In the equations above, we are assuming that the adhesion coefficient (peak value) of the road surface is minimum

Size: px
Start display at page:

Download "In the equations above, we are assuming that the adhesion coefficient (peak value) of the road surface is minimum"

Transcription

1 ME 466 SPRING 017 PERFORMANCE OF ROAD VEHICLES HOMEWORK #4 SOLUTIONS Solution 1: a) F p P i A mc l p η p Pa π( m) N (Ans. ) d η i (μ i ) utilized (μ i ) utilized F xi F zi F xf K f P f F xr K r P r π( ) 4 F xi K i P i n ia wci η ci C R i P i r w π( ) 4 So the fixed bfdf is 5300 / (5300+3) 0, N N 0. 3 d unloaded d loaded d (F x) total W 5300 N + 3 N 1179 kg m s 0. 65g 5300 N + 3 N 1587 kg m s 0. 48g In the equations above, we are assuming that the adhesion coefficient (peak value) of the road surface is minimum 1 P a g e

2 id 0,705*0,65 f 0,58 b h 559 d 0,65 0,65 l l i d 0,95* 0,65 r 0,91 a h 559 d 0,35 0,65 l l 616 0,91 for the unloaded case, and id 0,705*0,48 f 0,5 b h 50 d 0,55 0,48 l l i d 0,95*0,48 r 0,40 a h 50 d 0,45 0,48 l l 616 0,56 for the loaded case, therefore we are assuming that the adhesion coefficient of the road surface is minimum 0,91. F zf W ( b l + h l d) F zf,unloaded 1179 kg m 559 ( ) 914 N s 616 F zf,loaded 1587 kg m 50 ( ) N s 616 F zr W ( a l h l d) F zr,unloaded 1179 kg m 559 ( ) 44 N s 616 F zr,loaded 1587 kg m 50 ( ) 550 N s 616 (μ f,unloaded ) utilized F xf 5300 N F zf,unloaded 914 N P a g e

3 (μ f,loaded ) utilized (μ r,unloaded ) utilized (μ r,loaded ) utilized F xf 5300 N 0. 5 F zf,loaded N F xr 3 N F zr,unloaded 44 N F xr 3 N 0. 4 F zr,loaded 550 N η f,unloaded η r,unloaded (Ans. ) The small one is chosen which is 0.71 η f,loaded (Ans. ) 0. 5 η f,loaded The small one is chosen which is 0.9 b) i b l + h l d i d unloaded d unloaded 0. 57g i d loaded d loaded g 3 P a g e

4 For the unloaded condition, front wheels lock first for decelerations up to 0.57g. Above 0.57g, rear wheels lock first. For the loaded condition, front wheels lock first for decelerations up to 0.780g. Above 0.780g, rear wheels lock first. While the loaded condition can be accepted, the unloaded condition cannot be accepted for this brake system because European standards require that the front wheels must lock-up first for decelerations up to around 0.80g. It can be concluded that this brake system was designed considering the loaded condition. Solution : a) d f μ (b l ) i μ ( h l ) μ ( a l d r ) (1 i) + μ ( h ) l The Matlab script for the solution is as the following: close all clear i0.:0.01:1; l.865; % wheelbase [m] a_yuksuz1.333; a_yuklu1.458; b_yuksuzl-a_yuksuz; b_yuklul-a_yuklu; mu0.85; h_yuksuz0.63; h_yuklu0.508; df_yuksuzmu*b_yuksuz/l./(i-mu*h_yuksuz/l); df_yuklumu*b_yuklu/l./(i-mu*h_yuklu/l); dr_yuksuzmu*a_yuksuz/l./(1-i+mu*h_yuksuz/l); dr_yuklumu*a_yuklu/l./(1-i+mu*h_yuklu/l); figure plot(i*100,[df_yuksuz;df_yuklu;dr_yuksuz;dr_yuklu],'linewidth',) grid 4 P a g e

5 legend('d_f unloaded','d_f loaded','d_r unloaded','d_r loaded') ylim([0.5 1]) xlim([30 100]) xlabel('brake force distribution factor') ylabel('max decel before front - rear wheel lock [g]') b) The BFDF corresponding to the intersection of the curves for the front wheels of the loaded vehicle and the rear wheels of the unloaded vehicle can be seen as 0.68 on the following figure: 5 P a g e

6 At this point d0.78, i0.68 and μ0.85 which is its maximum value. c) η r,unloaded η f,unloaded d μ d F xf F zf η f,loaded η r,loaded d μ d F xr F zr d d (Ans. ) μ max Wid W( b l +h l d) d ( b l + h l d) i d (Ans. ) μ max W(1 i)d W( a l h l d) ( a l h l d) 1 i The smaller ones are chosen which are both 0.9 The Matlab script for the solution is as the following: close all ( ) ( ) P a g e

7 clear i0.:0.01:1; l.865; % wheelbase [m] a_yuksuz1.333; a_yuklu1.458; b_yuksuzl-a_yuksuz; b_yuklul-a_yuklu; mu0.; h_yuksuz0.63; h_yuklu0.508; df_yuksuzmu*b_yuksuz/l./(i-mu*h_yuksuz/l); df_yuklumu*b_yuklu/l./(i-mu*h_yuklu/l); dr_yuksuzmu*a_yuksuz/l./(1-i+mu*h_yuksuz/l); dr_yuklumu*a_yuklu/l./(1-i+mu*h_yuklu/l); figure plot(i*100,[df_yuksuz;df_yuklu;dr_yuksuz;dr_yuklu],'linewidth',) grid legend('d_f unloaded','d_f loaded','d_r unloaded','d_r loaded') ylim([0.1 0.]) xlim([15 95]) xlabel('brake force distribution factor') ylabel('max decel before front - rear wheel lock [g]') 7 P a g e

