Supplementary Information Microfluidic quadrupole and floating concentration gradient Mohammad A. Qasaimeh, Thomas Gervais, and David Juncker

Size: px
Start display at page:

Download "Supplementary Information Microfluidic quadrupole and floating concentration gradient Mohammad A. Qasaimeh, Thomas Gervais, and David Juncker"

Transcription

1 Mohammad A. Qasaimeh, Thomas Gerais, and Daid Juncker Supplementary Figure S1 The microfluidic quadrupole (MQ is modeled as two source (Q inj and two drain (Q asp points arranged in the classical quardupolar form. Using the superposition principle to produce an in plane elocity pattern. The elocity profile at any gien point is the sum of the contribution of the i th inlet located at a distance ρ i. Supplementary Figure S2 Numerical analysis of the microfluidic quadrupole (MQ and the calculated shear stress on the bottom substrate. (a The calculated wall shear stress on the substrate (z0 around the stagnation point (SP conerges to zero as the flow elocity tends to zero as well (see Fig. 4b. The shear stress profile along the line Y- Y is shown in Fig. 4c. Aspiration and injection flow rates used are 100 nl/s and 10 nl/s respectiely. (b By keeping the same injection flow rate while changing the aspiration flow rate each time, the local maxima of shear stresses at the inner edge of each aspiration aperture increases linearly with respect to the aspiration s flow rate. Supplementary Information 1/7

2 Mohammad A. Qasaimeh, Thomas Gerais, and Daid Juncker Supplementary Figure S3 3D numerical simulations of gradients in the microfluidic quadrupole. (a The relatie concentration of fluorescein when 50 nl/s and 10 nl/s were used as aspiration and injection flow rate, respectiely. A close-up iew of the gradient corresponding to the white rectangle is shown as inset. (b Comparison between the analytical solution, numerical simulation, and experimental measurements of the gradient profiles along the line a-b in (a. Supplementary Figure S4 Constant gradient size with different flow confinements. The constant shape is achieed when keeping constant aspiration flow rates (Q asp 100 nl/s and changing the injection flow rates (Q inj each time. (a Q inj 50 nl/s (Q asp /Q inj 2. (b Q inj 20 nl/s (Q asp /Q inj 5. (c Q inj 10 nl/s (Q asp /Q inj 10. Closes up iews of the respectie gradient area defined by the rectangle are shown in insets. Scale bar is 200 µm in the oeriews and 100 µm in the close-up iews. (d Fluorescence intensity profiles along the central line across each gradient shown in the insets. The gradients hae almost the same shape when the aspiration flow rates are constant. Supplementary Information 2/7

3 Mohammad A. Qasaimeh, Thomas Gerais, and Daid Juncker Supplementary Figure S5 Schematic illustrating measurement of gradient length. The gradient length was defined as the distance between 90% and 10% of the maximum normalized intensity. Supplementary Table S1: Parameters used to compute the full elocity profile and stream functions Ψ of the model shown in the schematics aboe. i Q i r ' i 4 Qi i ae ( r 2 i 1 r r ' i ( r r ' ψ i, ψ 4 i1 ψ i ψ i (series expansion for x<<d/2, y<<d/2 1 + Q inj d /2 ˆ x 2 -Q asp d /2 ˆ y 3 + Q inj d /2 ˆ x 4 -Q asp d /2 ˆ y Q inj Q asp Q inj Q asp (x d /2 ˆ x + yˆ y ((x d /2 2 + y 2 xˆ x + (y d /2 y ˆ ( x 2 + (y d /2 2 (x + d /2 ˆ x + yˆ y ((x + d /2 2 + y 2 xˆ x + (y + d /2 y ˆ ( x 2 + (y + d /2 2 Q inj x d /2 Q inj π 2y 4xy arctan O( x, y y 2 H 2 d 2 π d Q asp arctan x y d /2 Q inj Q asp 2x d 4xy + O(x 3,y 3 d 2 x + d /2 Q inj π 2y 4xy 3 3 arctan + + O( x, y y 2π H 2 d 2 d Q asp arctan x y + d /2 Q asp 2x d 4xy + O(x 3, y 3 d 2 Supplementary Information 3/7

4 Mohammad A. Qasaimeh, Thomas Gerais, and Daid Juncker Supplementary Methods Calculation of the flow elocity profile for a MQ. The elocity profile of a microfluidic quadrupole can be determined using equation (3 from the main paper with the alues presented in Supplementary Table S1 by modeling the MQ in 2D as shown in the schematics aboe. Instead of the elocity potential φ, we use here the common stream function ψ, with the usual relations describing potential flow 14 : x ae φ x ψ y, y ae φ y ψ x, (S1 To obtain the stream functions found in Supplementary Table S1, we integrate the x and y components of the elocity profile (dropping the integration constant. Calculation of the confinement radius R. The confinement radius R corresponds to the point on the x axis where ae ( x, y 0along the y0 line, the elocity profile introduced in Table 1 reduces to: ae Qinj ( x,0 xˆ Q asp xxˆ d / 2ˆ y Q + xxˆ + d / 2ˆ y, (S2 ( x d / / 4 2 H ( x d / 2 2 H 2 2 x + d π + π x + d / 4 inj xˆ Q asp By setting x R and ae (R,0 0, the expression is reduced to 0 Q inj 2Rxˆ 2Rxˆ Q 2 2 asp 2 2 ( R d / 4 R + d / 4, (S3 And when soling for R: d Qasp / Qinj + 1 R, (S4 2 Q / Q 1 asp inj Calculations of the elocity profile and stream function around the stagnation point. The stream function close to the stagnation point (x<<d, y<<d can be computed by summing the second order series expansions found in Supplementary Table S1. Supplementary Information 4/7

