CS 4700: Foundations of Artificial Intelligence Ungraded Homework Solutions

Size: px
Start display at page:

Download "CS 4700: Foundations of Artificial Intelligence Ungraded Homework Solutions"

Transcription

1 CS 4700: Foundations of Artificial Intelligence Ungraded Homework Solutions 1. Neural Networks: a. There are 2 2n distinct Boolean functions over n inputs. Thus there are 16 distinct Boolean functions over 2 inputs. How many of these are representable by a perceptron? There are 14. There are four combinations of inputs, {(0,0), (0,1), (1,0), (1,1)}. For each of the four there is a perceptron that labels only that point as 1 and labels the others 0. There is similarly one that labels just that item as 0 and the others 1. This totals 8. Next, there s a perceptron that ignores input 2 and labels as 1 both points for which input 1 equals 1 and labels the other two points as 0, and there is also one that labels those points in reverse. That s 2 more. Finally there s an identical pair of perceptrons that ignore input 1 and does the same as the previous case, only this time using input 2. Finally, there are also the trivial cases of all data points being labeled 1, or all being labeled 0, which are also representable as linear thresholds for which all points are on the same desired side of a linear surface. b. Imagine you have a single-node neural network with two inputs whose activation function is the logistic function, and with only two data points ((0,0),1) and ((1,1),0). If all weights are initially set to 0, the learning rate is set to 1, and you make two passes through the data, give the values of the weights after each update. c. Textbook, problem 18.16a Example w 0 w 1 w 2 ((0,0),1) ((1,1),0) ((0,0),1) ((1,1),0) The points inside the circle are those for which (x 1 a) 2 +(x 2 b) 2 r 2, or equivalently r 2 (x 1 a) 2 (x 2 b) 2 0. If you expand out (x 1 a) 2 and (x 2 b) 2 and reorder the terms this becomes x 1 2 x ax 1 + 2bx 2 + (r 2 a 2 b 2 ) 0. If we let y 1 = x 1 2, y 2 = x 2 2, y 3 = x 1, and y 4 = x 2 this becomes y 1 y 2 + 2ay 3 + 2by 4 + (r 2 a 2 b 2 ) 0. Thus if each two-dimensional data point (x 1, x 2 ) were transformed into a new four-dimensional data point whose values are (x 1 2, x 2 2, x 1, x 2 ) you could classify the points using a perceptron whose weights are ( 1, 1,2a, 2b) and whose weight on x 0 is (r 2 a 2 b 2 ). d. Textbook, problem 18.22a If neuron k is in the output layer, its output is g( j connected to k w j,k a j ) = c j w j,k a j. (Henceforth to simplify notation the summations will always be over all nodes that feed into the node in question. The right-hand side of the preceding equation, for example, sums over all j feeding into k.) Each a j in that equation is itself a j = g( i w i,j x i ) =

2 2. Clustering: c i w i,j x i. Plugging this in for each that each a j in the formula for output-layer neuron k gives c j w j,k (c i w i,j x i ). Rearranging the terms gives us c i c( i w i,j w j,k )x i. This is itself representable with a single neuron using the given activation function, but where the the weights woud be w i = c i w i,j w j,k (where w i,j and w j,k are the weights in the original network). e. Textbook, problem The error function on a set of data D is err(d) = m i=1 (y i a i ) 2. Here all the inputs are identical, so all the a i are identical we ll use the letter a to represent this value. Further, m = 100, where in 80 cases y i = 1 and in 20 cases y i = 0, meaning err(d) = 80(1 a) (0 a) 2. This function is minimized when a = 0.8, and thus backprop will attempt to find weights that yield this output. a. Give an example where k-means clustering forms different clusters depending on which data points are randomly chosen as the initial centroids for each cluster. Your example should not rely on how you break ties if you have multiple points that are the same distant from multiple centroids. (Or, stated differently, you can make this happen even if the distance between every pair of points is distinct.) Consider the following points: A: (0,2) B: (2,0) C: (3,0) D: (4,2) If you do k-means clustering with k=2 and start with B and D as the centroids you form a cluster containing A, B, and C and a cluster containing D. If you start with A and C one contains A and the other B, C, and D. 3. MDPs and reinforcement learning: a. There are N cities along a major highway that forms a big loop. The cities are numbered 1 through N. If you go clockwise from city i you get to city i+1 and if you go counterclockwise you get to city i-1, except that counter-clockwise from city 1 puts you in city N and clockwise from city N puts you in city 1. You start in city 1. Each day you can either - do the STAY action, in which case you ll be in that city the following day - do the CLOCKWISE or COUNTER-CLOCKWISE actions, in which case with probability pi you ll wind up in the next city in the selected direction the next day, but with probability (1-pi) your car won t start in which case the city you re in will be unchanged the next day. All even numbered cities give reward ri = 1, and all odd numbered cities give reward ri=0, if you are in that city at the start of a given day. i. If for all cities pi = 1 and the discount factor γ = 0.5: 1. What is the value of U π (1) for the policy π that says to execute STAY in all states?

