Persistence Diagram

34 metric incoherent with labels... Single Linkage Error Rate 250 Error vs. Number of Clusters (Single Linkage) Error Rate Number of Clusters 34

35 Density-based Persistence 35

36 Density-based Persistence Persistence Diagram

37 Density-based Persistence Persistence Diagram more separated diagram - good sign

38 Density-based Persistence Persistence Diagram good clustering

39 Density-based Persistence Error Rate 220 Error vs. Number of Clusters (Density Based) Error Rate Number of Clusters error rate drops at 4 rest of it not possible to distinguish 39

40 Uncertainty regions Fix an expected number M of clusters Write p k for the length of the k:th longest persistence bar: the lifetime of that feature. The gap d = pm - pm+1 is a measure of the stability of the M most salient clusters Any perturbation by less than d/2 will create exactly M clusters with persistence at least (pm + pm+1)/2 Canonical bijection of cluster basins across any such perturbation 40

41 Uncertainty Regions if we fix number of clusters we can find unstable points 41

42 Uncertainty Regions 42

43 Soft error rates Given: Data set X, partial label assignments, expected number M of clusters By repeated clustering and perturbation, we can estimate probability of membership in each of the stable basins for each data point. Function p:x [0,1] M. Find partition of X into M clusters: c:x [M] Maximizing x p(x)c(x) the probability of this particular assignment across partitions that separate distinct label assignments Underlying idea: we may have to guess that unstable points have been mis-labelled. 43

44 3 Circles other example 44

45 Single Linkage Persistence Diagram 20 in this case the metric is good

46 Single Linkage Error Rate 80 Error vs. Number of Clusters (Single Linkage) Error Rate Number of Clusters 46

47 Density-based Persistence Diagram

48 Density-based Bandwidth =. =. = 48

49 Density-based Persistence Diagrams =. =. = 49

50 Density-based Persistence Error Rate 80 Error vs. Number of Clusters (Density Based) 80 Error vs. Number of Clusters (Density Based) Error Rate 50 Error Rate Number of Clusters Number of Clusters =. =. 50

51 Choice of Scale N=5 N=7 51

52 Behavior with 10% Labels 11 Error vs. Number of Clusters (density based 10% labels) 4 Error vs. Number of Clusters (Density Based 10% Labels) Error Rate 6 Error Rate Number of Clusters Number of Clusters 52

53 Behavior with 5% Labels 5 Error vs. Number of Clusters (density based 5% labels) 2 Error vs. Number of Clusters (Density Based 5% Labels) Error Rate 2.5 Error Rate Number of Clusters Number of Clusters 53

54 a lot ca go here Next steps Parameter selection: automatically pick best clustering that maintains injectivity Testing metrics with limited labels Penalize unlabeled data 54

55 Thank you for listening 55

Data Mining Prof. Pabitra Mitra Department of Computer Science & Engineering Indian Institute of Technology, Kharagpur

Data Mining Prof. Pabitra Mitra Department of Computer Science & Engineering Indian Institute of Technology, Kharagpur Data Mining Prof. Pabitra Mitra Department of Computer Science & Engineering Indian Institute of Technology, Kharagpur Lecture 21 K - Nearest Neighbor V In this lecture we discuss; how do we evaluate the

More information

Persistent cohomology and period reconstruction

Persistent cohomology and period reconstruction Mikael Vejdemo-Johansson Vin de Silva Primoz Skraba June 25, 2010 Outline Circular coordinates From algebraic topology, we know the isomorphism, natural in X H 1 (X ; Z) = [X, S 1 ] We can use this and

More information

Generative Clustering, Topic Modeling, & Bayesian Inference

Generative Clustering, Topic Modeling, & Bayesian Inference Generative Clustering, Topic Modeling, & Bayesian Inference INFO-4604, Applied Machine Learning University of Colorado Boulder December 12-14, 2017 Prof. Michael Paul Unsupervised Naïve Bayes Last week

More information

Mixtures of Gaussians continued

Mixtures of Gaussians continued Mixtures of Gaussians continued Machine Learning CSE446 Carlos Guestrin University of Washington May 17, 2013 1 One) bad case for k-means n Clusters may overlap n Some clusters may be wider than others

More information

Parametric Unsupervised Learning Expectation Maximization (EM) Lecture 20.a

Parametric Unsupervised Learning Expectation Maximization (EM) Lecture 20.a Parametric Unsupervised Learning Expectation Maximization (EM) Lecture 20.a Some slides are due to Christopher Bishop Limitations of K-means Hard assignments of data points to clusters small shift of a

More information

Gaussian Mixture Models, Expectation Maximization

Gaussian Mixture Models, Expectation Maximization Gaussian Mixture Models, Expectation Maximization Instructor: Jessica Wu Harvey Mudd College The instructor gratefully acknowledges Andrew Ng (Stanford), Andrew Moore (CMU), Eric Eaton (UPenn), David Kauchak

