Prediction problems 3: Validation and Model Checking

Size: px
Start display at page:

Download "Prediction problems 3: Validation and Model Checking"

Transcription

1 Prediction problems 3: Validation and Model Checking Data Science 101 Team May 17, 2018

2 Outline Validation Why is it important How should we do it? Model checking Checking whether your model is a good fit to the data What to do if it is not?

3 Using a very powerful model Let us do a small experiment predicting handwritten digits again (4 versus 9), where x is pixels in image, y { 1, 1} Idea: why use just the pixel values? Why not squares or other powers of pixel values? Use a more powerful prediction model with vectors β (1), β (2), and β (3), which weight powers of pixel intensity : ŷ = β 0 + p j=1 β (1) j x j + p j=1 β (2) j xj 2 }{{} quadratic terms + p j=1 β (3) j xj 3 }{{} cubic terms

4 Generating Polynomials in R Xtrain.powers = cbind(xtrain, Xtrain * Xtrain, Xtrain * Xtr Xtest.powers = cbind(xtest, Xtest * Xtest, Xtest * Xtest * poly.reg = lm(ytrain ~ Xtrain.powers) What is your hypothesis about how this model will do on Error on the training data? Error on the testing data?

5 Experiments with a powerful model on digit recognition ## Errors in training cat(paste("training data: ", sum(sign(poly.reg$fitted.value length(ytrain), " data points\n", sep = "")) Training data: 0 mistakes of 1296 data points Now, the moment of truth: how does our super classifier work? beta.0 = poly.reg$coefficients[1] beta = poly.reg$coefficients[2:length(poly.reg$coefficients test.pred = Xtest.powers %*% beta + beta.0 ## Now, let's find a few example mistakes mistakes = which(sign(test.pred)!= ytest) cat(paste("test data: ", length(mistakes), " mistakes of ", round(100 * length(mistakes)/length(ytest), digits = 1) Test data: 29 mistakes of 377 data points (7.7% error)

6 Experiments with a simple model on digit recognition linreg = lm(ytrain ~ Xtrain) ## Errors in training mistakes = which(sign(linreg$fitted.values)!= ytrain) cat(paste("training data: ", length(mistakes), " mistakes o " data points (", round(100 * length(mistakes)/length(y "% error)\n", sep = "")) Training data: 7 mistakes of 1296 data points (0.5% error)

7 What about our old standby simple classifier? beta.0 = linreg$coefficients[1] beta = linreg$coefficients[2:length(linreg$coefficients)] test.pred = Xtest %*% beta + beta.0 ## Now, let's find a few example mistakes mistakes = which(sign(test.pred)!= ytest) cat(paste("test data: ", length(mistakes), " mistakes of ", round(100 * length(mistakes)/length(ytest), digits = 1) Test data: 11 mistakes of 377 data points (2.9% error)

8 Validation How can we check how good our classifier is? The basic goal in prediction (machine learning) is to do well on future data Often, the best source of future data is to hold some data in the training set out in a test set or validation set Why do we do this? To avoid overfitting forcing our model to match our training data too closely To confirm that we are making reasonable predictions

9 A little theory (the classification case) Suppose we fit a model with parameters β on a training set We keep out a validation (or test) set of size N, with pairs x i, y i, independent of the training data For a classification problem, with very high probability, the validation error rate êrr = 1 N N 1{ŷ i y i } i=1 is an accurate measure of the true error rate of our classifier for all future data, at least within êrr/ N + 4/N

10 Classification continued... Plot of validation error as a function of validation test size for several random validation sets

11 Revisiting validation of our models For simple classifier: Test data: 11 mistakes of 377 data points (2.9% error) The true error rate (on future images) should be no more than =.019 better or worse than 2.9% error. For the fancier classifier: Test data: 29 mistakes of 377 data points (7.7% error) So the true error rate (on future images) is (likely) no more than.077 N + 4 N =.025 better or worse than 7.7% error.

12 What is going on? Overfitting: we have overfit to our training data When we use a model that is too powerful for the amount of data we have, we fit spurious junk N = 10 # Generate data that is nothing but random Normal n y = 0.25 * rnorm(n) x = seq(0, 1, length.out = N) y x Fit the noise with a model of the form ŷ = β 0 + β 1 x + β 2 x β 9 x 9

13 Fitting a model that predicts the data perfectly X = cbind(x) for (ii in 2:(N - 1)) { X = cbind(x, x^ii) # Construct data with all powers up } polynomial.linreg = lm(y ~ X) y x

14 Generating a little more data And yet, if we get a bit more data, it becomes clear we have overfit y.additional = 0.25 * rnorm(100) plot(x, y, xlab = "x", pch = 21, ylim = c(-2, 2), ylab = "y cex = 2) points(x, y, pch = 20) points(x.interp, y.additional, pch = 20) lines(c(0, 1), c(0, 0), col = "red", lwd = 2) lines(x.interp, yhat, col = "blue", lwd = 2) y x

15 Overfitting and the bias-variance tradeoff

16 Model checking Defining the model (according to George Box) All models are wrong some models are useful... Just as the ability to devise simple but evocative models is the signature of the great scientist so overelaboration and overparameterization is often the mark of mediocrity What do we check for in a regression model? Are the assumptions reasonable? Have we chosen good features (x variables)? We consider two diagnostics (also good for modeling) Residual plots Probability plots

17 Model checking: residual plots Do we have good features? We make predictions ŷ = β 0 + p β j x j j=1 Consider the errors (residuals) in each prediction p r = y ŷ = y β 0 β j x j j=1 For each variable j {1, 2,..., p}, we ask Is the assumption of linearity reasonable?