5 Mohammad A. Qasaimeh, Thomas Gerais, and Daid Juncker ψ Q inj 8xy Q asp 8xy Q 8xy, d 2 d 2 πh d 2 (S5 This stream function can be represented as the imaginary part of a power law conformal map of the form: w 4 Q πhd 2 z2, (S6 Where w φ + i ψ and z x + iy. This function has been known to describe the flow of an irrotational fluid around a corner 14. In this particular case, each quadrant in the schematics aboe can be seen as a corner with the x and y symmetry axes forming irtual walls. The elocity profile corresponding to that particular flow profile is then found using the definition of the stream function as in equation (S1 ae ψ ψ xˆ yˆ y x 8 Q 2 πhd ( xxˆ + yyˆ, (S7 Flow profile near the inlets. The exact solution of the flow profile along the XX and YY axes can be obtained by setting respectiely x0 and y0 in the elocity profile presented in Supplementary Table S1. 4 Q (2x / d XX ' ( x,0 xˆ πhd 4 1 (2x / d 4 Q (2 y / d y y YY ' (0, ˆ πhd 4 1 (2y / d, (S8 This result demonstrates how equation (S7 greatly underestimates the flow elocity when ery close to the inlets. Neertheless, the fourth power dependence in the denominator also shows that equation (S7 is still ery accurate (6% error up to half way between the stagnation point and the inlet along the XX and YY axes. Reynolds number estimations inside the MQ. In the MQ, the flow profile aries from 0 at the stagnation point to maximum alues near the apertures. For a flow rate of 100 nl/s, equation (S8 gies a maximum elocity 2 mm/s on the YY axis at y (d a /2. Using the definition of the Reynolds number in parallel plate geometry using maximal elocity 45, the maximum Reynolds number in the MQ is on the order of 2 ρh Re (S9 ηd The flow is purely drien by iscosity eerywhere under the microfluidic probe. Supplementary Information 5/7

6 Mohammad A. Qasaimeh, Thomas Gerais, and Daid Juncker Assessment of the shear stress near the stagnation point. Shear stress can also be coneniently calculated in a Hele-Shaw cell due to the fact that the flow remains parabolic in nature een at length scales on the order of H, the gap between the plates. Combining equations (1 and (2 of the main paper, the Hele-Shaw elocity profile can be expressed as z z H S ( x, y, z 6 1 ae( x, y (S10 H H The shear stress at the surfaces comprising the MQ can thus be calculated to be: H S ( x, y, z 6η τ η ae ( x, y, (S11 z z 0 H Near the stagnation point, using equations (S7 and (S11, the magnitude of the shear stress yields: τ 6η 8 Q x 2 + y 2 48η Q r (S12 H πhd 2 πh 2 d d where r is the absolute distance from the SP in any direction. When replacing the constants by their experimental alues (using Q inj 10 nl/s and Q asp 100 nl/s, the shear stress inside the MQ is estimated to: r τ 0,31 [ Pa], (S13 d For example, by considering the flow rates mentioned aboe, the shear stress at a point located 50 µm away from the SP is Pa (calculated using equation (S13. This alue matches ery well with the results from the 3D FEM simulations, Fig. 4c. Maximal shear stress inside the MQ. The maximal shear stress inside the MQ occurs at the point of maximum elocity (i.e right at the aspiration aperture edge. Under the same experimental conditions mentioned in the preious section, and by using equation (S8 for the aerage elocity profile, the maximum shear stress is estimated to be: τ 48η Q πh 2 d (1 a/d ˆ y 1 (1 a/d 4, (S14 where a is the inlet s diameter (a 360 µm in the present case and η (10-3 Pa s is the iscosity of water at 20 C. Using these alues and Q 55nL /s, we obtain a shear stress Supplementary Information 6/7

7 Mohammad A. Qasaimeh, Thomas Gerais, and Daid Juncker equals 0.26 Pa. This alue is close to the magnitude of the shear stress found numerically around the aspiration apertures ( Pa, Fig. 4c. The slight oerestimation of the shear in equation (S14 on the inside edge of the aperture (0.26 Pa instead of 0.15 Pa might be ascribed to the limitation of the 2D analytical model (with point sources at the center of the actual probe apertures when compared to the full 3D model with apertures with a finite size. Indeed, equation (S13 accurately predicts the slope of the shear stress except in close proximity of the aspiration apertures. Uniformity of the concentration profile along the YY interface. The full partial differential equation describing steady-state conection and diffusion close to the SP is obtained by combining equations (5 and (7 from the main text to yield D 2 C x Q πhd x C 2 x + D 2 C y 8 Q 2 πhd y C 2 y 0. (S15 Using the dimensionless groups Equation (S15 can be normalized to Pé 8 Q πhd, x x Pé, y y Pé, (S16 d d 2 C x 2 + x C x + 2 C y 2 y C y 0. (S17 From the scale of this problem, we can see that mass transport is dominated by diffusion when x <1, y <1. Using Q 55 nl / s, D 500 µm 2 /s, H 50 µm and d 1075 µm yields a Pé number around The typical size of the diffusion-dominated region in d d the problem is therefore x < 15 µ m, y < 15µ m. Beyond that region, which Pé Pé can be conceied as the effectie dimensions of the stagnation point, transport is dominated by conection. Along the y-axis, the high Pé number means that the diffusion profile deeloped in the stagnation point will be stretched along the y axis. Since the initial concentration profile is translationally inariant along the axis y ( C y 0, so will be the final concentration profile. Supplementary reference 45. Bruus, H. Theoretical microfluidics (Oxford Uniersity Press 2008, p. 80. Supplementary Information 7/7

PHY121 Physics for the Life Sciences I

PHY121 Physics for the Life Sciences I PHY Physics for the Life Sciences I Lecture 0. Fluid flow: kinematics describing the motion. Fluid flow: dynamics causes and effects, Bernoulli s Equation 3. Viscosity and Poiseuille s Law for narrow tubes

More information

THE EFFECT OF LONGITUDINAL VIBRATION ON LAMINAR FORCED CONVECTION HEAT TRANSFER IN A HORIZONTAL TUBE

THE EFFECT OF LONGITUDINAL VIBRATION ON LAMINAR FORCED CONVECTION HEAT TRANSFER IN A HORIZONTAL TUBE mber 3 Volume 3 September 26 Manal H. AL-Hafidh Ali Mohsen Rishem Ass. Prof. /Uniersity of Baghdad Mechanical Engineer ABSTRACT The effect of longitudinal ibration on the laminar forced conection heat

More information

0 a 3 a 2 a 3 0 a 1 a 2 a 1 0

0 a 3 a 2 a 3 0 a 1 a 2 a 1 0 Chapter Flow kinematics Vector and tensor formulae This introductory section presents a brief account of different definitions of ector and tensor analysis that will be used in the following chapters.

