Size: px
Start display at page:

Download ""

Transcription

1 Boundary Layer (Reorganization of the Lecture Notes from Professor Anthony Jacobi and Professor Nenad Miljkoic) Consider a steady flow of a Newtonian, Fourier-Biot fluid oer a flat surface with constant properties, incompressible, -D flow and no body force. Note: 1. A Newtonian fluid is a fluid in which the iscous stresses arising from its flow, at eery point, are linearly proportional to the local strain rate-the rate of change of its deformation oer time. That is equialent to saying that those forces are proportional to the rates of change of the fluid's elocity ector as one moes away from the point in question in arious directions.. A non-newtonian fluid is a fluid whose iscosity is ariable based on applied stress or force. Many polymer solutions and molten polymers are non-newtonian fluids, as are many commonly found substances such as ketchup, starch suspensions, paint, and shampoo. In a Newtonian fluid, the relation between the shear stress and the strain rate is linear, the constant of proportionality being the coefficient of iscosity. In a non-newtonian fluid, the relation between the shear stress and the strain rate is nonlinear, and can een be time-dependent. Therefore a constant coefficient of iscosity cannot be defined. Steady flow: t = -D flow: w =, z = Therefore for the continuity equation what we are left with is: u + y = -momentum ρ ( u t + u u + u y + w u z ) = ρf P 4 u [ + 3 μ 3 μ ( y + w z )] After cleaning up: [μ ( u + y ρ (u u + u y ) = P + μ( u + u y ) y + )] [μ ( w + z + u z )] Assume the effects of the wall to be confined to a region near the wall and call that region the boundary layer, ( ). Scaling analysis Gien u + =, U y Therefore ~ P = ~ U 1

2 Gien ρ (u u + u y ) = μ( u + u y ) U U U, U ~ν( U, U δ ) U δ since and can be neglected. Therefore Energy equation u u + u y = ν u y U ~ν U ~ ν U = 1 Re (when, Re > 1) ρc ( T T T + u + t y T (k = ) T + w ) + T ( P z T ) ( u + y + w z ) (k T y ) + y T (k + z ) z μ : iscous dissipation U : internal heat generation Here we first neglect both iscous dissipation and internal heat generation u + = as is gien by the continuity equation. y Cleaning up and we get: u T T + y = k ( T ρc + T y ) Now consider a temperature boundary layer ( ). Assume,,. + μ + U Let T = T s T and k = k = α ρc ρc Scaling analysis U T, Since, U T ~α ( T, T )

3 Goerning equation becomes: u T = α T y U ~ α Plug in ~ ν U We get ~ ν α = Pr (when Pr<.1 ) Therefore h~ k q = k T y y= q ~ k T h = q T Nu = h k ~ = Re Pr For ~, Nu ~ Re Pr For >, Nu ~Re 1 (Pr) 1 3, ~ Pr 1 3 for high Pr. As a summary, for laminar boundary layer with Re > 1 ~ Re Pr, Nu ~ Re Pr Pr 1, Nu ~ Re Pr Pr, Nu ~ Re Pr 1/3 (neglect iscous dissipation) Now let s consider iscous dissipation: = [( u ) + ( y ) + ( w z ) ] + ( u y + ) + ( w y + z ) + ( w + u z ) 3 ( u + y + w z ) Since -D, incompressible, constant properties, steady flow, no body force, no U = [( u ) + ( y ) ] + ( u y + ) ~ U, δ U δ, U δ (dominant), U, δ U Since ~U / Therefore for a boundary layer with iscous dissipation 3

4 Continuity equation: u + y = Momentum equation: u u + u = ν u y y Energy equation: u T + T y = α T y + ν C p ( u y ) Our results from before are unchanged for continuity and momentum. We consider three scenarios for energy. Case one cannot happen. If is that big and dissipation matters, we can t hae T at as kinetic energy is dissipated into heat. Case two: ~ = δ U T, δ U T ~ α T δ δ, ν U C p δ 1~ k 1 ρc p U δ, ν U C p δ U T 1~ δ [ μ ρu k C p μ, U C p T ν U ] Recall Pr = C pμ, Re k = U ν And define Ec = U (Eckert number) C p T From preious analysis δ ~Re 1~ 1 Pr, Ec Adection ~ Diffusion, Dissipation For Pr~1, if Ec 1, adection~diffusion and we neglect dissipation; if Ec~1, adection~diffusion~dissipation; if Ec 1, not possible for ~. Case three: U T, U T ~ α T δ, ν U T C p δ 1~ k 1 ρc p U δ, ν U T C p δ 1~ δ [ 1 Re Pr δ, Ec ] T Re U T 4

5 As before ~Re 1~ 1 Pr, Ec For Pr~1 or Pr 1, adection~dissipation. Ec~1 u T = ν C p ( u y ) For Pr 1 might get diffusion. Friction and heat transfer We hae the model equations; they tell us about friction and heat transfer τ = μ ( u y ) y= q = h(t s T ) = k ( T y ) y= Only the gradient at the wall matters. τ = 1 L L τ Note (u ) + (u) y (ut) + (T) T u = u + T + T y y So we can write (assume no dissipation) L h = 1 L h u u u u u u u = u + u + u + = u + + = u + y y y y T T T T T + = u + + = u + y y y Continuity equation: u + y = Momentum equation: (u ) + (u) = ν u y y Energy equation: (ut) + (T) = α T y y Integrate continuity equation, use Leibnitz, go to δ: Integrate momentum equation: Integrate energy equation: d ( u dy) d( udy)/ + = d ( utdy) = d ( udy ) + u u = ν[( u y ) ( u y= y ) ] y= d ( u dy) + u = ν[ ( u y ) ] y= + T T = α[( T y ) ( T y= y ) ] y= 5