18 Model checking: what function should we use? Idea: holding all other variables constant (but at their best fits), what is the right fit for variable j? Plot the prediction errors y ŷ, removing predicted contribution of variable x j, versus variable x j That is, plot y ŷ + β }{{} j x j = y β 0 β k x k vs. x j }{{} k j residual remove component for j

19 Model checking example: finding the right functions Generate data from the model y = 2.1 x x x x x ε where ε is normal mean 0, variance 1/4 p = 4 n = 100 betas = c(2.1, 3.5, -1.9, 2, 1.5) x.samples = rnorm(n * p) X = matrix(x.samples, nrow = n, ncol = p) X.with.quadratic = cbind(x, X[, 1]^2) y = X.with.quadratic %*% betas * rnorm(n) We have generated n = 100 points from this distribution

20 Model checking example: basic plots Plot y against each coordinate of x par(mfrow = c(2, 2)) plot(x[, 1], y, xlab = "x1", ylab = "y") plot(x[, 2], y, xlab = "x2", ylab = "y") plot(x[, 3], y, xlab = "x3", ylab = "y") plot(x[, 4], y, xlab = "x4", ylab = "y") y y x x2 y y x x4

21 Model checking example: first diagnostic Plot y against each coordinate of x linreg = lm(formula = y ~ X) betas = linreg$coefficients[2:(p+1)] par(mfrow = c(2, 2)) plot(x[, 1], linreg$residuals + X[, 1] * betas[1], xlab = " plot(x[, 2], linreg$residuals + X[, 2] * betas[2], xlab = " plot(x[, 3], linreg$residuals + X[, 3] * betas[3], xlab = " plot(x[, 4], linreg$residuals + X[, 4] * betas[4], xlab = " residual residual x1 x2 residual residual x3 x4

22 x3 x4 Model checking example: adding quadratic in Plot y against each coordinate of x X.with.quadratic = cbind(x, X[, 1]^2) linreg = lm(formula = y ~ X.with.quadratic) betas = linreg$coefficients[2:(p+1)] par(mfrow = c(2, 2)) plot(x[, 1], linreg$residuals + X[, 1] * betas[1], xlab = " plot(x[, 2], linreg$residuals + X[, 2] * betas[2], xlab = " plot(x[, 3], linreg$residuals + X[, 3] * betas[3], xlab = " plot(x[, 4], linreg$residuals + X[, 4] * betas[4], xlab = " residual residual x x2 residual residual

23 Model checking: do we have fidelity to the data? The QQ ( quantile-quantile ) plot is a plot of quantiles of one distribution against another Quantile of a distribution: for α [0, 1], q α = q : P(Y q) = α The function qqnorm plots the quantiles of a distribution against those for a normal If things are normal, qqnorm should look linear

24 Model checking: do we have fidelity to the data? Example 1: our simulation qqnorm(linreg$residuals/sd(linreg$residuals)) lines(c(-2, 2), c(-2, 2), col = "red", lwd = 2) Normal Q Q Plot Sample Quantiles Theoretical Quantiles

25 Model checking: does our model look good Example 2: Boston housing data set library(mass) data(boston) ## Remove the $500,000 sale price, as it is a category boston = Boston[Boston$medv!= 50, ] fullregression = lm(formula = medv ~., data = boston) qqnorm(fullregression$residuals/sd(fullregression$residuals lines(c(-3, 3), c(-3, 3), col = "red", lwd = 2) Normal Q Q Plot Sample Quantiles Theoretical Quantiles

ECON/FIN 250: Forecasting in Finance and Economics: Section 4.1 Forecasting Fundamentals

ECON/FIN 250: Forecasting in Finance and Economics: Section 4.1 Forecasting Fundamentals ECON/FIN 250: Forecasting in Finance and Economics: Section 4.1 Forecasting Fundamentals Patrick Herb Brandeis University Spring 2016 Patrick Herb (Brandeis University) Forecasting Fundamentals ECON/FIN

More information

Holiday Assignment PS 531

Holiday Assignment PS 531 Holiday Assignment PS 531 Prof: Jake Bowers TA: Paul Testa January 27, 2014 Overview Below is a brief assignment for you to complete over the break. It should serve as refresher, covering some of the basic

More information

Handout 4: Simple Linear Regression

Handout 4: Simple Linear Regression Handout 4: Simple Linear Regression By: Brandon Berman The following problem comes from Kokoska s Introductory Statistics: A Problem-Solving Approach. The data can be read in to R using the following code:

More information

Chapter 5 Exercises 1

Chapter 5 Exercises 1 Chapter 5 Exercises 1 Data Analysis & Graphics Using R, 2 nd edn Solutions to Exercises (December 13, 2006) Preliminaries > library(daag) Exercise 2 For each of the data sets elastic1 and elastic2, determine

More information

DISCRIMINANT ANALYSIS: LDA AND QDA

DISCRIMINANT ANALYSIS: LDA AND QDA Stat 427/627 Statistical Machine Learning (Baron) HOMEWORK 6, Solutions DISCRIMINANT ANALYSIS: LDA AND QDA. Chap 4, exercise 5. (a) On a training set, LDA and QDA are both expected to perform well. LDA