More information

MATHEMATICAL MODELLING AND IDENTIFICATION OF THE FLOW DYNAMICS IN

MATHEMATICAL MODELLING AND IDENTIFICATION OF THE FLOW DYNAMICS IN MATHEMATICAL MOELLING AN IENTIFICATION OF THE FLOW YNAMICS IN MOLTEN GLASS FURNACES Jan Studzinski Systems Research Institute of Polish Academy of Sciences Newelska 6-447 Warsaw, Poland E-mail: studzins@ibspan.waw.pl

More information

Microscopic Momentum Balance Equation (Navier-Stokes)

Microscopic Momentum Balance Equation (Navier-Stokes) CM3110 Transport I Part I: Fluid Mechanics Microscopic Momentum Balance Equation (Naier-Stokes) Professor Faith Morrison Department of Chemical Engineering Michigan Technological Uniersity 1 Microscopic

More information

Semi-implicit Treatment of the Hall Effect in NIMROD Simulations

Semi-implicit Treatment of the Hall Effect in NIMROD Simulations Semi-implicit Treatment of the Hall Effect in NIMROD Simulations H. Tian and C. R. Soinec Department of Engineering Physics, Uniersity of Wisconsin-Madison Madison, WI 5376 Presented at the 45th Annual

More information

Introduction to Thermodynamic Cycles Part 1 1 st Law of Thermodynamics and Gas Power Cycles

Introduction to Thermodynamic Cycles Part 1 1 st Law of Thermodynamics and Gas Power Cycles Introduction to Thermodynamic Cycles Part 1 1 st Law of Thermodynamics and Gas Power Cycles by James Doane, PhD, PE Contents 1.0 Course Oeriew... 4.0 Basic Concepts of Thermodynamics... 4.1 Temperature

More information

Chapter 1 Solutions Engineering and Chemical Thermodynamics 2e Wyatt Tenhaeff Milo Koretsky

Chapter 1 Solutions Engineering and Chemical Thermodynamics 2e Wyatt Tenhaeff Milo Koretsky Chapter 1 Solutions Engineering and Chemical Thermodynamics 2e Wyatt Tenhaeff Milo Koretsky School of Chemical, Biological, and Enironmental Engineering Oregon State Uniersity 1.1 (b) The olume of water

More information

Physics 107 HOMEWORK ASSIGNMENT #9b

Physics 107 HOMEWORK ASSIGNMENT #9b Physics 07 HOMEWORK SSIGNMENT #9b Cutnell & Johnson, 7 th edition Chapter : Problems 5, 58, 66, 67, 00 5 Concept Simulation. reiews the concept that plays the central role in this problem. (a) The olume

More information

A. Idesman. Keywords: time integration, spurious oscillations, numerical dispersion

A. Idesman. Keywords: time integration, spurious oscillations, numerical dispersion COMPDYN 0 rd ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering M. Papadrakakis, M. Fragiadakis, V. Pleris (eds.) Corfu, Greece, -8 May 0 ACCURATE NUMERICAL

More information

The Kinetic Theory of Gases

The Kinetic Theory of Gases 978-1-107-1788-3 Classical and Quantum Thermal Physics The Kinetic Theory of Gases CHAPTER 1 1.0 Kinetic Theory, Classical and Quantum Thermodynamics Two important components of the unierse are: the matter

More information

Chapter 8 Laminar Flows with Dependence on One Dimension

Chapter 8 Laminar Flows with Dependence on One Dimension Chapter 8 Laminar Flows with Dependence on One Dimension Couette low Planar Couette low Cylindrical Couette low Planer rotational Couette low Hele-Shaw low Poiseuille low Friction actor and Reynolds number

More information

NUMERICAL SIMULATION OF HYDRODYNAMIC FIELD FROM PUMP-TURBINE RUNNER

NUMERICAL SIMULATION OF HYDRODYNAMIC FIELD FROM PUMP-TURBINE RUNNER UMERICAL SIMULATIO OF YDRODYAMIC FIELD FROM PUMP-TURBIE RUER A. Iosif and I. Sârbu Department of Building Serices, Politehnica Uniersity of Timisoara, Romania E-Mail: ioan.sarbu@ct.upt.ro STRACT One of

More information

The single track model

The single track model The single track model Dr. M. Gerdts Uniersität Bayreuth, SS 2003 Contents 1 Single track model 1 1.1 Geometry.................................... 1 1.2 Computation of slip angles...........................

More information

CFD PREDICTIONS OF DRILLING FLUID VELOCITY AND PRESSURE PROFILES IN LAMINAR HELICAL FLOW

CFD PREDICTIONS OF DRILLING FLUID VELOCITY AND PRESSURE PROFILES IN LAMINAR HELICAL FLOW Brazilian Journal of Chemical Engineering ISSN 4-66 Printed in Brazil www.abeq.org.br/bjche Vol. 4, No. 4, pp. 587-595, October - December, 7 CFD PREDICTIONS OF DRILLING FLUID VELOCITY AND PRESSURE PROFILES

More information

THE ANALYSIS OF THE CONVECTIVE-CONDUCTIVE HEAT TRANSFER IN THE BUILDING CONSTRUCTIONS. Zbynek Svoboda

THE ANALYSIS OF THE CONVECTIVE-CONDUCTIVE HEAT TRANSFER IN THE BUILDING CONSTRUCTIONS. Zbynek Svoboda THE NLSIS OF THE CONECTIE-CONDUCTIE HET TRNSFER IN THE BUILDING CONSTRUCTIONS Zbynek Soboda Czech Technical Uniersity in Prague Faculty of Ciil Engineering 166 29 Prague 6 - Czech Republic BSTRCT The numerical

More information

Residual migration in VTI media using anisotropy continuation

Residual migration in VTI media using anisotropy continuation Stanford Exploration Project, Report SERGEY, Noember 9, 2000, pages 671?? Residual migration in VTI media using anisotropy continuation Tariq Alkhalifah Sergey Fomel 1 ABSTRACT We introduce anisotropy

More information

A microfluidic-based hydrodynamic trap: Design and implementation

A microfluidic-based hydrodynamic trap: Design and implementation SUPPLEMENTARY MATERIAL A microfluidic-based hydrodynamic trap: Design and implementation Melikhan Tanyeri, a Mikhil Ranka, a Natawan Sittipolkul a and Charles M. Schroeder* a,b a Department of Chemical

