Closure Properties of Context-Free Languages. Foundations of Computer Science Theory

Size: px
Start display at page:

Download "Closure Properties of Context-Free Languages. Foundations of Computer Science Theory"

Transcription

1 Closure Properties of Context-Free Languages Foundations of Computer Science Theory

2 Closure Properties of CFLs CFLs are closed under: Union Concatenation Kleene closure Reversal CFLs are not closed under intersection, difference, or complement

3 Closure Under Union Let L and M be CFLs with grammars G and H, respectively Assume G and H have no variables in common Rename the variables if necessary Names of variables do not affect the language Let S 1 and S 2 be the start symbols of G and H Form a new grammar for L M by combining all the symbols and productions of G and H

4 Closure Under Union Then, add a new start symbol S Add productions S S 1 S 2 In the new grammar, all derivations start with S The first step replaces S with either S 1 or S 2 In the first case, the result must be a string in L(G) = L, and in the second case, the result must be a string in L(H) = M

5 Warning: Be Careful Using Union If L 1 and L 2 are context-free, then so is L 3 = L 1 L 2 But what if L 3 and L 1 are context-free? What can we say about L 2? L 2 may or may not be context-free For example, consider the following: a n b n c* = a n b n c* a n b n c n L 3 L 1 L 2

6 Closure Under Concatenation Let L and M be CFLs with grammars G and H, respectively Assume G and H have no variables in common Let S 1 and S 2 be the start symbols of G and H Form a new grammar for LM by starting with all symbols and productions of G and H Add a new start symbol S and production S S 1 S 2 Every derivation from S results in a string in L followed by one in M

7 Closure Under Star Let L have grammar G, with start symbol S 1 Form a new grammar for L* by introducing to G a new start symbol S and the productions S S 1 S ε A rightmost derivation from S generates a sequence of zero or more S 1 s, each of which generates some string in L

8 Closure of Under Reversal If L is a CFL with grammar G, form a grammar for L R by reversing the body of every production Example: Let G have S 0S1 01 The reversal of L(G) has grammar S 1S0 10

9 CFLs are Not Closed Under Intersection Unlike the regular languages, the class of CFLs is not closed under intersection For example, we know that L 1 = {0 n 1 n 2 n : n 1} is not context-free (use the pumping lemma) However, L 2 = {0 n 1 n 2 i : n 1, i 1} is context-free CFG: S AB, A 0A1 01, B 2B 2 So is L 3 = {0 i 1 n 2 n : n 1, i 1} But L 1 = L 2 L 3 is not context-free

10 CFLs are Not Closed Under Difference We can prove something more general: Any class of languages that is closed under difference is also closed under intersection Proof: L M = L (L M) Thus, if CFL s were closed under difference, they would also be closed under intersection, but they are not

11 CFLs are Not Closed Under Complement L 1 L 2 = ( L 1 L 2 ) Recall that the context-free languages are closed under union So if they were closed under complement, they would also be closed under intersection (which they are not)

12 CFLs are Not Closed Under Complement Recall A n B n C n = {a n b n c n : n 0}. Now consider L = (A n B n C n ), which is L 1 L 2, where: L 1 = {w {a, b, c}* : the letters are out of order} L 2 = {a i b j c k : i, j, k 0 and (i j or j k)} (in other words, unequal numbers of a s, b s, and c s) A simple DFA can recognize L 1. L 2 can be built similar to the one we created for accepting strings with an unequal number of a s and b s. Thus, (A n B n C n ) is context-free, whereas A n B n C n is not context-free (as we already proved).

13 Intersection With a Regular Language The intersection of two context-free languages may or may not be context-free Closure means the result is guaranteed to be context-free But the intersection of a CFL with a regular language is always context-free The proof involves running an NFA in parallel with a PDA, and noting that the combination is a PDA that accepts by final state

14 Difference With a Regular Language The difference (L C L R ) between a context-free language L C and a regular language L R is always context-free Proof: L C L R = L C L R If L R is regular then so is L R If L C is context-free then so is L C L R However, the difference (L R L C ) between a regular language L R and a context-free language L C may or may not be context-free

15 Difference With a Regular Language Example: Let L = {a n b n : n 0 where n 1776} Alternatively, L = {a n b n : n 0} {a 1776 b 1776 } We know that {a n b n : n 0} is not regular (but it is context-free) {a 1776 b 1776 } is regular (because it is finite) Therefore, L must also be context-free

16 Using Closures with Pumping L = {ww : w {a, b}*} L is not context-free, but using the pumping lemma for CFLs to prove that it is not can be tricky: suppose we choose w = (ab) k Then we could break up string w into uvxyz, by letting v = ab and y = ab, and this pumps fine w w ababab abababababab ababab

17 Using Closures with Pumping L = {ww : w {a, b}*} continued Suppose we choose w = a k ba k b This also pumps fine if v is a in the first group of a s, and y is a in the second group of a s w aaaaaa aaaaaaabaaaa aaaaaaaaab w

