Density estimation III.

Size: px
Start display at page:

Download "Density estimation III."

Transcription

1 Lecure 6 esy esmao III. Mlos Hausrec mlos@cs..eu 539 Seo Square Oule Oule: esy esmao: Bomal srbuo Mulomal srbuo ormal srbuo Eoeal famly

2 aa: esy esmao {.. } a vecor of arbue values Objecve: ry o esmae e uerlyg rue robably srbuo over varables X X usg eamles rue srbuo samles X.. } { esmae X Saar assumos: Samles are eee of eac oer come from e same ecal srbuo fe X Beroull rals aa: a sequece of oucomes suc a ea al 0 Moel: robably of a ea robably of a al robably of a oucome of a co fl Beroull srbuo ML Soluo: ML - umber of eas a als resecvely

3 oseror srbuo oseror esy va Bayes rule - s e ror robably o ror Leloo of aa ormalzg facor Bea Cojugae coce of ror: Bea oseror srbuo * Bea Bea Bea Bea

4 Mamum a oseror robably Mamum a oseror esmae Selecs e moe of e oseror srbuo MA Bea Bea oce a arameers of e ror ac le cous of eas a als somemes ey are also referre o as ror cous MA Soluo: arg ma MA Bomal srbuo Eamle: a base co Oucomes: wo ossble values -- ea or al aa: a se of orer-eee oucomes We rea as a mul-se - umber of eas see Moel: robably of a ea robably of a al - umber of als see robably of a oucome Bomal srbuo

5 Mamum leloo ML esmae. Leloo of aa: Log-leloo l Cosa from e o of omzao ML ML Soluo: e same as for Beroull a w sequece of eamles oseror esy oseror esy ror coce Leloo oseror MA esmae ma arg MA va Bayes rule Bea Bea MA

6 Eece value of e arameer e resul s e same as for Beroull srbuo Eece value of e arameer recve robably of eve 0 Bea E E E Mulomal srbuo Eamle: Mul-way co oss roll of a ce aa: a se of rals reae as a mul-se Moel arameers: robably of aa leloo ML esmae: ML s.. - a umber of mes a oucome as bee see - robably of a oucome Mulomal srbuo

7 oseror esy a MA esmae Coce of e ror: rcle srbuo.... r r MA.. MA esmae: oseror esy.. r rcle s e cojugae coce for e mulomal Eece value e resul s aaous o e resul for bomal Rereses e recve robably of a eve r E 0 E Eecao base arameer esmae

8 Oer srbuos e same eas ca be ale o oer srbuos ycally we coose srbuos a beave well so a comuaos lea o ce soluos Eoeal famly of srbuos Cojugae coces for some of e srbuos from e eoeal famly: Bomal Bea Mulomal - rcle Eoeal Gamma osso Iverse Gamma Gaussa - Gaussa mea a Wsar covarace Oer srbuos Gamma srbuo: a b a b Eoeal srbuo: A secal case of Gamma for a b e b osso srbuo: b a a e b for [ 0 ] λ e λ λ for { 0 }

9 Gaussa ormal srbuo Gaussa: ~ arameers: - mea - saar evao esy fuco: e[ Eamle: ] arameer esmaes Logleloo l ML esmaes of e mea a varace: ML varace esmae s base E E Ubase esmae:

10 Mulvarae ormal srbuo Mulvarae ormal: arameers: - mea - covarace mar esy fuco: Eamle: e / / ~ arameer esmaes Logleloo ML esmaes of e mea a covaraces: Covarace esmae s base Ubase esmae: l E E

11 oseror of a mulvarae ormal Assume a ror o e mea a s ormally srbue: e e oseror of s ormally srbue / / e e * / / e / / oseror of a mulvarae ormal e e oseror of s ormally srbue e / /

12 Sequeal Bayesa arameer esmao Sequeal Bayesa aroac Uer e e esmaes of e oseror ca be comue cremeally for a sequece of aa os If we use a cojugae ror we ge bac e same oseror Assume we sl e aa e las eleme a e res e: A ew ror Eoeal famly Eoeal famly: all robably mass / esy fucos a ca be wre e eoeal ormal form a vecor of aural or caocal arameers a fuco referre o as a suffce sasc a fuco of s less mora a ormalzao cosa a aro fuco Oer commo form: [ ] e Z f Z { } Z e [ ] e A f A Z

13 Eoeal famly: eamles Beroull srbuo e e { } e Eoeal famly f e [ ] Z arameers?? Z?? Eoeal famly: eamles Beroull srbuo e e { } e Eoeal famly f e [ ] Z arameers oe e Z e

14 Eoeal famly: eamles Uvarae Gaussa srbuo Eoeal famly arameers e e???? Z [ ] e Z f ] e[ Eoeal famly: eamles Uvarae Gaussa srbuo Eoeal famly arameers e e / / / 4 e e Z [ ] e Z f ] e[

15 Eoeal famly For samles e leloo of aa s Imora: e mesoaly of e suffce sasc remas e same w e umber of samles [ ] e A e A e A Eoeal famly e leloo of aa s Omzg e leloo For e ML esmae mus ol e A l A 0 A l A

16 Rewrg e grae: Eoeal famly A Z e e { } A e { } { A } A e A E Resul: E For e ML esmae e arameers soul be ajuse suc a e eecao of e sasc s equal o e observe samle sascs { } Momes of e srbuo For e eoeal famly e - mome of e sasc corresos o e - ervave of A If s a comoe of e we ge e momes of e srbuo by ffereag s corresog aural arameer Eamle: Beroull e A e ervaves: A e e e e A e

Density estimation. Density estimations. CS 2750 Machine Learning. Lecture 5. Milos Hauskrecht 5329 Sennott Square

Density estimation. Density estimations. CS 2750 Machine Learning. Lecture 5. Milos Hauskrecht 5329 Sennott Square Lecure 5 esy esmao Mlos Hauskrec mlos@cs..edu 539 Seo Square esy esmaos ocs: esy esmao: Mamum lkelood ML Bayesa arameer esmaes M Beroull dsrbuo. Bomal dsrbuo Mulomal dsrbuo Normal dsrbuo Eoeal famly Noaramerc

More information

Density estimation III.