More information

Yao Liu Department of Physics, Columbia University New York, New York 10027

Yao Liu Department of Physics, Columbia University New York, New York 10027 Magnetic Flux Diffusion and Expulsion with Thin Conducting Sheets a) Yao Liu Department of Physics, Columbia Uniersity New York, New York 17 John W. Belcher Department of Physics, Massachusetts Institute

More information

ds nˆ v x v t v y Microscopic Balances 10/3/2011

ds nˆ v x v t v y Microscopic Balances 10/3/2011 Microscopic Balances We hae been doing microscopic shell hllbl balances that t are specific to whateer problem we are soling. We seek equations for microscopic mass, momentum (and energy) balances that

More information

MOTION OF FALLING OBJECTS WITH RESISTANCE

MOTION OF FALLING OBJECTS WITH RESISTANCE DOING PHYSICS WIH MALAB MECHANICS MOION OF FALLING OBJECS WIH RESISANCE Ian Cooper School of Physics, Uniersity of Sydney ian.cooper@sydney.edu.au DOWNLOAD DIRECORY FOR MALAB SCRIPS mec_fr_mg_b.m Computation

More information

Hasna BenSaid Faculté des sciences de Gafsa Campus Universitaire Sidi Ahmed Zarroug 2112 Gafsa, Tunisie

Hasna BenSaid Faculté des sciences de Gafsa Campus Universitaire Sidi Ahmed Zarroug 2112 Gafsa, Tunisie On the Ealuation of Linear and Non-Linear Models Using Data of Turbulent Channel Flows Hasna BenSaid bs_hasna@yahoo.fr Faculté des sciences de Gafsa Campus Uniersitaire Sidi Ahmed Zarroug Gafsa, Tunisie

More information

Motion in Two and Three Dimensions

Motion in Two and Three Dimensions PH 1-A Fall 014 Motion in Two and Three Dimensions Lectures 4,5 Chapter 4 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition) 1 Chapter 4 Motion in Two and Three Dimensions In this chapter

More information

ESCI 485 Air/sea Interaction Lesson 3 The Surface Layer

ESCI 485 Air/sea Interaction Lesson 3 The Surface Layer ESCI 485 Air/sea Interaction Lesson 3 he Surface Layer References: Air-sea Interaction: Laws and Mechanisms, Csanady Structure of the Atmospheric Boundary Layer, Sorbjan HE PLANEARY BOUNDARY LAYER he atmospheric

More information

COMPARISON OF ANALYTICAL SOLUTIONS FOR CMSMPR CRYSTALLIZER WITH QMOM POPULATION BALANCE MODELING IN FLUENT

COMPARISON OF ANALYTICAL SOLUTIONS FOR CMSMPR CRYSTALLIZER WITH QMOM POPULATION BALANCE MODELING IN FLUENT CHINA PARTICUOLOGY Vol. 3, No. 4, 13-18, 5 COMPARISON OF ANALYTICAL SOLUTIONS FOR CMSMPR CRYSTALLIZER WITH QMOM POPULATION BALANCE MODELING IN FLUENT Bin Wan 1, Terry A. Ring 1, *, Kumar M. Dhanasekharan

More information

Boundary Layer (Reorganization of the Lecture Notes from Professor Anthony Jacobi and Professor Nenad Miljkoic) Consider a steady flow of a Newtonian, Fourier-Biot fluid oer a flat surface with constant

More information

Prediction of anode arc root position in a DC arc plasma torch

Prediction of anode arc root position in a DC arc plasma torch Prediction of anode arc root position in a DC arc plasma torch He-Ping Li 1, E. Pfender 1, Xi Chen 1 Department of Mechanical Engineering, Uniersity of Minnesota, Minneapolis, MN 55455, USA Department

More information

Kinematics on oblique axes

Kinematics on oblique axes Bolina 1 Kinematics on oblique axes arxi:physics/01111951 [physics.ed-ph] 27 No 2001 Oscar Bolina Departamento de Física-Matemática Uniersidade de São Paulo Caixa Postal 66318 São Paulo 05315-970 Brasil

More information

Two Phase Pressure Drop of CO2, Ammonia, and R245fa in Multiport Aluminum Microchannel Tubes

Two Phase Pressure Drop of CO2, Ammonia, and R245fa in Multiport Aluminum Microchannel Tubes Purdue Uniersity Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 6 Two Phase Pressure Drop of CO, Ammonia, and R45fa in Multiport Aluminum Microchannel

More information

Simulation and Optimization of Throttle Flowmeter with Inner-Outer Tube Element

Simulation and Optimization of Throttle Flowmeter with Inner-Outer Tube Element MEASUREMENT SCIENCE REVIEW, 16, (017), No., 68-75 Journal homepage: http://www.degruyter.com/iew/j/msr Simulation and Optimization of Throttle Flowmeter with Inner-Outer Tube Element Jiang Meng 1, Zhipeng

More information

HYDRAULIC RESISTANCE Local (Minor!) Pressure Losses

HYDRAULIC RESISTANCE Local (Minor!) Pressure Losses HYDRULIC RESISTNCE Local (Minor!) Pressure Losses TFD-FD06 Hydraulic Resistance Local (Minor!) Losses Local Pressure Losses (Minor Losses!) lthough they often account for a major portion of the total pressure

More information

Transport by convection. Coupling convection-diffusion

Transport by convection. Coupling convection-diffusion Transport by convection. Coupling convection-diffusion 24 mars 2017 1 When can we neglect diffusion? When the Peclet number is not very small we cannot ignore the convection term in the transport equation.