More information

Class 04 - Statistical Inference

Class 04 - Statistical Inference Class 4 - Statistical Inference Question 1: 1. What parameters control the shape of the normal distribution? Make some histograms of different normal distributions, in each, alter the parameter values

More information

Assignment 4. Machine Learning, Summer term 2014, Ulrike von Luxburg To be discussed in exercise groups on May 12-14

Assignment 4. Machine Learning, Summer term 2014, Ulrike von Luxburg To be discussed in exercise groups on May 12-14 Assignment 4 Machine Learning, Summer term 2014, Ulrike von Luxburg To be discussed in exercise groups on May 12-14 Exercise 1 (Rewriting the Fisher criterion for LDA, 2 points) criterion J(w) = w, m +

More information

Linear Regression (continued)

Linear Regression (continued) Linear Regression (continued) Professor Ameet Talwalkar Professor Ameet Talwalkar CS260 Machine Learning Algorithms February 6, 2017 1 / 39 Outline 1 Administration 2 Review of last lecture 3 Linear regression

More information

MIRA, SVM, k-nn. Lirong Xia

MIRA, SVM, k-nn. Lirong Xia MIRA, SVM, k-nn Lirong Xia Linear Classifiers (perceptrons) Inputs are feature values Each feature has a weight Sum is the activation activation w If the activation is: Positive: output +1 Negative, output

More information

Introduction and Single Predictor Regression. Correlation

Introduction and Single Predictor Regression. Correlation Introduction and Single Predictor Regression Dr. J. Kyle Roberts Southern Methodist University Simmons School of Education and Human Development Department of Teaching and Learning Correlation A correlation

More information

Explore the data. Anja Bråthen Kristoffersen

Explore the data. Anja Bråthen Kristoffersen Explore the data Anja Bråthen Kristoffersen density 0.2 0.4 0.6 0.8 Probability distributions Can be either discrete or continuous (uniform, bernoulli, normal, etc) Defined by a density function, p(x)

More information

Neural networks (NN) 1

Neural networks (NN) 1 Neural networks (NN) 1 Hedibert F. Lopes Insper Institute of Education and Research São Paulo, Brazil 1 Slides based on Chapter 11 of Hastie, Tibshirani and Friedman s book The Elements of Statistical

More information

Explore the data. Anja Bråthen Kristoffersen Biomedical Research Group

Explore the data. Anja Bråthen Kristoffersen Biomedical Research Group Explore the data Anja Bråthen Kristoffersen Biomedical Research Group density 0.2 0.4 0.6 0.8 Probability distributions Can be either discrete or continuous (uniform, bernoulli, normal, etc) Defined by

More information

Statistical Computing Session 4: Random Simulation

Statistical Computing Session 4: Random Simulation Statistical Computing Session 4: Random Simulation Paul Eilers & Dimitris Rizopoulos Department of Biostatistics, Erasmus University Medical Center p.eilers@erasmusmc.nl Masters Track Statistical Sciences,

More information

Bias-Variance Tradeoff. David Dalpiaz STAT 430, Fall 2017

Bias-Variance Tradeoff. David Dalpiaz STAT 430, Fall 2017 Bias-Variance Tradeoff David Dalpiaz STAT 430, Fall 2017 1 Announcements Homework 03 released Regrade policy Style policy? 2 Statistical Learning Supervised Learning Regression Parametric Non-Parametric

More information

Chapter 5 Exercises 1. Data Analysis & Graphics Using R Solutions to Exercises (April 24, 2004)

Chapter 5 Exercises 1. Data Analysis & Graphics Using R Solutions to Exercises (April 24, 2004) Chapter 5 Exercises 1 Data Analysis & Graphics Using R Solutions to Exercises (April 24, 2004) Preliminaries > library(daag) Exercise 2 The final three sentences have been reworded For each of the data

More information

1 A Support Vector Machine without Support Vectors

1 A Support Vector Machine without Support Vectors CS/CNS/EE 53 Advanced Topics in Machine Learning Problem Set 1 Handed out: 15 Jan 010 Due: 01 Feb 010 1 A Support Vector Machine without Support Vectors In this question, you ll be implementing an online

More information

Overfitting, Bias / Variance Analysis

Overfitting, Bias / Variance Analysis Overfitting, Bias / Variance Analysis Professor Ameet Talwalkar Professor Ameet Talwalkar CS260 Machine Learning Algorithms February 8, 207 / 40 Outline Administration 2 Review of last lecture 3 Basic

More information

Chapter 8 Conclusion

Chapter 8 Conclusion 1 Chapter 8 Conclusion Three questions about test scores (score) and student-teacher ratio (str): a) After controlling for differences in economic characteristics of different districts, does the effect

More information

Chapter 9. Polynomial Models and Interaction (Moderator) Analysis

Chapter 9. Polynomial Models and Interaction (Moderator) Analysis Chapter 9. Polynomial Models and Interaction (Moderator) Analysis In Chapter 4, we introduced the quadratic model as a device to test for curvature in the conditional mean function. You could also use

More information

Introduction to Statistics and R

Introduction to Statistics and R Introduction to Statistics and R Mayo-Illinois Computational Genomics Workshop (2018) Ruoqing Zhu, Ph.D. Department of Statistics, UIUC rqzhu@illinois.edu June 18, 2018 Abstract This document is a supplimentary

More information

How to mathematically model a linear relationship and make predictions.