Density estimation III. Lecure 4 esy esmao III. Mlos Hauskrec mlos@cs..edu 539 Seo Square Oule Oule: esy esmao: Mamum lkelood ML Bayesa arameer esmaes MP Beroull dsrbuo. Bomal dsrbuo Mulomal dsrbuo Normal dsrbuo Eoeal famly Eoeal

More information

Density estimation III. Linear regression.

Density estimation III. Linear regression. Lecure 6 Mlos Hauskrec mlos@cs.p.eu 539 Seo Square Des esmao III. Lear regresso. Daa: Des esmao D { D D.. D} D a vecor of arbue values Obecve: r o esmae e uerlg rue probabl srbuo over varables X px usg

More information

Chapter 3: Maximum-Likelihood & Bayesian Parameter Estimation (part 1)

Chapter 3: Maximum-Likelihood & Bayesian Parameter Estimation (part 1) Aoucemes Reags o E-reserves Proec roosal ue oay Parameer Esmao Bomercs CSE 9-a Lecure 6 CSE9a Fall 6 CSE9a Fall 6 Paer Classfcao Chaer 3: Mamum-Lelhoo & Bayesa Parameer Esmao ar All maerals hese sles were

More information

CS 2750 Machine Learning Lecture 5. Density estimation. Density estimation

CS 2750 Machine Learning Lecture 5. Density estimation. Density estimation CS 750 Mache Learg Lecture 5 esty estmato Mlos Hausrecht mlos@tt.edu 539 Seott Square esty estmato esty estmato: s a usuervsed learg roblem Goal: Lear a model that rereset the relatos amog attrbutes the

More information

Least Squares Fitting (LSQF) with a complicated function Theexampleswehavelookedatsofarhavebeenlinearintheparameters

Least Squares Fitting (LSQF) with a complicated function Theexampleswehavelookedatsofarhavebeenlinearintheparameters Leas Squares Fg LSQF wh a complcaed fuco Theeampleswehavelookedasofarhavebeelearheparameers ha we have bee rg o deerme e.g. slope, ercep. For he case where he fuco s lear he parameers we ca fd a aalc soluo

More information

Learning of Graphical Models Parameter Estimation and Structure Learning

Learning of Graphical Models Parameter Estimation and Structure Learning Learg of Grahal Models Parameer Esmao ad Sruure Learg e Fukumzu he Isue of Sasal Mahemas Comuaoal Mehodology Sasal Iferee II Work wh Grahal Models Deermg sruure Sruure gve by modelg d e.g. Mxure model

More information

Comparison of the Bayesian and Maximum Likelihood Estimation for Weibull Distribution

Comparison of the Bayesian and Maximum Likelihood Estimation for Weibull Distribution Joural of Mahemacs ad Sascs 6 (2): 1-14, 21 ISSN 1549-3644 21 Scece Publcaos Comarso of he Bayesa ad Maxmum Lkelhood Esmao for Webull Dsrbuo Al Omar Mohammed Ahmed, Hadeel Salm Al-Kuub ad Noor Akma Ibrahm

More information

CS 3710 Advanced Topics in AI Lecture 17. Density estimation. CS 3710 Probabilistic graphical models. Administration

CS 3710 Advanced Topics in AI Lecture 17. Density estimation. CS 3710 Probabilistic graphical models. Administration CS 37 Avace Topcs AI Lecture 7 esty estmato Mlos Hauskrecht mlos@cs.ptt.eu 539 Seott Square CS 37 robablstc graphcal moels Amstrato Mterm: A take-home exam week ue o Weesay ovember 5 before the class epes

More information

θ = θ Π Π Parametric counting process models θ θ θ Log-likelihood: Consider counting processes: Score functions:

θ = θ Π Π Parametric counting process models θ θ θ Log-likelihood: Consider counting processes: Score functions: Paramerc coug process models Cosder coug processes: N,,..., ha cou he occurreces of a eve of eres for dvduals Iesy processes: Lelhood λ ( ;,,..., N { } λ < Log-lelhood: l( log L( Score fucos: U ( l( log

More information

Statistics: Part 1 Parameter Estimation

Statistics: Part 1 Parameter Estimation Hery Sar ad Joh W. Woods, robably, Sascs, ad Radom ables for geers, h ed., earso ducao Ic., 0. ISBN: 978-0-3-33-6 Chaer 6 Sascs: ar arameer smao Secos 6. Iroduco 30 Ideede, Idecally Dsrbued (..d.) Observaos

More information

14. Poisson Processes

14. Poisson Processes 4. Posso Processes I Lecure 4 we roduced Posso arrvals as he lmg behavor of Bomal radom varables. Refer o Posso approxmao of Bomal radom varables. From he dscusso here see 4-6-4-8 Lecure 4 " arrvals occur

More information

Continuous Time Markov Chains

Continuous Time Markov Chains Couous me Markov chas have seay sae probably soluos f a oly f hey are ergoc, us lke scree me Markov chas. Fg he seay sae probably vecor for a couous me Markov cha s o more ffcul ha s he scree me case,

More information

Fault Tolerant Computing. Fault Tolerant Computing CS 530 Probabilistic methods: overview

Fault Tolerant Computing. Fault Tolerant Computing CS 530 Probabilistic methods: overview Probably 1/19/ CS 53 Probablsc mehods: overvew Yashwa K. Malaya Colorado Sae Uversy 1 Probablsc Mehods: Overvew Cocree umbers presece of uceray Probably Dsjo eves Sascal depedece Radom varables ad dsrbuos

More information

EE 6885 Statistical Pattern Recognition

EE 6885 Statistical Pattern Recognition EE 6885 Sascal Paer Recogo Fall 005 Prof. Shh-Fu Chag hp://www.ee.columba.edu/~sfchag Lecure 5 (9//05 4- Readg Model Parameer Esmao ML Esmao, Chap. 3. Mure of Gaussa ad EM Referece Boo, HTF Chap. 8.5 Teboo,