8 At this point d0.19, i0.55 and μ0.0 which is its maximum value. η r,unloaded η f,unloaded d μ d F xf F zf η f,loaded η r,loaded d μ d F xr F zr d d (Ans. ) μ max 0. 0 Wid W( b l +h l d) d ( b l + h l d) i d (Ans. ) μ max 0. 0 W(1 i)d W( a l h l d) ( a l h l d) 1 i The smaller ones are chosen which are both 0.95 Solution 3: For power limited gradability: ( ) ( ) W f 1396 kg kg f W r 1396 kg kg f 400 a f ( ) ( ) a r ( ) ( ) a a fw f + a r W r W inches m r w [ m] m 1 inch P 157 Nm 3750 rpm Ω π rad 1 rev 1 min 60 s 3750 rpm rpm W 8 P a g e

9 A Ω ( P ) ( 1 ) (0. 65) ( P 1 Ω (1 Ω) ( ) B 1 A 1 1 Ω ) ( 1 (0. 684) ) C 1 Ω B A f m m m i t i d a 1 η t [ r w (1 S) ] i t i d a η t [ r w (1 S) ] P 1C n 1 3 KC DA f [ m ( ) ] W ( ) π rad (5750 rpm 1 m s ( 3. 6 kph ) P 1B n 1 bw rev [ m ( ) ] W π rad (5750 rpm kph 1396 kg m N s 1 rev kph a i t i d 3 η t r w (1 S) P 1A W(a + sinθ) n m ( ) W (0. 684) π rad 5750 rpm m N s 1 rev N kph 1 min 60 s )3 1 min 60 s ) 1 min 60 s 1 m s 3. 6 kph 1396 kg Θ sin 1 { 1 W [ (a ) + a 4a 3 ]} 1 sin { 1396 kg m [ ( ) ]} ( ) s 56% 9 P a g e

10 For slip limited gradabality: This is an indirect gearbox, so it can be FEFWD or RERWD vehicle. From the load distribution, it can be concluded that it is FEFWD vehicle. Θ tan 1 l ( μ f r 1 + h μ ) l b f r a + bv Velocity dependent rolling resistance coefficient, b, can be neglected. For dry, cement- concrete surface: Θ tan ( ) % Applying the same formula for all cases gives the table below: Gradability [%] Road Surface/Condition Dry Wet Greasy Frozen Cement-Concrete Asphalt Cobbled stone-large Cobbled stone-small It can be seen that all the values for slip limited gradability are smaller than that for the power limited gradabality 9.4. Those values in the table are the gradabality results for corresponding conditions. 10 P a g e

Vehicle Dynamics CEE 320. Winter 2006 CEE 320 Steve Muench

Vehicle Dynamics CEE 320. Winter 2006 CEE 320 Steve Muench Vehicle Dynamics Steve Muench Outline 1. Resistance a. Aerodynamic b. Rolling c. Grade. Tractive Effort 3. Acceleration 4. Braking Force 5. Stopping Sight Distance (SSD) Main Concepts Resistance Tractive

More information

CE351 Transportation Systems: Planning and Design

CE351 Transportation Systems: Planning and Design CE351 Transportation Systems: Planning and Design TOPIC: HIGHWAY USERS PERFORMANCE (Part III) 1 ANOUNCEMENT Updated d Schedule on: http://wiki.cecs.pdx.edu/bin/view/main/slidesce 351 Course Outline Introduction

More information

Closed-form Method to Evaluate Bike Braking Performance

Closed-form Method to Evaluate Bike Braking Performance Human Power ejournal, April 4, 13 Closed-form Method to Evaluate Bike Braking Performance Junghsen Lieh, PhD Professor, Mechanical & Materials Engineering Wright State University, Dayton Ohio 45435 USA

More information

SOLUTION di x = y2 dm. rdv. m = a 2 bdx. = 2 3 rpab2. I x = 1 2 rp L0. b 4 a1 - x2 a 2 b. = 4 15 rpab4. Thus, I x = 2 5 mb2. Ans.

SOLUTION di x = y2 dm. rdv. m = a 2 bdx. = 2 3 rpab2. I x = 1 2 rp L0. b 4 a1 - x2 a 2 b. = 4 15 rpab4. Thus, I x = 2 5 mb2. Ans. 17 4. Determine the moment of inertia of the semiellipsoid with respect to the x axis and express the result in terms of the mass m of the semiellipsoid. The material has a constant density r. y x y a

More information

SOLUTION 8 7. To hold lever: a+ M O = 0; F B (0.15) - 5 = 0; F B = N. Require = N N B = N 0.3. Lever,

SOLUTION 8 7. To hold lever: a+ M O = 0; F B (0.15) - 5 = 0; F B = N. Require = N N B = N 0.3. Lever, 8 3. If the coefficient of static friction at is m s = 0.4 and the collar at is smooth so it only exerts a horizontal force on the pipe, determine the minimum distance x so that the bracket can support

More information

UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING

UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING TW32 UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BENG (HONS) AUTOMOTIVE PERFORMANCE ENGINEERING and BSC (HONS) MOTORSPORT TECHNOLOGY EXAMINATION SEMESTER 2-2015/2016 VEHICLE DYNAMICS AND ADVANCED ELECTRONICS

More information

Single-track models of an A-double heavy vehicle combination

Single-track models of an A-double heavy vehicle combination Single-track models of an A-double heavy vehicle combination PETER NILSSON KRISTOFFER TAGESSON Department of Applied Mechanics Division of Vehicle Engineering and Autonomous Systems Vehicle Dynamics Group

More information

Online homework #6 due on Tue March 24

Online homework #6 due on Tue March 24 Online homework #6 due on Tue March 24 Problem 5.22 Part A: give your answer with only 2 significant digits (i.e. round answer and drop less significant digits) 51 Equilibrium Question 52 1 Using Newton

More information

Consider the case of a 100 N. mass on a horizontal surface as shown below:

Consider the case of a 100 N. mass on a horizontal surface as shown below: 1.9.1 Introduction The study of friction is called: The force of friction is defined as: The force of friction acting between two surfaces has three properties: i) ii) iii) Consider the case of a 100 N.