More information

K-means. Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University. November 19 th, Carlos Guestrin 1

K-means. Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University. November 19 th, Carlos Guestrin 1 EM Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University November 19 th, 2007 2005-2007 Carlos Guestrin 1 K-means 1. Ask user how many clusters they d like. e.g. k=5 2. Randomly guess

More information

Analysis of Spectral Kernel Design based Semi-supervised Learning

Analysis of Spectral Kernel Design based Semi-supervised Learning Analysis of Spectral Kernel Design based Semi-supervised Learning Tong Zhang IBM T. J. Watson Research Center Yorktown Heights, NY 10598 Rie Kubota Ando IBM T. J. Watson Research Center Yorktown Heights,

More information

Gaussian Mixture Models

Gaussian Mixture Models Gaussian Mixture Models Pradeep Ravikumar Co-instructor: Manuela Veloso Machine Learning 10-701 Some slides courtesy of Eric Xing, Carlos Guestrin (One) bad case for K- means Clusters may overlap Some

More information

Computation of spectral sequences of double complexes with applications to persistent homology

Computation of spectral sequences of double complexes with applications to persistent homology Computation of spectral sequences of double complexes with applications to persistent homology Mikael Vejdemo-Johansson joint with David Lipsky, Dmitriy Morozov, Primoz Skraba School of Computer Science

More information

Metric-based classifiers. Nuno Vasconcelos UCSD

Metric-based classifiers. Nuno Vasconcelos UCSD Metric-based classifiers Nuno Vasconcelos UCSD Statistical learning goal: given a function f. y f and a collection of eample data-points, learn what the function f. is. this is called training. two major

More information

Review and Motivation

Review and Motivation Review and Motivation We can model and visualize multimodal datasets by using multiple unimodal (Gaussian-like) clusters. K-means gives us a way of partitioning points into N clusters. Once we know which

More information

20 Unsupervised Learning and Principal Components Analysis (PCA)

20 Unsupervised Learning and Principal Components Analysis (PCA) 116 Jonathan Richard Shewchuk 20 Unsupervised Learning and Principal Components Analysis (PCA) UNSUPERVISED LEARNING We have sample points, but no labels! No classes, no y-values, nothing to predict. Goal:

More information

Clustering. CSL465/603 - Fall 2016 Narayanan C Krishnan

Clustering. CSL465/603 - Fall 2016 Narayanan C Krishnan Clustering CSL465/603 - Fall 2016 Narayanan C Krishnan ckn@iitrpr.ac.in Supervised vs Unsupervised Learning Supervised learning Given x ", y " "%& ', learn a function f: X Y Categorical output classification

More information

Clustering K-means. Clustering images. Machine Learning CSE546 Carlos Guestrin University of Washington. November 4, 2014.

Clustering K-means. Clustering images. Machine Learning CSE546 Carlos Guestrin University of Washington. November 4, 2014. Clustering K-means Machine Learning CSE546 Carlos Guestrin University of Washington November 4, 2014 1 Clustering images Set of Images [Goldberger et al.] 2 1 K-means Randomly initialize k centers µ (0)

More information

Data Preprocessing. Cluster Similarity

Data Preprocessing. Cluster Similarity 1 Cluster Similarity Similarity is most often measured with the help of a distance function. The smaller the distance, the more similar the data objects (points). A function d: M M R is a distance on M

More information

Intelligence and statistics for rapid and robust earthquake detection, association and location

Intelligence and statistics for rapid and robust earthquake detection, association and location Intelligence and statistics for rapid and robust earthquake detection, association and location Anthony Lomax ALomax Scientific, Mouans-Sartoux, France anthony@alomax.net www.alomax.net @ALomaxNet Alberto

More information

Batch Mode Sparse Active Learning. Lixin Shi, Yuhang Zhao Tsinghua University

Batch Mode Sparse Active Learning. Lixin Shi, Yuhang Zhao Tsinghua University Batch Mode Sparse Active Learning Lixin Shi, Yuhang Zhao Tsinghua University Our work Propose an unified framework of batch mode active learning Instantiate the framework using classifiers based on sparse

More information

Mixture Models & EM. Nicholas Ruozzi University of Texas at Dallas. based on the slides of Vibhav Gogate

Mixture Models & EM. Nicholas Ruozzi University of Texas at Dallas. based on the slides of Vibhav Gogate Mixture Models & EM icholas Ruozzi University of Texas at Dallas based on the slides of Vibhav Gogate Previously We looed at -means and hierarchical clustering as mechanisms for unsupervised learning -means