18 Using Closures with Pumping L = {ww : w {a, b}*} continued Consider L 2 = L a*b*a*b* = a n b m a n b m If L were context-free, then L 2 would also be context-free because context-free languages are closed under intersection with regular languages But L 2 is not context-free, which we have already proven using the pumping lemma for context-free languages Choose a k b k a k b k for pumping Therefore L cannot be context-free either

19 Using Closures with Pumping Let L = {w {a, b, c}* : # a (w) = # b (w) = # c (w) } If L were context-free, then L 2 = L a*b*c* would also be context-free But L 2 = A n B n C n If L were context-free, then L 2 would also be contextfree because it is the intersection of a context-free language with a regular language But L 2 is not context-free, as we have already proven using the pumping lemma for context-free languages Therefore L cannot be context-free either

2.1 Solution. E T F a. E E + T T + T F + T a + T a + F a + a

2.1 Solution. E T F a. E E + T T + T F + T a + T a + F a + a . Solution E T F a E E + T T + T F + T a + T a + F a + a E E + T E + T + T T + T + T F + T + T a + T + T a + F + T a + a + T a + a + F a + a + a E T F ( E) ( T ) ( F) (( E)) (( T )) (( F)) (( a)) . Solution

More information

Properties of Context-Free Languages. Closure Properties Decision Properties

Properties of Context-Free Languages. Closure Properties Decision Properties Properties of Context-Free Languages Closure Properties Decision Properties 1 Closure Properties of CFL s CFL s are closed under union, concatenation, and Kleene closure. Also, under reversal, homomorphisms

More information

Context-Free and Noncontext-Free Languages

Context-Free and Noncontext-Free Languages Examples: Context-Free and Noncontext-Free Languages a*b* is regular. A n B n = {a n b n : n 0} is context-free but not regular. A n B n C n = {a n b n c n : n 0} is not context-free The Regular and the

More information

Harvard CS 121 and CSCI E-207 Lecture 10: CFLs: PDAs, Closure Properties, and Non-CFLs

Harvard CS 121 and CSCI E-207 Lecture 10: CFLs: PDAs, Closure Properties, and Non-CFLs Harvard CS 121 and CSCI E-207 Lecture 10: CFLs: PDAs, Closure Properties, and Non-CFLs Harry Lewis October 8, 2013 Reading: Sipser, pp. 119-128. Pushdown Automata (review) Pushdown Automata = Finite automaton

More information

Computational Models - Lecture 4

Computational Models - Lecture 4 Computational Models - Lecture 4 Regular languages: The Myhill-Nerode Theorem Context-free Grammars Chomsky Normal Form Pumping Lemma for context free languages Non context-free languages: Examples Push

More information

CS5371 Theory of Computation. Lecture 9: Automata Theory VII (Pumping Lemma, Non-CFL)

CS5371 Theory of Computation. Lecture 9: Automata Theory VII (Pumping Lemma, Non-CFL) CS5371 Theory of Computation Lecture 9: Automata Theory VII (Pumping Lemma, Non-CFL) Objectives Introduce Pumping Lemma for CFL Apply Pumping Lemma to show that some languages are non-cfl Pumping Lemma

More information

Miscellaneous. Closure Properties Decision Properties

Miscellaneous. Closure Properties Decision Properties Miscellaneous Closure Properties Decision Properties 1 Closure Properties of CFL s CFL s are closed under union, concatenation, and Kleene closure. Also, under reversal, homomorphisms and inverse homomorphisms.

More information

CS 341 Homework 16 Languages that Are and Are Not Context-Free

CS 341 Homework 16 Languages that Are and Are Not Context-Free CS 341 Homework 16 Languages that Are and Are Not Context-Free 1. Show that the following languages are context-free. You can do this by writing a context free grammar or a PDA, or you can use the closure

More information

V Honors Theory of Computation

V Honors Theory of Computation V22.0453-001 Honors Theory of Computation Problem Set 3 Solutions Problem 1 Solution: The class of languages recognized by these machines is the exactly the class of regular languages, thus this TM variant

More information

Sri vidya college of engineering and technology

Sri vidya college of engineering and technology Unit I FINITE AUTOMATA 1. Define hypothesis. The formal proof can be using deductive proof and inductive proof. The deductive proof consists of sequence of statements given with logical reasoning in order

More information

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY 15-453 FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY REVIEW for MIDTERM 1 THURSDAY Feb 6 Midterm 1 will cover everything we have seen so far The PROBLEMS will be from Sipser, Chapters 1, 2, 3 It will be

More information

Pushdown automata. Twan van Laarhoven. Institute for Computing and Information Sciences Intelligent Systems Radboud University Nijmegen