3 [ t R(1)] = [½ t 0] = 0 2. What is the value of U π (N) for this policy? If N is odd, 0, the same as for state 1. If N is even, the calculation is as follows. [ t R(N)] = [½ t 1] = 2 3. What is the optimal value U(1) for city 1? What policy does it imply? 1.0. The policy would say to go CLOCKWISE, putting you in state 2, with value U(2)=2. (The optimal policy for all even-numbered states is to STAY, giving the U value of 2, as in part 2 above. You then get U(1) = R(1) + γ P(s 1, CLOCKWISE)U(s ) s [1:N] = U(2) = 1.0 What is the optimal value U(N) for city N? What policy does it imply? If N is even, 2.0. The corresponding policy is to always do the STAY action. If N is odd, 1.0. The policy would say to go COUNTER-CLOCKWISE to get to N-1, which is even and has value 2.0. The rest of the analysis is the same as the case for state 1 that immediately precedes this. ii. If N=3: 1. Show the values of U for the first two iterations of value iteration. Here are the values for the first 10 iterations. (After 16 iterations the values are 1.000, 2.000, and ) Iteration U(1) U(2) U(3)

4 2. Show the values of π for the first two iterations of policy iteration, assuming that for each state π is initially set to CLOCKWISE. Iteration π(1) π(2) π(3) CLOCKWISE CLOCKWISE CLOCKWISE 1 CLOCKWISE STAY COUNTER 2 CLOCKWISE STAY COUNTER The corresponding values for U are: U(1) U(2) U(3) b. Consider a problem with 3 states A, B, and C, where A is the initial state, and where you have two actions, X and Y, that you can do in each state. Imagine we use Q-learning on this problem with N=6, learning rate α = 0.5, and R MAX = 10 (using the f function given in class). Because, for some initial period of time, n<n each time f is called, at the last step of each Q-Learning call many different actions will be tied with value R MAX (where we assume ties are broken at random). Imagine that as a result of executing the Q-Learning procedure you proceed through the following sets of states/actions/rewards: State Reward Action Resulting State A 3 X B B 2 X C C 0 Y B B 2 X C C 1 X B i. What are the final values of Q(s,a) after executing the updates at each step (there should be 5 updates)? State Reward Action Result Q(A,X) Q(A,Y) Q(B,X) Q(B,Y) Q(C,X) Q(C,Y) A 3 X B B 2 X C C 0 Y B B 2 X C C 1 X B

5 ii. Given these Q values, what policy would they yield for the 3 states? π(a) = X π(b)=x π(c)=x 4. Search: a. Agents A and B are locations on an NxN grid. They both know where each of them is on the grid. They each have at most five actions they can take, UP, DOWN, LEFT, RIGHT, and STOP, where each action does what you would expect it to do. If any of these actions would cause them to hit a wall then that action is not permissible in that location. They need to wind up in the same location, they don t care where. They both take actions simultaneously they do not alternate turns. The problem is to come up with a sequence of actions for the two agents that is as short as possible. i. Formally state this as a (single agent) state space search problem. Each state is a four-tuple. Two of the elements are the x and y coordinates for one agent, the other two are the x and y coordinates for the other agent. Actions are all pairs of original actions, one to be applied to one agent, the other to the second agent. The final state has the two agents at the same coordinates. ii. Give a (non-trivial) admissible heuristic for this problem. h((x 1, x 2, y 1, y 2 )) = (distance between x and y)/2. iii. Which of the following are guaranteed to find a shortest solution? 1. Depth-first search 2. Breadth-first search 3. Hillclimbing using an admissible heuristic 4. A* with a heuristic that returns 0 for all states

CS221 Practice Midterm

CS221 Practice Midterm CS221 Practice Midterm Autumn 2012 1 ther Midterms The following pages are excerpts from similar classes midterms. The content is similar to what we ve been covering this quarter, so that it should be

More information

Decision Theory: Markov Decision Processes

Decision Theory: Markov Decision Processes Decision Theory: Markov Decision Processes CPSC 322 Lecture 33 March 31, 2006 Textbook 12.5 Decision Theory: Markov Decision Processes CPSC 322 Lecture 33, Slide 1 Lecture Overview Recap Rewards and Policies

More information

Introduction to Fall 2008 Artificial Intelligence Midterm Exam

Introduction to Fall 2008 Artificial Intelligence Midterm Exam CS 188 Introduction to Fall 2008 Artificial Intelligence Midterm Exam INSTRUCTIONS You have 80 minutes. 70 points total. Don t panic! The exam is closed book, closed notes except a one-page crib sheet,

More information

CS 188 Introduction to Fall 2007 Artificial Intelligence Midterm

CS 188 Introduction to Fall 2007 Artificial Intelligence Midterm NAME: SID#: Login: Sec: 1 CS 188 Introduction to Fall 2007 Artificial Intelligence Midterm You have 80 minutes. The exam is closed book, closed notes except a one-page crib sheet, basic calculators only.

More information

CS 7180: Behavioral Modeling and Decisionmaking

CS 7180: Behavioral Modeling and Decisionmaking CS 7180: Behavioral Modeling and Decisionmaking in AI Markov Decision Processes for Complex Decisionmaking Prof. Amy Sliva October 17, 2012 Decisions are nondeterministic In many situations, behavior and

More information

Course 16:198:520: Introduction To Artificial Intelligence Lecture 13. Decision Making. Abdeslam Boularias. Wednesday, December 7, 2016

Course 16:198:520: Introduction To Artificial Intelligence Lecture 13. Decision Making. Abdeslam Boularias. Wednesday, December 7, 2016 Course 16:198:520: Introduction To Artificial Intelligence Lecture 13 Decision Making Abdeslam Boularias Wednesday, December 7, 2016 1 / 45 Overview We consider probabilistic temporal models where the

More information

Homework 2: MDPs and Search

Homework 2: MDPs and Search Graduate Artificial Intelligence 15-780 Homework 2: MDPs and Search Out on February 15 Due on February 29 Problem 1: MDPs [Felipe, 20pts] Figure 1: MDP for Problem 1. States are represented by circles

More information

CS 4100 // artificial intelligence. Recap/midterm review!