More information

1.2 The Mean, Variance, and Standard Deviation. x x. standard deviation: σ = σ ; geometric series is. 1 x. 1 n xi. n n n

1.2 The Mean, Variance, and Standard Deviation. x x. standard deviation: σ = σ ; geometric series is. 1 x. 1 n xi. n n n . The Mea, Varace, ad Sadard Devao mea: µ f ( u f ( u +... + ukf ( uk S k k varace: ( f ( ( u f ( u +... + ( u f ( u f ( S sadard devao: geomerc seres s [emrcal dsrbuo s] samle mea: [emrcal dsrbuo s] varace:

More information

(1) Cov(, ) E[( E( ))( E( ))]

(1) Cov(, ) E[( E( ))( E( ))] Impac of Auocorrelao o OLS Esmaes ECON 3033/Evas Cosder a smple bvarae me-seres model of he form: y 0 x The four key assumpos abou ε hs model are ) E(ε ) = E[ε x ]=0 ) Var(ε ) =Var(ε x ) = ) Cov(ε, ε )

More information

Machine Learning. Hidden Markov Model. Eric Xing / /15-781, 781, Fall Lecture 17, March 24, 2008

Machine Learning. Hidden Markov Model. Eric Xing / /15-781, 781, Fall Lecture 17, March 24, 2008 Mache Learg 0-70/5 70/5-78 78 Fall 2008 Hdde Marov Model Erc Xg Lecure 7 March 24 2008 Readg: Cha. 3 C.B boo Erc Xg Erc Xg 2 Hdde Marov Model: from sac o damc mure models Sac mure Damc mure Y Y Y 2 Y 3

More information

Linear Regression Linear Regression with Shrinkage

Linear Regression Linear Regression with Shrinkage Lear Regresso Lear Regresso h Shrkage Iroduco Regresso meas predcg a couous (usuall scalar oupu from a vecor of couous pus (feaures x. Example: Predcg vehcle fuel effcec (mpg from 8 arbues: Lear Regresso

More information

To Estimate or to Predict

To Estimate or to Predict Raer Schwabe o Esmae or o Predc Implcaos o he esg or Lear Mxed Models o Esmae or o Predc - Implcaos o he esg or Lear Mxed Models Raer Schwabe, Marya Prus raer.schwabe@ovgu.de suppored by SKAVOE Germa ederal

More information

Solution set Stat 471/Spring 06. Homework 2

Solution set Stat 471/Spring 06. Homework 2 oluo se a 47/prg 06 Homework a Whe he upper ragular elemes are suppressed due o smmer b Le Y Y Y Y A weep o he frs colum o oba: A ˆ b chagg he oao eg ad ec YY weep o he secod colum o oba: Aˆ YY weep o

More information

Parameter Estimation

Parameter Estimation arameter Estmato robabltes Notatoal Coveto Mass dscrete fucto: catal letters Desty cotuous fucto: small letters Vector vs. scalar Scalar: la Vector: bold D: small Hgher dmeso: catal Notes a cotuous state

More information

THE WEIBULL LENGTH BIASED DISTRIBUTION -PROPERTIES AND ESTIMATION-

THE WEIBULL LENGTH BIASED DISTRIBUTION -PROPERTIES AND ESTIMATION- THE WEIBULL LENGTH BIASED DISTIBUTION -POPETIES AND ESTIMATION- By S. A. Shaba Nama Ahme Bourssa I.S.S. aro Uversy rshabashaba@yahoo.com I.N.P.S. Algers Uversy boura005@yahoo.com ABSTAT The legh-base verso

More information

8. Queueing systems lect08.ppt S Introduction to Teletraffic Theory - Fall

8. Queueing systems lect08.ppt S Introduction to Teletraffic Theory - Fall 8. Queueg sysems lec8. S-38.45 - Iroduco o Teleraffc Theory - Fall 8. Queueg sysems Coes Refresher: Smle eleraffc model M/M/ server wag laces M/M/ servers wag laces 8. Queueg sysems Smle eleraffc model

More information

Upper Bound For Matrix Operators On Some Sequence Spaces

Upper Bound For Matrix Operators On Some Sequence Spaces Suama Uer Bou formar Oeraors Uer Bou For Mar Oeraors O Some Sequece Saces Suama Dearme of Mahemacs Gaah Maa Uersy Yogyaara 558 INDONESIA Emal: suama@ugmac masomo@yahoocom Isar D alam aer aa susa masalah

More information

STK3100 and STK4100 Autumn 2017

STK3100 and STK4100 Autumn 2017 SK3 ad SK4 Autum 7 Geeralzed lear models Part III Covers the followg materal from chaters 4 ad 5: Sectos 4..5, 4.3.5, 4.3.6, 4.4., 4.4., ad 4.4.3 Sectos 5.., 5.., ad 5.5. Ørulf Borga Deartmet of Mathematcs

More information

Generative classification models

Generative classification models CS 75 Mache Learg Lecture Geeratve classfcato models Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square Data: D { d, d,.., d} d, Classfcato represets a dscrete class value Goal: lear f : X Y Bar classfcato

More information

A Comparison of AdomiansDecomposition Method and Picard Iterations Method in Solving Nonlinear Differential Equations

A Comparison of AdomiansDecomposition Method and Picard Iterations Method in Solving Nonlinear Differential Equations Global Joural of Scece Froer Research Mahemacs a Decso Sceces Volume Issue 7 Verso. Jue Te : Double Bl Peer Revewe Ieraoal Research Joural Publsher: Global Jourals Ic. (USA Ole ISSN: 49-466 & Pr ISSN:

More information

ASYMPTOTIC APPROXIMATIONS FOR DISTRIBUTIONS OF TEST STATISTICS OF PROFILE HYPOTHESES FOR SEVERAL GROUPS UNDER NON-NORMALITY