6 d ( utdy) + T = α[ ( T y ) ] y= Substitute from continuity equation into the other two equations and rearrange. Alternatiely, d ( d ( u(u u)dy) u(t T)dy) τ ρ = d ( = ν ( u y ) y= = α ( T y ) y= u(u u)dy) q = d ( u(t T )dy) ρc p To use these equatons Assume a elocity profile; Obtain 1 st order ordinary differential equation for δ(); Sole for δ() and use profile to get τ. There is no analytical solution aailable!!!! Assume u U = f ( y δ ) = f(ƞ) where ƞ = y δ Boundary conditions: f(ƞ) = a + bƞ + cƞ + dƞ 3 u(, ) = a = u(, δ) = U b + c + d = 1 ( u y ) = b + c + 3d = y=δ ( u y ) = c = (at y=, u u + u = ν u = ) y= y y Let u U = 3 (y δ ) 1 (y δ )3 Soling O.D.E. of δ(), we get δ() = 4.64 ( ν U ).5 δ = 4.64 Re τ s = μ ( u y ) =.33μU.5 Re y= C f = τ s ρu / C f =.646 Re =.33ρU Re 6

7 Assume θ = T T s = e + fƞ + gƞ + hƞ 3 T T s where ƞ = y/ Apply boundary conditions θ = 3 y 1 ( y 3 ) Energy in integral form: U d ( u U (1 θ)dy) = α ( θ y ) y= Substitute the profiles of u and θ, for a case where ~ or Pr~1 or Pr 1 Sole and we get = 4.53 Re 1 Nu = h = q θ = = 3 =.331Re k (T s T )k y y= Pr 1 3 (in accord with the results from scaling analysis) Pr 1 3 Similarity solutions to boundary layer equations (Through similarity (introduction of φ), we turn PDE to ODE so that we can sole.) Steady state, constant properties, -d, no body force in, neglect, no U, boundary layers, no P Define Continuity equation: u + y = Momentum equation: u u + u = ν u y y Energy equation: u T + T = α T y y u = φ φ, = y Continuity is satisfied, substitute this into momentum equation. φ φ y y φ φ y = ν 3 φ y 3 Out of the blue: Assume φ = H(ε)f(ƞ) ε = ƞ = y U ν, H = νuε 1 φ y = φ ε ε y + φ ƞ ƞ y = + νuε f U ν = Uf = u φ = φ ε ε + φ ƞ ƞ = Uν 1 (f ƞf ) = φ y = U U ν f 7

8 3 φ y 3 = U ν f φ y = 1 Uƞf Substitute into momentum and rearrange where f = df/dƞ f + 1 f f = (magically ) Boundary conditions: u(, ) = when y= ƞ = for > ƞ = f = Uf ƞ= = (, ) = = f = u(, ) = U Therefore f ƞ = 1 The nonlinear PDE modeling momentum is now ODE. Sole numerically. How do we determine what to assume? The boundary layer equations model an artificial thing. No natural length scale. We contried δ. In the boundary layers, y goes from to 1. δ Scale analysis showed δ ~ ν U Therefore y δ ~y U ν ƞ This is how we get our assumption! Group ariables together and turn PDE to ODE!!! Recall our discussion T = 1 α T t T(, ) = T i T(, t) = T i T(, t > ) = T s δ is the penetration depth. T = T s T i Scale: T δ ~ 1 α T t δ~ αt δ ~ αt Let ƞ = and T(, t) = f(ƞ) we hae f + 1 f ƞ = αt 8

9 Similarity steps: 1. Group ariables together;. Turn PDE to ODE. The thermal boundary layer u T + T y = α T y T(, ) = T s T(, y) = T T(, ) = T Take θ = T T s T T s u θ + θ y = ν/pr θ y θ(, ) =, θ(, y) = 1, θ(, ) = 1 Define θ o (ƞ) = θ(, y), ƞ = y U ν The transform will yield θ o + Pr fθ o =, θ o () =, θ o () = 1 Nu = θ o Re Sole numerically! The numerical solution is ery closely approimated with Nu Re =.564Pr 1/ Pr<.5 Nu Re =.336Pr 1/3.6<Pr<1 Nu Re =.339Pr 1/3 Pr>1 9

CHAPTER 4 BOUNDARY LAYER FLOW APPLICATION TO EXTERNAL FLOW

CHAPTER 4 BOUNDARY LAYER FLOW APPLICATION TO EXTERNAL FLOW CHAPTER 4 BOUNDARY LAYER FLOW APPLICATION TO EXTERNAL FLOW 4.1 Introduction Boundary layer concept (Prandtl 1904): Eliminate selected terms in the governing equations Two key questions (1) What are the

More information

Exercise 5: Exact Solutions to the Navier-Stokes Equations I

Exercise 5: Exact Solutions to the Navier-Stokes Equations I Fluid Mechanics, SG4, HT009 September 5, 009 Exercise 5: Exact Solutions to the Navier-Stokes Equations I Example : Plane Couette Flow Consider the flow of a viscous Newtonian fluid between two parallel

More information

Geostrophy & Thermal wind

Geostrophy & Thermal wind Lecture 10 Geostrophy & Thermal wind 10.1 f and β planes These are planes that are tangent to the earth (taken to be spherical) at a point of interest. The z ais is perpendicular to the plane (anti-parallel

More information

6. Laminar and turbulent boundary layers

6. Laminar and turbulent boundary layers 6. Laminar and turbulent boundary layers John Richard Thome 8 avril 2008 John Richard Thome (LTCM - SGM - EPFL) Heat transfer - Convection 8 avril 2008 1 / 34 6.1 Some introductory ideas Figure 6.1 A boundary

More information

PHY121 Physics for the Life Sciences I

PHY121 Physics for the Life Sciences I PHY Physics for the Life Sciences I Lecture 0. Fluid flow: kinematics describing the motion. Fluid flow: dynamics causes and effects, Bernoulli s Equation 3. Viscosity and Poiseuille s Law for narrow tubes

More information

Chapter 6 Laminar External Flow

Chapter 6 Laminar External Flow Chapter 6 aminar Eternal Flow Contents 1 Thermal Boundary ayer 1 2 Scale analysis 2 2.1 Case 1: δ t > δ (Thermal B.. is larger than the velocity B..) 3 2.2 Case 2: δ t < δ (Thermal B.. is smaller than

More information

Fundamental Concepts of Convection : Flow and Thermal Considerations. Chapter Six and Appendix D Sections 6.1 through 6.8 and D.1 through D.