More information

Locally G-ringed spaces and rigid spaces

Locally G-ringed spaces and rigid spaces 18.727, Topics in Algebraic Geometry (rigid analytic geometry) Kiran S. Kedlaya, fall 2004 Rigid analytic spaces (at last!) We are now ready to talk about rigid analytic spaces in earnest. I ll give the

More information

Mixture Models & EM. Nicholas Ruozzi University of Texas at Dallas. based on the slides of Vibhav Gogate

Mixture Models & EM. Nicholas Ruozzi University of Texas at Dallas. based on the slides of Vibhav Gogate Mixture Models & EM icholas Ruozzi University of Texas at Dallas based on the slides of Vibhav Gogate Previously We looed at -means and hierarchical clustering as mechanisms for unsupervised learning -means

More information

Machine Learning. Gaussian Mixture Models. Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall

Machine Learning. Gaussian Mixture Models. Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall Machine Learning Gaussian Mixture Models Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall 2012 1 The Generative Model POV We think of the data as being generated from some process. We assume

More information

Clustering K-means. Machine Learning CSE546. Sham Kakade University of Washington. November 15, Review: PCA Start: unsupervised learning

Clustering K-means. Machine Learning CSE546. Sham Kakade University of Washington. November 15, Review: PCA Start: unsupervised learning Clustering K-means Machine Learning CSE546 Sham Kakade University of Washington November 15, 2016 1 Announcements: Project Milestones due date passed. HW3 due on Monday It ll be collaborative HW2 grades

More information

Metric Embedding of Task-Specific Similarity. joint work with Trevor Darrell (MIT)

Metric Embedding of Task-Specific Similarity. joint work with Trevor Darrell (MIT) Metric Embedding of Task-Specific Similarity Greg Shakhnarovich Brown University joint work with Trevor Darrell (MIT) August 9, 2006 Task-specific similarity A toy example: Task-specific similarity A toy

More information

Linear & Non-Linear Discriminant Analysis! Hugh R. Wilson

Linear & Non-Linear Discriminant Analysis! Hugh R. Wilson Linear & Non-Linear Discriminant Analysis! Hugh R. Wilson PCA Review! Supervised learning! Fisher linear discriminant analysis! Nonlinear discriminant analysis! Research example! Multiple Classes! Unsupervised

More information

Machine Learning! in just a few minutes. Jan Peters Gerhard Neumann

Machine Learning! in just a few minutes. Jan Peters Gerhard Neumann Machine Learning! in just a few minutes Jan Peters Gerhard Neumann 1 Purpose of this Lecture Foundations of machine learning tools for robotics We focus on regression methods and general principles Often

More information

Bayes Decision Theory - I

Bayes Decision Theory - I Bayes Decision Theory - I Nuno Vasconcelos (Ken Kreutz-Delgado) UCSD Statistical Learning from Data Goal: Given a relationship between a feature vector and a vector y, and iid data samples ( i,y i ), find

More information

Introduction to Machine Learning Midterm Exam

Introduction to Machine Learning Midterm Exam 10-701 Introduction to Machine Learning Midterm Exam Instructors: Eric Xing, Ziv Bar-Joseph 17 November, 2015 There are 11 questions, for a total of 100 points. This exam is open book, open notes, but

More information

CW-aonplexesthe.se. manifolds. Cfl FT ' : M A U V is continuous. Algebraic Topology. give general. objects of study in topology.

CW-aonplexesthe.se. manifolds. Cfl FT ' : M A U V is continuous. Algebraic Topology. give general. objects of study in topology. M Algebraic Topology Very generally topology is the study of on which can discuss 1 continuity of functions 2 Convergence of sequences we give general definitions later in the course but two main objects

More information

Performance Comparison of K-Means and Expectation Maximization with Gaussian Mixture Models for Clustering EE6540 Final Project

Performance Comparison of K-Means and Expectation Maximization with Gaussian Mixture Models for Clustering EE6540 Final Project Performance Comparison of K-Means and Expectation Maximization with Gaussian Mixture Models for Clustering EE6540 Final Project Devin Cornell & Sushruth Sastry May 2015 1 Abstract In this article, we explore

More information

Adversarial Examples

Adversarial Examples Adversarial Examples presentation by Ian Goodfellow Deep Learning Summer School Montreal August 9, 2015 In this presentation. - Intriguing Properties of Neural Networks. Szegedy et al., ICLR 2014. - Explaining

More information

Persistent Homology: Course Plan

Persistent Homology: Course Plan Persistent Homology: Course Plan Andrey Blinov 16 October 2017 Abstract This is a list of potential topics for each class of the prospective course, with references to the literature. Each class will have

More information

Mixture of Gaussians Models

Mixture of Gaussians Models Mixture of Gaussians Models Outline Inference, Learning, and Maximum Likelihood Why Mixtures? Why Gaussians? Building up to the Mixture of Gaussians Single Gaussians Fully-Observed Mixtures Hidden Mixtures