ASYMPTOTIC APPROXIMATIONS FOR DISTRIBUTIONS OF TEST STATISTICS OF PROFILE HYPOTHESES FOR SEVERAL GROUPS UNDER NON-NORMALITY Joural of ahemaal Sees: Avaes a Alaos Volume Number Pages 95-6 ASYPTOTIC APPROXIATIONS FOR DISTRIBUTIONS OF TEST STATISTICS OF PROFILE HYPOTHESES FOR SEVERAL GROUPS UNDER NON-NORALITY YOSIHITO ARUYAA Dearme

More information

CS 2750 Machine Learning Lecture 8. Linear regression. Supervised learning. a set of n examples

CS 2750 Machine Learning Lecture 8. Linear regression. Supervised learning. a set of n examples CS 75 Mache Learg Lecture 8 Lear regresso Mlos Hauskrecht los@cs.tt.eu 59 Seott Square Suervse learg Data: D { D D.. D} a set of eales D s a ut vector of sze s the esre outut gve b a teacher Obectve: lear

More information

Three Main Questions on HMMs

Three Main Questions on HMMs Mache Learg 0-70/5-78 78 Srg 00 Hdde Marov Model II Erc Xg Lecure Februar 4 00 Readg: Cha. 3 CB Three Ma Quesos o HMMs. Evaluao GIVEN a HMM M ad a sequece FIND Prob M ALGO. Forward. Decodg GIVEN a HMM

More information

Probability and Statistics. What is probability? What is statistics?

Probability and Statistics. What is probability? What is statistics? robablt ad Statstcs What s robablt? What s statstcs? robablt ad Statstcs robablt Formall defed usg a set of aoms Seeks to determe the lkelhood that a gve evet or observato or measuremet wll or has haeed

More information

AML710 CAD LECTURE 12 CUBIC SPLINE CURVES. Cubic Splines Matrix formulation Normalised cubic splines Alternate end conditions Parabolic blending

AML710 CAD LECTURE 12 CUBIC SPLINE CURVES. Cubic Splines Matrix formulation Normalised cubic splines Alternate end conditions Parabolic blending CUIC SLINE CURVES Cubc Sples Marx formulao Normalsed cubc sples Alerae ed codos arabolc bledg AML7 CAD LECTURE CUIC SLINE The ame sple comes from he physcal srume sple drafsme use o produce curves A geeral

More information

Quantum Mechanics II. Chapter 6

Quantum Mechanics II. Chapter 6 Quau Mecacs II Caer 6 Te race of uau ecacs Bor s eor o aoc srucure 93 oes o er o uersa ow vual aos erac w oe aoer A ore geeral a fuaeal aroac o aoc eoea s RQUIRD! Heseberg 95 a Scrger 96 eveloe uau ecacal

More information

Other Topics in Kernel Method Statistical Inference with Reproducing Kernel Hilbert Space

Other Topics in Kernel Method Statistical Inference with Reproducing Kernel Hilbert Space Oher Topcs Kerel Mehod Sascal Iferece wh Reproducg Kerel Hlber Space Kej Fukumzu Isue of Sascal Mahemacs, ROIS Deparme of Sascal Scece, Graduae Uversy for Advaced Sudes Sepember 6, 008 / Sascal Learg Theory

More information

Some Probability Inequalities for Quadratic Forms of Negatively Dependent Subgaussian Random Variables

Some Probability Inequalities for Quadratic Forms of Negatively Dependent Subgaussian Random Variables Joural of Sceces Islamc epublc of Ira 6(: 63-67 (005 Uvers of ehra ISSN 06-04 hp://scecesuacr Some Probabl Iequales for Quadrac Forms of Negavel Depede Subgaussa adom Varables M Am A ozorga ad H Zare 3

More information

Parameter, Statistic and Random Samples

Parameter, Statistic and Random Samples Parameter, Statstc ad Radom Samples A parameter s a umber that descrbes the populato. It s a fxed umber, but practce we do ot kow ts value. A statstc s a fucto of the sample data,.e., t s a quatty whose

More information

The Poisson Process Properties of the Poisson Process

The Poisson Process Properties of the Poisson Process Posso Processes Summary The Posso Process Properes of he Posso Process Ierarrval mes Memoryless propery ad he resdual lfeme paradox Superposo of Posso processes Radom seleco of Posso Pos Bulk Arrvals ad

More information

Moment Generating Function

Moment Generating Function 1 Mome Geeraig Fucio m h mome m m m E[ ] x f ( x) dx m h ceral mome m m m E[( ) ] ( ) ( x ) f ( x) dx Mome Geeraig Fucio For a real, M () E[ e ] e k x k e p ( x ) discree x k e f ( x) dx coiuous Example

More information

Law of Large Numbers

Law of Large Numbers Toss a co tmes. Law of Large Numbers Suppose 0 f f th th toss came up H toss came up T s are Beroull radom varables wth p ½ ad E( ) ½. The proporto of heads s. Itutvely approaches ½ as. week 2 Markov s

More information

FALL HOMEWORK NO. 6 - SOLUTION Problem 1.: Use the Storage-Indication Method to route the Input hydrograph tabulated below.

FALL HOMEWORK NO. 6 - SOLUTION Problem 1.: Use the Storage-Indication Method to route the Input hydrograph tabulated below. Jorge A. Ramírez HOMEWORK NO. 6 - SOLUTION Problem 1.: Use he Sorage-Idcao Mehod o roue he Ipu hydrograph abulaed below. Tme (h) Ipu Hydrograph (m 3 /s) Tme (h) Ipu Hydrograph (m 3 /s) 0 0 90 450 6 50

More information

EE 6885 Statistical Pattern Recognition

EE 6885 Statistical Pattern Recognition EE 6885 Sascal Paer Recogo Fall 005 Prof. Shh-Fu Chag hp://.ee.columba.edu/~sfchag Lecure 8 (/8/05 8- Readg Feaure Dmeso Reduco PCA, ICA, LDA, Chaper 3.8, 0.3 ICA Tuoral: Fal Exam Aapo Hyväre ad Erkk Oja,