CS 4100 // artificial intelligence. Recap/midterm review! CS 4100 // artificial intelligence instructor: byron wallace Recap/midterm review! Attribution: many of these slides are modified versions of those distributed with the UC Berkeley CS188 materials Thanks

More information

The exam is closed book, closed calculator, and closed notes except your one-page crib sheet.

The exam is closed book, closed calculator, and closed notes except your one-page crib sheet. CS 188 Spring 2017 Introduction to Artificial Intelligence Midterm V2 You have approximately 80 minutes. The exam is closed book, closed calculator, and closed notes except your one-page crib sheet. Mark

More information

Basics of reinforcement learning

Basics of reinforcement learning Basics of reinforcement learning Lucian Buşoniu TMLSS, 20 July 2018 Main idea of reinforcement learning (RL) Learn a sequential decision policy to optimize the cumulative performance of an unknown system

More information

Reinforcement Learning and Control

Reinforcement Learning and Control CS9 Lecture notes Andrew Ng Part XIII Reinforcement Learning and Control We now begin our study of reinforcement learning and adaptive control. In supervised learning, we saw algorithms that tried to make

More information

The exam is closed book, closed calculator, and closed notes except your one-page crib sheet.

The exam is closed book, closed calculator, and closed notes except your one-page crib sheet. CS 188 Fall 2015 Introduction to Artificial Intelligence Final You have approximately 2 hours and 50 minutes. The exam is closed book, closed calculator, and closed notes except your one-page crib sheet.

More information

Final. Introduction to Artificial Intelligence. CS 188 Spring You have approximately 2 hours and 50 minutes.

Final. Introduction to Artificial Intelligence. CS 188 Spring You have approximately 2 hours and 50 minutes. CS 188 Spring 2014 Introduction to Artificial Intelligence Final You have approximately 2 hours and 50 minutes. The exam is closed book, closed notes except your two-page crib sheet. Mark your answers

More information

ARTIFICIAL INTELLIGENCE. Artificial Neural Networks

ARTIFICIAL INTELLIGENCE. Artificial Neural Networks INFOB2KI 2017-2018 Utrecht University The Netherlands ARTIFICIAL INTELLIGENCE Artificial Neural Networks Lecturer: Silja Renooij These slides are part of the INFOB2KI Course Notes available from www.cs.uu.nl/docs/vakken/b2ki/schema.html

More information

Decision Theory: Q-Learning

Decision Theory: Q-Learning Decision Theory: Q-Learning CPSC 322 Decision Theory 5 Textbook 12.5 Decision Theory: Q-Learning CPSC 322 Decision Theory 5, Slide 1 Lecture Overview 1 Recap 2 Asynchronous Value Iteration 3 Q-Learning

More information

CS 570: Machine Learning Seminar. Fall 2016

CS 570: Machine Learning Seminar. Fall 2016 CS 570: Machine Learning Seminar Fall 2016 Class Information Class web page: http://web.cecs.pdx.edu/~mm/mlseminar2016-2017/fall2016/ Class mailing list: cs570@cs.pdx.edu My office hours: T,Th, 2-3pm or

More information

Final Exam December 12, 2017

Final Exam December 12, 2017 Introduction to Artificial Intelligence CSE 473, Autumn 2017 Dieter Fox Final Exam December 12, 2017 Directions This exam has 7 problems with 111 points shown in the table below, and you have 110 minutes

More information

CS 4700: Foundations of Artificial Intelligence Homework 2 Solutions. Graph. You can get to the same single state through multiple paths.

CS 4700: Foundations of Artificial Intelligence Homework 2 Solutions. Graph. You can get to the same single state through multiple paths. CS 4700: Foundations of Artificial Intelligence Homework Solutions 1. (30 points) Imagine you have a state space where a state is represented by a tuple of three positive integers (i,j,k), and you have

More information

Factored State Spaces 3/2/178

Factored State Spaces 3/2/178 Factored State Spaces 3/2/178 Converting POMDPs to MDPs In a POMDP: Action + observation updates beliefs Value is a function of beliefs. Instead we can view this as an MDP where: There is a state for every

More information

Final Exam December 12, 2017

Final Exam December 12, 2017 Introduction to Artificial Intelligence CSE 473, Autumn 2017 Dieter Fox Final Exam December 12, 2017 Directions This exam has 7 problems with 111 points shown in the table below, and you have 110 minutes

More information

Reinforcement Learning: An Introduction

Reinforcement Learning: An Introduction Introduction Betreuer: Freek Stulp Hauptseminar Intelligente Autonome Systeme (WiSe 04/05) Forschungs- und Lehreinheit Informatik IX Technische Universität München November 24, 2004 Introduction What is

More information

Marks. bonus points. } Assignment 1: Should be out this weekend. } Mid-term: Before the last lecture. } Mid-term deferred exam:

Marks. bonus points. } Assignment 1: Should be out this weekend. } Mid-term: Before the last lecture. } Mid-term deferred exam: Marks } Assignment 1: Should be out this weekend } All are marked, I m trying to tally them and perhaps add bonus points } Mid-term: Before the last lecture } Mid-term deferred exam: } This Saturday, 9am-10.30am,

More information

Using first-order logic, formalize the following knowledge:

Using first-order logic, formalize the following knowledge: Probabilistic Artificial Intelligence Final Exam Feb 2, 2016 Time limit: 120 minutes Number of pages: 19 Total points: 100 You can use the back of the pages if you run out of space. Collaboration on the

More information

Markov Decision Processes

Markov Decision Processes Markov Decision Processes Noel Welsh 11 November 2010 Noel Welsh () Markov Decision Processes 11 November 2010 1 / 30 Annoucements Applicant visitor day seeks robot demonstrators for exciting half hour

More information

Neural Networks. Nicholas Ruozzi University of Texas at Dallas

Neural Networks. Nicholas Ruozzi University of Texas at Dallas Neural Networks Nicholas Ruozzi University of Texas at Dallas Handwritten Digit Recognition Given a collection of handwritten digits and their corresponding labels, we d like to be able to correctly classify

More information

CS181 Midterm 2 Practice Solutions

CS181 Midterm 2 Practice Solutions CS181 Midterm 2 Practice Solutions 1. Convergence of -Means Consider Lloyd s algorithm for finding a -Means clustering of N data, i.e., minimizing the distortion measure objective function J({r n } N n=1,

More information

Tentamen TDDC17 Artificial Intelligence 20 August 2012 kl

Tentamen TDDC17 Artificial Intelligence 20 August 2012 kl Linköpings Universitet Institutionen för Datavetenskap Patrick Doherty Tentamen TDDC17 Artificial Intelligence 20 August 2012 kl. 08-12 Points: The exam consists of exercises worth 32 points. To pass the

More information

CITS4211 Mid-semester test 2011

CITS4211 Mid-semester test 2011 CITS4211 Mid-semester test 2011 Fifty minutes, answer all four questions, total marks 60 Question 1. (12 marks) Briefly describe the principles, operation, and performance issues of iterative deepening.

More information

Markov decision processes

Markov decision processes CS 2740 Knowledge representation Lecture 24 Markov decision processes Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Administrative announcements Final exam: Monday, December 8, 2008 In-class Only

More information

CS343 Artificial Intelligence

CS343 Artificial Intelligence CS343 Artificial Intelligence Prof: Department of Computer Science The University of Texas at Austin Good Afternoon, Colleagues Good Afternoon, Colleagues Are there any questions? Logistics Problems with

More information

CS540 ANSWER SHEET

CS540 ANSWER SHEET CS540 ANSWER SHEET Name Email 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 1 2 Final Examination CS540-1: Introduction to Artificial Intelligence Fall 2016 20 questions, 5 points

More information

Input layer. Weight matrix [ ] Output layer

Input layer. Weight matrix [ ] Output layer MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.034 Artificial Intelligence, Fall 2003 Recitation 10, November 4 th & 5 th 2003 Learning by perceptrons

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Ron Parr CompSci 7 Department of Computer Science Duke University With thanks to Kris Hauser for some content RL Highlights Everybody likes to learn from experience Use ML techniques

More information

Machine Learning I Continuous Reinforcement Learning

Machine Learning I Continuous Reinforcement Learning Machine Learning I Continuous Reinforcement Learning Thomas Rückstieß Technische Universität München January 7/8, 2010 RL Problem Statement (reminder) state s t+1 ENVIRONMENT reward r t+1 new step r t

More information

Name: UW CSE 473 Final Exam, Fall 2014

Name: UW CSE 473 Final Exam, Fall 2014 P1 P6 Instructions Please answer clearly and succinctly. If an explanation is requested, think carefully before writing. Points may be removed for rambling answers. If a question is unclear or ambiguous,

More information

CS188: Artificial Intelligence, Fall 2009 Written 2: MDPs, RL, and Probability

CS188: Artificial Intelligence, Fall 2009 Written 2: MDPs, RL, and Probability CS188: Artificial Intelligence, Fall 2009 Written 2: MDPs, RL, and Probability Due: Thursday 10/15 in 283 Soda Drop Box by 11:59pm (no slip days) Policy: Can be solved in groups (acknowledge collaborators)

More information

Introduction to Spring 2006 Artificial Intelligence Practice Final

Introduction to Spring 2006 Artificial Intelligence Practice Final NAME: SID#: Login: Sec: 1 CS 188 Introduction to Spring 2006 Artificial Intelligence Practice Final You have 180 minutes. The exam is open-book, open-notes, no electronics other than basic calculators.

More information

Markov Decision Processes (and a small amount of reinforcement learning)

Markov Decision Processes (and a small amount of reinforcement learning) Markov Decision Processes (and a small amount of reinforcement learning) Slides adapted from: Brian Williams, MIT Manuela Veloso, Andrew Moore, Reid Simmons, & Tom Mitchell, CMU Nicholas Roy 16.4/13 Session

More information

Do not tear exam apart!

Do not tear exam apart! 6.036: Final Exam: Fall 2017 Do not tear exam apart! This is a closed book exam. Calculators not permitted. Useful formulas on page 1. The problems are not necessarily in any order of di culty. Record

More information

Midterm. Introduction to Artificial Intelligence. CS 188 Summer You have approximately 2 hours and 50 minutes.