Pushdown automata. Twan van Laarhoven. Institute for Computing and Information Sciences Intelligent Systems Radboud University Nijmegen Pushdown automata Twan van Laarhoven Institute for Computing and Information Sciences Intelligent Systems Version: fall 2014 T. van Laarhoven Version: fall 2014 Formal Languages, Grammars and Automata

More information

THEORY OF COMPUTATION (AUBER) EXAM CRIB SHEET

THEORY OF COMPUTATION (AUBER) EXAM CRIB SHEET THEORY OF COMPUTATION (AUBER) EXAM CRIB SHEET Regular Languages and FA A language is a set of strings over a finite alphabet Σ. All languages are finite or countably infinite. The set of all languages

More information

Context-Free Languages (Pre Lecture)

Context-Free Languages (Pre Lecture) Context-Free Languages (Pre Lecture) Dr. Neil T. Dantam CSCI-561, Colorado School of Mines Fall 2017 Dantam (Mines CSCI-561) Context-Free Languages (Pre Lecture) Fall 2017 1 / 34 Outline Pumping Lemma

More information

Theory of Computation (Classroom Practice Booklet Solutions)

Theory of Computation (Classroom Practice Booklet Solutions) Theory of Computation (Classroom Practice Booklet Solutions) 1. Finite Automata & Regular Sets 01. Ans: (a) & (c) Sol: (a) The reversal of a regular set is regular as the reversal of a regular expression

More information

MA/CSSE 474 Theory of Computation

MA/CSSE 474 Theory of Computation MA/CSSE 474 Theory of Computation Bottom-up parsing Pumping Theorem for CFLs Recap: Going One Way Lemma: Each context-free language is accepted by some PDA. Proof (by construction): The idea: Let the stack

More information

CS 301. Lecture 18 Decidable languages. Stephen Checkoway. April 2, 2018

CS 301. Lecture 18 Decidable languages. Stephen Checkoway. April 2, 2018 CS 301 Lecture 18 Decidable languages Stephen Checkoway April 2, 2018 1 / 26 Decidable language Recall, a language A is decidable if there is some TM M that 1 recognizes A (i.e., L(M) = A), and 2 halts

More information

Lecture 7 Properties of regular languages

Lecture 7 Properties of regular languages Lecture 7 Properties of regular languages COT 4420 Theory of Computation Section 4.1 Closure properties of regular languages If L 1 and L 2 are regular languages, then we prove that: Union: L 1 L 2 Concatenation:

More information

The Pumping Lemma and Closure Properties

The Pumping Lemma and Closure Properties The Pumping Lemma and Closure Properties Mridul Aanjaneya Stanford University July 5, 2012 Mridul Aanjaneya Automata Theory 1/ 27 Tentative Schedule HW #1: Out (07/03), Due (07/11) HW #2: Out (07/10),

More information

ECS 120: Theory of Computation UC Davis Phillip Rogaway February 16, Midterm Exam

ECS 120: Theory of Computation UC Davis Phillip Rogaway February 16, Midterm Exam ECS 120: Theory of Computation Handout MT UC Davis Phillip Rogaway February 16, 2012 Midterm Exam Instructions: The exam has six pages, including this cover page, printed out two-sided (no more wasted

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION Spring 2016 http://cseweb.ucsd.edu/classes/sp16/cse105-ab/ Today's learning goals Sipser Ch 2 Design a PDA and a CFG for a given language Give informal description for a PDA,

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION Spring 2016 http://cseweb.ucsd.edu/classes/sp16/cse105-ab/ Today's learning goals Sipser Ch 2 Define push down automata Trace the computation of a push down automaton Design

More information

CS 154, Lecture 3: DFA NFA, Regular Expressions

CS 154, Lecture 3: DFA NFA, Regular Expressions CS 154, Lecture 3: DFA NFA, Regular Expressions Homework 1 is coming out Deterministic Finite Automata Computation with finite memory Non-Deterministic Finite Automata Computation with finite memory and

More information

CS5371 Theory of Computation. Lecture 9: Automata Theory VII (Pumping Lemma, Non-CFL, DPDA PDA)

CS5371 Theory of Computation. Lecture 9: Automata Theory VII (Pumping Lemma, Non-CFL, DPDA PDA) CS5371 Theory of Computation Lecture 9: Automata Theory VII (Pumping Lemma, Non-CFL, DPDA PDA) Objectives Introduce the Pumping Lemma for CFL Show that some languages are non- CFL Discuss the DPDA, which

More information

More Properties of Regular Languages

More Properties of Regular Languages More Properties of Regular anguages 1 We have proven Regular languages are closed under: Union Concatenation Star operation Reverse 2 Namely, for regular languages 1 and 2 : Union 1 2 Concatenation Star

More information

Theory of Computation

Theory of Computation Fall 2002 (YEN) Theory of Computation Midterm Exam. Name:... I.D.#:... 1. (30 pts) True or false (mark O for true ; X for false ). (Score=Max{0, Right- 1 2 Wrong}.) (1) X... If L 1 is regular and L 2 L