More information

Computer Vision Group Prof. Daniel Cremers. 14. Clustering

Computer Vision Group Prof. Daniel Cremers. 14. Clustering Group Prof. Daniel Cremers 14. Clustering Motivation Supervised learning is good for interaction with humans, but labels from a supervisor are hard to obtain Clustering is unsupervised learning, i.e. it

More information

A graph based approach to semi-supervised learning

A graph based approach to semi-supervised learning A graph based approach to semi-supervised learning 1 Feb 2011 Two papers M. Belkin, P. Niyogi, and V Sindhwani. Manifold regularization: a geometric framework for learning from labeled and unlabeled examples.

More information

Probabilistic clustering

Probabilistic clustering Aprendizagem Automática Probabilistic clustering Ludwig Krippahl Probabilistic clustering Summary Fuzzy sets and clustering Fuzzy c-means Probabilistic Clustering: mixture models Expectation-Maximization,

More information

Lecture 11: Unsupervised Machine Learning

Lecture 11: Unsupervised Machine Learning CSE517A Machine Learning Spring 2018 Lecture 11: Unsupervised Machine Learning Instructor: Marion Neumann Scribe: Jingyu Xin Reading: fcml Ch6 (Intro), 6.2 (k-means), 6.3 (Mixture Models); [optional]:

More information

Intro. ANN & Fuzzy Systems. Lecture 15. Pattern Classification (I): Statistical Formulation

Intro. ANN & Fuzzy Systems. Lecture 15. Pattern Classification (I): Statistical Formulation Lecture 15. Pattern Classification (I): Statistical Formulation Outline Statistical Pattern Recognition Maximum Posterior Probability (MAP) Classifier Maximum Likelihood (ML) Classifier K-Nearest Neighbor

More information

Using Topological Data Analysis to find discrimination between microbial states in human microbiome data

Using Topological Data Analysis to find discrimination between microbial states in human microbiome data Using Topological Data Analysis to find discrimination between microbial states in human microbiome data Mehrdad Yazdani 1,2, Larry Smarr 1,3 and Rob Knight 4 1 California Institute for Telecommunications

More information

CW complexes. Soren Hansen. This note is meant to give a short introduction to CW complexes.

CW complexes. Soren Hansen. This note is meant to give a short introduction to CW complexes. CW complexes Soren Hansen This note is meant to give a short introduction to CW complexes. 1. Notation and conventions In the following a space is a topological space and a map f : X Y between topological

More information

Lecture: Local Spectral Methods (1 of 4)

Lecture: Local Spectral Methods (1 of 4) Stat260/CS294: Spectral Graph Methods Lecture 18-03/31/2015 Lecture: Local Spectral Methods (1 of 4) Lecturer: Michael Mahoney Scribe: Michael Mahoney Warning: these notes are still very rough. They provide

More information

Persistent Local Homology: Theory, Applications, Algorithms

Persistent Local Homology: Theory, Applications, Algorithms Persistent Local Homology: Theory, Applications, Algorithms Paul Bendich Duke University Feb. 4, 2014 Basic Goal: stratification learning Q: Given a point cloud sampled from a stratified space, how do

More information

Clustering and Gaussian Mixture Models

Clustering and Gaussian Mixture Models Clustering and Gaussian Mixture Models Piyush Rai IIT Kanpur Probabilistic Machine Learning (CS772A) Jan 25, 2016 Probabilistic Machine Learning (CS772A) Clustering and Gaussian Mixture Models 1 Recap

More information

Semi-supervised Learning

Semi-supervised Learning Semi-supervised Learning Introduction Supervised learning: x r, y r R r=1 E.g.x r : image, y r : class labels Semi-supervised learning: x r, y r r=1 R, x u R+U u=r A set of unlabeled data, usually U >>

More information

Machine Learning. CUNY Graduate Center, Spring Lectures 11-12: Unsupervised Learning 1. Professor Liang Huang.

Machine Learning. CUNY Graduate Center, Spring Lectures 11-12: Unsupervised Learning 1. Professor Liang Huang. Machine Learning CUNY Graduate Center, Spring 2013 Lectures 11-12: Unsupervised Learning 1 (Clustering: k-means, EM, mixture models) Professor Liang Huang huang@cs.qc.cuny.edu http://acl.cs.qc.edu/~lhuang/teaching/machine-learning

More information

Text Mining. Dr. Yanjun Li. Associate Professor. Department of Computer and Information Sciences Fordham University

Text Mining. Dr. Yanjun Li. Associate Professor. Department of Computer and Information Sciences Fordham University Text Mining Dr. Yanjun Li Associate Professor Department of Computer and Information Sciences Fordham University Outline Introduction: Data Mining Part One: Text Mining Part Two: Preprocessing Text Data