More information

w = mg Use: g = 10 m/s 2 1 hour = 60 min = 3600 sec

w = mg Use: g = 10 m/s 2 1 hour = 60 min = 3600 sec The exam is closed book and closed notes. Part I: There are 1 multiple choice questions, 1 point each. The answers for the multiple choice questions are to be placed on the SCANTRON form provided. Make

More information

+ ] B A BA / t BA / n. B G BG / t BG / n. a = (5)(4) = 80 in./s. A G AG / t AG / n. ] + [48 in./s ]

+ ] B A BA / t BA / n. B G BG / t BG / n. a = (5)(4) = 80 in./s. A G AG / t AG / n. ] + [48 in./s ] PROLEM 15.113 3-in.-radius drum is rigidly attached to a 5-in.-radius drum as shown. One of the drums rolls without sliding on the surface shown, and a cord is wound around the other drum. Knowing that

More information

ERRATA AND CLARIFICATIONS Fundamentals of Vehicle Dynamics by Thomas D. Gillespie

ERRATA AND CLARIFICATIONS Fundamentals of Vehicle Dynamics by Thomas D. Gillespie ERRATA AND CLARIFICATIONS Fundamentals of Vehicle Dynamics by Thomas D. Gillespie Page v, Acknowledgements: Typographical error on next to the last line. The fourth name is supposed to read Chuck Houser.

More information

Engineering mechanics and hydraulics

Engineering mechanics and hydraulics Engineering mechanics and hydraulics In this section we will examine the nature of friction, as well as looking at stress and strain. Friction When you walk on a rough surface, such as a footpath, then

More information

To convert a speed to a velocity. V = Velocity in feet per seconds (ft/sec) S = Speed in miles per hour (mph) = Mathematical Constant

To convert a speed to a velocity. V = Velocity in feet per seconds (ft/sec) S = Speed in miles per hour (mph) = Mathematical Constant To convert a speed to a velocity V S ( 1.466) V Velocity in feet per seconds (ft/sec) S Speed in miles per hour (mph) 1.466 Mathematical Constant Example Your driver just had a rear-end accident and says

More information

Differential Equations: Homework 8

Differential Equations: Homework 8 Differential Equations: Homework 8 Alvin Lin January 08 - May 08 Section.6 Exercise Find a general solution to the differential equation using the method of variation of parameters. y + y = tan(t) r +

More information

E 490 FE Exam Prep. Engineering Mechanics

E 490 FE Exam Prep. Engineering Mechanics E 490 FE Exam Prep Engineering Mechanics 2008 E 490 Course Topics Statics Newton s Laws of Motion Resultant Force Systems Moment of Forces and Couples Equilibrium Pulley Systems Trusses Centroid of an

More information

Problem 1 Problem 2 Problem 3 Problem 4 Total

Problem 1 Problem 2 Problem 3 Problem 4 Total Name Section THE PENNSYLVANIA STATE UNIVERSITY Department of Engineering Science and Mechanics Engineering Mechanics 12 Final Exam May 5, 2003 8:00 9:50 am (110 minutes) Problem 1 Problem 2 Problem 3 Problem

More information

Simple Car Dynamics. Outline. Claude Lacoursière HPC2N/VRlab, Umeå Universitet, Sweden, May 18, 2005

Simple Car Dynamics. Outline. Claude Lacoursière HPC2N/VRlab, Umeå Universitet, Sweden, May 18, 2005 Simple Car Dynamics Claude Lacoursière HPC2N/VRlab, Umeå Universitet, Sweden, and CMLabs Simulations, Montréal, Canada May 18, 2005 Typeset by FoilTEX May 16th 2005 Outline basics of vehicle dynamics different

More information

TAM 212 Worksheet 5: Car steering

TAM 212 Worksheet 5: Car steering Name: Group members: TM 212 Worksheet 5: ar steering This worksheet aims to understand how cars steer. The #avs webpage on Steering geometry illustrates the basic ideas. On the diagram below, the kingpins

More information

Mecanum-Wheeled Vehicle Base

Mecanum-Wheeled Vehicle Base Mecanum-Wheeled Vehicle Base Dan Fisher in partial fulfillment of ETLS 789 Simulation and Visualization of Dynamic Systems University of St. Thomas Dr. Michael Hennessey Fall 2014 Due December 18, 2014

More information

SECTION A. 8 kn/m. C 3 m 3m

SECTION A. 8 kn/m. C 3 m 3m SECTION Question 1 150 m 40 kn 5 kn 8 kn/m C 3 m 3m D 50 ll dimensions in mm 15 15 Figure Q1(a) Figure Q1(b) The horizontal beam CD shown in Figure Q1(a) has a uniform cross-section as shown in Figure

More information

1. Replace the given system of forces acting on a body as shown in figure 1 by a single force and couple acting at the point A.