More information

Unit 6. Non Regular Languages The Pumping Lemma. Reading: Sipser, chapter 1

Unit 6. Non Regular Languages The Pumping Lemma. Reading: Sipser, chapter 1 Unit 6 Non Regular Languages The Pumping Lemma Reading: Sipser, chapter 1 1 Are all languages regular? No! Most of the languages are not regular! Why? A finite automaton has limited memory. How can we

More information

NPDA, CFG equivalence

NPDA, CFG equivalence NPDA, CFG equivalence Theorem A language L is recognized by a NPDA iff L is described by a CFG. Must prove two directions: ( ) L is recognized by a NPDA implies L is described by a CFG. ( ) L is described

More information

Properties of Context-Free Languages

Properties of Context-Free Languages Properties of Context-Free Languages Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr

More information

Computational Models - Lecture 5 1

Computational Models - Lecture 5 1 Computational Models - Lecture 5 1 Handout Mode Iftach Haitner and Yishay Mansour. Tel Aviv University. April 10/22, 2013 1 Based on frames by Benny Chor, Tel Aviv University, modifying frames by Maurice

More information

CPS 220 Theory of Computation

CPS 220 Theory of Computation CPS 22 Theory of Computation Review - Regular Languages RL - a simple class of languages that can be represented in two ways: 1 Machine description: Finite Automata are machines with a finite number of

More information

Pumping Lemma for CFLs

Pumping Lemma for CFLs Pumping Lemma for CFLs v y s Here we go again! Intuition: If L is CF, then some CFG G produces strings in L If some string in L is very long, it will have a very tall parse tree If a parse tree is taller

More information

Formal Languages, Automata and Models of Computation

Formal Languages, Automata and Models of Computation CDT314 FABER Formal Languages, Automata and Models of Computation Lecture 5 School of Innovation, Design and Engineering Mälardalen University 2011 1 Content - More Properties of Regular Languages (RL)

More information

CSE 355 Test 2, Fall 2016

CSE 355 Test 2, Fall 2016 CSE 355 Test 2, Fall 2016 28 October 2016, 8:35-9:25 a.m., LSA 191 Last Name SAMPLE ASU ID 1357924680 First Name(s) Ima Regrading of Midterms If you believe that your grade has not been added up correctly,

More information

MA/CSSE 474 Theory of Computation

MA/CSSE 474 Theory of Computation MA/CSSE 474 Theory of Computation CFL Hierarchy CFL Decision Problems Your Questions? Previous class days' material Reading Assignments HW 12 or 13 problems Anything else I have included some slides online

More information

CS 455/555: Finite automata

CS 455/555: Finite automata CS 455/555: Finite automata Stefan D. Bruda Winter 2019 AUTOMATA (FINITE OR NOT) Generally any automaton Has a finite-state control Scans the input one symbol at a time Takes an action based on the currently

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION Spring 2016 http://cseweb.ucsd.edu/classes/sp16/cse105-ab/ Today's learning goals Sipser Ch 3.3, 4.1 State and use the Church-Turing thesis. Give examples of decidable problems.

More information

CSE 105 THEORY OF COMPUTATION. Spring 2018 review class

CSE 105 THEORY OF COMPUTATION. Spring 2018 review class CSE 105 THEORY OF COMPUTATION Spring 2018 review class Today's learning goals Summarize key concepts, ideas, themes from CSE 105. Approach your final exam studying with confidence. Identify areas to focus

More information

Ogden s Lemma for CFLs

Ogden s Lemma for CFLs Ogden s Lemma for CFLs Theorem If L is a context-free language, then there exists an integer l such that for any u L with at least l positions marked, u can be written as u = vwxyz such that 1 x and at

More information

CS 154, Lecture 2: Finite Automata, Closure Properties Nondeterminism,

CS 154, Lecture 2: Finite Automata, Closure Properties Nondeterminism, CS 54, Lecture 2: Finite Automata, Closure Properties Nondeterminism, Why so Many Models? Streaming Algorithms 0 42 Deterministic Finite Automata Anatomy of Deterministic Finite Automata transition: for

More information

The View Over The Horizon

The View Over The Horizon The View Over The Horizon enumerable decidable context free regular Context-Free Grammars An example of a context free grammar, G 1 : A 0A1 A B B # Terminology: Each line is a substitution rule or production.

More information

Before We Start. The Pumping Lemma. Languages. Context Free Languages. Plan for today. Now our picture looks like. Any questions?

