Beyond Heuristics: Applying Alternating Direction Method of Multipliers in Nonconvex Territory

Size: px
Start display at page:

Download "Beyond Heuristics: Applying Alternating Direction Method of Multipliers in Nonconvex Territory"

Transcription

1 Beyond Heuristics: Applying Alternating Direction Method of Multipliers in Nonconvex Territory Xin Liu(4Ð) State Key Laboratory of Scientific and Engineering Computing Institute of Computational Mathematics and Scientific/Engineering Computing Academy of Mathematics and Systems Science Chinese Academy of Sciences, China 2012 International Workshop on Signal Processing, Optimization, and Control USTC, Hefei, Anhui, China Xin Liu (AMSS) ADMM July 1st, / 22

2 Outline 1 Introduction and Applications Basic Idea Algorithm Framework Applications 2 Theoretical Results Brief Introduction Convergence Results 3 Conclusion and Future works Xin Liu (AMSS) ADMM July 1st, / 22

3 Section I. Introduction and Application Xin Liu (AMSS) ADMM July 1st, / 22

4 Divide and Conquer An Ancient Strategy Cô ˆ », ƒ ))5šfW{6(5SUN TZU, ART OF WAR6) šf(535õ470 BC) Divide et impera Julius Caesar (100õ44 BC) Mathematical Point of View: Split and Alternate Xin Liu (AMSS) ADMM July 1st, / 22

5 Splitting Techniques Case 1: Nondifferentiable Term min f (x) + g(bx) Case 2: Highly Nonconvex min f (x) + g(y) s.t. Bx y = 0. min f (g(x)) min f (y) s.t. g(x) y = 0. Case 3: Inconsistent Objective and Constraint min f (x) s.t. c(x) = 0 min f (x) s.t. c(y) = 0, x = y. Xin Liu (AMSS) ADMM July 1st, / 22

6 Splitting Instances Instance 1: Compressive Sensing min Wx 1 + µ 2 Ax b 2 2 min y 1 + µ 2 Ax b 2 2 s.t. Wx y = 0. Instance 2: Nonlinear l 1 Minimization min f (x) 1. min y 1 s.t. f (x) = y. Xin Liu (AMSS) ADMM July 1st, / 22

7 Splitting Instances Convex Models Instance 3: Dual Problem of Compressive Sensing (Yang-Zhang 2009) min b T y + 1 2µ y 2 2 s.t. W T A T y 1. min b T y + 1 2µ y 2 2 s.t. z 1, z = W T A T y. Xin Liu (AMSS) ADMM July 1st, / 22

8 Augmented Lagrangian Method Equality Constrained Problems min f (x) s.t. c(x) = 0. Augmented Lagrangian Function (Henstenes 1969, Powell 1969, Rockafellar 1973) L β (x, λ) = f (x) λ T c(x) + β 2 c(x) 2 2. Augmented Lagrangian Method x k+1 arg min L β (x, λ k ); ALM : λ k+1 λ k τ β c(x k+1 ); update β if necessary. Xin Liu (AMSS) ADMM July 1st, / 22

9 Augmented Lagrangian Method (Cont d) Problems with Equality Constraints min f (x) s.t. c(x) = 0. x Ω Augmented Lagrangian Method Extension x k+1 arg min L β (x, λ k ); x Ω ALM : λ k+1 λ k τ β c(x k+1 ); update β if necessary. Xin Liu (AMSS) ADMM July 1st, / 22

10 Alternating Direction Method of Multiplier Block Structure {x x Ω} = p {x x i Ω i }. i=1 (Augmented Lagrangian) Alternating Direction Method (of Multiplier) (Glowinski-Marocco 1975, Gabay-Mercier 1976,...) ADMM : x k+1 1 arg min x1 Ω 1 L β (x 1, x k 2,..., xk p, λ k ); x k+1 2 arg min x2 Ω 2 L β (x k+1 1, x 2, x k 3,..., xk p, λ k );... xp k+1 arg min xp Ω p L β (x1 k+1,..., xp 1 k+1, x p, λ k ); λ k+1 λ k τ β c(x1 k+1,..., xp k+1 ). Xin Liu (AMSS) ADMM July 1st, / 22

11 Applications I Phase Retrieval (Wen-Yang-L.) X-ray crystallography, transmission electron microscopy Original model: Reformulation: min ˆψ C n,z C m k k i=1 min ˆψ C n k i=1 1 F Qi ˆψ b 2 i z i b i 2 2 s.t. z i = F Q i ˆψ, i = 1,..., k. Augmented Lagrange function: k ( 1 L β (z i, ψ, y i ) = 2 z i b i y i (F Q iψ z i ) + β ) 2 F Q iψ z i 2 2. i=1 Xin Liu (AMSS) ADMM July 1st, / 22

12 Applications II Portfolio Optimization (Wen-Peng-L.-Bai-Sun) Asset Allocation under the Basel Accord Risk Measures (Value-at-Risk) integer programming Original model: min ( Ru) (p), u U r0 where U r0 = {u R d µ T u r 0, 1 T u = 1, u 0}; ( ) (p) refers to the p-th smallest component of a vector. Reformulation: Augmented Lagrange function: min u U r0, x R n x (p) s.t. x + Ru = 0. L β (x, u, λ) := x (p) λ T (x + Ru) + β 2 x + Ru 2. Xin Liu (AMSS) ADMM July 1st, / 22

13 Applications III Matrix Factorization (Zhang et al.) Nonnegative matrix factorization, structure enforcing matrix factorization Original model: min W R m k, H R n k A WHT 2 F s.t. W T 1, H T 2, where T 1, T 2 can be {X X T X = I}, or {X X 0}, or any other matrix sets allowing easy projection Reformulation: min A WH T 2 W, H, S 1 T 1, S 2 T F s.t. W = S 1, H = S 2. 2 Augmented Lagrange function: L (β1, β 2 )(W, H, S 1, S 2, Λ) = A WH T 2 F Λ 1 (W S 1 ) Λ 2 (H S 2 ) + β 1 2 W S 1 2 F + β 2 2 H S 2 2 F. Xin Liu (AMSS) ADMM July 1st, / 22