More information

Chapter 8. Simple Linear Regression

Chapter 8. Simple Linear Regression Chaper 8. Smple Lear Regresso Regresso aalyss: regresso aalyss s a sascal mehodology o esmae he relaoshp of a respose varable o a se of predcor varable. whe here s jus oe predcor varable, we wll use smple

More information

Convexity Preserving C 2 Rational Quadratic Trigonometric Spline

Convexity Preserving C 2 Rational Quadratic Trigonometric Spline Ieraoal Joural of Scefc a Researc Publcaos, Volume 3, Issue 3, Marc 3 ISSN 5-353 Covexy Preservg C Raoal Quarac Trgoomerc Sple Mrula Dube, Pree Twar Deparme of Maemacs a Compuer Scece, R. D. Uversy, Jabalpur,

More information

STK3100 and STK4100 Autumn 2018

STK3100 and STK4100 Autumn 2018 SK3 ad SK4 Autum 8 Geeralzed lear models Part III Covers the followg materal from chaters 4 ad 5: Cofdece tervals by vertg tests Cosder a model wth a sgle arameter β We may obta a ( α% cofdece terval for

More information

Use of Non-Conventional Measures of Dispersion for Improved Estimation of Population Mean

Use of Non-Conventional Measures of Dispersion for Improved Estimation of Population Mean Amerca Joural of Operaoal esearch 06 6(: 69-75 DOI: 0.59/.aor.06060.0 Use of o-coveoal Measures of Dsperso for Improve Esmao of Populao Mea ubhash Kumar aav.. Mshra * Alok Kumar hukla hak Kumar am agar

More information

= 2. Statistic - function that doesn't depend on any of the known parameters; examples:

= 2. Statistic - function that doesn't depend on any of the known parameters; examples: of Samplg Theory amples - uemploymet househol cosumpto survey Raom sample - set of rv's... ; 's have ot strbuto [ ] f f s vector of parameters e.g. Statstc - fucto that oes't epe o ay of the ow parameters;

More information

Least squares and motion. Nuno Vasconcelos ECE Department, UCSD

Least squares and motion. Nuno Vasconcelos ECE Department, UCSD Leas squares ad moo uo Vascocelos ECE Deparme UCSD Pla for oda oda we wll dscuss moo esmao hs s eresg wo was moo s ver useful as a cue for recogo segmeao compresso ec. s a grea eample of leas squares problem

More information

ρ < 1 be five real numbers. The

ρ < 1 be five real numbers. The Lecture o BST 63: Statstcal Theory I Ku Zhag, /0/006 Revew for the prevous lecture Deftos: covarace, correlato Examples: How to calculate covarace ad correlato Theorems: propertes of correlato ad covarace

More information

STK4011 and STK9011 Autumn 2016

STK4011 and STK9011 Autumn 2016 STK4 ad STK9 Autum 6 Pot estmato Covers (most of the followg materal from chapter 7: Secto 7.: pages 3-3 Secto 7..: pages 3-33 Secto 7..: pages 35-3 Secto 7..3: pages 34-35 Secto 7.3.: pages 33-33 Secto

More information

The expected value of a sum of random variables,, is the sum of the expected values:

The expected value of a sum of random variables,, is the sum of the expected values: Sums of Radom Varables xpected Values ad Varaces of Sums ad Averages of Radom Varables The expected value of a sum of radom varables, say S, s the sum of the expected values: ( ) ( ) S Ths s always true

More information

-distributed random variables consisting of n samples each. Determine the asymptotic confidence intervals for

-distributed random variables consisting of n samples each. Determine the asymptotic confidence intervals for Assgme Sepha Brumme Ocober 8h, 003 9 h semeser, 70544 PREFACE I 004, I ed o sped wo semesers o a sudy abroad as a posgraduae exchage sude a he Uversy of Techology Sydey, Ausrala. Each opporuy o ehace my

More information

Cyclone. Anti-cyclone

Cyclone. Anti-cyclone Adveco Cycloe A-cycloe Lorez (963) Low dmesoal aracors. Uclear f hey are a good aalogy o he rue clmae sysem, bu hey have some appealg characerscs. Dscusso Is he al codo balaced? Is here a al adjusme

More information

Partial Molar Properties of solutions

Partial Molar Properties of solutions Paral Molar Properes of soluos A soluo s a homogeeous mxure; ha s, a soluo s a oephase sysem wh more ha oe compoe. A homogeeous mxures of wo or more compoes he gas, lqud or sold phase The properes of a

More information

Representation of Hamiltonian Formalism. in Dissipative Mechanical System

Representation of Hamiltonian Formalism. in Dissipative Mechanical System Ale Mahemacal ceces Vol. 4 00 o. 9 93-94 Rereseao of amloa ormalsm Dssave Mechacal ysem M. aer Al Bswas Tm ahra aue M. Elyas Karm a M. Ashkur Rahma Mahemacs Dscle Khula Uversy Khula-908 Baglaesh mhabswas@yahoo.com

More information

Density estimation II

Density estimation II CS 750 Mche Lerg Lecture 6 esty estmto II Mlos Husrecht mlos@tt.edu 539 Seott Squre t: esty estmto {.. } vector of ttrute vlues Ojectve: estmte the model of the uderlyg rolty dstruto over vrles X X usg

More information

Integral Φ0-Stability of Impulsive Differential Equations

Integral Φ0-Stability of Impulsive Differential Equations Ope Joural of Appled Sceces, 5, 5, 65-66 Publsed Ole Ocober 5 ScRes p://wwwscrporg/joural/ojapps p://ddoorg/46/ojapps5564 Iegral Φ-Sably of Impulsve Dffereal Equaos Aju Sood, Sajay K Srvasava Appled Sceces

More information

OP = OO' + Ut + Vn + Wb. Material We Will Cover Today. Computer Vision Lecture 3. Multi-view Geometry I. Amnon Shashua