1. Replace the given system of forces acting on a body as shown in figure 1 by a single force and couple acting at the point A. Code No: Z0321 / R07 Set No. 1 I B.Tech - Regular Examinations, June 2009 CLASSICAL MECHANICS ( Common to Mechanical Engineering, Chemical Engineering, Mechatronics, Production Engineering and Automobile

More information

PROBLEM 16.4 SOLUTION

PROBLEM 16.4 SOLUTION PROBLEM 16.4 The motion of the.5-kg rod AB is guided b two small wheels which roll freel in horizontal slots. If a force P of magnitude 8 N is applied at B, determine (a) the acceleration of the rod, (b)

More information

Team-Exercises for DGC 100 Modelica Course

Team-Exercises for DGC 100 Modelica Course Team-Exercises for DGC 100 Modelica Course Hubertus Tummescheit United Technologies Research Center, East Hartford, CT 06108. November 4, 2003 Abstract This document is a preliminary version and is going

More information

Estimation of Tire-Road Friction by Tire Rotational Vibration Model

Estimation of Tire-Road Friction by Tire Rotational Vibration Model 53 Research Report Estimation of Tire-Road Friction by Tire Rotational Vibration Model Takaji Umeno Abstract Tire-road friction is the most important piece of information used by active safety systems.

More information

We reserve the right to make changes in the course of technical development MAN Nutzfahrzeuge Aktiengesellschaft

We reserve the right to make changes in the course of technical development MAN Nutzfahrzeuge Aktiengesellschaft Calculations GB We reserve the right to make changes in the course of technical development. 2000 MAN Nutzfahrzeuge Aktiengesellschaft Reprinting, reproduction or translation, even of excerpts, is not

More information

PROBLEM Copyright McGraw-Hill Education. Permission required for reproduction or display. SOLUTION. ω = 29.6 rad/s. ω = = 36 3.

PROBLEM Copyright McGraw-Hill Education. Permission required for reproduction or display. SOLUTION. ω = 29.6 rad/s. ω = = 36 3. PROLEM 15.1 The brake drum is attached to a larger flywheel that is not shown. The motion of the brake drum is defined by the relation θ = 36t 1.6 t, where θ is expressed in radians and t in seconds. Determine

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Two men, Joel and Jerry, push against a wall. Jerry stops after 10 min, while Joel is

More information

Dynamics II Motion in a Plane. Review Problems

Dynamics II Motion in a Plane. Review Problems Dynamics II Motion in a Plane Review Problems Problem 1 A 500 g model rocket is on a cart that is rolling to the right at a speed of 3.0 m/s. The rocket engine, when it is fired, exerts an 8.0 N thrust

More information

ME 302 THEORY of MACHINES II SPRING 2013 HOMEWORK 2 SOLUTION Due date: xx

ME 302 THEORY of MACHINES II SPRING 2013 HOMEWORK 2 SOLUTION Due date: xx ME 302 THEORY of MACHINES II SPRING 2013 HOMEWORK 2 SOLUTION Due date: xx.03.2012 NOTE: You are asked to solve only the first and second problems. Put your homework report in the box provided in front

More information

Today we applied our knowledge of vectors to different kinds of problems.

Today we applied our knowledge of vectors to different kinds of problems. DAY 18 Summary of Primary Topics Covered Center of Mass and More Vector Examples Today we applied our knowledge of vectors to different kinds of problems. Working these problems is a matter of taking concepts

More information

UNIVERSITY OF SASKATCHEWAN GE MECHANICS III FINAL EXAM APRIL 18, 2011 Professor A. Dolovich A CLOSED BOOK EXAMINATION TIME: 3 HOURS

UNIVERSITY OF SASKATCHEWAN GE MECHANICS III FINAL EXAM APRIL 18, 2011 Professor A. Dolovich A CLOSED BOOK EXAMINATION TIME: 3 HOURS UNIVERSITY OF SASKATCHEWAN GE 226.3 MECHANICS III FINAL EXAM APRIL 18, 2011 Professor A. Dolovich A CLOSED BOOK EXAMINATION TIME: 3 HOURS LAST NAME (printed): FIRST NAME (printed): STUDENT NUMBER: EXAMINATION

More information

The single track model

The single track model The single track model Dr. M. Gerdts Uniersität Bayreuth, SS 2003 Contents 1 Single track model 1 1.1 Geometry.................................... 1 1.2 Computation of slip angles...........................

More information

Terramechanics V MARYLAND U N I V E R S I T Y O F. Terramechanics V. ENAE 788X - Planetary Surface Robotics

Terramechanics V MARYLAND U N I V E R S I T Y O F. Terramechanics V. ENAE 788X - Planetary Surface Robotics Terramechanics V Note - I haven t posted the slides from Tuesday because there were a number of typos (and outright mistakes) that were (almost) all corrected on Thursday. This set of slides are the corrected

More information

Methods and Tools. Average Operating Point Approach. To lump all engine operating points into one single average operating point.

Methods and Tools. Average Operating Point Approach. To lump all engine operating points into one single average operating point. Methods and Tools Average Operating Point Approach To lump all engine operating points into one single average operating point. Used to estimate the fuel consumption Test cycle needs to be specified when

More information

ET3-7: Modelling I(V) Introduction and Objectives. Electrical, Mechanical and Thermal Systems

ET3-7: Modelling I(V) Introduction and Objectives. Electrical, Mechanical and Thermal Systems ET3-7: Modelling I(V) Introduction and Objectives Electrical, Mechanical and Thermal Systems Objectives analyse and model basic linear dynamic systems -Electrical -Mechanical -Thermal Recognise the analogies

More information

CEE 271: Applied Mechanics II, Dynamics Lecture 28: Ch.17, Sec.2 3

CEE 271: Applied Mechanics II, Dynamics Lecture 28: Ch.17, Sec.2 3 1 / 20 CEE 271: Applied Mechanics II, Dynamics Lecture 28: Ch.17, Sec.2 3 Prof. Albert S. Kim Civil and Environmental Engineering, University of Hawaii at Manoa Monday, November 1, 2011 2 / 20 PLANAR KINETIC

More information

TUTORIAL SHEET 1. magnitude of P and the values of ø and θ. Ans: ø =74 0 and θ= 53 0

TUTORIAL SHEET 1. magnitude of P and the values of ø and θ. Ans: ø =74 0 and θ= 53 0 TUTORIAL SHEET 1 1. The rectangular platform is hinged at A and B and supported by a cable which passes over a frictionless hook at E. Knowing that the tension in the cable is 1349N, determine the moment

More information

STATICS. Friction VECTOR MECHANICS FOR ENGINEERS: Eighth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr.