14 Section II. Theoretical Results Xin Liu (AMSS) ADMM July 1st, / 22

15 Brief Introduction Intuition Splitting brings easy subproblem Splitting induces equality constraint Augmented Lagrange Alternating solves the split targets in turn From line search to ADM Line search based optimization - one dimensional subspace Subspace method - multi-dimensional subspace ADMM - high-order subspaces Convergence Based on Strict Conditions Two blocks, joint convexity, separability (Gabay-Mercier 1976) Multiple blocks, variant versions (He, Yuan et al., Goldfarb and Ma, etc.) complexity acceleration customization Two blocks, linear convergence rate (Yin-Deng 2012) Xin Liu (AMSS) ADMM July 1st, / 22

16 Some New Results Towards a General Scheme nonconvex and nonseparable cases Local convergence and rate (Yang-L.-Zhang) Global convergence (L.-Yang-Zhang) under some assumptions (ongoing) special case: multiple blocks, separable + strongly convex + second order differentiable Nonlinear Splitting and Iteration Scheme Original Nonlinear System: F : R n R n Splitting: G : R n R n R n i.e. G(x, x) := L(x) R(x) F(x). 1 G x G, and 2 G x G. Consider G(x, x, λ) to be a splitting of F := x L β (x, λ) A generalized ADMM scheme: x k+1 G(x, x k, λ k ) = 0; GADMM : λ k+1 λ k τ β c(x k+1 ). Xin Liu (AMSS) ADMM July 1st, / 22

17 Local Convergence Result Error System e k+1 = M(τ)e k + o( e k ) where [ M(τ) = [ 1 G ] 1 2 G [ 1 G ] 1 ( c ) T τ c [ 1 G ] 1 2 G I τ c [ 1 G ] 1 ( c ) T ] Local convergence: e k ((x k x ) T, (λ k λ ) T ) T Implicit Function Theorem + Taylor Expansion Assumptions: xx L β (x, λ ) 0 and c(x ) full row rank Results: local convergence: η > 0, ρ(m(τ)) < 1, τ (0, η); R-linear rate: ρ(m(τ)). Xin Liu (AMSS) ADMM July 1st, / 22

18 Global Convergence Relative Error System e k+1 = M(τ) k e k where [ M(τ) k = [ 1 G k L ] 1 2 G k U τa[ 1 G k L ] 1 2 G k U [ 1 G k L ] 1 A T I τa[ 1 G k L ] 1 A T ] Global convergence: e k ((x k x k 1 ) T, (λ k λ k 1 ) T ) T Mean Value Theorem + Average Hessian ( 1 G k L, 2 G k U ) Difficulty: non-stationary iteration L β strongly convex and L β is Lipschitz continuous ρ(m(τ) k ) 1 ɛ ( k) global convergence Xin Liu (AMSS) ADMM July 1st, / 22

19 Global Convergence (Cont d) l 2 Restriction (ongoing) M(τ) k ) 2 1 ɛ ( k) Assumptions: linear constraints block-wise convexity second order differentiability block diagonal dominance Result: global convergence Special Case Assumptions: separability: 2 G k U constant, 1 G k L non-stationary in block diagonal strongly convexity linear constraints second order differentiability Result: β > 0 and η > 0; global convergence, β (0, β), τ (0, η). Xin Liu (AMSS) ADMM July 1st, / 22

20 Section III. Conclusion and Future works Xin Liu (AMSS) ADMM July 1st, / 22

21 Conclusion Powerful tool for hard optimization problem with structure; Lack of convergence results for nonconvex problems; Excellent performance in practice. Future Works There is still room for further improvement of the algorithm; Convergence results for lots of known successful cases are still unclear; Gap from the stationary point to the global optimizer. Xin Liu (AMSS) ADMM July 1st, / 22

22 Thank you for your attention! Xin Liu (AMSS) ADMM July 1st, / 22

Recent Developments of Alternating Direction Method of Multipliers with Multi-Block Variables

Recent Developments of Alternating Direction Method of Multipliers with Multi-Block Variables Recent Developments of Alternating Direction Method of Multipliers with Multi-Block Variables Department of Systems Engineering and Engineering Management The Chinese University of Hong Kong 2014 Workshop

More information

Coordinate Update Algorithm Short Course Operator Splitting

Coordinate Update Algorithm Short Course Operator Splitting Coordinate Update Algorithm Short Course Operator Splitting Instructor: Wotao Yin (UCLA Math) Summer 2016 1 / 25 Operator splitting pipeline 1. Formulate a problem as 0 A(x) + B(x) with monotone operators

More information

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 9. Alternating Direction Method of Multipliers

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 9. Alternating Direction Method of Multipliers Shiqian Ma, MAT-258A: Numerical Optimization 1 Chapter 9 Alternating Direction Method of Multipliers Shiqian Ma, MAT-258A: Numerical Optimization 2 Separable convex optimization a special case is min f(x)

More information

Does Alternating Direction Method of Multipliers Converge for Nonconvex Problems?

Does Alternating Direction Method of Multipliers Converge for Nonconvex Problems? Does Alternating Direction Method of Multipliers Converge for Nonconvex Problems? Mingyi Hong IMSE and ECpE Department Iowa State University ICCOPT, Tokyo, August 2016 Mingyi Hong (Iowa State University)

More information

Accelerated primal-dual methods for linearly constrained convex problems

Accelerated primal-dual methods for linearly constrained convex problems Accelerated primal-dual methods for linearly constrained convex problems Yangyang Xu SIAM Conference on Optimization May 24, 2017 1 / 23 Accelerated proximal gradient For convex composite problem: minimize

More information

Sparse Optimization Lecture: Dual Methods, Part I

Sparse Optimization Lecture: Dual Methods, Part I Sparse Optimization Lecture: Dual Methods, Part I Instructor: Wotao Yin July 2013 online discussions on piazza.com Those who complete this lecture will know dual (sub)gradient iteration augmented l 1 iteration