OP = OO' + Ut + Vn + Wb. Material We Will Cover Today. Computer Vision Lecture 3. Multi-view Geometry I. Amnon Shashua Comuer Vson 27 Lecure 3 Mul-vew Geomer I Amnon Shashua Maeral We Wll Cover oa he srucure of 3D->2D rojecon mar omograh Marces A rmer on rojecve geomer of he lane Eolar Geomer an Funamenal Mar ebrew Unvers

More information

Part I: Background on the Binomial Distribution

Part I: Background on the Binomial Distribution Part I: Bacgroud o the Bomal Dstrbuto A radom varable s sad to have a Beroull dstrbuto f t taes o the value wth probablt "p" ad the value wth probablt " - p". The umber of "successes" "" depedet Beroull

More information

Lecture 3 Naïve Bayes, Maximum Entropy and Text Classification COSI 134

Lecture 3 Naïve Bayes, Maximum Entropy and Text Classification COSI 134 Lecture 3 Naïve Baes, Mamum Etro ad Tet Classfcato COSI 34 Codtoal Parameterzato Two RVs: ItellgeceI ad SATS ValI = {Hgh,Low}, ValS={Hgh,Low} A ossble jot dstrbuto Ca descrbe usg cha rule as PI,S PIPS

More information

As evident from the full-sample-model, we continue to assume that individual errors are identically and

As evident from the full-sample-model, we continue to assume that individual errors are identically and Maxmum Lkelhood smao Greee Ch.4; App. R scrp modsa, modsb If we feel safe makg assumpos o he sascal dsrbuo of he error erm, Maxmum Lkelhood smao (ML) s a aracve alerave o Leas Squares for lear regresso

More information

BASIC PRINCIPLES OF STATISTICS

BASIC PRINCIPLES OF STATISTICS BASIC PRINCIPLES OF STATISTICS PROBABILITY DENSITY DISTRIBUTIONS DISCRETE VARIABLES BINOMIAL DISTRIBUTION ~ B 0 0 umber of successes trals Pr E [ ] Var[ ] ; BINOMIAL DISTRIBUTION B7 0. B30 0.3 B50 0.5

More information

THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A, OF THE ROMANIAN ACADEMY Volume 10, Number 2/2009, pp

THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A, OF THE ROMANIAN ACADEMY Volume 10, Number 2/2009, pp THE PUBLIHING HOUE PROCEEDING OF THE ROMANIAN ACADEMY, eres A, OF THE ROMANIAN ACADEMY Volume 0, Number /009,. 000-000 ON ZALMAI EMIPARAMETRIC DUALITY MODEL FOR MULTIOBJECTIVE FRACTIONAL PROGRAMMING WITH

More information

Pattern Classification (III) & Pattern Verification

Pattern Classification (III) & Pattern Verification Preare by Prof. Hu Jang CSE638 --4 CSE638 3. Seech & Language Processng o.5 Paern Classfcaon III & Paern Verfcaon Prof. Hu Jang Dearmen of Comuer Scence an Engneerng York Unversy Moel Parameer Esmaon Maxmum

More information

S n. = n. Sum of first n terms of an A. P is

S n. = n. Sum of first n terms of an A. P is PROGREION I his secio we discuss hree impora series amely ) Arihmeic Progressio (A.P), ) Geomeric Progressio (G.P), ad 3) Harmoic Progressio (H.P) Which are very widely used i biological scieces ad humaiies.

More information

1 Solution to Problem 6.40

1 Solution to Problem 6.40 1 Soluto to Problem 6.40 (a We wll wrte T τ (X 1,...,X where the X s are..d. wth PDF f(x µ, σ 1 ( x µ σ g, σ where the locato parameter µ s ay real umber ad the scale parameter σ s > 0. Lettg Z X µ σ we

More information

Chapter 3 Common Families of Distributions

Chapter 3 Common Families of Distributions Chaer 3 Common Families of Disribuions Secion 31 - Inroducion Purose of his Chaer: Caalog many of common saisical disribuions (families of disribuions ha are indeed by one or more arameers) Wha we should

More information

Bilinear estimation of pollution source profiles in receptor models. Clifford H Spiegelman Ronald C. Henry NRCSE

Bilinear estimation of pollution source profiles in receptor models. Clifford H Spiegelman Ronald C. Henry NRCSE Blear esmao of olluo source rofles receor models Eu Sug Park Clfford H Segelma Roald C Hery NRCSE T e c h c a l R e o r S e r e s NRCSE-TRS No 9 Blear esmao of olluo source rofles receor models Eu Sug

More information

BILINEAR GARCH TIME SERIES MODELS

BILINEAR GARCH TIME SERIES MODELS BILINEAR GARCH TIME SERIES MODELS Mahmoud Gabr, Mahmoud El-Hashash Dearme of Mahemacs, Faculy of Scece, Alexadra Uversy, Alexadra, Egy Dearme of Mahemacs ad Comuer Scece, Brdgewaer Sae Uversy, Brdgewaer,

More information

Determination of Antoine Equation Parameters. December 4, 2012 PreFEED Corporation Yoshio Kumagae. Introduction

Determination of Antoine Equation Parameters. December 4, 2012 PreFEED Corporation Yoshio Kumagae. Introduction refeed Soluos for R&D o Desg Deermao of oe Equao arameers Soluos for R&D o Desg December 4, 0 refeed orporao Yosho Kumagae refeed Iroduco hyscal propery daa s exremely mpora for performg process desg ad

More information

CHAPTER 6. d. With success = observation greater than 10, x = # of successes = 4, and

CHAPTER 6. d. With success = observation greater than 10, x = # of successes = 4, and CHAPTR 6 Secto 6.. a. We use the samle mea, to estmate the oulato mea µ. Σ 9.80 µ 8.407 7 ~ 7. b. We use the samle meda, 7 (the mddle observato whe arraged ascedg order. c. We use the samle stadard devato,

More information

Numerical Methods for a Class of Hybrid. Weakly Singular Integro-Differential Equations.