STATICS. Friction VECTOR MECHANICS FOR ENGINEERS: Eighth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr. Eighth E 8 Friction CHAPTER VECTOR MECHANICS FOR ENGINEERS: STATICS Ferdinand P. Beer E. Russell Johnston, Jr. Lecture Notes: J. Walt Oler Texas Tech University Contents Introduction Laws of Dry Friction.

More information

The Mechanics of Tractor - Implement Performance

The Mechanics of Tractor - Implement Performance The Mechanics of Tractor - Implement Performance Theory and Worked Examples R.H. Macmillan CHAPTER 4 TRACTOR PERFORMANCE ON SOFT SOIL - THEORETICAL Printed from: http://www.eprints.unimelb.edu.au CONTENTS

More information

CEE 271: Applied Mechanics II, Dynamics Lecture 25: Ch.17, Sec.4-5

CEE 271: Applied Mechanics II, Dynamics Lecture 25: Ch.17, Sec.4-5 1 / 36 CEE 271: Applied Mechanics II, Dynamics Lecture 25: Ch.17, Sec.4-5 Prof. Albert S. Kim Civil and Environmental Engineering, University of Hawaii at Manoa Date: 2 / 36 EQUATIONS OF MOTION: ROTATION

More information

2. Kinetic friction - The force that acts against an object s motion. - Occurs once static friction has been overcome and object is moving

2. Kinetic friction - The force that acts against an object s motion. - Occurs once static friction has been overcome and object is moving Section 2.14: Friction Friction is needed to move. Without friction, a car would sit in one spot spinning its tires, and a person would not be able to step forward. However, the motion of an object along

More information

Single Stop Transient Thermal Coupled with Structural Analysis and Repeated Braking Analysis with Convective Cooling for Ventilated Rotor

Single Stop Transient Thermal Coupled with Structural Analysis and Repeated Braking Analysis with Convective Cooling for Ventilated Rotor Single Stop Transient Thermal Coupled with Structural Analysis and Repeated Braking Analysis with Convective Cooling for Ventilated Rotor Tirth Sodagar 1, Avadhoot Ahire 2 1Tirth Sodagar, Student, School

More information

Physics 106 Common Exam 2: March 5, 2004

Physics 106 Common Exam 2: March 5, 2004 Physics 106 Common Exam 2: March 5, 2004 Signature Name (Print): 4 Digit ID: Section: Instructions: nswer all questions. Questions 1 through 10 are multiple choice questions worth 5 points each. You may

More information

Overview. Dry Friction Wedges Flatbelts Screws Bearings Rolling Resistance

Overview. Dry Friction Wedges Flatbelts Screws Bearings Rolling Resistance Friction Chapter 8 Overview Dry Friction Wedges Flatbelts Screws Bearings Rolling Resistance Dry Friction Friction is defined as a force of resistance acting on a body which prevents slipping of the body

More information

CHAPTER 6 HEAT DISSIPATION AND TEMPERATURE DISTRIBUTION OF BRAKE LINER USING STEADY STATE ANALYSIS

CHAPTER 6 HEAT DISSIPATION AND TEMPERATURE DISTRIBUTION OF BRAKE LINER USING STEADY STATE ANALYSIS 131 CHAPTER 6 HEAT DISSIPATION AND TEMPERATURE DISTRIBUTION OF BRAKE LINER USING STEADY STATE ANALYSIS 6.1 INTRODUCTION Drum brakes were the first types of brakes used on motor vehicles. Nowadays, over

More information

FRICTIONAL FORCES. Direction of frictional forces... (not always obvious)... CHAPTER 5 APPLICATIONS OF NEWTON S LAWS

FRICTIONAL FORCES. Direction of frictional forces... (not always obvious)... CHAPTER 5 APPLICATIONS OF NEWTON S LAWS RICTIONAL ORCES CHAPTER 5 APPLICATIONS O NEWTON S LAWS rictional forces Static friction Kinetic friction Centripetal force Centripetal acceleration Loop-the-loop Drag force Terminal velocity Direction

More information

Homework Assignment 4 Root Finding Algorithms The Maximum Velocity of a Car Due: Friday, February 19, 2010 at 12noon

Homework Assignment 4 Root Finding Algorithms The Maximum Velocity of a Car Due: Friday, February 19, 2010 at 12noon ME 2016 A Spring Semester 2010 Computing Techniques 3-0-3 Homework Assignment 4 Root Finding Algorithms The Maximum Velocity of a Car Due: Friday, February 19, 2010 at 12noon Description and Outcomes In

More information

Kinematics, Dynamics, and Vibrations FE Review Session. Dr. David Herrin March 27, 2012

Kinematics, Dynamics, and Vibrations FE Review Session. Dr. David Herrin March 27, 2012 Kinematics, Dynamics, and Vibrations FE Review Session Dr. David Herrin March 7, 0 Example A 0 g ball is released vertically from a height of 0 m. The ball strikes a horizontal surface and bounces back.