Before We Start. The Pumping Lemma. Languages. Context Free Languages. Plan for today. Now our picture looks like. Any questions? Before We Start The Pumping Lemma Any questions? The Lemma & Decision/ Languages Future Exam Question What is a language? What is a class of languages? Context Free Languages Context Free Languages(CFL)

More information

Context-Free Grammars (and Languages) Lecture 7

Context-Free Grammars (and Languages) Lecture 7 Context-Free Grammars (and Languages) Lecture 7 1 Today Beyond regular expressions: Context-Free Grammars (CFGs) What is a CFG? What is the language associated with a CFG? Creating CFGs. Reasoning about

More information

Properties of Context Free Languages

Properties of Context Free Languages 1 Properties of Context Free Languages Pallab Dasgupta, Professor, Dept. of Computer Sc & Engg 2 Theorem: CFLs are closed under concatenation If L 1 and L 2 are CFLs, then L 1 L 2 is a CFL. Proof: 1. Let

More information

CS20a: summary (Oct 24, 2002)

CS20a: summary (Oct 24, 2002) CS20a: summary (Oct 24, 2002) Context-free languages Grammars G = (V, T, P, S) Pushdown automata N-PDA = CFG D-PDA < CFG Today What languages are context-free? Pumping lemma (similar to pumping lemma for

More information

COMP-330 Theory of Computation. Fall Prof. Claude Crépeau. Lec. 10 : Context-Free Grammars

COMP-330 Theory of Computation. Fall Prof. Claude Crépeau. Lec. 10 : Context-Free Grammars COMP-330 Theory of Computation Fall 2017 -- Prof. Claude Crépeau Lec. 10 : Context-Free Grammars COMP 330 Fall 2017: Lectures Schedule 1-2. Introduction 1.5. Some basic mathematics 2-3. Deterministic finite

More information

Final exam study sheet for CS3719 Turing machines and decidability.

Final exam study sheet for CS3719 Turing machines and decidability. Final exam study sheet for CS3719 Turing machines and decidability. A Turing machine is a finite automaton with an infinite memory (tape). Formally, a Turing machine is a 6-tuple M = (Q, Σ, Γ, δ, q 0,

More information

Finite Automata and Regular languages

Finite Automata and Regular languages Finite Automata and Regular languages Huan Long Shanghai Jiao Tong University Acknowledgements Part of the slides comes from a similar course in Fudan University given by Prof. Yijia Chen. http://basics.sjtu.edu.cn/

More information

Automata Theory. CS F-10 Non-Context-Free Langauges Closure Properties of Context-Free Languages. David Galles

Automata Theory. CS F-10 Non-Context-Free Langauges Closure Properties of Context-Free Languages. David Galles Automata Theory CS411-2015F-10 Non-Context-Free Langauges Closure Properties of Context-Free Languages David Galles Department of Computer Science University of San Francisco 10-0: Fun with CFGs Create

More information

Closure Properties of Regular Languages. Union, Intersection, Difference, Concatenation, Kleene Closure, Reversal, Homomorphism, Inverse Homomorphism

Closure Properties of Regular Languages. Union, Intersection, Difference, Concatenation, Kleene Closure, Reversal, Homomorphism, Inverse Homomorphism Closure Properties of Regular Languages Union, Intersection, Difference, Concatenation, Kleene Closure, Reversal, Homomorphism, Inverse Homomorphism Closure Properties Recall a closure property is a statement

More information

Decidability (What, stuff is unsolvable?)

Decidability (What, stuff is unsolvable?) University of Georgia Fall 2014 Outline Decidability Decidable Problems for Regular Languages Decidable Problems for Context Free Languages The Halting Problem Countable and Uncountable Sets Diagonalization

More information

Pushdown Automata. Chapter 12

Pushdown Automata. Chapter 12 Pushdown Automata Chapter 12 Recognizing Context-Free Languages We need a device similar to an FSM except that it needs more power. The insight: Precisely what it needs is a stack, which gives it an unlimited

More information

GEETANJALI INSTITUTE OF TECHNICAL STUDIES, UDAIPUR I

GEETANJALI INSTITUTE OF TECHNICAL STUDIES, UDAIPUR I GEETANJALI INSTITUTE OF TECHNICAL STUDIES, UDAIPUR I Internal Examination 2017-18 B.Tech III Year VI Semester Sub: Theory of Computation (6CS3A) Time: 1 Hour 30 min. Max Marks: 40 Note: Attempt all three

More information

CS375 Midterm Exam Solution Set (Fall 2017)

CS375 Midterm Exam Solution Set (Fall 2017) CS375 Midterm Exam Solution Set (Fall 2017) Closed book & closed notes October 17, 2017 Name sample 1. (10 points) (a) Put in the following blank the number of strings of length 5 over A={a, b, c} that

More information

Context Free Languages: Decidability of a CFL

Context Free Languages: Decidability of a CFL Theorem 14.1 Context Free Languages: Decidability of a CFL Statement: Given a CFL L and string w, there is a decision procedure that determines whether w L. Proof: By construction. 1. Proof using a grammar

More information

Foundations of Informatics: a Bridging Course

Foundations of Informatics: a Bridging Course Foundations of Informatics: a Bridging Course Week 3: Formal Languages and Semantics Thomas Noll Lehrstuhl für Informatik 2 RWTH Aachen University noll@cs.rwth-aachen.de http://www.b-it-center.de/wob/en/view/class211_id948.html

More information

HKN CS/ECE 374 Midterm 1 Review. Nathan Bleier and Mahir Morshed

HKN CS/ECE 374 Midterm 1 Review. Nathan Bleier and Mahir Morshed HKN CS/ECE 374 Midterm 1 Review Nathan Bleier and Mahir Morshed For the most part, all about strings! String induction (to some extent) Regular languages Regular expressions (regexps) Deterministic finite

More information

Before we show how languages can be proven not regular, first, how would we show a language is regular?