More information

9.3 Laminar Flat-Plate Boundary Layer: Exact Solution w-19

9.3 Laminar Flat-Plate Boundary Layer: Exact Solution w-19 9.3 Laminar Flat-Plate Boundary Layer: Exact Solution w-19 Laminar Flat-Plate Boundary Layer: Exact Solution The solution for the laminar boundary layer on a horizontal flat late was obtained by Prtl s

More information

Motion in Two and Three Dimensions

Motion in Two and Three Dimensions PH 1-1D Spring 013 Motion in Two and Three Dimensions Lectures 5,6,7 Chapter 4 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition) 1 Chapter 4 Motion in Two and Three Dimensions In this chapter

More information

On the Nature of Coherent Turbulent Structures in Channel Bends: Burst-Sweep Orientations in Three-Dimensional Flow Fields

On the Nature of Coherent Turbulent Structures in Channel Bends: Burst-Sweep Orientations in Three-Dimensional Flow Fields On the Nature of Coherent Turbulent Structures in Channel Bends: Burst-Sweep Orientations in Three-Dimensional Flow Fields M. Tilston 1, C. Rennie 2, R.W.C. Arnott 1 and G. Post 3 1 Department of Earth

More information

SUPPLEMENTARY MATERIAL. Authors: Alan A. Stocker (1) and Eero P. Simoncelli (2)

SUPPLEMENTARY MATERIAL. Authors: Alan A. Stocker (1) and Eero P. Simoncelli (2) SUPPLEMENTARY MATERIAL Authors: Alan A. Stocker () and Eero P. Simoncelli () Affiliations: () Dept. of Psychology, Uniersity of Pennsylania 34 Walnut Street 33C Philadelphia, PA 94-68 U.S.A. () Howard

More information

Viscous potential flow analysis of stress induced cavitation in an aperture flow

Viscous potential flow analysis of stress induced cavitation in an aperture flow cavitation-july9.tex Viscous potential flow analysis of stress induced cavitation in an aperture flow T. Funada, J. Wang and D. D. Joseph Department of Digital Engineering, Numazu College of Technology,

More information

The Importance of Anisotropy for Prestack Imaging

The Importance of Anisotropy for Prestack Imaging The Importance of Anisotropy for Prestack Imaging Xiaogui Miao*, Daid Wilkinson and Scott Cheadle Veritas DGC Inc., 715-5th Ae. S.W., Calgary, AB, T2P 5A2 Calgary, AB Xiaogui_Miao@eritasdgc.com ABSTRACT

More information

Compressible Duct Flow with Friction

Compressible Duct Flow with Friction Compressible Duct Flow with Friction We treat only the effect of friction, neglecting area change and heat transfer. The basic assumptions are 1. Steady one-dimensional adiabatic flow 2. Perfect gas with

More information

Chapter 6 Effective Stresses and Capillary

Chapter 6 Effective Stresses and Capillary Effectie Stresses and Capillary - N. Siakugan (2004) 1 6.1 INTRODUCTION Chapter 6 Effectie Stresses and Capillary When soils are subjected to external loads due to buildings, embankments or excaations,

More information

UNDERSTAND MOTION IN ONE AND TWO DIMENSIONS

UNDERSTAND MOTION IN ONE AND TWO DIMENSIONS SUBAREA I. COMPETENCY 1.0 UNDERSTAND MOTION IN ONE AND TWO DIMENSIONS MECHANICS Skill 1.1 Calculating displacement, aerage elocity, instantaneous elocity, and acceleration in a gien frame of reference

More information

ERAD THE SEVENTH EUROPEAN CONFERENCE ON RADAR IN METEOROLOGY AND HYDROLOGY

ERAD THE SEVENTH EUROPEAN CONFERENCE ON RADAR IN METEOROLOGY AND HYDROLOGY Multi-beam raindrop size distribution retrieals on the oppler spectra Christine Unal Geoscience and Remote Sensing, TU-elft Climate Institute, Steinweg 1, 68 CN elft, Netherlands, c.m.h.unal@tudelft.nl

More information

Laminar Flow. Chapter ZERO PRESSURE GRADIENT

Laminar Flow. Chapter ZERO PRESSURE GRADIENT Chapter 2 Laminar Flow 2.1 ZERO PRESSRE GRADIENT Problem 2.1.1 Consider a uniform flow of velocity over a flat plate of length L of a fluid of kinematic viscosity ν. Assume that the fluid is incompressible

More information

Supplementary Information for Engineering and Analysis of Surface Interactions in a Microfluidic Herringbone Micromixer

Supplementary Information for Engineering and Analysis of Surface Interactions in a Microfluidic Herringbone Micromixer Supplementary Information for Engineering and Analysis of Surface Interactions in a Microfluidic Herringbone Micromixer Thomas P. Forbes and Jason G. Kralj National Institute of Standards and Technology,

More information

Potential Flow of Viscous Fluids: Historical Notes

Potential Flow of Viscous Fluids: Historical Notes Potential Flow of Viscous Fluids: Historical Notes Daniel D. Joseph Department of Aerospace Engineering and Mechanics, Uniersity of Minnesota, Union St. SE, Minneapolis, MN 55455, USA May, 5 Abstract In

More information

A simple cavitation model for unsteady simulation and its application to cavitating flow in twodimensional convergent-divergent nozzle

A simple cavitation model for unsteady simulation and its application to cavitating flow in twodimensional convergent-divergent nozzle IOP Conference Series: Materials Science and Engineering OPEN ACCESS A simple caitation model for unsteady simulation and its application to caitating flow in twodimensional conergent-diergent nozzle To

More information

A new source term in the parameterized TKE equation being of relevance for the stable boundary layer - The circulation term

A new source term in the parameterized TKE equation being of relevance for the stable boundary layer - The circulation term A new source term in the parameteried TKE equation being of releance for the stable boundary layer - The circulation term Matthias Raschendorfer DWD Ref.: Principals of a moist non local roughness layer

More information

Section 6: PRISMATIC BEAMS. Beam Theory

Section 6: PRISMATIC BEAMS. Beam Theory Beam Theory There are two types of beam theory aailable to craft beam element formulations from. They are Bernoulli-Euler beam theory Timoshenko beam theory One learns the details of Bernoulli-Euler beam

More information

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t)

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t) IV. DIFFERENTIAL RELATIONS FOR A FLUID PARTICLE This chapter presents the development and application of the basic differential equations of fluid motion. Simplifications in the general equations and common

More information

ELECTROMAGNETIC INDUCTION

ELECTROMAGNETIC INDUCTION hapter Si ELETROMGNETI INUTION MQ 1 6.1 square of side L meters lies in the -y plane in a region, where the magnetic field is gien by = ˆ ˆ ˆ o (2 i+ 3j+ 4 k) T, where o is constant. The magnitude of flu

More information

Migration of sand waves in shallow shelf seas

Migration of sand waves in shallow shelf seas Migration of sand waes in shallow shelf seas Attila A. Németh, Suzanne J.M.H. Hulscher and Huib J. de Vriend 3,,3 Uniersity of Twente Department of Ciil Engineering, Integrated Modelling P.O.BOX 7, 75

More information

Purpose of the experiment

Purpose of the experiment Impulse and Momentum PES 116 Adanced Physics Lab I Purpose of the experiment Measure a cart s momentum change and compare to the impulse it receies. Compare aerage and peak forces in impulses. To put the

More information

DO PHYSICS ONLINE. WEB activity: Use the web to find out more about: Aristotle, Copernicus, Kepler, Galileo and Newton.