Fundamental Concepts of Convection : Flow and Thermal Considerations. Chapter Six and Appendix D Sections 6.1 through 6.8 and D.1 through D. Fundamental Concepts of Convection : Flow and Thermal Considerations Chapter Six and Appendix D Sections 6.1 through 6.8 and D.1 through D.3 6.1 Boundary Layers: Physical Features Velocity Boundary Layer

More information

Chapter 9 Flow over Immersed Bodies

Chapter 9 Flow over Immersed Bodies 57:00 Mechanics of Fluids and Transport Processes Chapter 9 Professor Fred Stern Fall 009 1 Chapter 9 Flow over Immersed Bodies Fluid flows are broadly categorized: 1. Internal flows such as ducts/pipes,

More information

Conservation of Mass. Computational Fluid Dynamics. The Equations Governing Fluid Motion

Conservation of Mass. Computational Fluid Dynamics. The Equations Governing Fluid Motion http://www.nd.edu/~gtryggva/cfd-course/ http://www.nd.edu/~gtryggva/cfd-course/ Computational Fluid Dynamics Lecture 4 January 30, 2017 The Equations Governing Fluid Motion Grétar Tryggvason Outline Derivation

More information

Computer Fluid Dynamics E181107

Computer Fluid Dynamics E181107 Computer Fluid Dynamics E181107 2181106 Transport equations, Navier Stokes equations Remark: foils with black background could be skipped, they are aimed to the more advanced courses Rudolf Žitný, Ústav

More information

Summary of Dimensionless Numbers of Fluid Mechanics and Heat Transfer

Summary of Dimensionless Numbers of Fluid Mechanics and Heat Transfer 1. Nusselt number Summary of Dimensionless Numbers of Fluid Mechanics and Heat Transfer Average Nusselt number: convective heat transfer Nu L = conductive heat transfer = hl where L is the characteristic

More information

Transport processes. 7. Semester Chemical Engineering Civil Engineering

Transport processes. 7. Semester Chemical Engineering Civil Engineering Transport processes 7. Semester Chemical Engineering Civil Engineering 1. Elementary Fluid Dynamics 2. Fluid Kinematics 3. Finite Control Volume Analysis 4. Differential Analysis of Fluid Flow 5. Viscous

More information

ENGR Heat Transfer II

ENGR Heat Transfer II ENGR 7901 - Heat Transfer II Convective Heat Transfer 1 Introduction In this portion of the course we will examine convection heat transfer principles. We are now interested in how to predict the value

More information

BOUNDARY LAYER FLOWS HINCHEY

BOUNDARY LAYER FLOWS HINCHEY BOUNDARY LAYER FLOWS HINCHEY BOUNDARY LAYER PHENOMENA When a body moves through a viscous fluid, the fluid at its surface moves with it. It does not slip over the surface. When a body moves at high speed,

More information

External Flows. Dye streak. turbulent. laminar transition

External Flows. Dye streak. turbulent. laminar transition Eternal Flos An internal flo is surrounded by solid boundaries that can restrict the development of its boundary layer, for eample, a pipe flo. An eternal flo, on the other hand, are flos over bodies immersed

More information

7 The Navier-Stokes Equations

7 The Navier-Stokes Equations 18.354/12.27 Spring 214 7 The Navier-Stokes Equations In the previous section, we have seen how one can deduce the general structure of hydrodynamic equations from purely macroscopic considerations and

More information

7.6 Example von Kármán s Laminar Boundary Layer Problem

7.6 Example von Kármán s Laminar Boundary Layer Problem CEE 3310 External Flows (Boundary Layers & Drag, Nov. 11, 2016 157 7.5 Review Non-Circular Pipes Laminar: f = 64/Re DH ± 40% Turbulent: f(re DH, ɛ/d H ) Moody chart for f ± 15% Bernoulli-Based Flow Metering

More information

6.2 Governing Equations for Natural Convection

6.2 Governing Equations for Natural Convection 6. Governing Equations for Natural Convection 6..1 Generalized Governing Equations The governing equations for natural convection are special cases of the generalized governing equations that were discussed

More information

Chapter 5 Principles of Convection heat transfer (Text: J. P. Holman, Heat Transfer, 8 th ed., McGraw Hill, NY)

Chapter 5 Principles of Convection heat transfer (Text: J. P. Holman, Heat Transfer, 8 th ed., McGraw Hill, NY) hapter 5 Principles of onvection heat transfer (Tet: J. P. Holman, Heat Transfer, 8 th ed., McGra Hill, NY) onsider a fluid flo over a flat plate ith different temperatures (Fig 5-1) q A ha( T T ) since

More information

BOUNDARY LAYER ANALYSIS WITH NAVIER-STOKES EQUATION IN 2D CHANNEL FLOW

BOUNDARY LAYER ANALYSIS WITH NAVIER-STOKES EQUATION IN 2D CHANNEL FLOW Proceedings of,, BOUNDARY LAYER ANALYSIS WITH NAVIER-STOKES EQUATION IN 2D CHANNEL FLOW Yunho Jang Department of Mechanical and Industrial Engineering University of Massachusetts Amherst, MA 01002 Email:

More information

Governing Equations for Turbulent Flow

Governing Equations for Turbulent Flow Governing Equations for Turbulent Flow (i) Boundary Layer on a Flat Plate ρu x Re x = = Reynolds Number µ Re Re x =5(10) 5 Re x =10 6 x =0 u/ U = 0.99 層流區域 過渡區域 紊流區域 Thickness of boundary layer The Origin

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master Degree in Mechanical Engineering Numerical Heat and Mass Transfer 19 Turbulent Flows Fausto Arpino f.arpino@unicas.it Introduction All the flows encountered in the engineering practice become unstable

More information

Chapter 9: Differential Analysis

Chapter 9: Differential Analysis 9-1 Introduction 9-2 Conservation of Mass 9-3 The Stream Function 9-4 Conservation of Linear Momentum 9-5 Navier Stokes Equation 9-6 Differential Analysis Problems Recall 9-1 Introduction (1) Chap 5: Control

More information

meters, we can re-arrange this expression to give

meters, we can re-arrange this expression to give Turbulence When the Reynolds number becomes sufficiently large, the non-linear term (u ) u in the momentum equation inevitably becomes comparable to other important terms and the flow becomes more complicated.

More information

5.8 Laminar Boundary Layers

5.8 Laminar Boundary Layers 2.2 Marine Hydrodynamics, Fall 218 ecture 19 Copyright c 218 MIT - Department of Mechanical Engineering, All rights reserved. 2.2 - Marine Hydrodynamics ecture 19 5.8 aminar Boundary ayers δ y U potential

More information

Candidates must show on each answer book the type of calculator used. Log Tables, Statistical Tables and Graph Paper are available on request.

Candidates must show on each answer book the type of calculator used. Log Tables, Statistical Tables and Graph Paper are available on request. UNIVERSITY OF EAST ANGLIA School of Mathematics Spring Semester Examination 2004 FLUID DYNAMICS Time allowed: 3 hours Attempt Question 1 and FOUR other questions. Candidates must show on each answer book

More information

Flow and Natural Convection Heat Transfer in a Power Law Fluid Past a Vertical Plate with Heat Generation

Flow and Natural Convection Heat Transfer in a Power Law Fluid Past a Vertical Plate with Heat Generation ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.7(2009) No.1,pp.50-56 Flow and Natural Convection Heat Transfer in a Power Law Fluid Past a Vertical Plate with

More information

Fluid Dynamics Exercises and questions for the course

Fluid Dynamics Exercises and questions for the course Fluid Dynamics Exercises and questions for the course January 15, 2014 A two dimensional flow field characterised by the following velocity components in polar coordinates is called a free vortex: u r

More information

Unit operations of chemical engineering

Unit operations of chemical engineering 1 Unit operations of chemical engineering Fourth year Chemical Engineering Department College of Engineering AL-Qadesyia University Lecturer: 2 3 Syllabus 1) Boundary layer theory 2) Transfer of heat,

More information

Chapter 9: Differential Analysis of Fluid Flow

Chapter 9: Differential Analysis of Fluid Flow of Fluid Flow Objectives 1. Understand how the differential equations of mass and momentum conservation are derived. 2. Calculate the stream function and pressure field, and plot streamlines for a known

More information

Momentum Equation-Derivation-1 Consider the 2D continuity equation and integrate over the height of the boundary layer

Momentum Equation-Derivation-1 Consider the 2D continuity equation and integrate over the height of the boundary layer Module 2 : Convection Lecture 25 : Integral Boundary Layer Equations Objectives In this class: Integral equations for the momentum and thermal boundary layers are obtained Solution of these equations for

More information

Getting started: CFD notation

Getting started: CFD notation PDE of p-th order Getting started: CFD notation f ( u,x, t, u x 1,..., u x n, u, 2 u x 1 x 2,..., p u p ) = 0 scalar unknowns u = u(x, t), x R n, t R, n = 1,2,3 vector unknowns v = v(x, t), v R m, m =

More information

MHD Flow and Heat Transfer over an. Exponentially Stretching Sheet with Viscous. Dissipation and Radiation Effects

MHD Flow and Heat Transfer over an. Exponentially Stretching Sheet with Viscous. Dissipation and Radiation Effects Applied Mathematical Sciences, Vol. 7, 3, no. 4, 67-8 MHD Flow and Heat Transfer over an Exponentially Stretching Sheet with Viscous Dissipation and Radiation Effects R. N. Jat and Gopi Chand Department

More information

Math 575-Lecture Viscous Newtonian fluid and the Navier-Stokes equations

Math 575-Lecture Viscous Newtonian fluid and the Navier-Stokes equations Math 575-Lecture 13 In 1845, tokes extended Newton s original idea to find a constitutive law which relates the Cauchy stress tensor to the velocity gradient, and then derived a system of equations. The

More information

Heat and Mass Transfer

Heat and Mass Transfer 1 Comments on six papers published by S.P. Anjali Devi and R. Kandasamy in Heat and Mass Transfer, ZAMM, Mechanics Research Communications, International Communications in Heat and Mass Transfer, Communications

More information

THE ANALYSIS OF THE CONVECTIVE-CONDUCTIVE HEAT TRANSFER IN THE BUILDING CONSTRUCTIONS. Zbynek Svoboda

THE ANALYSIS OF THE CONVECTIVE-CONDUCTIVE HEAT TRANSFER IN THE BUILDING CONSTRUCTIONS. Zbynek Svoboda THE NLSIS OF THE CONECTIE-CONDUCTIE HET TRNSFER IN THE BUILDING CONSTRUCTIONS Zbynek Soboda Czech Technical Uniersity in Prague Faculty of Ciil Engineering 166 29 Prague 6 - Czech Republic BSTRCT The numerical

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master Degree in Mechanical Engineering Numerical Heat and Mass Transfer 15-Convective Heat Transfer Fausto Arpino f.arpino@unicas.it Introduction In conduction problems the convection entered the analysis