More information

Relaxed linearized algorithms for faster X-ray CT image reconstruction

Relaxed linearized algorithms for faster X-ray CT image reconstruction Relaxed linearized algorithms for faster X-ray CT image reconstruction Hung Nien and Jeffrey A. Fessler University of Michigan, Ann Arbor The 13th Fully 3D Meeting June 2, 2015 1/20 Statistical image reconstruction

More information

Nonconvex ADMM: Convergence and Applications

Nonconvex ADMM: Convergence and Applications Nonconvex ADMM: Convergence and Applications Instructor: Wotao Yin (UCLA Math) Based on CAM 15-62 with Yu Wang and Jinshan Zeng Summer 2016 1 / 54 1. Alternating Direction Method of Multipliers (ADMM):

More information

Contraction Methods for Convex Optimization and Monotone Variational Inequalities No.16

Contraction Methods for Convex Optimization and Monotone Variational Inequalities No.16 XVI - 1 Contraction Methods for Convex Optimization and Monotone Variational Inequalities No.16 A slightly changed ADMM for convex optimization with three separable operators Bingsheng He Department of

More information

Part 5: Penalty and augmented Lagrangian methods for equality constrained optimization. Nick Gould (RAL)

Part 5: Penalty and augmented Lagrangian methods for equality constrained optimization. Nick Gould (RAL) Part 5: Penalty and augmented Lagrangian methods for equality constrained optimization Nick Gould (RAL) x IR n f(x) subject to c(x) = Part C course on continuoue optimization CONSTRAINED MINIMIZATION x

More information

Optimization for Learning and Big Data

Optimization for Learning and Big Data Optimization for Learning and Big Data Donald Goldfarb Department of IEOR Columbia University Department of Mathematics Distinguished Lecture Series May 17-19, 2016. Lecture 1. First-Order Methods for

More information

AN AUGMENTED LAGRANGIAN AFFINE SCALING METHOD FOR NONLINEAR PROGRAMMING

AN AUGMENTED LAGRANGIAN AFFINE SCALING METHOD FOR NONLINEAR PROGRAMMING AN AUGMENTED LAGRANGIAN AFFINE SCALING METHOD FOR NONLINEAR PROGRAMMING XIAO WANG AND HONGCHAO ZHANG Abstract. In this paper, we propose an Augmented Lagrangian Affine Scaling (ALAS) algorithm for general

More information

Alternating Direction Augmented Lagrangian Algorithms for Convex Optimization

Alternating Direction Augmented Lagrangian Algorithms for Convex Optimization Alternating Direction Augmented Lagrangian Algorithms for Convex Optimization Joint work with Bo Huang, Shiqian Ma, Tony Qin, Katya Scheinberg, Zaiwen Wen and Wotao Yin Department of IEOR, Columbia University

More information

The Direct Extension of ADMM for Multi-block Convex Minimization Problems is Not Necessarily Convergent

The Direct Extension of ADMM for Multi-block Convex Minimization Problems is Not Necessarily Convergent The Direct Extension of ADMM for Multi-block Convex Minimization Problems is Not Necessarily Convergent Yinyu Ye K. T. Li Professor of Engineering Department of Management Science and Engineering Stanford

More information

Convergence of a Class of Stationary Iterative Methods for Saddle Point Problems

Convergence of a Class of Stationary Iterative Methods for Saddle Point Problems Convergence of a Class of Stationary Iterative Methods for Saddle Point Problems Yin Zhang 张寅 August, 2010 Abstract A unified convergence result is derived for an entire class of stationary iterative methods

More information

Constrained optimization: direct methods (cont.)

Constrained optimization: direct methods (cont.) Constrained optimization: direct methods (cont.) Jussi Hakanen Post-doctoral researcher jussi.hakanen@jyu.fi Direct methods Also known as methods of feasible directions Idea in a point x h, generate a

More information

SF2822 Applied Nonlinear Optimization. Preparatory question. Lecture 9: Sequential quadratic programming. Anders Forsgren

SF2822 Applied Nonlinear Optimization. Preparatory question. Lecture 9: Sequential quadratic programming. Anders Forsgren SF2822 Applied Nonlinear Optimization Lecture 9: Sequential quadratic programming Anders Forsgren SF2822 Applied Nonlinear Optimization, KTH / 24 Lecture 9, 207/208 Preparatory question. Try to solve theory

More information

Algorithms for constrained local optimization

Algorithms for constrained local optimization Algorithms for constrained local optimization Fabio Schoen 2008 http://gol.dsi.unifi.it/users/schoen Algorithms for constrained local optimization p. Feasible direction methods Algorithms for constrained

More information

ALADIN An Algorithm for Distributed Non-Convex Optimization and Control

ALADIN An Algorithm for Distributed Non-Convex Optimization and Control ALADIN An Algorithm for Distributed Non-Convex Optimization and Control Boris Houska, Yuning Jiang, Janick Frasch, Rien Quirynen, Dimitris Kouzoupis, Moritz Diehl ShanghaiTech University, University of

More information

Contraction Methods for Convex Optimization and monotone variational inequalities No.12

Contraction Methods for Convex Optimization and monotone variational inequalities No.12 XII - 1 Contraction Methods for Convex Optimization and monotone variational inequalities No.12 Linearized alternating direction methods of multipliers for separable convex programming Bingsheng He Department

More information

Contraction Methods for Convex Optimization and Monotone Variational Inequalities No.11

Contraction Methods for Convex Optimization and Monotone Variational Inequalities No.11 XI - 1 Contraction Methods for Convex Optimization and Monotone Variational Inequalities No.11 Alternating direction methods of multipliers for separable convex programming Bingsheng He Department of Mathematics

More information

Asynchronous Algorithms for Conic Programs, including Optimal, Infeasible, and Unbounded Ones

Asynchronous Algorithms for Conic Programs, including Optimal, Infeasible, and Unbounded Ones Asynchronous Algorithms for Conic Programs, including Optimal, Infeasible, and Unbounded Ones Wotao Yin joint: Fei Feng, Robert Hannah, Yanli Liu, Ernest Ryu (UCLA, Math) DIMACS: Distributed Optimization,

More information

Distributed Optimization via Alternating Direction Method of Multipliers

Distributed Optimization via Alternating Direction Method of Multipliers Distributed Optimization via Alternating Direction Method of Multipliers Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato Stanford University ITMANET, Stanford, January 2011 Outline precursors dual decomposition

More information

What s New in Active-Set Methods for Nonlinear Optimization?