DO PHYSICS ONLINE. WEB activity: Use the web to find out more about: Aristotle, Copernicus, Kepler, Galileo and Newton. DO PHYSICS ONLINE DISPLACEMENT VELOCITY ACCELERATION The objects that make up space are in motion, we moe, soccer balls moe, the Earth moes, electrons moe, - - -. Motion implies change. The study of the

More information

Chapter 9: Differential Analysis

Chapter 9: Differential Analysis 9-1 Introduction 9-2 Conservation of Mass 9-3 The Stream Function 9-4 Conservation of Linear Momentum 9-5 Navier Stokes Equation 9-6 Differential Analysis Problems Recall 9-1 Introduction (1) Chap 5: Control

More information

Status: Unit 2, Chapter 3

Status: Unit 2, Chapter 3 1 Status: Unit, Chapter 3 Vectors and Scalars Addition of Vectors Graphical Methods Subtraction of Vectors, and Multiplication by a Scalar Adding Vectors by Components Unit Vectors Vector Kinematics Projectile

More information

FLUID FLOW AND HEAT TRANSFER IN A COLLAPSIBLE TUBE

FLUID FLOW AND HEAT TRANSFER IN A COLLAPSIBLE TUBE FLUID DYNAMICS FLUID FLOW AND HEAT TRANSFER IN A COLLAPSIBLE TUBE S. A. ODEJIDE 1, Y. A. S. AREGBESOLA 1, O. D. MAKINDE 1 Obafemi Awolowo Uniersity, Department of Mathematics, Faculty of Science, Ile-Ife,

More information

Strain accumulation in sand due to cyclic loading: drained cyclic tests with triaxial extension

Strain accumulation in sand due to cyclic loading: drained cyclic tests with triaxial extension Soil Dynamics & Earthuake Engineering (Vol. 7, No., pp. -8, 7) Strain accumulation in sand due to cyclic loading: drained cyclic tests with triaxial extension T. Wichtmann i), A. Niemunis, Th. Triantafyllidis

More information

CONDENSING EJECTOR FOR SECOND STEP COMPRESSION IN REFRIGERATION CYCLES

CONDENSING EJECTOR FOR SECOND STEP COMPRESSION IN REFRIGERATION CYCLES Paper 2174, Page 1 CONDENSING EJECTOR FOR SECOND STEP COMPRESSION IN REFRIGERATION CYCES Mark J. BERGANDER 1, PhD, P.E., Prof. Daid P. SCHMIDT 2, Daid A. HEBERT 2, Dr. Jerzy WOJCIECHOWSKI 3, Mateusz SZKARZ

More information

Chapter 7: The Second Law of Thermodynamics

Chapter 7: The Second Law of Thermodynamics Chapter 7: he Second Law of hermodynamics he second law of thermodynamics asserts that processes occur in a certain direction and that the energy has quality as well as quantity he first law places no

More information

Why does Saturn have many tiny rings?

Why does Saturn have many tiny rings? 2004 Thierry De Mees hy does Saturn hae many tiny rings? or Cassini-Huygens Mission: New eidence for the Graitational Theory with Dual Vector Field T. De Mees - thierrydemees @ pandora.be Abstract This

More information

Chapter 9: Differential Analysis of Fluid Flow

Chapter 9: Differential Analysis of Fluid Flow of Fluid Flow Objectives 1. Understand how the differential equations of mass and momentum conservation are derived. 2. Calculate the stream function and pressure field, and plot streamlines for a known

More information

ARE THERE BETTER WAYS TO UNDERSTAND THE SECOND LAW OF THERMODYNAMICS AND THE CARNOT EFFICIENCY OF HEAT ENGINES?

ARE THERE BETTER WAYS TO UNDERSTAND THE SECOND LAW OF THERMODYNAMICS AND THE CARNOT EFFICIENCY OF HEAT ENGINES? ARE THERE BETTER WAYS TO UNDERSTAND THE SECOND LAW OF THERMODYNAMICS AND THE CARNOT EFFICIENCY OF HEAT ENGINES? W. John Dartnall 979 reised Abstract The Second Law of Thermodynamics imposes the Carnot

More information

Effective mass: from Newton s law. Effective mass. I.2. Bandgap of semiconductors: the «Physicist s approach» - k.p method

Effective mass: from Newton s law. Effective mass. I.2. Bandgap of semiconductors: the «Physicist s approach» - k.p method Lecture 4 1/10/011 Effectie mass I.. Bandgap of semiconductors: the «Physicist s approach» - k.p method I.3. Effectie mass approximation - Electrons - Holes I.4. train effect on band structure - Introduction:

More information

Fluid Physics 8.292J/12.330J

Fluid Physics 8.292J/12.330J Fluid Phsics 8.292J/12.0J Problem Set 4 Solutions 1. Consider the problem of a two-dimensional (infinitel long) airplane wing traeling in the negatie x direction at a speed c through an Euler fluid. In

More information

[ ( )] + ρ VIII. NONLINEAR OPTICS -- QUANTUM PICTURE: 45 THE INTERACTION OF RADIATION AND MATTER: QUANTUM THEORY PAGE 88

[ ( )] + ρ VIII. NONLINEAR OPTICS -- QUANTUM PICTURE: 45 THE INTERACTION OF RADIATION AND MATTER: QUANTUM THEORY PAGE 88 THE INTERACTION OF RADIATION AND MATTER: QUANTUM THEORY PAGE 88 VIII. NONLINEAR OPTICS -- QUANTUM PICTURE: 45 A QUANTUM MECHANICAL VIEW OF THE BASICS OF N ONLINEAR OPTICS 46 In what follows we draw on

More information

The Generalized Boundary Layer Equations

The Generalized Boundary Layer Equations The Generalized Boundary Layer Equations Gareth H. McKinley (MIT-HML) November 004 We have seen that in general high Reynolds number flow past a slender body such as an airfoil can be considered as an