Midterm. Introduction to Artificial Intelligence. CS 188 Summer You have approximately 2 hours and 50 minutes. CS 188 Summer 2014 Introduction to Artificial Intelligence Midterm You have approximately 2 hours and 50 minutes. The exam is closed book, closed notes except your one-page crib sheet. Mark your answers

More information

CSL302/612 Artificial Intelligence End-Semester Exam 120 Minutes

CSL302/612 Artificial Intelligence End-Semester Exam 120 Minutes CSL302/612 Artificial Intelligence End-Semester Exam 120 Minutes Name: Roll Number: Please read the following instructions carefully Ø Calculators are allowed. However, laptops or mobile phones are not

More information

15-780: Graduate Artificial Intelligence. Reinforcement learning (RL)

15-780: Graduate Artificial Intelligence. Reinforcement learning (RL) 15-780: Graduate Artificial Intelligence Reinforcement learning (RL) From MDPs to RL We still use the same Markov model with rewards and actions But there are a few differences: 1. We do not assume we

More information

CS 4700: Artificial Intelligence

CS 4700: Artificial Intelligence CS 4700: Foundations of Artificial Intelligence Fall 2017 Instructor: Prof. Haym Hirsh Lecture 18 Prelim Grade Distribution Homework 3: Out Today Extra Credit Opportunity: 4:15pm Today, Gates G01 Relaxing

More information

CS 4700: Foundations of Artificial Intelligence

CS 4700: Foundations of Artificial Intelligence CS 4700: Foundations of Artificial Intelligence Prof. Bart Selman selman@cs.cornell.edu Machine Learning: Neural Networks R&N 18.7 Intro & perceptron learning 1 2 Neuron: How the brain works # neurons

More information

Markov Decision Processes and Solving Finite Problems. February 8, 2017

Markov Decision Processes and Solving Finite Problems. February 8, 2017 Markov Decision Processes and Solving Finite Problems February 8, 2017 Overview of Upcoming Lectures Feb 8: Markov decision processes, value iteration, policy iteration Feb 13: Policy gradients Feb 15:

More information

Neural Networks. CSE 6363 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington

Neural Networks. CSE 6363 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington Neural Networks CSE 6363 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington 1 Perceptrons x 0 = 1 x 1 x 2 z = h w T x Output: z x D A perceptron

More information

Lecture 16: Introduction to Neural Networks

Lecture 16: Introduction to Neural Networks Lecture 16: Introduction to Neural Networs Instructor: Aditya Bhasara Scribe: Philippe David CS 5966/6966: Theory of Machine Learning March 20 th, 2017 Abstract In this lecture, we consider Bacpropagation,

More information

Artificial Neural Network

Artificial Neural Network Artificial Neural Network Contents 2 What is ANN? Biological Neuron Structure of Neuron Types of Neuron Models of Neuron Analogy with human NN Perceptron OCR Multilayer Neural Network Back propagation

More information

Learning and Neural Networks

Learning and Neural Networks Artificial Intelligence Learning and Neural Networks Readings: Chapter 19 & 20.5 of Russell & Norvig Example: A Feed-forward Network w 13 I 1 H 3 w 35 w 14 O 5 I 2 w 23 w 24 H 4 w 45 a 5 = g 5 (W 3,5 a

More information

SPSS, University of Texas at Arlington. Topics in Machine Learning-EE 5359 Neural Networks

SPSS, University of Texas at Arlington. Topics in Machine Learning-EE 5359 Neural Networks Topics in Machine Learning-EE 5359 Neural Networks 1 The Perceptron Output: A perceptron is a function that maps D-dimensional vectors to real numbers. For notational convenience, we add a zero-th dimension

More information

18.6 Regression and Classification with Linear Models

18.6 Regression and Classification with Linear Models 18.6 Regression and Classification with Linear Models 352 The hypothesis space of linear functions of continuous-valued inputs has been used for hundreds of years A univariate linear function (a straight

More information

Ch. 10 Vector Quantization. Advantages & Design

Ch. 10 Vector Quantization. Advantages & Design Ch. 10 Vector Quantization Advantages & Design 1 Advantages of VQ There are (at least) 3 main characteristics of VQ that help it outperform SQ: 1. Exploit Correlation within vectors 2. Exploit Shape Flexibility

More information

CS188: Artificial Intelligence, Fall 2009 Written 2: MDPs, RL, and Probability

CS188: Artificial Intelligence, Fall 2009 Written 2: MDPs, RL, and Probability CS188: Artificial Intelligence, Fall 2009 Written 2: MDPs, RL, and Probability Due: Thursday 10/15 in 283 Soda Drop Box by 11:59pm (no slip days) Policy: Can be solved in groups (acknowledge collaborators)

More information

Neural Networks and the Back-propagation Algorithm

Neural Networks and the Back-propagation Algorithm Neural Networks and the Back-propagation Algorithm Francisco S. Melo In these notes, we provide a brief overview of the main concepts concerning neural networks and the back-propagation algorithm. We closely

More information

Machine Learning and Bayesian Inference. Unsupervised learning. Can we find regularity in data without the aid of labels?