What s New in Active-Set Methods for Nonlinear Optimization? What s New in Active-Set Methods for Nonlinear Optimization? Philip E. Gill Advances in Numerical Computation, Manchester University, July 5, 2011 A Workshop in Honor of Sven Hammarling UCSD Center for

More information

Optimization for Communications and Networks. Poompat Saengudomlert. Session 4 Duality and Lagrange Multipliers

Optimization for Communications and Networks. Poompat Saengudomlert. Session 4 Duality and Lagrange Multipliers Optimization for Communications and Networks Poompat Saengudomlert Session 4 Duality and Lagrange Multipliers P Saengudomlert (2015) Optimization Session 4 1 / 14 24 Dual Problems Consider a primal convex

More information

A Multilevel Proximal Algorithm for Large Scale Composite Convex Optimization

A Multilevel Proximal Algorithm for Large Scale Composite Convex Optimization A Multilevel Proximal Algorithm for Large Scale Composite Convex Optimization Panos Parpas Department of Computing Imperial College London www.doc.ic.ac.uk/ pp500 p.parpas@imperial.ac.uk jointly with D.V.

More information

A Bregman alternating direction method of multipliers for sparse probabilistic Boolean network problem

A Bregman alternating direction method of multipliers for sparse probabilistic Boolean network problem A Bregman alternating direction method of multipliers for sparse probabilistic Boolean network problem Kangkang Deng, Zheng Peng Abstract: The main task of genetic regulatory networks is to construct a

More information

A GENERAL INERTIAL PROXIMAL POINT METHOD FOR MIXED VARIATIONAL INEQUALITY PROBLEM

A GENERAL INERTIAL PROXIMAL POINT METHOD FOR MIXED VARIATIONAL INEQUALITY PROBLEM A GENERAL INERTIAL PROXIMAL POINT METHOD FOR MIXED VARIATIONAL INEQUALITY PROBLEM CAIHUA CHEN, SHIQIAN MA, AND JUNFENG YANG Abstract. In this paper, we first propose a general inertial proximal point method

More information

An Inexact Newton Method for Optimization

An Inexact Newton Method for Optimization New York University Brown Applied Mathematics Seminar, February 10, 2009 Brief biography New York State College of William and Mary (B.S.) Northwestern University (M.S. & Ph.D.) Courant Institute (Postdoc)

More information

Inexact Alternating Direction Method of Multipliers for Separable Convex Optimization

Inexact Alternating Direction Method of Multipliers for Separable Convex Optimization Inexact Alternating Direction Method of Multipliers for Separable Convex Optimization Hongchao Zhang hozhang@math.lsu.edu Department of Mathematics Center for Computation and Technology Louisiana State

More information

Dealing with Constraints via Random Permutation

Dealing with Constraints via Random Permutation Dealing with Constraints via Random Permutation Ruoyu Sun UIUC Joint work with Zhi-Quan Luo (U of Minnesota and CUHK (SZ)) and Yinyu Ye (Stanford) Simons Institute Workshop on Fast Iterative Methods in

More information

Operator Splitting for Parallel and Distributed Optimization

Operator Splitting for Parallel and Distributed Optimization Operator Splitting for Parallel and Distributed Optimization Wotao Yin (UCLA Math) Shanghai Tech, SSDS 15 June 23, 2015 URL: alturl.com/2z7tv 1 / 60 What is splitting? Sun-Tzu: (400 BC) Caesar: divide-n-conquer

More information

Splitting methods for decomposing separable convex programs

Splitting methods for decomposing separable convex programs Splitting methods for decomposing separable convex programs Philippe Mahey LIMOS - ISIMA - Université Blaise Pascal PGMO, ENSTA 2013 October 4, 2013 1 / 30 Plan 1 Max Monotone Operators Proximal techniques

More information

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen Numerisches Rechnen (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2011/12 IGPM, RWTH Aachen Numerisches Rechnen

More information

A Novel Iterative Convex Approximation Method

A Novel Iterative Convex Approximation Method 1 A Novel Iterative Convex Approximation Method Yang Yang and Marius Pesavento Abstract In this paper, we propose a novel iterative convex approximation algorithm to efficiently compute stationary points

More information

Lecture: Algorithms for Compressed Sensing

Lecture: Algorithms for Compressed Sensing 1/56 Lecture: Algorithms for Compressed Sensing Zaiwen Wen Beijing International Center For Mathematical Research Peking University http://bicmr.pku.edu.cn/~wenzw/bigdata2017.html wenzw@pku.edu.cn Acknowledgement:

More information

On convergence rate of the Douglas-Rachford operator splitting method

On convergence rate of the Douglas-Rachford operator splitting method On convergence rate of the Douglas-Rachford operator splitting method Bingsheng He and Xiaoming Yuan 2 Abstract. This note provides a simple proof on a O(/k) convergence rate for the Douglas- Rachford

More information

You should be able to...