Before we show how languages can be proven not regular, first, how would we show a language is regular? CS35 Proving Languages not to be Regular Before we show how languages can be proven not regular, first, how would we show a language is regular? Although regular languages and automata are quite powerful

More information

Closure under the Regular Operations

Closure under the Regular Operations September 7, 2013 Application of NFA Now we use the NFA to show that collection of regular languages is closed under regular operations union, concatenation, and star Earlier we have shown this closure

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION Spring 2017 http://cseweb.ucsd.edu/classes/sp17/cse105-ab/ Today's learning goals Summarize key concepts, ideas, themes from CSE 105. Approach your final exam studying with

More information

CS 154. Finite Automata vs Regular Expressions, Non-Regular Languages

CS 154. Finite Automata vs Regular Expressions, Non-Regular Languages CS 154 Finite Automata vs Regular Expressions, Non-Regular Languages Deterministic Finite Automata Computation with finite memory Non-Deterministic Finite Automata Computation with finite memory and guessing

More information

Comment: The induction is always on some parameter, and the basis case is always an integer or set of integers.

Comment: The induction is always on some parameter, and the basis case is always an integer or set of integers. 1. For each of the following statements indicate whether it is true or false. For the false ones (if any), provide a counter example. For the true ones (if any) give a proof outline. (a) Union of two non-regular

More information

Problem 2.6(d) [4 pts] Problem 2.12 [3pts] Original CFG:

Problem 2.6(d) [4 pts] Problem 2.12 [3pts] Original CFG: Problem 2.6(d) [4 pts] S X T#X X#T T#X#T X axa bxb #T# # T at bt #T ε Problem 2.12 [3pts] Original CFG: R XRX S S atb bta T XTX X ε X a b q start ε, ε $ ε, R X ε, ε R ε, ε X ε, R S ε, T X ε, T ε ε, X a

More information

Closure Properties of Regular Languages

Closure Properties of Regular Languages Closure Properties of Regular Languages Lecture 13 Section 4.1 Robb T. Koether Hampden-Sydney College Wed, Sep 21, 2016 Robb T. Koether (Hampden-Sydney College) Closure Properties of Regular Languages

More information

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY 5-453 FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY NON-DETERMINISM and REGULAR OPERATIONS THURSDAY JAN 6 UNION THEOREM The union of two regular languages is also a regular language Regular Languages Are

More information

CFLs and Regular Languages. CFLs and Regular Languages. CFLs and Regular Languages. Will show that all Regular Languages are CFLs. Union.

CFLs and Regular Languages. CFLs and Regular Languages. CFLs and Regular Languages. Will show that all Regular Languages are CFLs. Union. We can show that every RL is also a CFL Since a regular grammar is certainly context free. We can also show by only using Regular Expressions and Context Free Grammars That is what we will do in this half.

More information

Inf2A: Converting from NFAs to DFAs and Closure Properties

Inf2A: Converting from NFAs to DFAs and Closure Properties 1/43 Inf2A: Converting from NFAs to DFAs and Stuart Anderson School of Informatics University of Edinburgh October 13, 2009 Starter Questions 2/43 1 Can you devise a way of testing for any FSM M whether

More information

Pushdown Automata. Notes on Automata and Theory of Computation. Chia-Ping Chen

Pushdown Automata. Notes on Automata and Theory of Computation. Chia-Ping Chen Pushdown Automata Notes on Automata and Theory of Computation Chia-Ping Chen Department of Computer Science and Engineering National Sun Yat-Sen University Kaohsiung, Taiwan ROC Pushdown Automata p. 1

More information

The Pumping Lemma for Context Free Grammars

The Pumping Lemma for Context Free Grammars The Pumping Lemma for Context Free Grammars Chomsky Normal Form Chomsky Normal Form (CNF) is a simple and useful form of a CFG Every rule of a CNF grammar is in the form A BC A a Where a is any terminal

More information

Properties of Regular Languages. BBM Automata Theory and Formal Languages 1

Properties of Regular Languages. BBM Automata Theory and Formal Languages 1 Properties of Regular Languages BBM 401 - Automata Theory and Formal Languages 1 Properties of Regular Languages Pumping Lemma: Every regular language satisfies the pumping lemma. A non-regular language

More information

Functions on languages:

Functions on languages: MA/CSSE 474 Final Exam Notation and Formulas page Name (turn this in with your exam) Unless specified otherwise, r,s,t,u,v,w,x,y,z are strings over alphabet Σ; while a, b, c, d are individual alphabet

More information

SCHEME FOR INTERNAL ASSESSMENT TEST 3

SCHEME FOR INTERNAL ASSESSMENT TEST 3 SCHEME FOR INTERNAL ASSESSMENT TEST 3 Max Marks: 40 Subject& Code: Automata Theory & Computability (15CS54) Sem: V ISE (A & B) Note: Answer any FIVE full questions, choosing one full question from each

More information

CISC4090: Theory of Computation

CISC4090: Theory of Computation CISC4090: Theory of Computation Chapter 2 Context-Free Languages Courtesy of Prof. Arthur G. Werschulz Fordham University Department of Computer and Information Sciences Spring, 2014 Overview In Chapter

More information

Properties of Regular Languages (2015/10/15)

Properties of Regular Languages (2015/10/15) Chapter 4 Properties of Regular Languages (25//5) Pasbag, Turkey Outline 4. Proving Languages Not to e Regular 4.2 Closure Properties of Regular Languages 4.3 Decision Properties of Regular Languages 4.4

More information

Lecture 17: Language Recognition

Lecture 17: Language Recognition Lecture 17: Language Recognition Finite State Automata Deterministic and Non-Deterministic Finite Automata Regular Expressions Push-Down Automata Turing Machines Modeling Computation When attempting to

More information

Pushdown Automata. We have seen examples of context-free languages that are not regular, and hence can not be recognized by finite automata.

Pushdown Automata. We have seen examples of context-free languages that are not regular, and hence can not be recognized by finite automata. Pushdown Automata We have seen examples of context-free languages that are not regular, and hence can not be recognized by finite automata. Next we consider a more powerful computation model, called a

More information

Finite Automata Part Two

Finite Automata Part Two Finite Automata Part Two DFAs A DFA is a Deterministic Finite Automaton A DFA is defined relative to some alphabet Σ. For each state in the DFA, there must be exactly one transition defined for each symbol

More information

T (s, xa) = T (T (s, x), a). The language recognized by M, denoted L(M), is the set of strings accepted by M. That is,

T (s, xa) = T (T (s, x), a). The language recognized by M, denoted L(M), is the set of strings accepted by M. That is, Recall A deterministic finite automaton is a five-tuple where S is a finite set of states, M = (S, Σ, T, s 0, F ) Σ is an alphabet the input alphabet, T : S Σ S is the transition function, s 0 S is the

More information

Einführung in die Computerlinguistik

Einführung in die Computerlinguistik Einführung in die Computerlinguistik Context-Free Grammars formal properties Laura Kallmeyer Heinrich-Heine-Universität Düsseldorf Summer 2018 1 / 20 Normal forms (1) Hopcroft and Ullman (1979) A normal

More information

Context Free Languages. Automata Theory and Formal Grammars: Lecture 6. Languages That Are Not Regular. Non-Regular Languages

Context Free Languages. Automata Theory and Formal Grammars: Lecture 6. Languages That Are Not Regular. Non-Regular Languages Context Free Languages Automata Theory and Formal Grammars: Lecture 6 Context Free Languages Last Time Decision procedures for FAs Minimum-state DFAs Today The Myhill-Nerode Theorem The Pumping Lemma Context-free

More information

Context Free Languages and Grammars

Context Free Languages and Grammars Algorithms & Models of Computation CS/ECE 374, Fall 2017 Context Free Languages and Grammars Lecture 7 Tuesday, September 19, 2017 Sariel Har-Peled (UIUC) CS374 1 Fall 2017 1 / 36 What stack got to do

More information

CS500 Homework #2 Solutions

CS500 Homework #2 Solutions CS500 Homework #2 Solutions 1. Consider the two languages Show that L 1 is context-free but L 2 is not. L 1 = {a i b j c k d l i = j k = l} L 2 = {a i b j c k d l i = k j = l} Answer. L 1 is the concatenation

More information

6.8 The Post Correspondence Problem

6.8 The Post Correspondence Problem 6.8. THE POST CORRESPONDENCE PROBLEM 423 6.8 The Post Correspondence Problem The Post correspondence problem (due to Emil Post) is another undecidable problem that turns out to be a very helpful tool for

More information

CPSC 421: Tutorial #1

CPSC 421: Tutorial #1 CPSC 421: Tutorial #1 October 14, 2016 Set Theory. 1. Let A be an arbitrary set, and let B = {x A : x / x}. That is, B contains all sets in A that do not contain themselves: For all y, ( ) y B if and only

More information

Computational Models: Class 5

Computational Models: Class 5 Computational Models: Class 5 Benny Chor School of Computer Science Tel Aviv University March 27, 2019 Based on slides by Maurice Herlihy, Brown University, and modifications by Iftach Haitner and Yishay

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION Spring 2018 http://cseweb.ucsd.edu/classes/sp18/cse105-ab/ Today's learning goals Sipser Ch 4.1 Explain what it means for a problem to be decidable. Justify the use of encoding.