Numerical Methods for a Class of Hybrid. Weakly Singular Integro-Differential Equations. Ale Mahemacs 7 8 956-966 h://www.scr.org/joural/am ISSN Ole: 5-7393 ISSN Pr: 5-7385 Numercal Mehos for a Class of Hybr Wealy Sgular Iegro-Dffereal Equaos Shhchug Chag Dearme of Face Chug Hua Uversy Hschu

More information

Chapter 5 Properties of a Random Sample

Chapter 5 Properties of a Random Sample Lecture 3 o BST 63: Statstcal Theory I Ku Zhag, /6/006 Revew for the revous lecture Cocets: radom samle, samle mea, samle varace Theorems: roertes of a radom samle, samle mea, samle varace Examles: how

More information

4. Runge-Kutta Formula For Differential Equations

4. Runge-Kutta Formula For Differential Equations NCTU Deprme o Elecrcl d Compuer Egeerg 5 Sprg Course by Pro. Yo-Pg Ce. Ruge-Ku Formul For Derel Equos To solve e derel equos umerclly e mos useul ormul s clled Ruge-Ku ormul

More information

Moments of Order Statistics from Nonidentically Distributed Three Parameters Beta typei and Erlang Truncated Exponential Variables

Moments of Order Statistics from Nonidentically Distributed Three Parameters Beta typei and Erlang Truncated Exponential Variables Joural of Mahemacs ad Sascs 6 (4): 442-448, 200 SSN 549-3644 200 Scece Publcaos Momes of Order Sascs from Nodecally Dsrbued Three Parameers Bea ype ad Erlag Trucaed Expoeal Varables A.A. Jamoom ad Z.A.

More information

Learning Graphical Models

Learning Graphical Models School of omuter Scece Statstcal learg wth basc grahcal models robablstc Grahcal Models -78 Lecture 7 Oct 8 7 Recetor A Recetor B ase ase D ase E 3 4 5 Erc g Gee G TF F 6 7 Gee H 8 Readg: J-ha. 56 F-ha.

More information

KEY EQUATIONS. ES = max (EF times of all activities immediately preceding activity)

KEY EQUATIONS. ES = max (EF times of all activities immediately preceding activity) KEY EQUATIONS CHATER : Oeraos as a Comeve Weao. roduvy s he rao of ouu o u, or roduv y Ouu Iu SULEMENT A: Deso Makg. Break-eve volume: Q F. Evaluag roess, make-or-buy dfferee quay: Q F m b F b m CHATER

More information

( ) = ( ) ( ) Chapter 13 Asymptotic Theory and Stochastic Regressors. Stochastic regressors model

( ) = ( ) ( ) Chapter 13 Asymptotic Theory and Stochastic Regressors. Stochastic regressors model Chapter 3 Asmptotc Theor ad Stochastc Regressors The ature of eplaator varable s assumed to be o-stochastc or fed repeated samples a regresso aalss Such a assumpto s approprate for those epermets whch

More information

Overview. Basic concepts of Bayesian learning. Most probable model given data Coin tosses Linear regression Logistic regression

Overview. Basic concepts of Bayesian learning. Most probable model given data Coin tosses Linear regression Logistic regression Overvew Basc cocepts of Bayesa learg Most probable model gve data Co tosses Lear regresso Logstc regresso Bayesa predctos Co tosses Lear regresso 30 Recap: regresso problems Iput to learg problem: trag

More information

th m m m m central moment : E[( X X) ] ( X X) ( x X) f ( x)

th m m m m central moment : E[( X X) ] ( X X) ( x X) f ( x) 1 Trasform Techiques h m m m m mome : E[ ] x f ( x) dx h m m m m ceral mome : E[( ) ] ( ) ( x) f ( x) dx A coveie wa of fidig he momes of a radom variable is he mome geeraig fucio (MGF). Oher rasform echiques

More information

A class of Liu-type estimators based on ridge regression under multicollinearity with an application to mixture experiments

A class of Liu-type estimators based on ridge regression under multicollinearity with an application to mixture experiments A class of Lu-te estmators based o rdge regresso uder multcolleart wth a alcato to mture eermets Preseter: A-Chu Che 陳愛群 Advsor: aesh Emura Jue 6, 5 Graduate Isttute of Statstcs, NCU Outle Itroducto Methodolog

More information

Feature Space. 4. Feature Space and Feature Extraction. Example: DNA. Example: Faces (appearance-based)

Feature Space. 4. Feature Space and Feature Extraction. Example: DNA. Example: Faces (appearance-based) Feaure Sace 4. Feaure Sace ad Feaure Exraco Alex M. Marez alex@ece.osu.edu Hadous Hadousfor forece ECE874 874S S2007 May roblems scece ad egeerg ca be formulaed as a PR oe. For hs, we eed o defe a feaure

More information

Chapter 4 Multiple Random Variables

Chapter 4 Multiple Random Variables Revew for the prevous lecture: Theorems ad Examples: How to obta the pmf (pdf) of U = g (, Y) ad V = g (, Y) Chapter 4 Multple Radom Varables Chapter 44 Herarchcal Models ad Mxture Dstrbutos Examples:

More information

Brownian Motion and Stochastic Calculus. Brownian Motion and Stochastic Calculus

Brownian Motion and Stochastic Calculus. Brownian Motion and Stochastic Calculus Browa Moo Sochasc Calculus Xogzh Che Uversy of Hawa a Maoa earme of Mahemacs Seember, 8 Absrac Ths oe s abou oob decomoso he bascs of Suare egrable margales Coes oob-meyer ecomoso Suare Iegrable Margales

More information

Chapter 18: Sampling Distribution Models

Chapter 18: Sampling Distribution Models Chater 18: Samlig Distributio Models This is the last bit of theory before we get back to real-world methods. Samlig Distributios: The Big Idea Take a samle ad summarize it with a statistic. Now take aother

More information

A note on Turán number Tk ( 1, kn, )

A note on Turán number Tk ( 1, kn, ) A oe o Turá umber T (,, ) L A-Pg Beg 00085, P.R. Cha apl000@sa.com Absrac: Turá umber s oe of prmary opcs he combaorcs of fe ses, hs paper, we wll prese a ew upper boud for Turá umber T (,, ). . Iroduco