More information

www.onlineexamhelp.com www.onlineexamhelp.com UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Level MARK SCHEME for the October/November 2009 question paper for the guidance of teachers

More information

BLUE PRINT FOR MODEL QUESTION PAPER 3 BLUE PRINT

BLUE PRINT FOR MODEL QUESTION PAPER 3 BLUE PRINT Unit Chapter Number Number of teaching Hours Weightage of marks Mark Marks 3 Marks 5 Marks (Theory) 5 Marks (Numerica l Problem) BLUE PRINT FOR MODEL QUESTION PAPER 3 Class : I PUC Subject : PHYSICS (33)

More information

Quiz Number 4 PHYSICS April 17, 2009

Quiz Number 4 PHYSICS April 17, 2009 Instructions Write your name, student ID and name of your TA instructor clearly on all sheets and fill your name and student ID on the bubble sheet. Solve all multiple choice questions. No penalty is given

More information

2. Mass, Force and Acceleration

2. Mass, Force and Acceleration . Mass, Force and Acceleration [This material relates predominantly to modules ELP034, ELP035].1 ewton s first law of motion. ewton s second law of motion.3 ewton s third law of motion.4 Friction.5 Circular

More information

ESTIMATION OF THE LONGITUDINAL AND LATERAL VELOCITIES OF A VEHICLE USING EXTENDED KALMAN FILTERS

ESTIMATION OF THE LONGITUDINAL AND LATERAL VELOCITIES OF A VEHICLE USING EXTENDED KALMAN FILTERS ESTIMATION OF THE LONGITUDINAL AND LATERAL VELOCITIES OF A VEHICLE USING EXTENDED KALMAN FILTERS A Thesis Presented to The Academic Faculty by Juan Camilo Alvarez In Partial Fulfillment of the Requirements

More information

Project 1: Application of s = rθ and v = rω in Two Pulley Systems

Project 1: Application of s = rθ and v = rω in Two Pulley Systems Project 1: Application of s = rθ and v = rω in Two Pulley Systems Pulley systems provide an ideal environment for using the formulas s = rθ and v = rω. Most of these problems can be solved more quickly

More information

Physics 8 Monday, October 12, 2015

Physics 8 Monday, October 12, 2015 Physics 8 Monday, October 12, 2015 HW5 will be due Friday. (HW5 is just Ch9 and Ch10 problems.) You re reading Chapter 12 ( torque ) this week, even though in class we re just finishing Ch10 / starting

More information

Physics 111. Lecture 23 (Walker: 10.6, 11.1) Conservation of Energy in Rotation Torque March 30, Kinetic Energy of Rolling Object

Physics 111. Lecture 23 (Walker: 10.6, 11.1) Conservation of Energy in Rotation Torque March 30, Kinetic Energy of Rolling Object Physics 111 Lecture 3 (Walker: 10.6, 11.1) Conservation of Energy in Rotation Torque March 30, 009 Lecture 3 1/4 Kinetic Energy of Rolling Object Total kinetic energy of a rolling object is the sum of

More information

Physics 12. Unit 5 Circular Motion and Gravitation Part 1

Physics 12. Unit 5 Circular Motion and Gravitation Part 1 Physics 12 Unit 5 Circular Motion and Gravitation Part 1 1. Nonlinear motions According to the Newton s first law, an object remains its tendency of motion as long as there is no external force acting

More information

Terramechanics MARYLAND. Overview of wheel-soil interactions Sources of rolling resistance on soil Rover propulsion analysis U N I V E R S I T Y O F

Terramechanics MARYLAND. Overview of wheel-soil interactions Sources of rolling resistance on soil Rover propulsion analysis U N I V E R S I T Y O F Overview of wheel-soil interactions Sources of rolling resistance on soil Rover propulsion analysis 2007 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu Soil Mechanics Wheel rolling over

More information

Brakes and Dynamometers

Brakes and Dynamometers 73 l Theory of Machines 19 Features 1. Introduction. Materials for Brake Lining. 3. Types of Brakes. 4. Single Block or Shoe Brake. 5. Pivoted Block or Shoe Brake. 6. Double Block or Shoe Brake. 7. Simple

More information

13 11 Ball Bearing Motor

13 11 Ball Bearing Motor 11 Ball Bearing Motor 11. Ball Bearing Motor uses electrical energy to create rotational motion. On what parameters do the motor efficiency and the velocity of the rotation depend? 2 INTRODUCTION 3 What

More information

Development of a Dynamical Model for Retina-based Control of an RC Monster Truck

Development of a Dynamical Model for Retina-based Control of an RC Monster Truck Robin Ritz Development of a Dynamical Model for Retina-based Control of an RC Monster Truck Bachelor Project Automatic Control Laboratory Swiss Federal Institute of Technology (ETH) Zurich Advisors Thomas

More information

A Level. A Level Physics. Circular Motion (Answers) Edexcel. Name: Total Marks: /30

A Level. A Level Physics. Circular Motion (Answers) Edexcel. Name: Total Marks: /30 Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources. Edexcel A Level A Level Physics Circular Motion (Answers) Name: Total Marks: /30 Maths Made Easy Complete Tuition Ltd 2017 1. Total for

More information

Electric Vehicle Performance Power and Efficiency

Electric Vehicle Performance Power and Efficiency Electric Vehicle Performance Power and Efficiency 1 Assignment a) Examine measurement guide and electric vehicle (EV) arrangement. b) Drive the route according to teacher s instruction and download measured

More information

INTI INTERNATIONAL UNIVERSITY FOUNDATION IN SCIENCE (CFSI) PHY1203: GENERAL PHYSICS 1 FINAL EXAMINATION: SEPTEMBER 2012 SESSION

INTI INTERNATIONAL UNIVERSITY FOUNDATION IN SCIENCE (CFSI) PHY1203: GENERAL PHYSICS 1 FINAL EXAMINATION: SEPTEMBER 2012 SESSION INTI INTERNATIONAL UNIVERSITY FOUNDATION IN SCIENCE (CFSI) PHY1203: GENERAL PHYSICS 1 FINAL EXAMINATION: SEPTEMBER 2012 SESSION PHY1203(F)/Page 1 of 5 Instructions: This paper consists of FIVE (5) questions.