More information

n v molecules will pass per unit time through the area from left to

n v molecules will pass per unit time through the area from left to 3 iscosity and Heat Conduction in Gas Dynamics Equations of One-Dimensional Gas Flow The dissipative processes - viscosity (internal friction) and heat conduction - are connected with existence of molecular

More information

CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION

CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION 7.1 THE NAVIER-STOKES EQUATIONS Under the assumption of a Newtonian stress-rate-of-strain constitutive equation and a linear, thermally conductive medium,

More information

Chapter 8 Laminar Flows with Dependence on One Dimension

Chapter 8 Laminar Flows with Dependence on One Dimension Chapter 8 Laminar Flows with Dependence on One Dimension Couette low Planar Couette low Cylindrical Couette low Planer rotational Couette low Hele-Shaw low Poiseuille low Friction actor and Reynolds number

More information

Chapter 3 Non-Newtonian fluid

Chapter 3 Non-Newtonian fluid Chapter 3 Non-Newtonian fluid 3-1. Introduction: The study of the deformation of flowing fluids is called rheology; the rheological behavior of various fluids is sketchen Figure 3-1. Newtonian fluids,

More information

Fluid Mechanics II Viscosity and shear stresses

Fluid Mechanics II Viscosity and shear stresses Fluid Mechanics II Viscosity and shear stresses Shear stresses in a Newtonian fluid A fluid at rest can not resist shearing forces. Under the action of such forces it deforms continuously, however small

More information

Please remember all the unit that you use in your calculation. There are no marks for correct answer without unit.

Please remember all the unit that you use in your calculation. There are no marks for correct answer without unit. CHAPTER 1 : PROPERTIES OF FLUIDS What is fluid? A fluid is defined as a substance that deforms continuously when acted on by a shearing stress at any magnitude. In a fluid at rest, normal stress is called

More information

FLUID MECHANICS. Lecture 7 Exact solutions

FLUID MECHANICS. Lecture 7 Exact solutions FLID MECHANICS Lecture 7 Eact solutions 1 Scope o Lecture To present solutions or a ew representative laminar boundary layers where the boundary conditions enable eact analytical solutions to be obtained.

More information

INDIAN INSTITUTE OF TECHNOOGY, KHARAGPUR Date: -- AN No. of Students: 5 Sub. No.: ME64/ME64 Time: Hours Full Marks: 6 Mid Autumn Semester Examination Sub. Name: Convective Heat and Mass Transfer Instructions:

More information

Laminar Flow. Chapter ZERO PRESSURE GRADIENT

Laminar Flow. Chapter ZERO PRESSURE GRADIENT Chapter 2 Laminar Flow 2.1 ZERO PRESSRE GRADIENT Problem 2.1.1 Consider a uniform flow of velocity over a flat plate of length L of a fluid of kinematic viscosity ν. Assume that the fluid is incompressible

More information

Laminar and Turbulent developing flow with/without heat transfer over a flat plate

Laminar and Turbulent developing flow with/without heat transfer over a flat plate Laminar and Turbulent developing flow with/without heat transfer over a flat plate Introduction The purpose of the project was to use the FLOLAB software to model the laminar and turbulent flow over a

More information

Introduction to Partial Differential Equations

Introduction to Partial Differential Equations Introduction to Partial Differential Equations Philippe B. Laval KSU Current Semester Philippe B. Laval (KSU) 1D Heat Equation: Derivation Current Semester 1 / 19 Introduction The derivation of the heat

More information

AA210A Fundamentals of Compressible Flow. Chapter 1 - Introduction to fluid flow

AA210A Fundamentals of Compressible Flow. Chapter 1 - Introduction to fluid flow AA210A Fundamentals of Compressible Flow Chapter 1 - Introduction to fluid flow 1 1.2 Conservation of mass Mass flux in the x-direction [ ρu ] = M L 3 L T = M L 2 T Momentum per unit volume Mass per unit

More information

FLUID FLOW AND HEAT TRANSFER IN A COLLAPSIBLE TUBE

FLUID FLOW AND HEAT TRANSFER IN A COLLAPSIBLE TUBE FLUID DYNAMICS FLUID FLOW AND HEAT TRANSFER IN A COLLAPSIBLE TUBE S. A. ODEJIDE 1, Y. A. S. AREGBESOLA 1, O. D. MAKINDE 1 Obafemi Awolowo Uniersity, Department of Mathematics, Faculty of Science, Ile-Ife,

More information

Finite difference solution of the mixed convection flow of MHD micropolar fluid past a moving surface with radiation effect

Finite difference solution of the mixed convection flow of MHD micropolar fluid past a moving surface with radiation effect Finite difference solution of the mixed convection flo of MHD micropolar fluid past a moving surface ith radiation effect LOKENDRA KUMAR, G. SWAPNA, BANI SINGH Department of Mathematics Jaypee Institute

More information

THE EFFECT OF LONGITUDINAL VIBRATION ON LAMINAR FORCED CONVECTION HEAT TRANSFER IN A HORIZONTAL TUBE

THE EFFECT OF LONGITUDINAL VIBRATION ON LAMINAR FORCED CONVECTION HEAT TRANSFER IN A HORIZONTAL TUBE mber 3 Volume 3 September 26 Manal H. AL-Hafidh Ali Mohsen Rishem Ass. Prof. /Uniersity of Baghdad Mechanical Engineer ABSTRACT The effect of longitudinal ibration on the laminar forced conection heat

More information

9.3 Laminar Flat-Plate Boundary Layer: Exact Solution w-19

9.3 Laminar Flat-Plate Boundary Layer: Exact Solution w-19 9.3 Laminar Flat-Plate Boundary Layer: Exact Solution w-19 Laminar Flat-Plate Boundary Layer: Exact Solution The solution for the laminar boundary layer on a horizontal flat late was obtained by Prtl s