You should be able to... Lecture Outline Gradient Projection Algorithm Constant Step Length, Varying Step Length, Diminishing Step Length Complexity Issues Gradient Projection With Exploration Projection Solving QPs: active set

More information

Primal-dual fixed point algorithms for separable minimization problems and their applications in imaging

Primal-dual fixed point algorithms for separable minimization problems and their applications in imaging 1/38 Primal-dual fixed point algorithms for separable minimization problems and their applications in imaging Xiaoqun Zhang Department of Mathematics and Institute of Natural Sciences Shanghai Jiao Tong

More information

An Inexact Newton Method for Nonlinear Constrained Optimization

An Inexact Newton Method for Nonlinear Constrained Optimization An Inexact Newton Method for Nonlinear Constrained Optimization Frank E. Curtis Numerical Analysis Seminar, January 23, 2009 Outline Motivation and background Algorithm development and theoretical results

More information

Inexact Newton Methods and Nonlinear Constrained Optimization

Inexact Newton Methods and Nonlinear Constrained Optimization Inexact Newton Methods and Nonlinear Constrained Optimization Frank E. Curtis EPSRC Symposium Capstone Conference Warwick Mathematics Institute July 2, 2009 Outline PDE-Constrained Optimization Newton

More information

Accelerated Block-Coordinate Relaxation for Regularized Optimization

Accelerated Block-Coordinate Relaxation for Regularized Optimization Accelerated Block-Coordinate Relaxation for Regularized Optimization Stephen J. Wright Computer Sciences University of Wisconsin, Madison October 09, 2012 Problem descriptions Consider where f is smooth

More information

Adaptive Primal Dual Optimization for Image Processing and Learning

Adaptive Primal Dual Optimization for Image Processing and Learning Adaptive Primal Dual Optimization for Image Processing and Learning Tom Goldstein Rice University tag7@rice.edu Ernie Esser University of British Columbia eesser@eos.ubc.ca Richard Baraniuk Rice University

More information

Math 273a: Optimization Overview of First-Order Optimization Algorithms

Math 273a: Optimization Overview of First-Order Optimization Algorithms Math 273a: Optimization Overview of First-Order Optimization Algorithms Wotao Yin Department of Mathematics, UCLA online discussions on piazza.com 1 / 9 Typical flow of numerical optimization Optimization

More information

ACCELERATED FIRST-ORDER PRIMAL-DUAL PROXIMAL METHODS FOR LINEARLY CONSTRAINED COMPOSITE CONVEX PROGRAMMING

ACCELERATED FIRST-ORDER PRIMAL-DUAL PROXIMAL METHODS FOR LINEARLY CONSTRAINED COMPOSITE CONVEX PROGRAMMING ACCELERATED FIRST-ORDER PRIMAL-DUAL PROXIMAL METHODS FOR LINEARLY CONSTRAINED COMPOSITE CONVEX PROGRAMMING YANGYANG XU Abstract. Motivated by big data applications, first-order methods have been extremely

More information

A Simple Heuristic Based on Alternating Direction Method of Multipliers for Solving Mixed-Integer Nonlinear Optimization

A Simple Heuristic Based on Alternating Direction Method of Multipliers for Solving Mixed-Integer Nonlinear Optimization A Simple Heuristic Based on Alternating Direction Method of Multipliers for Solving Mixed-Integer Nonlinear Optimization Yoshihiro Kanno Satoshi Kitayama The University of Tokyo Kanazawa University May

More information

E5295/5B5749 Convex optimization with engineering applications. Lecture 8. Smooth convex unconstrained and equality-constrained minimization

E5295/5B5749 Convex optimization with engineering applications. Lecture 8. Smooth convex unconstrained and equality-constrained minimization E5295/5B5749 Convex optimization with engineering applications Lecture 8 Smooth convex unconstrained and equality-constrained minimization A. Forsgren, KTH 1 Lecture 8 Convex optimization 2006/2007 Unconstrained

More information

Taylor-like models in nonsmooth optimization

Taylor-like models in nonsmooth optimization Taylor-like models in nonsmooth optimization Dmitriy Drusvyatskiy Mathematics, University of Washington Joint work with Ioffe (Technion), Lewis (Cornell), and Paquette (UW) SIAM Optimization 2017 AFOSR,

More information

Composite nonlinear models at scale

Composite nonlinear models at scale Composite nonlinear models at scale Dmitriy Drusvyatskiy Mathematics, University of Washington Joint work with D. Davis (Cornell), M. Fazel (UW), A.S. Lewis (Cornell) C. Paquette (Lehigh), and S. Roy (UW)

More information

Expanding the reach of optimal methods

Expanding the reach of optimal methods Expanding the reach of optimal methods Dmitriy Drusvyatskiy Mathematics, University of Washington Joint work with C. Kempton (UW), M. Fazel (UW), A.S. Lewis (Cornell), and S. Roy (UW) BURKAPALOOZA! WCOM

More information

Coordinate Update Algorithm Short Course Proximal Operators and Algorithms

Coordinate Update Algorithm Short Course Proximal Operators and Algorithms Coordinate Update Algorithm Short Course Proximal Operators and Algorithms Instructor: Wotao Yin (UCLA Math) Summer 2016 1 / 36 Why proximal? Newton s method: for C 2 -smooth, unconstrained problems allow

More information

ARock: an algorithmic framework for asynchronous parallel coordinate updates

ARock: an algorithmic framework for asynchronous parallel coordinate updates ARock: an algorithmic framework for asynchronous parallel coordinate updates Zhimin Peng, Yangyang Xu, Ming Yan, Wotao Yin ( UCLA Math, U.Waterloo DCO) UCLA CAM Report 15-37 ShanghaiTech SSDS 15 June 25,

More information

Algorithms for Constrained Optimization

Algorithms for Constrained Optimization 1 / 42 Algorithms for Constrained Optimization ME598/494 Lecture Max Yi Ren Department of Mechanical Engineering, Arizona State University April 19, 2015 2 / 42 Outline 1. Convergence 2. Sequential quadratic

More information

Enhanced Fritz John Optimality Conditions and Sensitivity Analysis

Enhanced Fritz John Optimality Conditions and Sensitivity Analysis Enhanced Fritz John Optimality Conditions and Sensitivity Analysis Dimitri P. Bertsekas Laboratory for Information and Decision Systems Massachusetts Institute of Technology March 2016 1 / 27 Constrained

More information

LECTURE 25: REVIEW/EPILOGUE LECTURE OUTLINE

LECTURE 25: REVIEW/EPILOGUE LECTURE OUTLINE LECTURE 25: REVIEW/EPILOGUE LECTURE OUTLINE CONVEX ANALYSIS AND DUALITY Basic concepts of convex analysis Basic concepts of convex optimization Geometric duality framework - MC/MC Constrained optimization