More information

EXAMPLE: Accelerometer

EXAMPLE: Accelerometer EXAMPLE: Accelerometer A car has a constant acceleration of.0 m/s. A small ball of mass m = 0.50 kg attached to a string hangs from the ceiling. Find the angle θ between the string and the vertical direction.

More information

PLANAR KINETIC EQUATIONS OF MOTION: TRANSLATION

PLANAR KINETIC EQUATIONS OF MOTION: TRANSLATION PLANAR KINETIC EQUATIONS OF MOTION: TRANSLATION Today s Objectives: Students will be able to: 1. Apply the three equations of motion for a rigid body in planar motion. 2. Analyze problems involving translational

More information

Physics 8 Wednesday, October 11, 2017

Physics 8 Wednesday, October 11, 2017 Physics 8 Wednesday, October 11, 2017 HW5 due Friday. It s really Friday this week! Homework study/help sessions (optional): Bill will be in DRL 2C6 Wednesdays from 4 6pm (today). Grace will be in DRL

More information

Physics for Scientists and Engineers. Chapter 6 Dynamics I: Motion Along a Line

Physics for Scientists and Engineers. Chapter 6 Dynamics I: Motion Along a Line Physics for Scientists and Engineers Chapter 6 Dynamics I: Motion Along a Line Spring, 008 Ho Jung Paik Applications of Newton s Law Objects can be modeled as particles Masses of strings or ropes are negligible

More information

EXAM 1. OPEN BOOK AND CLOSED NOTES Thursday, February 18th, 2010

EXAM 1. OPEN BOOK AND CLOSED NOTES Thursday, February 18th, 2010 ME 35 - Machine Design I Spring Semester 010 Name of Student Lab. Div. Number EXAM 1. OPEN BOOK AND CLOSED NOTES Thursday, February 18th, 010 Please use the blank paper provided for your solutions. Write

More information

AE 688 Dynamics And Vibration Assignment No. 2. with the brakes slightly applied so that the speed v is constant. The slope decreases abruptly to θ

AE 688 Dynamics And Vibration Assignment No. 2. with the brakes slightly applied so that the speed v is constant. The slope decreases abruptly to θ AE 688 Dynamics And Vibration Assignment No. 1. A car is descending the hill of slope θ 1 with the brakes slightly applied so that the speed v is constant. The slope decreases abruptly to θ at point A.

More information

+F N = -F g. F g = m٠a g

+F N = -F g. F g = m٠a g Force Normal = F N Force Normal (or the Normal Force, abbreviated F N ) = F N = The contact force exerted by a surface on an object. The word Normal means perpendicular to Therefore, the Normal Force is

More information

Influence of the road-surface texture on the speed dependency of tire/road friction

Influence of the road-surface texture on the speed dependency of tire/road friction Influence of the road-surface texture on the speed dependency of tire/road friction Minh Tan Do, Hassan Zahouani To cite this version: Minh Tan Do, Hassan Zahouani. Influence of the road-surface texture

More information

Pleeeeeeeeeeeeeease mark your UFID, exam number, and name correctly. 20 problems 3 problems from exam 2

Pleeeeeeeeeeeeeease mark your UFID, exam number, and name correctly. 20 problems 3 problems from exam 2 Pleeeeeeeeeeeeeease mark your UFID, exam number, and name correctly. 20 problems 3 problems from exam 1 3 problems from exam 2 6 problems 13.1 14.6 (including 14.5) 8 problems 1.1---9.6 Go through the

More information

Drive-train Basics. Team 1640 Clem McKown - mentor October 2009 (r3)

Drive-train Basics. Team 1640 Clem McKown - mentor October 2009 (r3) Drive-train Basics Team 1640 Clem McKown - mentor October 2009 (r3) Topics What s a Drive-train? Basics Components Propulsion Drivetrain Model Center of Mass Considerations Automobile versus robot tank

More information

Plane Motion of Rigid Bodies: Forces and Accelerations

Plane Motion of Rigid Bodies: Forces and Accelerations Plane Motion of Rigid Bodies: Forces and Accelerations Reference: Beer, Ferdinand P. et al, Vector Mechanics for Engineers : Dynamics, 8 th Edition, Mc GrawHill Hibbeler R.C., Engineering Mechanics: Dynamics,

More information

Plane Motion of Rigid Bodies: Momentum Methods

Plane Motion of Rigid Bodies: Momentum Methods Plane Motion of Rigid Bodies: Momentum Methods Reference: Beer, Ferdinand P. et al, Vector Mechanics for Engineers : Dynamics, 8 th Edition, Mc GrawHill Hibbeler R.C., Engineering Mechanics: Dynamics,

More information

EQUATIONS OF MOTION: GENERAL PLANE MOTION (Section 17.5) Today s Objectives: Students will be able to analyze the planar kinetics of a rigid body

EQUATIONS OF MOTION: GENERAL PLANE MOTION (Section 17.5) Today s Objectives: Students will be able to analyze the planar kinetics of a rigid body EQUATIONS OF MOTION: GENERAL PLANE MOTION (Section 17.5) Today s Objectives: Students will be able to analyze the planar kinetics of a rigid body undergoing general plane motion. APPLICATIONS As the soil