More information

FLUID MECHANICS EQUATIONS

FLUID MECHANICS EQUATIONS FLUID MECHANIC EQUATION M. Ragheb 11/2/2017 INTRODUCTION The early part of the 18 th -century saw the burgeoning of the field of theoretical fluid mechanics pioneered by Leonhard Euler and the father and

More information

Effects of Viscous Dissipation on Unsteady Free Convection in a Fluid past a Vertical Plate Immersed in a Porous Medium

Effects of Viscous Dissipation on Unsteady Free Convection in a Fluid past a Vertical Plate Immersed in a Porous Medium Transport in Porous Media (2006) 64: 1 14 Springer 2006 DOI 10.1007/s11242-005-1126-6 Effects of Viscous Dissipation on Unsteady Free Convection in a Fluid past a Vertical Plate Immersed in a Porous Medium

More information

FORMULA SHEET. General formulas:

FORMULA SHEET. General formulas: FORMULA SHEET You may use this formula sheet during the Advanced Transport Phenomena course and it should contain all formulas you need during this course. Note that the weeks are numbered from 1.1 to

More information

LECTURE 1 THE CONTENTS OF THIS LECTURE ARE AS FOLLOWS:

LECTURE 1 THE CONTENTS OF THIS LECTURE ARE AS FOLLOWS: LECTURE 1 THE CONTENTS OF THIS LECTURE ARE AS FOLLOWS: 1.0 INTRODUCTION TO FLUID AND BASIC EQUATIONS 2.0 REYNOLDS NUMBER AND CRITICAL VELOCITY 3.0 APPROACH TOWARDS REYNOLDS NUMBER REFERENCES Page 1 of

More information

University of Hail Faculty of Engineering DEPARTMENT OF MECHANICAL ENGINEERING. ME Fluid Mechanics Lecture notes. Chapter 1

University of Hail Faculty of Engineering DEPARTMENT OF MECHANICAL ENGINEERING. ME Fluid Mechanics Lecture notes. Chapter 1 University of Hail Faculty of Engineering DEPARTMENT OF MECHANICAL ENGINEERING ME 311 - Fluid Mechanics Lecture notes Chapter 1 Introduction and fluid properties Prepared by : Dr. N. Ait Messaoudene Based

More information

Basic Fluid Mechanics

Basic Fluid Mechanics Basic Fluid Mechanics Chapter 6A: Internal Incompressible Viscous Flow 4/16/2018 C6A: Internal Incompressible Viscous Flow 1 6.1 Introduction For the present chapter we will limit our study to incompressible

More information

CONVECTIVE HEAT TRANSFER

CONVECTIVE HEAT TRANSFER CONVECTIVE HEAT TRANSFER Mohammad Goharkhah Department of Mechanical Engineering, Sahand Unversity of Technology, Tabriz, Iran CHAPTER 4 HEAT TRANSFER IN CHANNEL FLOW BASIC CONCEPTS BASIC CONCEPTS Laminar

More information

Chapter 7: Natural Convection

Chapter 7: Natural Convection 7-1 Introduction 7- The Grashof Number 7-3 Natural Convection over Surfaces 7-4 Natural Convection Inside Enclosures 7-5 Similarity Solution 7-6 Integral Method 7-7 Combined Natural and Forced Convection

More information

2 Law of conservation of energy

2 Law of conservation of energy 1 Newtonian viscous Fluid 1 Newtonian fluid For a Newtonian we already have shown that σ ij = pδ ij + λd k,k δ ij + 2µD ij where λ and µ are called viscosity coefficient. For a fluid under rigid body motion

More information

1 Introduction to Governing Equations 2 1a Methodology... 2

1 Introduction to Governing Equations 2 1a Methodology... 2 Contents 1 Introduction to Governing Equations 2 1a Methodology............................ 2 2 Equation of State 2 2a Mean and Turbulent Parts...................... 3 2b Reynolds Averaging.........................

More information

Effect of Thermal Radiation on the Casson Thin Liquid Film Flow over a Stretching Sheet

Effect of Thermal Radiation on the Casson Thin Liquid Film Flow over a Stretching Sheet Global Journal of Pure and Applied Mathematics. ISSN 0973-768 Volume 3, Number 6 (207), pp. 575-592 Research India Publications http://www.ripublication.com Effect of Thermal Radiation on the Casson Thin

More information

0 a 3 a 2 a 3 0 a 1 a 2 a 1 0

0 a 3 a 2 a 3 0 a 1 a 2 a 1 0 Chapter Flow kinematics Vector and tensor formulae This introductory section presents a brief account of different definitions of ector and tensor analysis that will be used in the following chapters.

More information

(Refer Slide Time: 2:14)

(Refer Slide Time: 2:14) Fluid Dynamics And Turbo Machines. Professor Dr Shamit Bakshi. Department Of Mechanical Engineering. Indian Institute Of Technology Madras. Part A. Module-1. Lecture-3. Introduction To Fluid Flow. (Refer

More information

ds nˆ v x v t v y Microscopic Balances 10/3/2011

ds nˆ v x v t v y Microscopic Balances 10/3/2011 Microscopic Balances We hae been doing microscopic shell hllbl balances that t are specific to whateer problem we are soling. We seek equations for microscopic mass, momentum (and energy) balances that

More information

Consider a volume Ω enclosing a mass M and bounded by a surface δω. d dt. q n ds. The Work done by the body on the surroundings is

Consider a volume Ω enclosing a mass M and bounded by a surface δω. d dt. q n ds. The Work done by the body on the surroundings is The Energy Balance Consider a volume enclosing a mass M and bounded by a surface δ. δ At a point x, the density is ρ, the local velocity is v, and the local Energy density is U. U v The rate of change