More information

Unsteady transition from a Mach to a regular shockwave intersection

Unsteady transition from a Mach to a regular shockwave intersection Unsteady transition from a Mach to a regular shockwae intersection S. J. KARABELAS and N.C. MARKATOS Department of Chemical Engineering, Computational Fluid Dynamics Unit National Technical Uniersity of

More information

Collective circular motion of multi-vehicle systems with sensory limitations

Collective circular motion of multi-vehicle systems with sensory limitations Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference 2005 Seille, Spain, December 12-15, 2005 MoB032 Collectie circular motion of multi-ehicle systems with

More information

Problem Set 1: Solutions

Problem Set 1: Solutions Uniersity of Alabama Department of Physics and Astronomy PH 253 / LeClair Fall 2010 Problem Set 1: Solutions 1. A classic paradox inoling length contraction and the relatiity of simultaneity is as follows:

More information

Analysis of cylindrical heat pipes incorporating the e ects of liquid±vapor coupling and non-darcian transportða closed form solution

Analysis of cylindrical heat pipes incorporating the e ects of liquid±vapor coupling and non-darcian transportða closed form solution International Journal of Heat and Mass Transfer 42 (1999) 3405±341 Analysis of cylindrical heat pipes incorporating the e ects of liquid±apor coupling and non-darcian transportða closed form solution N.

More information

Here are some solutions to the sample problems assigned for Chapter 4. Solution: Consider a function of 3 (independent) variables. treating as real.

Here are some solutions to the sample problems assigned for Chapter 4. Solution: Consider a function of 3 (independent) variables. treating as real. Lecture 11 Appendix B: Some sample problems from Boas Here are some solutions to the sample problems assigned for Chapter 4. 4.1: 3 Solution: Consider a function of 3 (independent) variables,, ln z u v

More information

Physics 4A Solutions to Chapter 4 Homework

Physics 4A Solutions to Chapter 4 Homework Physics 4A Solutions to Chapter 4 Homework Chapter 4 Questions: 4, 1, 1 Exercises & Problems: 5, 11, 3, 7, 8, 58, 67, 77, 87, 11 Answers to Questions: Q 4-4 (a) all tie (b) 1 and tie (the rocket is shot

More information

Сollisionless damping of electron waves in non-maxwellian plasma 1

Сollisionless damping of electron waves in non-maxwellian plasma 1 http:/arxi.org/physics/78.748 Сollisionless damping of electron waes in non-mawellian plasma V. N. Soshnio Plasma Physics Dept., All-Russian Institute of Scientific and Technical Information of the Russian

More information

SLIP MODEL PERFORMANCE FOR MICRO-SCALE GAS FLOWS

SLIP MODEL PERFORMANCE FOR MICRO-SCALE GAS FLOWS 3th AIAA Thermophysics Conference 3- June 3, Orlando, Florida AIAA 3-5 SLIP MODEL PERFORMANCE FOR MICRO-SCALE GAS FLOWS Matthew J. McNenly* Department of Aerospace Engineering Uniersity of Michigan, Ann

More information

CS205b/CME306. Lecture 4. x v. + t

CS205b/CME306. Lecture 4. x v. + t CS05b/CME306 Lecture 4 Time Integration We now consider seeral popular approaches for integrating an ODE Forward Euler Forward Euler eolution takes on the form n+ = n + Because forward Euler is unstable

More information

Validation 3. Laminar Flow Around a Circular Cylinder

Validation 3. Laminar Flow Around a Circular Cylinder Validation 3. Laminar Flow Around a Circular Cylinder 3.1 Introduction Steady and unsteady laminar flow behind a circular cylinder, representing flow around bluff bodies, has been subjected to numerous

More information

6. Basic basic equations I ( )

6. Basic basic equations I ( ) 6. Basic basic equations I (4.2-4.4) Steady and uniform flows, streamline, streamtube One-, two-, and three-dimensional flow Laminar and turbulent flow Reynolds number System and control volume Continuity

More information

Tutorial 6. Fluid Kinematics

Tutorial 6. Fluid Kinematics Tutorial 6 Fluid Kinematics 1. Water is flowing through a pipe of 2.5cm diameter with a velocity of 0.5m/s. Compute the discharge in m 3 /s and litres/s. Diameter of pipe (d) = 2.5cm = 0.025m C/S Area

More information

Stresses in Sedimentary Strata, including Coals, and the Effects of Fluid Withdrawal on Effective Stress and Permeability

Stresses in Sedimentary Strata, including Coals, and the Effects of Fluid Withdrawal on Effective Stress and Permeability Uniersity of Wollongong Research Online Coal Operators' Conference Faculty of Engineering and Information Sciences 2011 Stresses in Sedimentary Strata, including Coals, and the Effects of Fluid Withdrawal

More information

Viscosity and Polymer Melt Flow. Rheology-Processing / Chapter 2 1

Viscosity and Polymer Melt Flow. Rheology-Processing / Chapter 2 1 Viscosity and Polymer Melt Flow Rheology-Processing / Chapter 2 1 Viscosity: a fluid property resistance to flow (a more technical definition resistance to shearing) Remember that: τ μ du dy shear stress

More information

DAY 19: Boundary Layer

DAY 19: Boundary Layer DAY 19: Boundary Layer flat plate : let us neglect the shape of the leading edge for now flat plate boundary layer: in blue we highlight the region of the flow where velocity is influenced by the presence

More information

Lecture #9: Harmonic Oscillator: Creation and Annihilation Operators

Lecture #9: Harmonic Oscillator: Creation and Annihilation Operators 5.61 Fall, 013 Lecture #9 Page 1 Last time Lecture #9: Harmonic Oscillator: Creation and Annihilation Operators 1/ Simplified Schrödinger equation: ξ=α x, α =(kμ) 1/ n E +ξ ψ=0 (dimensionless) ξ nω reduced

More information

S 1 S 2 A B C. 7/25/2006 Superposition ( F.Robilliard) 1

S 1 S 2 A B C. 7/25/2006 Superposition ( F.Robilliard) 1 P S S S 0 x S A B C 7/5/006 Superposition ( F.Robilliard) Superposition of Waes: As we hae seen preiously, the defining property of a wae is that it can be described by a wae function of the form - y F(x