More information

CSE446: Clustering and EM Spring 2017

CSE446: Clustering and EM Spring 2017 CSE446: Clustering and EM Spring 2017 Ali Farhadi Slides adapted from Carlos Guestrin, Dan Klein, and Luke Zettlemoyer Clustering systems: Unsupervised learning Clustering Detect patterns in unlabeled

More information

Rewriting Absolute Value Functions as Piece-wise Defined Functions

Rewriting Absolute Value Functions as Piece-wise Defined Functions Rewriting Absolute Value Functions as Piece-wise Defined Functions Consider the absolute value function f ( x) = 2x+ 4-3. Sketch the graph of f(x) using the strategies learned in Algebra II finding the

More information

Jeffrey D. Ullman Stanford University

Jeffrey D. Ullman Stanford University Jeffrey D. Ullman Stanford University 3 We are given a set of training examples, consisting of input-output pairs (x,y), where: 1. x is an item of the type we want to evaluate. 2. y is the value of some

More information

Handling imprecise and uncertain class labels in classification and clustering

Handling imprecise and uncertain class labels in classification and clustering Handling imprecise and uncertain class labels in classification and clustering Thierry Denœux 1 1 Université de Technologie de Compiègne HEUDIASYC (UMR CNRS 6599) COST Action IC 0702 Working group C, Mallorca,

More information

LINEAR ALGEBRA KNOWLEDGE SURVEY

LINEAR ALGEBRA KNOWLEDGE SURVEY LINEAR ALGEBRA KNOWLEDGE SURVEY Instructions: This is a Knowledge Survey. For this assignment, I am only interested in your level of confidence about your ability to do the tasks on the following pages.

More information

6.047 / Computational Biology: Genomes, Networks, Evolution Fall 2008

6.047 / Computational Biology: Genomes, Networks, Evolution Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 6.047 / 6.878 Computational Biology: Genomes, Networks, Evolution Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

CSE 151 Machine Learning. Instructor: Kamalika Chaudhuri

CSE 151 Machine Learning. Instructor: Kamalika Chaudhuri CSE 151 Machine Learning Instructor: Kamalika Chaudhuri Announcements Midterm is graded! Average: 39, stdev: 6 HW2 is out today HW2 is due Thursday, May 3, by 5pm in my mailbox Decision Tree Classifiers

More information

Beyond the Point Cloud: From Transductive to Semi-Supervised Learning

Beyond the Point Cloud: From Transductive to Semi-Supervised Learning Beyond the Point Cloud: From Transductive to Semi-Supervised Learning Vikas Sindhwani, Partha Niyogi, Mikhail Belkin Andrew B. Goldberg goldberg@cs.wisc.edu Department of Computer Sciences University of

More information

Algebraic Topology I Homework Spring 2014

Algebraic Topology I Homework Spring 2014 Algebraic Topology I Homework Spring 2014 Homework solutions will be available http://faculty.tcu.edu/gfriedman/algtop/algtop-hw-solns.pdf Due 5/1 A Do Hatcher 2.2.4 B Do Hatcher 2.2.9b (Find a cell structure)

More information

Announcements - Homework

Announcements - Homework Announcements - Homework Homework 1 is graded, please collect at end of lecture Homework 2 due today Homework 3 out soon (watch email) Ques 1 midterm review HW1 score distribution 40 HW1 total score 35

More information

Gaussian processes. Chuong B. Do (updated by Honglak Lee) November 22, 2008

Gaussian processes. Chuong B. Do (updated by Honglak Lee) November 22, 2008 Gaussian processes Chuong B Do (updated by Honglak Lee) November 22, 2008 Many of the classical machine learning algorithms that we talked about during the first half of this course fit the following pattern:

More information

Pattern recognition. "To understand is to perceive patterns" Sir Isaiah Berlin, Russian philosopher

Pattern recognition. To understand is to perceive patterns Sir Isaiah Berlin, Russian philosopher Pattern recognition "To understand is to perceive patterns" Sir Isaiah Berlin, Russian philosopher The more relevant patterns at your disposal, the better your decisions will be. This is hopeful news to

More information

Part-of-Speech Tagging + Neural Networks 3: Word Embeddings CS 287

Part-of-Speech Tagging + Neural Networks 3: Word Embeddings CS 287 Part-of-Speech Tagging + Neural Networks 3: Word Embeddings CS 287 Review: Neural Networks One-layer multi-layer perceptron architecture, NN MLP1 (x) = g(xw 1 + b 1 )W 2 + b 2 xw + b; perceptron x is the

More information

Let V be a vector space, and let X be a subset. We say X is a Basis if it is both linearly independent and a generating set.