More information

Eddy viscosity. AdOc 4060/5060 Spring 2013 Chris Jenkins. Turbulence (video 1hr):

Eddy viscosity. AdOc 4060/5060 Spring 2013 Chris Jenkins. Turbulence (video 1hr): AdOc 4060/5060 Spring 2013 Chris Jenkins Eddy viscosity Turbulence (video 1hr): http://cosee.umaine.edu/programs/webinars/turbulence/?cfid=8452711&cftoken=36780601 Part B Surface wind stress Wind stress

More information

Shell Balances in Fluid Mechanics

Shell Balances in Fluid Mechanics Shell Balances in Fluid Mechanics R. Shankar Subramanian Department of Chemical and Biomolecular Engineering Clarkson University When fluid flow occurs in a single direction everywhere in a system, shell

More information

Microfluidics 1 Basics, Laminar flow, shear and flow profiles

Microfluidics 1 Basics, Laminar flow, shear and flow profiles MT-0.6081 Microfluidics and BioMEMS Microfluidics 1 Basics, Laminar flow, shear and flow profiles 11.1.2017 Ville Jokinen Outline of the next 3 weeks: Today: Microfluidics 1: Laminar flow, flow profiles,

More information

Supplementary Information Microfluidic quadrupole and floating concentration gradient Mohammad A. Qasaimeh, Thomas Gervais, and David Juncker

Supplementary Information Microfluidic quadrupole and floating concentration gradient Mohammad A. Qasaimeh, Thomas Gervais, and David Juncker Mohammad A. Qasaimeh, Thomas Gerais, and Daid Juncker Supplementary Figure S1 The microfluidic quadrupole (MQ is modeled as two source (Q inj and two drain (Q asp points arranged in the classical quardupolar

More information

MHD Non-Newtonian Power Law Fluid Flow and Heat Transfer Past a Non-Linear Stretching Surface with Thermal Radiation and Viscous Dissipation

MHD Non-Newtonian Power Law Fluid Flow and Heat Transfer Past a Non-Linear Stretching Surface with Thermal Radiation and Viscous Dissipation Journal of Applied Science and Engineering, Vol. 17, No. 3, pp. 267274 (2014) DOI: 10.6180/jase.2014.17.3.07 MHD Non-Newtonian Power Law Fluid Flow and Heat Transfer Past a Non-Linear Stretching Surface

More information

Computational Astrophysics

Computational Astrophysics Computational Astrophysics Lecture 1: Introduction to numerical methods Lecture 2:The SPH formulation Lecture 3: Construction of SPH smoothing functions Lecture 4: SPH for general dynamic flow Lecture

More information

ME 262 BASIC FLUID MECHANICS Assistant Professor Neslihan Semerci Lecture 4. (Buoyancy and Viscosity of water)

ME 262 BASIC FLUID MECHANICS Assistant Professor Neslihan Semerci Lecture 4. (Buoyancy and Viscosity of water) ME 262 BASIC FLUID MECHANICS Assistant Professor Neslihan Semerci Lecture 4 (Buoyancy and Viscosity of water) 16. BUOYANCY Whenever an object is floating in a fluid or when it is completely submerged in

More information

THERE are several types of non-newtonian fluid models

THERE are several types of non-newtonian fluid models INTERNATIONAL JOURNAL OF MATHEMATICS AND SCIENTIFIC COMPUTING (ISSN: 221-5), VOL. 4, NO. 2, 214 74 Invariance Analysis of Williamson Model Using the Method of Satisfaction of Asymptotic Boundary Conditions

More information

10. Buoyancy-driven flow

10. Buoyancy-driven flow 10. Buoyancy-driven flow For such flows to occur, need: Gravity field Variation of density (note: not the same as variable density!) Simplest case: Viscous flow, incompressible fluid, density-variation

More information

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t)

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t) IV. DIFFERENTIAL RELATIONS FOR A FLUID PARTICLE This chapter presents the development and application of the basic differential equations of fluid motion. Simplifications in the general equations and common

More information

Dimensionless Numbers

Dimensionless Numbers 1 06.10.2017, 09:49 Dimensionless Numbers A. Salih Dept. of Aerospace Engineering IIST, Thiruvananthapuram The nondimensionalization of the governing equations of fluid flow is important for both theoretical

More information

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 6

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 6 Lectures on Nuclear Power Safety Lecture No 6 Title: Introduction to Thermal-Hydraulic Analysis of Nuclear Reactor Cores Department of Energy Technology KTH Spring 2005 Slide No 1 Outline of the Lecture

More information

International Journal of Pure and Applied Mathematics

International Journal of Pure and Applied Mathematics Volume 117 No. 11 2017, 317-325 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu MHD Flow of a Nanofluid and Heat transfer over an Exponentially Shrinking

More information

Effect of Variable Viscosity on Hydro Magnetic Flow and Heat Transfer Over a Stretching Surface with Variable Temperature

Effect of Variable Viscosity on Hydro Magnetic Flow and Heat Transfer Over a Stretching Surface with Variable Temperature 37 Effect of Variable Viscosity on Hydro Magnetic Flow and Heat Transfer Over a Stretching Surface with Variable Temperature M. Y. Akl Department of Basic Science, Faculty of Engineering (Shopra Branch),

More information

Steven Burian Civil & Environmental Engineering September 25, 2013

Steven Burian Civil & Environmental Engineering September 25, 2013 Fundamentals of Engineering (FE) Exam Mechanics Steven Burian Civil & Environmental Engineering September 25, 2013 s and FE Morning ( Mechanics) A. Flow measurement 7% of FE Morning B. properties Session

More information

Chapter 2: Fluid Dynamics Review

Chapter 2: Fluid Dynamics Review 7 Chapter 2: Fluid Dynamics Review This chapter serves as a short review of basic fluid mechanics. We derive the relevant transport equations (or conservation equations), state Newton s viscosity law leading