More information

4-vectors. Chapter Definition of 4-vectors

4-vectors. Chapter Definition of 4-vectors Chapter 12 4-ectors Copyright 2004 by Daid Morin, morin@physics.harard.edu We now come to a ery powerful concept in relatiity, namely that of 4-ectors. Although it is possible to derie eerything in special

More information

ME 431A/538A/538B Homework 22 October 2018 Advanced Fluid Mechanics

ME 431A/538A/538B Homework 22 October 2018 Advanced Fluid Mechanics ME 431A/538A/538B Homework 22 October 2018 Advanced Fluid Mechanics For Friday, October 26 th Start reading the handout entitled Notes on finite-volume methods. Review Chapter 7 on Dimensional Analysis

More information

AN APPLICATION OF THE DOUBLE SUMUDU TRANSFORM

AN APPLICATION OF THE DOUBLE SUMUDU TRANSFORM Applied Mathematical Sciences, Vol. 1, 27, no. 1, 31-39 AN APPLICATION OF THE DOUBLE SUMUDU TRANSFORM Jean M. Tchuenche 1 and Nyimua S. Mbare Mathematics Department, Uniersity of Dar es Salaam P.O. Box

More information

Number of pages in the question paper : 05 Number of questions in the question paper : 48 Modeling Transport Phenomena of Micro-particles Note: Follow the notations used in the lectures. Symbols have their

More information

Class #4. Retarding forces. Worked Problems

Class #4. Retarding forces. Worked Problems Class #4 Retarding forces Stokes Law (iscous drag) Newton s Law (inertial drag) Reynolds number Plausibility of Stokes law Projectile motions with iscous drag Plausibility of Newton s Law Projectile motions

More information

Reversal in time order of interactive events: Collision of inclined rods

Reversal in time order of interactive events: Collision of inclined rods Reersal in time order of interactie eents: Collision of inclined rods Published in The European Journal of Physics Eur. J. Phys. 27 819-824 http://www.iop.org/ej/abstract/0143-0807/27/4/013 Chandru Iyer

More information

Number of pages in the question paper : 06 Number of questions in the question paper : 48 Modeling Transport Phenomena of Micro-particles Note: Follow the notations used in the lectures. Symbols have their

More information

Elements of diffraction theory part II

Elements of diffraction theory part II Elements of diffraction theory part II Setosla S. Iano Department of Physics, St. Kliment Ohridski Uniersity of Sofia, 5 James Bourchier Bld, 1164 Sofia, Bulgaria (Dated: February 7, 2016 We make a brief

More information

v v Downloaded 01/11/16 to Redistribution subject to SEG license or copyright; see Terms of Use at

v v Downloaded 01/11/16 to Redistribution subject to SEG license or copyright; see Terms of Use at The pseudo-analytical method: application of pseudo-laplacians to acoustic and acoustic anisotropic wae propagation John T. Etgen* and Serre Brandsberg-Dahl Summary We generalize the pseudo-spectral method

More information

SELECTION, SIZING, AND OPERATION OF CONTROL VALVES FOR GASES AND LIQUIDS Class # 6110

SELECTION, SIZING, AND OPERATION OF CONTROL VALVES FOR GASES AND LIQUIDS Class # 6110 SELECTION, SIZIN, AND OERATION OF CONTROL VALVES FOR ASES AND LIUIDS Class # 6110 Ross Turbiille Sales Engineer Fisher Controls International Inc. 301 S. First Aenue Marshalltown, Iowa USA Introduction

More information

Excerpt from the Proceedings of the COMSOL Users Conference 2006 Boston

Excerpt from the Proceedings of the COMSOL Users Conference 2006 Boston Using Comsol Multiphysics to Model Viscoelastic Fluid Flow Bruce A. Finlayson, Professor Emeritus Department of Chemical Engineering University of Washington, Seattle, WA 98195-1750 finlayson@cheme.washington.edu

More information

meters, we can re-arrange this expression to give

meters, we can re-arrange this expression to give Turbulence When the Reynolds number becomes sufficiently large, the non-linear term (u ) u in the momentum equation inevitably becomes comparable to other important terms and the flow becomes more complicated.

More information

Brake applications and the remaining velocity Hans Humenberger University of Vienna, Faculty of mathematics

Brake applications and the remaining velocity Hans Humenberger University of Vienna, Faculty of mathematics Hans Humenberger: rake applications and the remaining elocity 67 rake applications and the remaining elocity Hans Humenberger Uniersity of Vienna, Faculty of mathematics Abstract It is ery common when

More information

P2.8 THE MECHANICS OF FALLING HAILSTONES AND HAILSWATHS. Kevin Vermeesch* and Ernest Agee Purdue University, West Lafayette, IN. where b is given as

P2.8 THE MECHANICS OF FALLING HAILSTONES AND HAILSWATHS. Kevin Vermeesch* and Ernest Agee Purdue University, West Lafayette, IN. where b is given as P.8 THE MECHANICS OF FALLING HAILSTONES AND HAILSWATHS Kein Vermeesch* and Ernest Agee Purdue Uniersity, West Lafayette, IN. INTRODUCTION * This study has focused on the mechanics of falling hailstones

More information

Exercise: concepts from chapter 10

Exercise: concepts from chapter 10 Reading:, Ch 10 1) The flow of magma with a viscosity as great as 10 10 Pa s, let alone that of rock with a viscosity of 10 20 Pa s, is difficult to comprehend because our common eperience is with s like

More information

On Calculation of Turbulent Free-surface Flows with Particle Method

On Calculation of Turbulent Free-surface Flows with Particle Method On Calculation of Turbulent Free-surface Flows with Particle Method Hiroshi nokuma Department of Ciil Engineering Kobe Uniersity 1-1 Rokkodai, Nada-ku, Kobe 657-8501 Japan inoshishikuma@gmail.com Akihiko

More information

Cases of integrability corresponding to the motion of a pendulum on the two-dimensional plane

Cases of integrability corresponding to the motion of a pendulum on the two-dimensional plane Cases of integrability corresponding to the motion of a pendulum on the two-dimensional plane MAXIM V. SHAMOLIN Lomonoso Moscow State Uniersity Institute of Mechanics Michurinskii Ae.,, 99 Moscow RUSSIAN

More information