More information

Constrained Optimization Theory

Constrained Optimization Theory Constrained Optimization Theory Stephen J. Wright 1 2 Computer Sciences Department, University of Wisconsin-Madison. IMA, August 2016 Stephen Wright (UW-Madison) Constrained Optimization Theory IMA, August

More information

Additional Exercises for Introduction to Nonlinear Optimization Amir Beck March 16, 2017

Additional Exercises for Introduction to Nonlinear Optimization Amir Beck March 16, 2017 Additional Exercises for Introduction to Nonlinear Optimization Amir Beck March 16, 2017 Chapter 1 - Mathematical Preliminaries 1.1 Let S R n. (a) Suppose that T is an open set satisfying T S. Prove that

More information

Primal-dual Subgradient Method for Convex Problems with Functional Constraints

Primal-dual Subgradient Method for Convex Problems with Functional Constraints Primal-dual Subgradient Method for Convex Problems with Functional Constraints Yurii Nesterov, CORE/INMA (UCL) Workshop on embedded optimization EMBOPT2014 September 9, 2014 (Lucca) Yu. Nesterov Primal-dual

More information

Globally Convergent Levenberg-Marquardt Method For Phase Retrieval

Globally Convergent Levenberg-Marquardt Method For Phase Retrieval Globally Convergent Levenberg-Marquardt Method For Phase Retrieval Zaiwen Wen Beijing International Center For Mathematical Research Peking University Thanks: Chao Ma, Xin Liu 1/38 Outline 1 Introduction

More information

4y Springer NONLINEAR INTEGER PROGRAMMING

4y Springer NONLINEAR INTEGER PROGRAMMING NONLINEAR INTEGER PROGRAMMING DUAN LI Department of Systems Engineering and Engineering Management The Chinese University of Hong Kong Shatin, N. T. Hong Kong XIAOLING SUN Department of Mathematics Shanghai

More information

1 Computing with constraints

1 Computing with constraints Notes for 2017-04-26 1 Computing with constraints Recall that our basic problem is minimize φ(x) s.t. x Ω where the feasible set Ω is defined by equality and inequality conditions Ω = {x R n : c i (x)

More information

Frank-Wolfe Method. Ryan Tibshirani Convex Optimization

Frank-Wolfe Method. Ryan Tibshirani Convex Optimization Frank-Wolfe Method Ryan Tibshirani Convex Optimization 10-725 Last time: ADMM For the problem min x,z f(x) + g(z) subject to Ax + Bz = c we form augmented Lagrangian (scaled form): L ρ (x, z, w) = f(x)

More information

496 B.S. HE, S.L. WANG AND H. YANG where w = x y 0 A ; Q(w) f(x) AT g(y) B T Ax + By b A ; W = X Y R r : (5) Problem (4)-(5) is denoted as MVI

496 B.S. HE, S.L. WANG AND H. YANG where w = x y 0 A ; Q(w) f(x) AT g(y) B T Ax + By b A ; W = X Y R r : (5) Problem (4)-(5) is denoted as MVI Journal of Computational Mathematics, Vol., No.4, 003, 495504. A MODIFIED VARIABLE-PENALTY ALTERNATING DIRECTIONS METHOD FOR MONOTONE VARIATIONAL INEQUALITIES Λ) Bing-sheng He Sheng-li Wang (Department

More information

Convex Optimization Algorithms for Machine Learning in 10 Slides

Convex Optimization Algorithms for Machine Learning in 10 Slides Convex Optimization Algorithms for Machine Learning in 10 Slides Presenter: Jul. 15. 2015 Outline 1 Quadratic Problem Linear System 2 Smooth Problem Newton-CG 3 Composite Problem Proximal-Newton-CD 4 Non-smooth,

More information

1. Gradient method. gradient method, first-order methods. quadratic bounds on convex functions. analysis of gradient method

1. Gradient method. gradient method, first-order methods. quadratic bounds on convex functions. analysis of gradient method L. Vandenberghe EE236C (Spring 2016) 1. Gradient method gradient method, first-order methods quadratic bounds on convex functions analysis of gradient method 1-1 Approximate course outline First-order

More information

January 29, Introduction to optimization and complexity. Outline. Introduction. Problem formulation. Convexity reminder. Optimality Conditions

January 29, Introduction to optimization and complexity. Outline. Introduction. Problem formulation. Convexity reminder. Optimality Conditions Olga Galinina olga.galinina@tut.fi ELT-53656 Network Analysis Dimensioning II Department of Electronics Communications Engineering Tampere University of Technology, Tampere, Finl January 29, 2014 1 2 3

More information

First-order methods for structured nonsmooth optimization

First-order methods for structured nonsmooth optimization First-order methods for structured nonsmooth optimization Sangwoon Yun Department of Mathematics Education Sungkyunkwan University Oct 19, 2016 Center for Mathematical Analysis & Computation, Yonsei University

More information

A Proximal Alternating Direction Method for Semi-Definite Rank Minimization (Supplementary Material)

A Proximal Alternating Direction Method for Semi-Definite Rank Minimization (Supplementary Material) A Proximal Alternating Direction Method for Semi-Definite Rank Minimization (Supplementary Material) Ganzhao Yuan and Bernard Ghanem King Abdullah University of Science and Technology (KAUST), Saudi Arabia

More information

A Customized ADMM for Rank-Constrained Optimization Problems with Approximate Formulations

A Customized ADMM for Rank-Constrained Optimization Problems with Approximate Formulations A Customized ADMM for Rank-Constrained Optimization Problems with Approximate Formulations Chuangchuang Sun and Ran Dai Abstract This paper proposes a customized Alternating Direction Method of Multipliers

More information

Part 4: Active-set methods for linearly constrained optimization. Nick Gould (RAL)

Part 4: Active-set methods for linearly constrained optimization. Nick Gould (RAL) Part 4: Active-set methods for linearly constrained optimization Nick Gould RAL fx subject to Ax b Part C course on continuoue optimization LINEARLY CONSTRAINED MINIMIZATION fx subject to Ax { } b where