How to mathematically model a linear relationship and make predictions. Introductory Statistics Lectures Linear regression How to mathematically model a linear relationship and make predictions. Department of Mathematics Pima Community College Redistribution of this material

More information

CSCI567 Machine Learning (Fall 2014)

CSCI567 Machine Learning (Fall 2014) CSCI567 Machine Learning (Fall 24) Drs. Sha & Liu {feisha,yanliu.cs}@usc.edu October 2, 24 Drs. Sha & Liu ({feisha,yanliu.cs}@usc.edu) CSCI567 Machine Learning (Fall 24) October 2, 24 / 24 Outline Review

More information

A short introduction to supervised learning, with applications to cancer pathway analysis Dr. Christina Leslie

A short introduction to supervised learning, with applications to cancer pathway analysis Dr. Christina Leslie A short introduction to supervised learning, with applications to cancer pathway analysis Dr. Christina Leslie Computational Biology Program Memorial Sloan-Kettering Cancer Center http://cbio.mskcc.org/leslielab

More information

Hierarchical Modeling

Hierarchical Modeling Hierarchical Modeling Tim Frasier Copyright Tim Frasier This work is licensed under the Creative Commons Attribution 4.0 International license. Click here for more information. General Idea One benefit

More information

Chapter 3 - Linear Regression

Chapter 3 - Linear Regression Chapter 3 - Linear Regression Lab Solution 1 Problem 9 First we will read the Auto" data. Note that most datasets referred to in the text are in the R package the authors developed. So we just need to

More information

6.867 Machine learning

6.867 Machine learning 6.867 Machine learning Mid-term eam October 8, 6 ( points) Your name and MIT ID: .5.5 y.5 y.5 a).5.5 b).5.5.5.5 y.5 y.5 c).5.5 d).5.5 Figure : Plots of linear regression results with different types of

More information

CLUe Training An Introduction to Machine Learning in R with an example from handwritten digit recognition

CLUe Training An Introduction to Machine Learning in R with an example from handwritten digit recognition CLUe Training An Introduction to Machine Learning in R with an example from handwritten digit recognition Ad Feelders Universiteit Utrecht Department of Information and Computing Sciences Algorithmic Data

More information

Gov 2000: 9. Regression with Two Independent Variables

Gov 2000: 9. Regression with Two Independent Variables Gov 2000: 9. Regression with Two Independent Variables Matthew Blackwell Harvard University mblackwell@gov.harvard.edu Where are we? Where are we going? Last week: we learned about how to calculate a simple

More information

Midterm Review CS 7301: Advanced Machine Learning. Vibhav Gogate The University of Texas at Dallas

Midterm Review CS 7301: Advanced Machine Learning. Vibhav Gogate The University of Texas at Dallas Midterm Review CS 7301: Advanced Machine Learning Vibhav Gogate The University of Texas at Dallas Supervised Learning Issues in supervised learning What makes learning hard Point Estimation: MLE vs Bayesian

More information

Statistical Learning

Statistical Learning Statistical Learning Supervised learning Assume: Estimate: quantity of interest function predictors to get: error Such that: For prediction and/or inference Model fit vs. Model stability (Bias variance

More information

Machine learning - HT Basis Expansion, Regularization, Validation

Machine learning - HT Basis Expansion, Regularization, Validation Machine learning - HT 016 4. Basis Expansion, Regularization, Validation Varun Kanade University of Oxford Feburary 03, 016 Outline Introduce basis function to go beyond linear regression Understanding

More information

Linear Regression Model. Badr Missaoui

Linear Regression Model. Badr Missaoui Linear Regression Model Badr Missaoui Introduction What is this course about? It is a course on applied statistics. It comprises 2 hours lectures each week and 1 hour lab sessions/tutorials. We will focus

More information

Machine Learning Linear Regression. Prof. Matteo Matteucci

Machine Learning Linear Regression. Prof. Matteo Matteucci Machine Learning Linear Regression Prof. Matteo Matteucci Outline 2 o Simple Linear Regression Model Least Squares Fit Measures of Fit Inference in Regression o Multi Variate Regession Model Least Squares

More information

CSC2515 Winter 2015 Introduction to Machine Learning. Lecture 2: Linear regression

CSC2515 Winter 2015 Introduction to Machine Learning. Lecture 2: Linear regression CSC2515 Winter 2015 Introduction to Machine Learning Lecture 2: Linear regression All lecture slides will be available as.pdf on the course website: http://www.cs.toronto.edu/~urtasun/courses/csc2515/csc2515_winter15.html

More information

VBM683 Machine Learning

VBM683 Machine Learning VBM683 Machine Learning Pinar Duygulu Slides are adapted from Dhruv Batra Bias is the algorithm's tendency to consistently learn the wrong thing by not taking into account all the information in the data

More information

Midterm Review CS 6375: Machine Learning. Vibhav Gogate The University of Texas at Dallas

Midterm Review CS 6375: Machine Learning. Vibhav Gogate The University of Texas at Dallas Midterm Review CS 6375: Machine Learning Vibhav Gogate The University of Texas at Dallas Machine Learning Supervised Learning Unsupervised Learning Reinforcement Learning Parametric Y Continuous Non-parametric