Let V be a vector space, and let X be a subset. We say X is a Basis if it is both linearly independent and a generating set. Basis Let V be a vector space, and let X be a subset. We say X is a Basis if it is both linearly independent and a generating set. The first example of a basis is the standard basis for R n e 1 = (1, 0,...,

More information

CPSC 340: Machine Learning and Data Mining. MLE and MAP Fall 2017

CPSC 340: Machine Learning and Data Mining. MLE and MAP Fall 2017 CPSC 340: Machine Learning and Data Mining MLE and MAP Fall 2017 Assignment 3: Admin 1 late day to hand in tonight, 2 late days for Wednesday. Assignment 4: Due Friday of next week. Last Time: Multi-Class

More information

Part I. Linear regression & LASSO. Linear Regression. Linear Regression. Week 10 Based in part on slides from textbook, slides of Susan Holmes

Part I. Linear regression & LASSO. Linear Regression. Linear Regression. Week 10 Based in part on slides from textbook, slides of Susan Holmes Week 10 Based in part on slides from textbook, slides of Susan Holmes Part I Linear regression & December 5, 2012 1 / 1 2 / 1 We ve talked mostly about classification, where the outcome categorical. If

More information

Jae-Bong Lee 1 and Bernard A. Megrey 2. International Symposium on Climate Change Effects on Fish and Fisheries

Jae-Bong Lee 1 and Bernard A. Megrey 2. International Symposium on Climate Change Effects on Fish and Fisheries International Symposium on Climate Change Effects on Fish and Fisheries On the utility of self-organizing maps (SOM) and k-means clustering to characterize and compare low frequency spatial and temporal

More information

Unsupervised Learning: K- Means & PCA

Unsupervised Learning: K- Means & PCA Unsupervised Learning: K- Means & PCA Unsupervised Learning Supervised learning used labeled data pairs (x, y) to learn a func>on f : X Y But, what if we don t have labels? No labels = unsupervised learning

More information

9/12/17. Types of learning. Modeling data. Supervised learning: Classification. Supervised learning: Regression. Unsupervised learning: Clustering

9/12/17. Types of learning. Modeling data. Supervised learning: Classification. Supervised learning: Regression. Unsupervised learning: Clustering Types of learning Modeling data Supervised: we know input and targets Goal is to learn a model that, given input data, accurately predicts target data Unsupervised: we know the input only and want to make

More information

Machine Learning. Nonparametric Methods. Space of ML Problems. Todo. Histograms. Instance-Based Learning (aka non-parametric methods)

Machine Learning. Nonparametric Methods. Space of ML Problems. Todo. Histograms. Instance-Based Learning (aka non-parametric methods) Machine Learning InstanceBased Learning (aka nonparametric methods) Supervised Learning Unsupervised Learning Reinforcement Learning Parametric Non parametric CSE 446 Machine Learning Daniel Weld March

More information

Logistic Regression: Online, Lazy, Kernelized, Sequential, etc.

Logistic Regression: Online, Lazy, Kernelized, Sequential, etc. Logistic Regression: Online, Lazy, Kernelized, Sequential, etc. Harsha Veeramachaneni Thomson Reuter Research and Development April 1, 2010 Harsha Veeramachaneni (TR R&D) Logistic Regression April 1, 2010

More information

Topological properties

Topological properties CHAPTER 4 Topological properties 1. Connectedness Definitions and examples Basic properties Connected components Connected versus path connected, again 2. Compactness Definition and first examples Topological

More information

ECE521 week 3: 23/26 January 2017

ECE521 week 3: 23/26 January 2017 ECE521 week 3: 23/26 January 2017 Outline Probabilistic interpretation of linear regression - Maximum likelihood estimation (MLE) - Maximum a posteriori (MAP) estimation Bias-variance trade-off Linear

More information

Elementary Algebra - Problem Drill 01: Introduction to Elementary Algebra

Elementary Algebra - Problem Drill 01: Introduction to Elementary Algebra Elementary Algebra - Problem Drill 01: Introduction to Elementary Algebra No. 1 of 10 Instructions: (1) Read the problem and answer choices carefully (2) Work the problems on paper as 1. Which of the following

More information

Chapter 12. The cross ratio Klein s Erlanger program The projective line. Math 4520, Fall 2017

Chapter 12. The cross ratio Klein s Erlanger program The projective line. Math 4520, Fall 2017 Chapter 12 The cross ratio Math 4520, Fall 2017 We have studied the collineations of a projective plane, the automorphisms of the underlying field, the linear functions of Affine geometry, etc. We have

More information

9/26/17. Ridge regression. What our model needs to do. Ridge Regression: L2 penalty. Ridge coefficients. Ridge coefficients

9/26/17. Ridge regression. What our model needs to do. Ridge Regression: L2 penalty. Ridge coefficients. Ridge coefficients What our model needs to do regression Usually, we are not just trying to explain observed data We want to uncover meaningful trends And predict future observations Our questions then are Is β" a good estimate

More information

Categorifying quantum knot invariants

Categorifying quantum knot invariants Categorifying quantum knot invariants Ben Webster U. of Oregon November 26, 2010 Ben Webster (U. of Oregon) Categorifying quantum knot invariants November 26, 2010 1 / 26 This talk is online at http://pages.uoregon.edu/bwebster/rims-iii.pdf.