More information

INERTIAL PRIMAL-DUAL ALGORITHMS FOR STRUCTURED CONVEX OPTIMIZATION

INERTIAL PRIMAL-DUAL ALGORITHMS FOR STRUCTURED CONVEX OPTIMIZATION INERTIAL PRIMAL-DUAL ALGORITHMS FOR STRUCTURED CONVEX OPTIMIZATION RAYMOND H. CHAN, SHIQIAN MA, AND JUNFENG YANG Abstract. The primal-dual algorithm recently proposed by Chambolle & Pock (abbreviated as

More information

Optimization Problems with Constraints - introduction to theory, numerical Methods and applications

Optimization Problems with Constraints - introduction to theory, numerical Methods and applications Optimization Problems with Constraints - introduction to theory, numerical Methods and applications Dr. Abebe Geletu Ilmenau University of Technology Department of Simulation and Optimal Processes (SOP)

More information

Matrix Factorization with Applications to Clustering Problems: Formulation, Algorithms and Performance

Matrix Factorization with Applications to Clustering Problems: Formulation, Algorithms and Performance Date: Mar. 3rd, 2017 Matrix Factorization with Applications to Clustering Problems: Formulation, Algorithms and Performance Presenter: Songtao Lu Department of Electrical and Computer Engineering Iowa

More information

arxiv: v2 [math.oc] 28 Jan 2019

arxiv: v2 [math.oc] 28 Jan 2019 On the Equivalence of Inexact Proximal ALM and ADMM for a Class of Convex Composite Programming Liang Chen Xudong Li Defeng Sun and Kim-Chuan Toh March 28, 2018; Revised on Jan 28, 2019 arxiv:1803.10803v2

More information

LINEARIZED AUGMENTED LAGRANGIAN AND ALTERNATING DIRECTION METHODS FOR NUCLEAR NORM MINIMIZATION

LINEARIZED AUGMENTED LAGRANGIAN AND ALTERNATING DIRECTION METHODS FOR NUCLEAR NORM MINIMIZATION LINEARIZED AUGMENTED LAGRANGIAN AND ALTERNATING DIRECTION METHODS FOR NUCLEAR NORM MINIMIZATION JUNFENG YANG AND XIAOMING YUAN Abstract. The nuclear norm is widely used to induce low-rank solutions for

More information

Lecture 11 and 12: Penalty methods and augmented Lagrangian methods for nonlinear programming

Lecture 11 and 12: Penalty methods and augmented Lagrangian methods for nonlinear programming Lecture 11 and 12: Penalty methods and augmented Lagrangian methods for nonlinear programming Coralia Cartis, Mathematical Institute, University of Oxford C6.2/B2: Continuous Optimization Lecture 11 and

More information

CS711008Z Algorithm Design and Analysis

CS711008Z Algorithm Design and Analysis CS711008Z Algorithm Design and Analysis Lecture 8 Linear programming: interior point method Dongbo Bu Institute of Computing Technology Chinese Academy of Sciences, Beijing, China 1 / 31 Outline Brief

More information

Worst-Case Complexity Guarantees and Nonconvex Smooth Optimization

Worst-Case Complexity Guarantees and Nonconvex Smooth Optimization Worst-Case Complexity Guarantees and Nonconvex Smooth Optimization Frank E. Curtis, Lehigh University Beyond Convexity Workshop, Oaxaca, Mexico 26 October 2017 Worst-Case Complexity Guarantees and Nonconvex

More information

Optimization. Escuela de Ingeniería Informática de Oviedo. (Dpto. de Matemáticas-UniOvi) Numerical Computation Optimization 1 / 30

Optimization. Escuela de Ingeniería Informática de Oviedo. (Dpto. de Matemáticas-UniOvi) Numerical Computation Optimization 1 / 30 Optimization Escuela de Ingeniería Informática de Oviedo (Dpto. de Matemáticas-UniOvi) Numerical Computation Optimization 1 / 30 Unconstrained optimization Outline 1 Unconstrained optimization 2 Constrained

More information

AUGMENTED LAGRANGIAN METHODS FOR CONVEX OPTIMIZATION

AUGMENTED LAGRANGIAN METHODS FOR CONVEX OPTIMIZATION New Horizon of Mathematical Sciences RIKEN ithes - Tohoku AIMR - Tokyo IIS Joint Symposium April 28 2016 AUGMENTED LAGRANGIAN METHODS FOR CONVEX OPTIMIZATION T. Takeuchi Aihara Lab. Laboratories for Mathematics,

More information

Infeasibility Detection and an Inexact Active-Set Method for Large-Scale Nonlinear Optimization

Infeasibility Detection and an Inexact Active-Set Method for Large-Scale Nonlinear Optimization Infeasibility Detection and an Inexact Active-Set Method for Large-Scale Nonlinear Optimization Frank E. Curtis, Lehigh University involving joint work with James V. Burke, University of Washington Daniel

More information

HYBRID JACOBIAN AND GAUSS SEIDEL PROXIMAL BLOCK COORDINATE UPDATE METHODS FOR LINEARLY CONSTRAINED CONVEX PROGRAMMING

HYBRID JACOBIAN AND GAUSS SEIDEL PROXIMAL BLOCK COORDINATE UPDATE METHODS FOR LINEARLY CONSTRAINED CONVEX PROGRAMMING SIAM J. OPTIM. Vol. 8, No. 1, pp. 646 670 c 018 Society for Industrial and Applied Mathematics HYBRID JACOBIAN AND GAUSS SEIDEL PROXIMAL BLOCK COORDINATE UPDATE METHODS FOR LINEARLY CONSTRAINED CONVEX

More information

MS&E 318 (CME 338) Large-Scale Numerical Optimization

MS&E 318 (CME 338) Large-Scale Numerical Optimization Stanford University, Management Science & Engineering (and ICME) MS&E 318 (CME 338) Large-Scale Numerical Optimization 1 Origins Instructor: Michael Saunders Spring 2015 Notes 9: Augmented Lagrangian Methods

More information

On the acceleration of augmented Lagrangian method for linearly constrained optimization

On the acceleration of augmented Lagrangian method for linearly constrained optimization On the acceleration of augmented Lagrangian method for linearly constrained optimization Bingsheng He and Xiaoming Yuan October, 2 Abstract. The classical augmented Lagrangian method (ALM plays a fundamental

More information

Stochastic Optimization with Inequality Constraints Using Simultaneous Perturbations and Penalty Functions

Stochastic Optimization with Inequality Constraints Using Simultaneous Perturbations and Penalty Functions International Journal of Control Vol. 00, No. 00, January 2007, 1 10 Stochastic Optimization with Inequality Constraints Using Simultaneous Perturbations and Penalty Functions I-JENG WANG and JAMES C.