More information

Learning Theory. Machine Learning CSE546 Carlos Guestrin University of Washington. November 25, Carlos Guestrin

Learning Theory. Machine Learning CSE546 Carlos Guestrin University of Washington. November 25, Carlos Guestrin Learning Theory Machine Learning CSE546 Carlos Guestrin University of Washington November 25, 2013 Carlos Guestrin 2005-2013 1 What now n We have explored many ways of learning from data n But How good

More information

Perceptron. Subhransu Maji. CMPSCI 689: Machine Learning. 3 February February 2015

Perceptron. Subhransu Maji. CMPSCI 689: Machine Learning. 3 February February 2015 Perceptron Subhransu Maji CMPSCI 689: Machine Learning 3 February 2015 5 February 2015 So far in the class Decision trees Inductive bias: use a combination of small number of features Nearest neighbor

More information

PAC-learning, VC Dimension and Margin-based Bounds

PAC-learning, VC Dimension and Margin-based Bounds More details: General: http://www.learning-with-kernels.org/ Example of more complex bounds: http://www.research.ibm.com/people/t/tzhang/papers/jmlr02_cover.ps.gz PAC-learning, VC Dimension and Margin-based

More information

Introduction to Statistical modeling: handout for Math 489/583

Introduction to Statistical modeling: handout for Math 489/583 Introduction to Statistical modeling: handout for Math 489/583 Statistical modeling occurs when we are trying to model some data using statistical tools. From the start, we recognize that no model is perfect

More information

Machine Learning

Machine Learning Machine Learning 10-701 Tom M. Mitchell Machine Learning Department Carnegie Mellon University February 1, 2011 Today: Generative discriminative classifiers Linear regression Decomposition of error into

More information

Classifier Complexity and Support Vector Classifiers

Classifier Complexity and Support Vector Classifiers Classifier Complexity and Support Vector Classifiers Feature 2 6 4 2 0 2 4 6 8 RBF kernel 10 10 8 6 4 2 0 2 4 6 Feature 1 David M.J. Tax Pattern Recognition Laboratory Delft University of Technology D.M.J.Tax@tudelft.nl

More information

9. Least squares data fitting

9. Least squares data fitting L. Vandenberghe EE133A (Spring 2017) 9. Least squares data fitting model fitting regression linear-in-parameters models time series examples validation least squares classification statistics interpretation

More information

Least Squares Classification

Least Squares Classification Least Squares Classification Stephen Boyd EE103 Stanford University November 4, 2017 Outline Classification Least squares classification Multi-class classifiers Classification 2 Classification data fitting

More information

SUPERVISED LEARNING: INTRODUCTION TO CLASSIFICATION

SUPERVISED LEARNING: INTRODUCTION TO CLASSIFICATION SUPERVISED LEARNING: INTRODUCTION TO CLASSIFICATION 1 Outline Basic terminology Features Training and validation Model selection Error and loss measures Statistical comparison Evaluation measures 2 Terminology

More information

CS7267 MACHINE LEARNING

CS7267 MACHINE LEARNING CS7267 MACHINE LEARNING ENSEMBLE LEARNING Ref: Dr. Ricardo Gutierrez-Osuna at TAMU, and Aarti Singh at CMU Mingon Kang, Ph.D. Computer Science, Kennesaw State University Definition of Ensemble Learning

More information

ECE521 week 3: 23/26 January 2017

ECE521 week 3: 23/26 January 2017 ECE521 week 3: 23/26 January 2017 Outline Probabilistic interpretation of linear regression - Maximum likelihood estimation (MLE) - Maximum a posteriori (MAP) estimation Bias-variance trade-off Linear

More information

INTRODUCTION TO PATTERN

INTRODUCTION TO PATTERN INTRODUCTION TO PATTERN RECOGNITION INSTRUCTOR: WEI DING 1 Pattern Recognition Automatic discovery of regularities in data through the use of computer algorithms With the use of these regularities to take

More information

Regularization. CSCE 970 Lecture 3: Regularization. Stephen Scott and Vinod Variyam. Introduction. Outline

Regularization. CSCE 970 Lecture 3: Regularization. Stephen Scott and Vinod Variyam. Introduction. Outline Other Measures 1 / 52 sscott@cse.unl.edu learning can generally be distilled to an optimization problem Choose a classifier (function, hypothesis) from a set of functions that minimizes an objective function

More information

CS 188: Artificial Intelligence. Outline

CS 188: Artificial Intelligence. Outline CS 188: Artificial Intelligence Lecture 21: Perceptrons Pieter Abbeel UC Berkeley Many slides adapted from Dan Klein. Outline Generative vs. Discriminative Binary Linear Classifiers Perceptron Multi-class

More information

Linear Regression. Machine Learning CSE546 Kevin Jamieson University of Washington. Oct 5, Kevin Jamieson 1

Linear Regression. Machine Learning CSE546 Kevin Jamieson University of Washington. Oct 5, Kevin Jamieson 1 Linear Regression Machine Learning CSE546 Kevin Jamieson University of Washington Oct 5, 2017 1 The regression problem Given past sales data on zillow.com, predict: y = House sale price from x = {# sq.