Machine Learning and Bayesian Inference. Unsupervised learning. Can we find regularity in data without the aid of labels? Machine Learning and Bayesian Inference Dr Sean Holden Computer Laboratory, Room FC6 Telephone extension 6372 Email: sbh11@cl.cam.ac.uk www.cl.cam.ac.uk/ sbh11/ Unsupervised learning Can we find regularity

More information

Lecture 5: Logistic Regression. Neural Networks

Lecture 5: Logistic Regression. Neural Networks Lecture 5: Logistic Regression. Neural Networks Logistic regression Comparison with generative models Feed-forward neural networks Backpropagation Tricks for training neural networks COMP-652, Lecture

More information

2015 Todd Neller. A.I.M.A. text figures 1995 Prentice Hall. Used by permission. Neural Networks. Todd W. Neller

2015 Todd Neller. A.I.M.A. text figures 1995 Prentice Hall. Used by permission. Neural Networks. Todd W. Neller 2015 Todd Neller. A.I.M.A. text figures 1995 Prentice Hall. Used by permission. Neural Networks Todd W. Neller Machine Learning Learning is such an important part of what we consider "intelligence" that

More information

Sample questions for COMP-424 final exam

Sample questions for COMP-424 final exam Sample questions for COMP-44 final exam Doina Precup These are examples of questions from past exams. They are provided without solutions. However, Doina and the TAs would be happy to answer questions

More information

1 What a Neural Network Computes

1 What a Neural Network Computes Neural Networks 1 What a Neural Network Computes To begin with, we will discuss fully connected feed-forward neural networks, also known as multilayer perceptrons. A feedforward neural network consists

More information

Reinforcement Learning Active Learning

Reinforcement Learning Active Learning Reinforcement Learning Active Learning Alan Fern * Based in part on slides by Daniel Weld 1 Active Reinforcement Learning So far, we ve assumed agent has a policy We just learned how good it is Now, suppose

More information

Chapter 16 Planning Based on Markov Decision Processes

Chapter 16 Planning Based on Markov Decision Processes Lecture slides for Automated Planning: Theory and Practice Chapter 16 Planning Based on Markov Decision Processes Dana S. Nau University of Maryland 12:48 PM February 29, 2012 1 Motivation c a b Until

More information

The exam is closed book, closed calculator, and closed notes except your one-page crib sheet.

The exam is closed book, closed calculator, and closed notes except your one-page crib sheet. CS 188 Fall 2018 Introduction to Artificial Intelligence Practice Final You have approximately 2 hours 50 minutes. The exam is closed book, closed calculator, and closed notes except your one-page crib

More information

Q-learning. Tambet Matiisen

Q-learning. Tambet Matiisen Q-learning Tambet Matiisen (based on chapter 11.3 of online book Artificial Intelligence, foundations of computational agents by David Poole and Alan Mackworth) Stochastic gradient descent Experience

More information

CSE 546 Final Exam, Autumn 2013

CSE 546 Final Exam, Autumn 2013 CSE 546 Final Exam, Autumn 0. Personal info: Name: Student ID: E-mail address:. There should be 5 numbered pages in this exam (including this cover sheet).. You can use any material you brought: any book,

More information

Distributed Optimization. Song Chong EE, KAIST

Distributed Optimization. Song Chong EE, KAIST Distributed Optimization Song Chong EE, KAIST songchong@kaist.edu Dynamic Programming for Path Planning A path-planning problem consists of a weighted directed graph with a set of n nodes N, directed links

More information

Data Mining Part 5. Prediction

Data Mining Part 5. Prediction Data Mining Part 5. Prediction 5.5. Spring 2010 Instructor: Dr. Masoud Yaghini Outline How the Brain Works Artificial Neural Networks Simple Computing Elements Feed-Forward Networks Perceptrons (Single-layer,

More information

AI Programming CS F-20 Neural Networks

AI Programming CS F-20 Neural Networks AI Programming CS662-2008F-20 Neural Networks David Galles Department of Computer Science University of San Francisco 20-0: Symbolic AI Most of this class has been focused on Symbolic AI Focus or symbols

More information

CSC242: Intro to AI. Lecture 21

CSC242: Intro to AI. Lecture 21 CSC242: Intro to AI Lecture 21 Administrivia Project 4 (homeworks 18 & 19) due Mon Apr 16 11:59PM Posters Apr 24 and 26 You need an idea! You need to present it nicely on 2-wide by 4-high landscape pages

More information

Introduction to Reinforcement Learning

Introduction to Reinforcement Learning CSCI-699: Advanced Topics in Deep Learning 01/16/2019 Nitin Kamra Spring 2019 Introduction to Reinforcement Learning 1 What is Reinforcement Learning? So far we have seen unsupervised and supervised learning.

More information

Week 5: Logistic Regression & Neural Networks

Week 5: Logistic Regression & Neural Networks Week 5: Logistic Regression & Neural Networks Instructor: Sergey Levine 1 Summary: Logistic Regression In the previous lecture, we covered logistic regression. To recap, logistic regression models and

More information

Lab 5: 16 th April Exercises on Neural Networks

Lab 5: 16 th April Exercises on Neural Networks Lab 5: 16 th April 01 Exercises on Neural Networks 1. What are the values of weights w 0, w 1, and w for the perceptron whose decision surface is illustrated in the figure? Assume the surface crosses the

More information

1. (3 pts) In MDPs, the values of states are related by the Bellman equation: U(s) = R(s) + γ max P (s s, a)u(s )