More information

Multi-stage convex relaxation approach for low-rank structured PSD matrix recovery

Multi-stage convex relaxation approach for low-rank structured PSD matrix recovery Multi-stage convex relaxation approach for low-rank structured PSD matrix recovery Department of Mathematics & Risk Management Institute National University of Singapore (Based on a joint work with Shujun

More information

Sequential Quadratic Programming Method for Nonlinear Second-Order Cone Programming Problems. Hirokazu KATO

Sequential Quadratic Programming Method for Nonlinear Second-Order Cone Programming Problems. Hirokazu KATO Sequential Quadratic Programming Method for Nonlinear Second-Order Cone Programming Problems Guidance Professor Masao FUKUSHIMA Hirokazu KATO 2004 Graduate Course in Department of Applied Mathematics and

More information

Math 273a: Optimization Convex Conjugacy

Math 273a: Optimization Convex Conjugacy Math 273a: Optimization Convex Conjugacy Instructor: Wotao Yin Department of Mathematics, UCLA Fall 2015 online discussions on piazza.com Convex conjugate (the Legendre transform) Let f be a closed proper

More information

Interior-Point and Augmented Lagrangian Algorithms for Optimization and Control

Interior-Point and Augmented Lagrangian Algorithms for Optimization and Control Interior-Point and Augmented Lagrangian Algorithms for Optimization and Control Stephen Wright University of Wisconsin-Madison May 2014 Wright (UW-Madison) Constrained Optimization May 2014 1 / 46 In This

More information

Lecture 5: September 12

Lecture 5: September 12 10-725/36-725: Convex Optimization Fall 2015 Lecture 5: September 12 Lecturer: Lecturer: Ryan Tibshirani Scribes: Scribes: Barun Patra and Tyler Vuong Note: LaTeX template courtesy of UC Berkeley EECS

More information

Constrained Optimization

Constrained Optimization 1 / 22 Constrained Optimization ME598/494 Lecture Max Yi Ren Department of Mechanical Engineering, Arizona State University March 30, 2015 2 / 22 1. Equality constraints only 1.1 Reduced gradient 1.2 Lagrange

More information

A DECOMPOSITION PROCEDURE BASED ON APPROXIMATE NEWTON DIRECTIONS

A DECOMPOSITION PROCEDURE BASED ON APPROXIMATE NEWTON DIRECTIONS Working Paper 01 09 Departamento de Estadística y Econometría Statistics and Econometrics Series 06 Universidad Carlos III de Madrid January 2001 Calle Madrid, 126 28903 Getafe (Spain) Fax (34) 91 624

More information

A GLOBALLY CONVERGENT STABILIZED SQP METHOD

A GLOBALLY CONVERGENT STABILIZED SQP METHOD A GLOBALLY CONVERGENT STABILIZED SQP METHOD Philip E. Gill Daniel P. Robinson July 6, 2013 Abstract Sequential quadratic programming SQP methods are a popular class of methods for nonlinearly constrained

More information

Examination paper for TMA4180 Optimization I

Examination paper for TMA4180 Optimization I Department of Mathematical Sciences Examination paper for TMA4180 Optimization I Academic contact during examination: Phone: Examination date: 26th May 2016 Examination time (from to): 09:00 13:00 Permitted

More information

ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Nov 2, 2016 Outline SGD-typed algorithms for Deep Learning Parallel SGD for deep learning Perceptron Prediction value for a training data: prediction

More information

Block Coordinate Descent for Regularized Multi-convex Optimization

Block Coordinate Descent for Regularized Multi-convex Optimization Block Coordinate Descent for Regularized Multi-convex Optimization Yangyang Xu and Wotao Yin CAAM Department, Rice University February 15, 2013 Multi-convex optimization Model definition Applications Outline

More information

OPER 627: Nonlinear Optimization Lecture 2: Math Background and Optimality Conditions

OPER 627: Nonlinear Optimization Lecture 2: Math Background and Optimality Conditions OPER 627: Nonlinear Optimization Lecture 2: Math Background and Optimality Conditions Department of Statistical Sciences and Operations Research Virginia Commonwealth University Aug 28, 2013 (Lecture 2)

More information

Solving Dual Problems

Solving Dual Problems Lecture 20 Solving Dual Problems We consider a constrained problem where, in addition to the constraint set X, there are also inequality and linear equality constraints. Specifically the minimization problem

More information

Interpolation-Based Trust-Region Methods for DFO

Interpolation-Based Trust-Region Methods for DFO Interpolation-Based Trust-Region Methods for DFO Luis Nunes Vicente University of Coimbra (joint work with A. Bandeira, A. R. Conn, S. Gratton, and K. Scheinberg) July 27, 2010 ICCOPT, Santiago http//www.mat.uc.pt/~lnv

More information

Outline. Relaxation. Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING. 1. Lagrangian Relaxation. Lecture 12 Single Machine Models, Column Generation

Outline. Relaxation. Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING. 1. Lagrangian Relaxation. Lecture 12 Single Machine Models, Column Generation Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING 1. Lagrangian Relaxation Lecture 12 Single Machine Models, Column Generation 2. Dantzig-Wolfe Decomposition Dantzig-Wolfe Decomposition Delayed Column

More information