More information

} Some languages are Turing-decidable A Turing Machine will halt on all inputs (either accepting or rejecting). No infinite loops.

} Some languages are Turing-decidable A Turing Machine will halt on all inputs (either accepting or rejecting). No infinite loops. and their languages } Some languages are Turing-decidable A Turing Machine will halt on all inputs (either accepting or rejecting). No infinite loops. } Some languages are Turing-recognizable, but not

More information

CS 154. Finite Automata, Nondeterminism, Regular Expressions

CS 154. Finite Automata, Nondeterminism, Regular Expressions CS 54 Finite Automata, Nondeterminism, Regular Expressions Read string left to right The DFA accepts a string if the process ends in a double circle A DFA is a 5-tuple M = (Q, Σ, δ, q, F) Q is the set

More information

Regular Expressions. Definitions Equivalence to Finite Automata

Regular Expressions. Definitions Equivalence to Finite Automata Regular Expressions Definitions Equivalence to Finite Automata 1 RE s: Introduction Regular expressions are an algebraic way to describe languages. They describe exactly the regular languages. If E is

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION "Winter" 2018 http://cseweb.ucsd.edu/classes/wi18/cse105-ab/ Today's learning goals Sipser Ch 4.1 Explain what it means for a problem to be decidable. Justify the use of encoding.

More information

10. The GNFA method is used to show that

10. The GNFA method is used to show that CSE 355 Midterm Examination 27 February 27 Last Name Sample ASU ID First Name(s) Ima Exam # Sample Regrading of Midterms If you believe that your grade has not been recorded correctly, return the entire

More information

Context-Free Grammars and Languages. Reading: Chapter 5

Context-Free Grammars and Languages. Reading: Chapter 5 Context-Free Grammars and Languages Reading: Chapter 5 1 Context-Free Languages The class of context-free languages generalizes the class of regular languages, i.e., every regular language is a context-free

More information

Automata and Computability. Solutions to Exercises

Automata and Computability. Solutions to Exercises Automata and Computability Solutions to Exercises Spring 27 Alexis Maciel Department of Computer Science Clarkson University Copyright c 27 Alexis Maciel ii Contents Preface vii Introduction 2 Finite Automata

More information

DM17. Beregnelighed. Jacob Aae Mikkelsen

DM17. Beregnelighed. Jacob Aae Mikkelsen DM17 Beregnelighed Jacob Aae Mikkelsen January 12, 2007 CONTENTS Contents 1 Introduction 2 1.1 Operations with languages...................... 2 2 Finite Automata 3 2.1 Regular expressions/languages....................

More information

Computational Models Lecture 5

Computational Models Lecture 5 Computational Models Lecture 5 One More PDAs Example Equivalence of PDAs and CFLs Nondeterminism adds power to PDAs (not in book) Closure Properties of CFLs Algorithmic Aspects of PDAs and CFLs DFAs and

More information

Concatenation. The concatenation of two languages L 1 and L 2

Concatenation. The concatenation of two languages L 1 and L 2 Regular Expressions Problem Problem Set Set Four Four is is due due using using a late late period period in in the the box box up up front. front. Concatenation The concatenation of two languages L 1

More information

SYLLABUS. Introduction to Finite Automata, Central Concepts of Automata Theory. CHAPTER - 3 : REGULAR EXPRESSIONS AND LANGUAGES

SYLLABUS. Introduction to Finite Automata, Central Concepts of Automata Theory. CHAPTER - 3 : REGULAR EXPRESSIONS AND LANGUAGES Contents i SYLLABUS UNIT - I CHAPTER - 1 : AUT UTOMA OMATA Introduction to Finite Automata, Central Concepts of Automata Theory. CHAPTER - 2 : FINITE AUT UTOMA OMATA An Informal Picture of Finite Automata,

More information

Theory of Computation (IV) Yijia Chen Fudan University

Theory of Computation (IV) Yijia Chen Fudan University Theory of Computation (IV) Yijia Chen Fudan University Review language regular context-free machine DFA/ NFA PDA syntax regular expression context-free grammar Pushdown automata Definition A pushdown automaton

More information

Computational Models: Class 3

Computational Models: Class 3 Computational Models: Class 3 Benny Chor School of Computer Science Tel Aviv University November 2, 2015 Based on slides by Maurice Herlihy, Brown University, and modifications by Iftach Haitner and Yishay

More information

I have read and understand all of the instructions below, and I will obey the University Code on Academic Integrity.

I have read and understand all of the instructions below, and I will obey the University Code on Academic Integrity. Midterm Exam CS 341-451: Foundations of Computer Science II Fall 2016, elearning section Prof. Marvin K. Nakayama Print family (or last) name: Print given (or first) name: I have read and understand all

More information