1. (3 pts) In MDPs, the values of states are related by the Bellman equation: U(s) = R(s) + γ max P (s s, a)u(s ) 3 MDP (12 points) 1. (3 pts) In MDPs, the values of states are related by the Bellman equation: U(s) = R(s) + γ max P (s s, a)u(s ) a s where R(s) is the reward associated with being in state s. Suppose

More information

EEE 241: Linear Systems

EEE 241: Linear Systems EEE 4: Linear Systems Summary # 3: Introduction to artificial neural networks DISTRIBUTED REPRESENTATION An ANN consists of simple processing units communicating with each other. The basic elements of

More information

Week 5: The Backpropagation Algorithm

Week 5: The Backpropagation Algorithm Week 5: The Backpropagation Algorithm Hans Georg Schaathun 25th April 2017 Time Topic Reading 8.15- Recap of tutorials last week Lecture: From perceptron to back-propagation Marsland Section 4 9.00- Tutorial

More information

This question has three parts, each of which can be answered concisely, but be prepared to explain and justify your concise answer.

This question has three parts, each of which can be answered concisely, but be prepared to explain and justify your concise answer. This question has three parts, each of which can be answered concisely, but be prepared to explain and justify your concise answer. 1. Suppose you have a policy and its action-value function, q, then you

More information

CS 4700: Foundations of Artificial Intelligence

CS 4700: Foundations of Artificial Intelligence CS 4700: Foundations of Artificial Intelligence Prof. Bart Selman selman@cs.cornell.edu Machine Learning: Neural Networks R&N 18.7 Intro & perceptron learning 1 2 Neuron: How the brain works # neurons

More information

CS788 Dialogue Management Systems Lecture #2: Markov Decision Processes

CS788 Dialogue Management Systems Lecture #2: Markov Decision Processes CS788 Dialogue Management Systems Lecture #2: Markov Decision Processes Kee-Eung Kim KAIST EECS Department Computer Science Division Markov Decision Processes (MDPs) A popular model for sequential decision

More information

CSE 573. Markov Decision Processes: Heuristic Search & Real-Time Dynamic Programming. Slides adapted from Andrey Kolobov and Mausam

CSE 573. Markov Decision Processes: Heuristic Search & Real-Time Dynamic Programming. Slides adapted from Andrey Kolobov and Mausam CSE 573 Markov Decision Processes: Heuristic Search & Real-Time Dynamic Programming Slides adapted from Andrey Kolobov and Mausam 1 Stochastic Shortest-Path MDPs: Motivation Assume the agent pays cost

More information

Q-Learning in Continuous State Action Spaces

Q-Learning in Continuous State Action Spaces Q-Learning in Continuous State Action Spaces Alex Irpan alexirpan@berkeley.edu December 5, 2015 Contents 1 Introduction 1 2 Background 1 3 Q-Learning 2 4 Q-Learning In Continuous Spaces 4 5 Experimental

More information

CSE446: Neural Networks Spring Many slides are adapted from Carlos Guestrin and Luke Zettlemoyer

CSE446: Neural Networks Spring Many slides are adapted from Carlos Guestrin and Luke Zettlemoyer CSE446: Neural Networks Spring 2017 Many slides are adapted from Carlos Guestrin and Luke Zettlemoyer Human Neurons Switching time ~ 0.001 second Number of neurons 10 10 Connections per neuron 10 4-5 Scene

More information

Introduction to Fall 2009 Artificial Intelligence Final Exam

Introduction to Fall 2009 Artificial Intelligence Final Exam CS 188 Introduction to Fall 2009 Artificial Intelligence Final Exam INSTRUCTIONS You have 3 hours. The exam is closed book, closed notes except a two-page crib sheet. Please use non-programmable calculators

More information

Approximate Q-Learning. Dan Weld / University of Washington

Approximate Q-Learning. Dan Weld / University of Washington Approximate Q-Learning Dan Weld / University of Washington [Many slides taken from Dan Klein and Pieter Abbeel / CS188 Intro to AI at UC Berkeley materials available at http://ai.berkeley.edu.] Q Learning

More information

In the Name of God. Lecture 11: Single Layer Perceptrons

In the Name of God. Lecture 11: Single Layer Perceptrons 1 In the Name of God Lecture 11: Single Layer Perceptrons Perceptron: architecture We consider the architecture: feed-forward NN with one layer It is sufficient to study single layer perceptrons with just

More information

CMU Lecture 12: Reinforcement Learning. Teacher: Gianni A. Di Caro

CMU Lecture 12: Reinforcement Learning. Teacher: Gianni A. Di Caro CMU 15-781 Lecture 12: Reinforcement Learning Teacher: Gianni A. Di Caro REINFORCEMENT LEARNING Transition Model? State Action Reward model? Agent Goal: Maximize expected sum of future rewards 2 MDP PLANNING

More information

Artificial Neural Networks Examination, June 2005

Artificial Neural Networks Examination, June 2005 Artificial Neural Networks Examination, June 2005 Instructions There are SIXTY questions. (The pass mark is 30 out of 60). For each question, please select a maximum of ONE of the given answers (either

More information

Be able to define the following terms and answer basic questions about them:

Be able to define the following terms and answer basic questions about them: CS440/ECE448 Section Q Fall 2017 Final Review Be able to define the following terms and answer basic questions about them: Probability o Random variables, axioms of probability o Joint, marginal, conditional

More information

MARKOV DECISION PROCESSES (MDP) AND REINFORCEMENT LEARNING (RL) Versione originale delle slide fornita dal Prof. Francesco Lo Presti