More information

Statistical Machine Learning Hilary Term 2018

Statistical Machine Learning Hilary Term 2018 Statistical Machine Learning Hilary Term 2018 Pier Francesco Palamara Department of Statistics University of Oxford Slide credits and other course material can be found at: http://www.stats.ox.ac.uk/~palamara/sml18.html

More information

Classification CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2012

Classification CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2012 Classification CE-717: Machine Learning Sharif University of Technology M. Soleymani Fall 2012 Topics Discriminant functions Logistic regression Perceptron Generative models Generative vs. discriminative

More information

6.867 Machine learning: lecture 2. Tommi S. Jaakkola MIT CSAIL

6.867 Machine learning: lecture 2. Tommi S. Jaakkola MIT CSAIL 6.867 Machine learning: lecture 2 Tommi S. Jaakkola MIT CSAIL tommi@csail.mit.edu Topics The learning problem hypothesis class, estimation algorithm loss and estimation criterion sampling, empirical and

More information

Classification for High Dimensional Problems Using Bayesian Neural Networks and Dirichlet Diffusion Trees

Classification for High Dimensional Problems Using Bayesian Neural Networks and Dirichlet Diffusion Trees Classification for High Dimensional Problems Using Bayesian Neural Networks and Dirichlet Diffusion Trees Rafdord M. Neal and Jianguo Zhang Presented by Jiwen Li Feb 2, 2006 Outline Bayesian view of feature

More information

Linear Models for Regression CS534

Linear Models for Regression CS534 Linear Models for Regression CS534 Example Regression Problems Predict housing price based on House size, lot size, Location, # of rooms Predict stock price based on Price history of the past month Predict

More information

Machine Learning CSE546 Carlos Guestrin University of Washington. September 30, 2013

Machine Learning CSE546 Carlos Guestrin University of Washington. September 30, 2013 Bayesian Methods Machine Learning CSE546 Carlos Guestrin University of Washington September 30, 2013 1 What about prior n Billionaire says: Wait, I know that the thumbtack is close to 50-50. What can you

More information

Learning: Binary Perceptron. Examples: Perceptron. Separable Case. In the space of feature vectors

Learning: Binary Perceptron. Examples: Perceptron. Separable Case. In the space of feature vectors Linear Classifiers CS 88 Artificial Intelligence Perceptrons and Logistic Regression Pieter Abbeel & Dan Klein University of California, Berkeley Feature Vectors Some (Simplified) Biology Very loose inspiration

More information

Perceptron (Theory) + Linear Regression

Perceptron (Theory) + Linear Regression 10601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Perceptron (Theory) Linear Regression Matt Gormley Lecture 6 Feb. 5, 2018 1 Q&A

More information

Introduction to Machine Learning Prof. Sudeshna Sarkar Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur

Introduction to Machine Learning Prof. Sudeshna Sarkar Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Introduction to Machine Learning Prof. Sudeshna Sarkar Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Module 2 Lecture 05 Linear Regression Good morning, welcome

More information

Data Mining und Maschinelles Lernen

Data Mining und Maschinelles Lernen Data Mining und Maschinelles Lernen Ensemble Methods Bias-Variance Trade-off Basic Idea of Ensembles Bagging Basic Algorithm Bagging with Costs Randomization Random Forests Boosting Stacking Error-Correcting

More information

9/26/17. Ridge regression. What our model needs to do. Ridge Regression: L2 penalty. Ridge coefficients. Ridge coefficients

9/26/17. Ridge regression. What our model needs to do. Ridge Regression: L2 penalty. Ridge coefficients. Ridge coefficients What our model needs to do regression Usually, we are not just trying to explain observed data We want to uncover meaningful trends And predict future observations Our questions then are Is β" a good estimate

More information

CSE 417T: Introduction to Machine Learning. Lecture 11: Review. Henry Chai 10/02/18

CSE 417T: Introduction to Machine Learning. Lecture 11: Review. Henry Chai 10/02/18 CSE 417T: Introduction to Machine Learning Lecture 11: Review Henry Chai 10/02/18 Unknown Target Function!: # % Training data Formal Setup & = ( ), + ),, ( -, + - Learning Algorithm 2 Hypothesis Set H

More information

Chapter 7. Data Partitioning. 7.1 Introduction

Chapter 7. Data Partitioning. 7.1 Introduction Chapter 7 Data Partitioning 7.1 Introduction In this book, data partitioning refers to procedures where some observations from the sample are removed as part of the analysis. These techniques are used

More information

Linear Models for Regression CS534

Linear Models for Regression CS534 Linear Models for Regression CS534 Prediction Problems Predict housing price based on House size, lot size, Location, # of rooms Predict stock price based on Price history of the past month Predict the

More information

Machine Learning. Ensemble Methods. Manfred Huber

Machine Learning. Ensemble Methods. Manfred Huber Machine Learning Ensemble Methods Manfred Huber 2015 1 Bias, Variance, Noise Classification errors have different sources Choice of hypothesis space and algorithm Training set Noise in the data The expected

More information

Nonstationary time series models

Nonstationary time series models 13 November, 2009 Goals Trends in economic data. Alternative models of time series trends: deterministic trend, and stochastic trend. Comparison of deterministic and stochastic trend models The statistical

More information

Machine Learning

Machine Learning Machine Learning 10-601 Tom M. Mitchell Machine Learning Department Carnegie Mellon University October 11, 2012 Today: Computational Learning Theory Probably Approximately Coorrect (PAC) learning theorem

More information

Measurement, Scaling, and Dimensional Analysis Summer 2017 METRIC MDS IN R

Measurement, Scaling, and Dimensional Analysis Summer 2017 METRIC MDS IN R Measurement, Scaling, and Dimensional Analysis Summer 2017 Bill Jacoby METRIC MDS IN R This handout shows the contents of an R session that carries out a metric multidimensional scaling analysis of the

More information

Learning Theory Continued

Learning Theory Continued Learning Theory Continued Machine Learning CSE446 Carlos Guestrin University of Washington May 13, 2013 1 A simple setting n Classification N data points Finite number of possible hypothesis (e.g., dec.