More information

SELECTION, SIZING, AND OPERATION OF CONTROL VALVES FOR GASES AND LIQUIDS Class # 6110

SELECTION, SIZING, AND OPERATION OF CONTROL VALVES FOR GASES AND LIQUIDS Class # 6110 SELECTION, SIZIN, AND OERATION OF CONTROL VALVES FOR ASES AND LIUIDS Class # 6110 Ross Turbiille Sales Engineer Fisher Controls International Inc. 301 S. First Aenue Marshalltown, Iowa USA Introduction

More information

7. Basics of Turbulent Flow Figure 1.

7. Basics of Turbulent Flow Figure 1. 1 7. Basics of Turbulent Flow Whether a flow is laminar or turbulent depends of the relative importance of fluid friction (viscosity) and flow inertia. The ratio of inertial to viscous forces is the Reynolds

More information

*Corresponding Author: Surajit Dutta, Department of Mathematics, C N B College, Bokakhat, Golaghat, Assam, India

*Corresponding Author: Surajit Dutta, Department of Mathematics, C N B College, Bokakhat, Golaghat, Assam, India International Journal of Scientific and Innovative Mathematical Research (IJSIMR) Volume 6, Issue, 8, PP -6 ISSN 347-37X (Print) & ISSN 347-34 (Online) DOI: http://dx.doi.org/.43/347-34.6 www.arcjournals.org

More information

SLIP MODEL PERFORMANCE FOR MICRO-SCALE GAS FLOWS

SLIP MODEL PERFORMANCE FOR MICRO-SCALE GAS FLOWS 3th AIAA Thermophysics Conference 3- June 3, Orlando, Florida AIAA 3-5 SLIP MODEL PERFORMANCE FOR MICRO-SCALE GAS FLOWS Matthew J. McNenly* Department of Aerospace Engineering Uniersity of Michigan, Ann

More information

Fundamentals of Fluid Dynamics: Elementary Viscous Flow

Fundamentals of Fluid Dynamics: Elementary Viscous Flow Fundamentals of Fluid Dynamics: Elementary Viscous Flow Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI bluebox.ippt.pan.pl/ tzielins/ Institute of Fundamental Technological Research

More information

2, where dp is the constant, R is the radius of

2, where dp is the constant, R is the radius of Dynamics of Viscous Flows (Lectures 8 to ) Q. Choose the correct answer (i) The average velocity of a one-dimensional incompressible fully developed viscous flow between two fixed parallel plates is m/s.

More information

Dynamics ( 동역학 ) Ch.2 Motion of Translating Bodies (2.1 & 2.2)

Dynamics ( 동역학 ) Ch.2 Motion of Translating Bodies (2.1 & 2.2) Dynamics ( 동역학 ) Ch. Motion of Translating Bodies (. &.) Motion of Translating Bodies This chapter is usually referred to as Kinematics of Particles. Particles: In dynamics, a particle is a body without

More information

Les Houches School of Foam: Rheology of Complex Fluids

Les Houches School of Foam: Rheology of Complex Fluids Les Houches School of Foam: Rheology of Complex Fluids Andrew Belmonte The W. G. Pritchard Laboratories Department of Mathematics, Penn State University 1 Fluid Dynamics (tossing a coin) Les Houches Winter

More information

DAY 19: Boundary Layer

DAY 19: Boundary Layer DAY 19: Boundary Layer flat plate : let us neglect the shape of the leading edge for now flat plate boundary layer: in blue we highlight the region of the flow where velocity is influenced by the presence

More information

Lecture 30 Review of Fluid Flow and Heat Transfer

Lecture 30 Review of Fluid Flow and Heat Transfer Objectives In this lecture you will learn the following We shall summarise the principles used in fluid mechanics and heat transfer. It is assumed that the student has already been exposed to courses in

More information

Microscopic Momentum Balance Equation (Navier-Stokes)

Microscopic Momentum Balance Equation (Navier-Stokes) CM3110 Transport I Part I: Fluid Mechanics Microscopic Momentum Balance Equation (Naier-Stokes) Professor Faith Morrison Department of Chemical Engineering Michigan Technological Uniersity 1 Microscopic

More information

We may have a general idea that a solid is hard and a fluid is soft. This is not satisfactory from

We may have a general idea that a solid is hard and a fluid is soft. This is not satisfactory from Chapter 1. Introduction 1.1 Some Characteristics of Fluids We may have a general idea that a solid is hard and a fluid is soft. This is not satisfactory from scientific or engineering point of view. In

More information

Convection. forced convection when the flow is caused by external means, such as by a fan, a pump, or atmospheric winds.

Convection. forced convection when the flow is caused by external means, such as by a fan, a pump, or atmospheric winds. Convection The convection heat transfer mode is comprised of two mechanisms. In addition to energy transfer due to random molecular motion (diffusion), energy is also transferred by the bulk, or macroscopic,

More information

M E 320 Professor John M. Cimbala Lecture 38

M E 320 Professor John M. Cimbala Lecture 38 M E 320 Professor John M. Cimbala Lecture 38 Today, we will: Discuss displacement thickness in a laminar boundary layer Discuss the turbulent boundary layer on a flat plate, and compare with laminar flow

More information

Purpose of the experiment

Purpose of the experiment Impulse and Momentum PES 116 Adanced Physics Lab I Purpose of the experiment Measure a cart s momentum change and compare to the impulse it receies. Compare aerage and peak forces in impulses. To put the

More information

α 2 )(k x ũ(t, η) + k z W (t, η)

α 2 )(k x ũ(t, η) + k z W (t, η) 1 3D Poiseuille Flow Over the next two lectures we will be going over the stabilization of the 3-D Poiseuille flow. For those of you who havent had fluids, that means we have a channel of fluid that is

More information