MARKOV DECISION PROCESSES (MDP) AND REINFORCEMENT LEARNING (RL) Versione originale delle slide fornita dal Prof. Francesco Lo Presti 1 MARKOV DECISION PROCESSES (MDP) AND REINFORCEMENT LEARNING (RL) Versione originale delle slide fornita dal Prof. Francesco Lo Presti Historical background 2 Original motivation: animal learning Early

More information

Review: TD-Learning. TD (SARSA) Learning for Q-values. Bellman Equations for Q-values. P (s, a, s )[R(s, a, s )+ Q (s, (s ))]

Review: TD-Learning. TD (SARSA) Learning for Q-values. Bellman Equations for Q-values. P (s, a, s )[R(s, a, s )+ Q (s, (s ))] Review: TD-Learning function TD-Learning(mdp) returns a policy Class #: Reinforcement Learning, II 8s S, U(s) =0 set start-state s s 0 choose action a, using -greedy policy based on U(s) U(s) U(s)+ [r

More information

Prioritized Sweeping Converges to the Optimal Value Function

Prioritized Sweeping Converges to the Optimal Value Function Technical Report DCS-TR-631 Prioritized Sweeping Converges to the Optimal Value Function Lihong Li and Michael L. Littman {lihong,mlittman}@cs.rutgers.edu RL 3 Laboratory Department of Computer Science

More information

Be able to define the following terms and answer basic questions about them:

Be able to define the following terms and answer basic questions about them: CS440/ECE448 Fall 2016 Final Review Be able to define the following terms and answer basic questions about them: Probability o Random variables o Axioms of probability o Joint, marginal, conditional probability

More information

Artificial Neural Networks" and Nonparametric Methods" CMPSCI 383 Nov 17, 2011!

Artificial Neural Networks and Nonparametric Methods CMPSCI 383 Nov 17, 2011! Artificial Neural Networks" and Nonparametric Methods" CMPSCI 383 Nov 17, 2011! 1 Todayʼs lecture" How the brain works (!)! Artificial neural networks! Perceptrons! Multilayer feed-forward networks! Error

More information

Problem One: Order Relations i. What three properties does a binary relation have to have to be a partial order?

Problem One: Order Relations i. What three properties does a binary relation have to have to be a partial order? CS103 Handout 16 Fall 2011 November 4, 2011 Extra Practice Problems Many of you have expressed interest in additional practice problems to review the material from the first four weeks of CS103. This handout

More information

Reinforcement Learning

Reinforcement Learning 1 Reinforcement Learning Chris Watkins Department of Computer Science Royal Holloway, University of London July 27, 2015 2 Plan 1 Why reinforcement learning? Where does this theory come from? Markov decision

More information

State Space Abstractions for Reinforcement Learning

State Space Abstractions for Reinforcement Learning State Space Abstractions for Reinforcement Learning Rowan McAllister and Thang Bui MLG RCC 6 November 24 / 24 Outline Introduction Markov Decision Process Reinforcement Learning State Abstraction 2 Abstraction

More information

Final Examination CS 540-2: Introduction to Artificial Intelligence

Final Examination CS 540-2: Introduction to Artificial Intelligence Final Examination CS 540-2: Introduction to Artificial Intelligence May 7, 2017 LAST NAME: SOLUTIONS FIRST NAME: Problem Score Max Score 1 14 2 10 3 6 4 10 5 11 6 9 7 8 9 10 8 12 12 8 Total 100 1 of 11

More information

Lecture 13: Introduction to Neural Networks

Lecture 13: Introduction to Neural Networks Lecture 13: Introduction to Neural Networks Instructor: Aditya Bhaskara Scribe: Dietrich Geisler CS 5966/6966: Theory of Machine Learning March 8 th, 2017 Abstract This is a short, two-line summary of

More information

Lecture 3: Policy Evaluation Without Knowing How the World Works / Model Free Policy Evaluation

Lecture 3: Policy Evaluation Without Knowing How the World Works / Model Free Policy Evaluation Lecture 3: Policy Evaluation Without Knowing How the World Works / Model Free Policy Evaluation CS234: RL Emma Brunskill Winter 2018 Material builds on structure from David SIlver s Lecture 4: Model-Free

More information

CSCI 315: Artificial Intelligence through Deep Learning

CSCI 315: Artificial Intelligence through Deep Learning CSCI 35: Artificial Intelligence through Deep Learning W&L Fall Term 27 Prof. Levy Convolutional Networks http://wernerstudio.typepad.com/.a/6ad83549adb53ef53629ccf97c-5wi Convolution: Convolution is

More information

Introduction to Natural Computation. Lecture 9. Multilayer Perceptrons and Backpropagation. Peter Lewis

Introduction to Natural Computation. Lecture 9. Multilayer Perceptrons and Backpropagation. Peter Lewis Introduction to Natural Computation Lecture 9 Multilayer Perceptrons and Backpropagation Peter Lewis 1 / 25 Overview of the Lecture Why multilayer perceptrons? Some applications of multilayer perceptrons.

More information

Machine Learning I Reinforcement Learning

Machine Learning I Reinforcement Learning Machine Learning I Reinforcement Learning Thomas Rückstieß Technische Universität München December 17/18, 2009 Literature Book: Reinforcement Learning: An Introduction Sutton & Barto (free online version:

More information