More information

Holdout and Cross-Validation Methods Overfitting Avoidance

Holdout and Cross-Validation Methods Overfitting Avoidance Holdout and Cross-Validation Methods Overfitting Avoidance Decision Trees Reduce error pruning Cost-complexity pruning Neural Networks Early stopping Adjusting Regularizers via Cross-Validation Nearest

More information

Machine Learning Gaussian Naïve Bayes Big Picture

Machine Learning Gaussian Naïve Bayes Big Picture Machine Learning 10-701 Tom M. Mitchell Machine Learning Department Carnegie Mellon University January 27, 2011 Today: Naïve Bayes Big Picture Logistic regression Gradient ascent Generative discriminative

More information

Lecture 5 : The Poisson Distribution

Lecture 5 : The Poisson Distribution Lecture 5 : The Poisson Distribution Jonathan Marchini November 5, 2004 1 Introduction Many experimental situations occur in which we observe the counts of events within a set unit of time, area, volume,

More information

Lecture #11: Classification & Logistic Regression

Lecture #11: Classification & Logistic Regression Lecture #11: Classification & Logistic Regression CS 109A, STAT 121A, AC 209A: Data Science Weiwei Pan, Pavlos Protopapas, Kevin Rader Fall 2016 Harvard University 1 Announcements Midterm: will be graded

More information

Support vector machines Lecture 4

Support vector machines Lecture 4 Support vector machines Lecture 4 David Sontag New York University Slides adapted from Luke Zettlemoyer, Vibhav Gogate, and Carlos Guestrin Q: What does the Perceptron mistake bound tell us? Theorem: The

More information

Contents 1 Admin 2 General extensions 3 FWL theorem 4 Omitted variable bias 5 The R family Admin 1.1 What you will need Packages Data 1.

Contents 1 Admin 2 General extensions 3 FWL theorem 4 Omitted variable bias 5 The R family Admin 1.1 What you will need Packages Data 1. 2 2 dplyr lfe readr MASS auto.csv plot() plot() ggplot2 plot() # Start the.jpeg driver jpeg("your_plot.jpeg") # Make the plot plot(x = 1:10, y = 1:10) # Turn off the driver dev.off() # Start the.pdf driver

More information

Fundamentals of Machine Learning. Mohammad Emtiyaz Khan EPFL Aug 25, 2015

Fundamentals of Machine Learning. Mohammad Emtiyaz Khan EPFL Aug 25, 2015 Fundamentals of Machine Learning Mohammad Emtiyaz Khan EPFL Aug 25, 25 Mohammad Emtiyaz Khan 24 Contents List of concepts 2 Course Goals 3 2 Regression 4 3 Model: Linear Regression 7 4 Cost Function: MSE

More information

Math 5305 Notes. Diagnostics and Remedial Measures. Jesse Crawford. Department of Mathematics Tarleton State University

Math 5305 Notes. Diagnostics and Remedial Measures. Jesse Crawford. Department of Mathematics Tarleton State University Math 5305 Notes Diagnostics and Remedial Measures Jesse Crawford Department of Mathematics Tarleton State University (Tarleton State University) Diagnostics and Remedial Measures 1 / 44 Model Assumptions

More information

Ch 5 : Probability To Statistics

Ch 5 : Probability To Statistics Summer 2017 UAkron Dept. of Stats [3470 : 461/561] Applied Statistics Ch 5 : Probability To Statistics Contents 1 Random Sampling 2 1.1 Probability and Statistics...........................................................

More information

Solutions to obligatorisk oppgave 2, STK2100

Solutions to obligatorisk oppgave 2, STK2100 Solutions to obligatorisk oppgave 2, STK2100 Vinnie Ko May 14, 2018 Disclaimer: This document is made solely for my own personal use and can contain many errors. Oppgave 1 We load packages and read data

More information

Machine Learning

Machine Learning Machine Learning 10-601 Tom M. Mitchell Machine Learning Department Carnegie Mellon University February 4, 2015 Today: Generative discriminative classifiers Linear regression Decomposition of error into

More information

Bias-Variance in Machine Learning

Bias-Variance in Machine Learning Bias-Variance in Machine Learning Bias-Variance: Outline Underfitting/overfitting: Why are complex hypotheses bad? Simple example of bias/variance Error as bias+variance for regression brief comments on

More information

Machine Learning. VC Dimension and Model Complexity. Eric Xing , Fall 2015

Machine Learning. VC Dimension and Model Complexity. Eric Xing , Fall 2015 Machine Learning 10-701, Fall 2015 VC Dimension and Model Complexity Eric Xing Lecture 16, November 3, 2015 Reading: Chap. 7 T.M book, and outline material Eric Xing @ CMU, 2006-2015 1 Last time: PAC and