More information

Cheyne J Miller. Jan 11, 2018

Cheyne J Miller. Jan 11, 2018 Cheyne J Miller St Joseph s College Jan 11, 2018 email: cmiller5@sjcny.edu twitter: @cheynejmiller 1 Why am I giving this talk? Studying for graduate school oral exams First undergraduate research students

More information

MAS435 Algebraic Topology Part A: Semester 1 Exercises

MAS435 Algebraic Topology Part A: Semester 1 Exercises MAS435 Algebraic Topology 2011-12 Part A: Semester 1 Exercises Dr E. L. G. Cheng Office: J24 E-mail: e.cheng@sheffield.ac.uk http://cheng.staff.shef.ac.uk/mas435/ You should hand in your solutions to Exercises

More information

Classification of Dieudonné Modules up to Isogeny

Classification of Dieudonné Modules up to Isogeny McGill University April 2013 The Motivation Why up to Isogeny? Easier problem might shed light on the harder problem. The theory might actually be nicer. Fits in well with a different perspective on Shimura

More information

The Completion of a Metric Space

The Completion of a Metric Space The Completion of a Metric Space Let (X, d) be a metric space. The goal of these notes is to construct a complete metric space which contains X as a subspace and which is the smallest space with respect

More information

CPSC 340: Machine Learning and Data Mining. Linear Least Squares Fall 2016

CPSC 340: Machine Learning and Data Mining. Linear Least Squares Fall 2016 CPSC 340: Machine Learning and Data Mining Linear Least Squares Fall 2016 Assignment 2 is due Friday: Admin You should already be started! 1 late day to hand it in on Wednesday, 2 for Friday, 3 for next

More information

Latent Variable Models and EM Algorithm

Latent Variable Models and EM Algorithm SC4/SM8 Advanced Topics in Statistical Machine Learning Latent Variable Models and EM Algorithm Dino Sejdinovic Department of Statistics Oxford Slides and other materials available at: http://www.stats.ox.ac.uk/~sejdinov/atsml/

More information

Introduction to Machine Learning Midterm Exam Solutions

Introduction to Machine Learning Midterm Exam Solutions 10-701 Introduction to Machine Learning Midterm Exam Solutions Instructors: Eric Xing, Ziv Bar-Joseph 17 November, 2015 There are 11 questions, for a total of 100 points. This exam is open book, open notes,

More information

Microarray Data Analysis: Discovery

Microarray Data Analysis: Discovery Microarray Data Analysis: Discovery Lecture 5 Classification Classification vs. Clustering Classification: Goal: Placing objects (e.g. genes) into meaningful classes Supervised Clustering: Goal: Discover

More information

0. Introduction 1 0. INTRODUCTION

0. Introduction 1 0. INTRODUCTION 0. Introduction 1 0. INTRODUCTION In a very rough sketch we explain what algebraic geometry is about and what it can be used for. We stress the many correlations with other fields of research, such as

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 218 Outlines Overview Introduction Linear Algebra Probability Linear Regression 1

More information

Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function.

Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function. Bayesian learning: Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function. Let y be the true label and y be the predicted

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning Expectation Maximization Mark Schmidt University of British Columbia Winter 2018 Last Time: Learning with MAR Values We discussed learning with missing at random values in data:

More information

where m is the maximal ideal of O X,p. Note that m/m 2 is a vector space. Suppose that we are given a morphism

where m is the maximal ideal of O X,p. Note that m/m 2 is a vector space. Suppose that we are given a morphism 8. Smoothness and the Zariski tangent space We want to give an algebraic notion of the tangent space. In differential geometry, tangent vectors are equivalence classes of maps of intervals in R into the

More information

Greenwich Public Schools Mathematics Curriculum Objectives. Grade 4

Greenwich Public Schools Mathematics Curriculum Objectives. Grade 4 Mathematics Curriculum Objectives Grade 4 June 30, 2006 Content Strand 1: Number Sense Enduring Understanding: Students understand that a variety of numerical representations can be used to describe quantitive

More information

Clustering using Mixture Models

Clustering using Mixture Models Clustering using Mixture Models The full posterior of the Gaussian Mixture Model is p(x, Z, µ,, ) =p(x Z, µ, )p(z )p( )p(µ, ) data likelihood (Gaussian) correspondence prob. (Multinomial) mixture prior