More information

GENERALIZED METHOD OF LIE-ALGEBRAIC DISCRETE APPROXIMATIONS FOR SOLVING CAUCHY PROBLEMS WITH EVOLUTION EQUATION

GENERALIZED METHOD OF LIE-ALGEBRAIC DISCRETE APPROXIMATIONS FOR SOLVING CAUCHY PROBLEMS WITH EVOLUTION EQUATION Joural of Appled Maemacs ad ompuaoal Mecacs 24 3(2 5-62 GENERALIZED METHOD OF LIE-ALGEBRAI DISRETE APPROXIMATIONS FOR SOLVING AUHY PROBLEMS WITH EVOLUTION EQUATION Arkad Kdybaluk Iva Frako Naoal Uversy

More information

A New Iterative Method for Solving Initial Value Problems

A New Iterative Method for Solving Initial Value Problems A New Ierave Meod or Solvg Ial Value Problems Mgse Wu ad Weu Hog Dearme o Ma., Sascs, ad CS, Uvers o Wscos-Sou, Meomoe, WI 5475, USA Dearme o Maemacs, Clao Sae Uvers, Morrow, GA 36, USA Absrac - I s aer,

More information

Point Estimation: definition of estimators

Point Estimation: definition of estimators Pot Estmato: defto of estmators Pot estmator: ay fucto W (X,..., X ) of a data sample. The exercse of pot estmato s to use partcular fuctos of the data order to estmate certa ukow populato parameters.

More information

CHAPTER 5: MULTIVARIATE METHODS

CHAPTER 5: MULTIVARIATE METHODS CHAPER 5: MULIVARIAE MEHODS Mulvarae Daa 3 Mulple measuremens (sensors) npus/feaures/arbues: -varae N nsances/observaons/eamples Each row s an eample Each column represens a feaure X a b correspons o he

More information

Midterm Exam. Tuesday, September hour, 15 minutes

Midterm Exam. Tuesday, September hour, 15 minutes Ecoomcs of Growh, ECON560 Sa Fracsco Sae Uvers Mchael Bar Fall 203 Mderm Exam Tuesda, Sepember 24 hour, 5 mues Name: Isrucos. Ths s closed boo, closed oes exam. 2. No calculaors of a d are allowed. 3.

More information

2SLS Estimates ECON In this case, begin with the assumption that E[ i

2SLS Estimates ECON In this case, begin with the assumption that E[ i SLS Estmates ECON 3033 Bll Evas Fall 05 Two-Stage Least Squares (SLS Cosder a stadard lear bvarate regresso model y 0 x. I ths case, beg wth the assumto that E[ x] 0 whch meas that OLS estmates of wll

More information

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then Secto 5 Vectors of Radom Varables Whe workg wth several radom varables,,..., to arrage them vector form x, t s ofte coveet We ca the make use of matrx algebra to help us orgaze ad mapulate large umbers

More information

Thabet Abdeljawad 1. Çankaya Üniversitesi Fen-Edebiyat Fakültesi, Journal of Arts and Sciences Say : 9 / May s 2008

Thabet Abdeljawad 1. Çankaya Üniversitesi Fen-Edebiyat Fakültesi, Journal of Arts and Sciences Say : 9 / May s 2008 Çaaya Üiversiesi Fe-Edebiya Faülesi, Jural Ars ad Scieces Say : 9 / May s 008 A Ne e Cai Rule ime Scales abe Abdeljawad Absrac I is w, i eeral, a e cai rule eeral ime scale derivaives des beave well as

More information

Axiomatic Definition of Probability. Problems: Relative Frequency. Event. Sample Space Examples

Axiomatic Definition of Probability. Problems: Relative Frequency. Event. Sample Space Examples Rado Sgals robabl & Rado Varables: Revew M. Sa Fadal roessor o lecrcal geerg Uvers o evada Reo Soe phscal sgals ose cao be epressed as a eplc aheacal orla. These sgals s be descrbed probablsc ers. ose

More information

Dr. Junchao Xia Center of Biophysics and Computational Biology. Fall /21/2016 1/23

Dr. Junchao Xia Center of Biophysics and Computational Biology. Fall /21/2016 1/23 BIO53 Bosascs Lcur 04: Cral Lm Thorm ad Thr Dsrbuos Drvd from h Normal Dsrbuo Dr. Juchao a Cr of Bophyscs ad Compuaoal Bology Fall 06 906 3 Iroduco I hs lcur w wll alk abou ma cocps as lsd blow, pcd valu

More information

Chapter 8: Statistical Analysis of Simulated Data

Chapter 8: Statistical Analysis of Simulated Data Marquette Uversty MSCS600 Chapter 8: Statstcal Aalyss of Smulated Data Dael B. Rowe, Ph.D. Departmet of Mathematcs, Statstcs, ad Computer Scece Copyrght 08 by Marquette Uversty MSCS600 Ageda 8. The Sample

More information

Reliability Analysis of Sparsely Connected Consecutive-k Systems: GERT Approach

Reliability Analysis of Sparsely Connected Consecutive-k Systems: GERT Approach Relably Aalyss of Sparsely Coece Cosecuve- Sysems: GERT Approach Pooa Moha RMSI Pv. L Noa-2131 poalovely@yahoo.com Mau Agarwal Deparme of Operaoal Research Uversy of Delh Delh-117, Ia Agarwal_maulaa@yahoo.com

More information

Final Exam Applied Econometrics

Final Exam Applied Econometrics Fal Eam Appled Ecoomercs. 0 Sppose we have he followg regresso resl: Depede Varable: SAT Sample: 437 Iclded observaos: 437 Whe heeroskedasc-cosse sadard errors & covarace Varable Coeffce Sd. Error -Sasc

More information

Special Instructions / Useful Data

Special Instructions / Useful Data JAM 6 Set of all real umbers P A..d. B, p Posso Specal Istructos / Useful Data x,, :,,, x x Probablty of a evet A Idepedetly ad detcally dstrbuted Bomal dstrbuto wth parameters ad p Posso dstrbuto wth

More information