More information

Lecture 3: Statistical Decision Theory (Part II)

Lecture 3: Statistical Decision Theory (Part II) Lecture 3: Statistical Decision Theory (Part II) Hao Helen Zhang Hao Helen Zhang Lecture 3: Statistical Decision Theory (Part II) 1 / 27 Outline of This Note Part I: Statistics Decision Theory (Classical

More information

Variance Reduction and Ensemble Methods

Variance Reduction and Ensemble Methods Variance Reduction and Ensemble Methods Nicholas Ruozzi University of Texas at Dallas Based on the slides of Vibhav Gogate and David Sontag Last Time PAC learning Bias/variance tradeoff small hypothesis

More information

Logistic Regression. 0.1 Frogs Dataset

Logistic Regression. 0.1 Frogs Dataset Logistic Regression We move now to the classification problem from the regression problem and study the technique ot logistic regression. The setting for the classification problem is the same as that

More information

1 1 + exp( yw x). (1)

1 1 + exp( yw x). (1) 2 Robust modelling In this part we ll consider building a model where our training data is unreliable. The idea considered in this part could be applied widely, including to noisy images. However, we ll

More information

Metric Predicted Variable With One Nominal Predictor Variable

Metric Predicted Variable With One Nominal Predictor Variable Metric Predicted Variable With One Nominal Predictor Variable Tim Frasier Copyright Tim Frasier This work is licensed under the Creative Commons Attribution 4.0 International license. Click here for more

More information

Matematisk statistik allmän kurs, MASA01:A, HT-15 Laborationer

Matematisk statistik allmän kurs, MASA01:A, HT-15 Laborationer Lunds universitet Matematikcentrum Matematisk statistik Matematisk statistik allmän kurs, MASA01:A, HT-15 Laborationer General information on labs During the rst half of the course MASA01 we will have

More information

Jian WANG, PhD. Room A115 College of Fishery and Life Science Shanghai Ocean University

Jian WANG, PhD. Room A115 College of Fishery and Life Science Shanghai Ocean University Jian WANG, PhD j_wang@shou.edu.cn Room A115 College of Fishery and Life Science Shanghai Ocean University Contents 1. Introduction to R 2. Data sets 3. Introductory Statistical Principles 4. Sampling and

More information

STK 2100 Oblig 1. Zhou Siyu. February 15, 2017

STK 2100 Oblig 1. Zhou Siyu. February 15, 2017 STK 200 Oblig Zhou Siyu February 5, 207 Question a) Make a scatter box plot for the data set. Answer:Here is the code I used to plot the scatter box in R. library ( MASS ) 2 pairs ( Boston ) Figure : Scatter

More information

Mathematical Tools for Neuroscience (NEU 314) Princeton University, Spring 2016 Jonathan Pillow. Homework 8: Logistic Regression & Information Theory

Mathematical Tools for Neuroscience (NEU 314) Princeton University, Spring 2016 Jonathan Pillow. Homework 8: Logistic Regression & Information Theory Mathematical Tools for Neuroscience (NEU 34) Princeton University, Spring 206 Jonathan Pillow Homework 8: Logistic Regression & Information Theory Due: Tuesday, April 26, 9:59am Optimization Toolbox One

More information

Methods and Criteria for Model Selection. CS57300 Data Mining Fall Instructor: Bruno Ribeiro

Methods and Criteria for Model Selection. CS57300 Data Mining Fall Instructor: Bruno Ribeiro Methods and Criteria for Model Selection CS57300 Data Mining Fall 2016 Instructor: Bruno Ribeiro Goal } Introduce classifier evaluation criteria } Introduce Bias x Variance duality } Model Assessment }

More information

Machine Learning

Machine Learning Machine Learning 10-601 Tom M. Mitchell Machine Learning Department Carnegie Mellon University October 11, 2012 Today: Computational Learning Theory Probably Approximately Coorrect (PAC) learning theorem

More information

Voting (Ensemble Methods)

Voting (Ensemble Methods) 1 2 Voting (Ensemble Methods) Instead of learning a single classifier, learn many weak classifiers that are good at different parts of the data Output class: (Weighted) vote of each classifier Classifiers

More information

Business Statistics. Lecture 10: Course Review

Business Statistics. Lecture 10: Course Review Business Statistics Lecture 10: Course Review 1 Descriptive Statistics for Continuous Data Numerical Summaries Location: mean, median Spread or variability: variance, standard deviation, range, percentiles,

More information

Linear Classifiers: Expressiveness

Linear Classifiers: Expressiveness Linear Classifiers: Expressiveness Machine Learning Spring 2018 The slides are mainly from Vivek Srikumar 1 Lecture outline Linear classifiers: Introduction What functions do linear classifiers express?

More information

Support Vector Machines

Support Vector Machines Two SVM tutorials linked in class website (please, read both): High-level presentation with applications (Hearst 1998) Detailed tutorial (Burges 1998) Support Vector Machines Machine Learning 10701/15781

More information

Chapter 5. Transformations

Chapter 5. Transformations Chapter 5. Transformations In Chapter 4, you learned ways to diagnose violations of model assumptions. What should you do if some assumptions are badly violated? Often, you can use transformations to solve

More information