More information

Some thoughts about anomaly detection in HEP

Some thoughts about anomaly detection in HEP Some thoughts about anomaly detection in HEP (with slides from M. Pierini and D. Rousseau) Vladimir V. Gligorov DS@HEP2016, Simons Foundation, New York What kind of anomaly? Will discuss two different

More information

Error Correcting Codes Prof. Dr. P. Vijay Kumar Department of Electrical Communication Engineering Indian Institute of Science, Bangalore

Error Correcting Codes Prof. Dr. P. Vijay Kumar Department of Electrical Communication Engineering Indian Institute of Science, Bangalore (Refer Slide Time: 00:15) Error Correcting Codes Prof. Dr. P. Vijay Kumar Department of Electrical Communication Engineering Indian Institute of Science, Bangalore Lecture No. # 03 Mathematical Preliminaries:

More information

Measurement. New Topics accuracy vs. precision rounding in chemistry significant figures determining uncertainty of a measurement % error moles - 1 -

Measurement. New Topics accuracy vs. precision rounding in chemistry significant figures determining uncertainty of a measurement % error moles - 1 - Measurement Unit Description In this unit we will focus on the mathematical tools we use in science, especially chemistry the metric system and moles. We will also talk about how to gauge the accuracy

More information

Data Mining Prof. Pabitra Mitra Department of Computer Science & Engineering Indian Institute of Technology, Kharagpur

Data Mining Prof. Pabitra Mitra Department of Computer Science & Engineering Indian Institute of Technology, Kharagpur Data Mining Prof. Pabitra Mitra Department of Computer Science & Engineering Indian Institute of Technology, Kharagpur Lecture - 17 K - Nearest Neighbor I Welcome to our discussion on the classification

More information

[Refer Slide Time: 00:45]

[Refer Slide Time: 00:45] Differential Calculus of Several Variables Professor: Sudipta Dutta Department of Mathematics and Statistics Indian Institute of Technology, Kanpur Module 1 Lecture No 1 Introduction of Functions of Several

More information

HYPERGRAPH BASED SEMI-SUPERVISED LEARNING ALGORITHMS APPLIED TO SPEECH RECOGNITION PROBLEM: A NOVEL APPROACH

HYPERGRAPH BASED SEMI-SUPERVISED LEARNING ALGORITHMS APPLIED TO SPEECH RECOGNITION PROBLEM: A NOVEL APPROACH HYPERGRAPH BASED SEMI-SUPERVISED LEARNING ALGORITHMS APPLIED TO SPEECH RECOGNITION PROBLEM: A NOVEL APPROACH Hoang Trang 1, Tran Hoang Loc 1 1 Ho Chi Minh City University of Technology-VNU HCM, Ho Chi

More information

CS 6375 Machine Learning

CS 6375 Machine Learning CS 6375 Machine Learning Nicholas Ruozzi University of Texas at Dallas Slides adapted from David Sontag and Vibhav Gogate Course Info. Instructor: Nicholas Ruozzi Office: ECSS 3.409 Office hours: Tues.

More information

Loss Functions, Decision Theory, and Linear Models

Loss Functions, Decision Theory, and Linear Models Loss Functions, Decision Theory, and Linear Models CMSC 678 UMBC January 31 st, 2018 Some slides adapted from Hamed Pirsiavash Logistics Recap Piazza (ask & answer questions): https://piazza.com/umbc/spring2018/cmsc678

More information

Metrics on Persistence Modules and an Application to Neuroscience

Metrics on Persistence Modules and an Application to Neuroscience Metrics on Persistence Modules and an Application to Neuroscience Magnus Bakke Botnan NTNU November 28, 2014 Part 1: Basics The Study of Sublevel Sets A pair (M, f ) where M is a topological space and

More information

Lecture - 24 Radial Basis Function Networks: Cover s Theorem

Lecture - 24 Radial Basis Function Networks: Cover s Theorem Neural Network and Applications Prof. S. Sengupta Department of Electronic and Electrical Communication Engineering Indian Institute of Technology, Kharagpur Lecture - 24 Radial Basis Function Networks:

More information

Algebraic v.s. Analytic Point of View

Algebraic v.s. Analytic Point of View Algebraic v.s. Analytic Point of View Ziwen Zhu September 19, 2015 In this talk, we will compare 3 different yet similar objects of interest in algebraic and complex geometry, namely algebraic variety,

More information

Mini-Course on Moduli Spaces

Mini-Course on Moduli Spaces Mini-Course on Moduli Spaces Emily Clader June 2011 1 What is a Moduli Space? 1.1 What should a moduli space do? Suppose that we want to classify some kind of object, for example: Curves of genus g, One-dimensional

More information