More information

Physics 23 Exam 3 April 2, 2009

Physics 23 Exam 3 April 2, 2009 1. A string is tied to a doorknob 0.79 m from the hinge as shown in the figure. At the instant shown, the force applied to the string is 5.0 N. What is the torque on the door? A) 3.3 N m B) 2.2 N m C)

More information

St. Joseph s Anglo-Chinese School

St. Joseph s Anglo-Chinese School Time allowed:.5 hours Take g = 0 ms - if necessary. St. Joseph s Anglo-Chinese School 008 009 First Term Examination Form 6 ASL Physics Section A (40%) Answer ALL questions in this section. Write your

More information

Terramechanics 2. Soil bearing parameters Bulldozing Tandem wheels MARYLAND U N I V E R S I T Y O F

Terramechanics 2. Soil bearing parameters Bulldozing Tandem wheels MARYLAND U N I V E R S I T Y O F Soil bearing parameters Bulldozing Tandem wheels 1 01 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu Terzaghi Soil Bearing Capacity Factors N q = exp 3π φ tan φ cos π 4 + φ exp 3π N

More information

Elementary Physics October 8, 2007

Elementary Physics October 8, 2007 INSTRUCTIONS: For for the multiple choice questions 1 8, you will be scored only on the basis of choosing only the one correct answer for full credit. No partial credit will be given. For questions 9 10,

More information

1 of 16 3/23/2016 3:09 PM Practice Exam Chapters 69 (Ungraded) (3103258) Due: Wed Apr 6 2016 06:00 PM EDT Question 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Description This will

More information

(c) McHenry Software. McHenry. Accident Reconstruction. by Raymond R. McHenry Brian G. McHenry. McHenry Training Seminar 2008

(c) McHenry Software. McHenry. Accident Reconstruction. by Raymond R. McHenry Brian G. McHenry. McHenry Training Seminar 2008 McHenry Training eminar 008 McHenry Accident Reconstruction 008 by Raymond R. McHenry Brian G. McHenry McHenry oftware PO Box 1716 Cary, NC 751 UA (919)-468-966 email: mchenry@mchenrysoftware.com www:

More information

5. Plane Kinetics of Rigid Bodies

5. Plane Kinetics of Rigid Bodies 5. Plane Kinetics of Rigid Bodies 5.1 Mass moments of inertia 5.2 General equations of motion 5.3 Translation 5.4 Fixed axis rotation 5.5 General plane motion 5.6 Work and energy relations 5.7 Impulse

More information

Geology 229 Engineering and Environmental Geology. Lecture 5. Engineering Properties of Rocks (West, Ch. 6)

Geology 229 Engineering and Environmental Geology. Lecture 5. Engineering Properties of Rocks (West, Ch. 6) Geology 229 Engineering and Environmental Geology Lecture 5 Engineering Properties of Rocks (West, Ch. 6) Outline of this Lecture 1. Triaxial rock mechanics test Mohr circle Combination of Coulomb shear

More information

Computational Simulation of Dynamic Response of Vehicle Tatra T815 and the Ground

Computational Simulation of Dynamic Response of Vehicle Tatra T815 and the Ground IOP Conference Series: Earth and Environmental Science PAPER OPEN ACCESS Computational Simulation of Dynamic Response of Vehicle Tatra T815 and the Ground To cite this article: Jozef Vlek and Veronika

More information

Exam 3--PHYS 101--F15

Exam 3--PHYS 101--F15 Name: Exam 3--PHYS 0--F5 Multiple Choice Identify the choice that best completes the statement or answers the question.. It takes 00 m to stop a car initially moving at 25.0 m/s. The distance required

More information

Overcoming the Limitations of Conservation of Linear Momentum by Including External Impulse

Overcoming the Limitations of Conservation of Linear Momentum by Including External Impulse Overcoming the Limitations of Conservation of Linear Momentum by Including External Impulse March 12, 2008 The University of Tulsa MEPS Lunch Meeting 1 / 40 Motivation The University of Tulsa MEPS Lunch

More information

Homework Assignment 2 Modeling a Drivetrain Model Accuracy Due: Friday, September 16, 2005

Homework Assignment 2 Modeling a Drivetrain Model Accuracy Due: Friday, September 16, 2005 ME 2016 Sections A-B-C-D Fall Semester 2005 Computing Techniques 3-0-3 Homework Assignment 2 Modeling a Drivetrain Model Accuracy Due: Friday, September 16, 2005 Description and Outcomes In this assignment,

More information

RELATIVE MOTION ANALYSIS: VELOCITY (Section 16.5)

RELATIVE MOTION ANALYSIS: VELOCITY (Section 16.5) RELATIVE MOTION ANALYSIS: VELOCITY (Section 16.5) Today s Objectives: Students will be able to: a) Describe the velocity of a rigid body in terms of translation and rotation components. b) Perform a relative-motion

More information

. d. v A v B. e. none of these.

. d. v A v B. e. none of these. General Physics I Exam 3 - Chs. 7,8,9 - Momentum, Rotation, Equilibrium Oct. 28, 2009 Name Rec. Instr. Rec. Time For full credit, make your work clear to the grader. Show the formulas you use, the essential

More information

VEHICLE DYNAMICS. LECTURE NOTES Prof. Dr. Georg Rill October 2003

VEHICLE DYNAMICS. LECTURE NOTES Prof. Dr. Georg Rill October 2003 VEHICLE DYNAMICS FACHHOCHSCHULE REGENSBURG UNIVERSITY OF APPLIED SCIENCES HOCHSCHULE FÜR TECHNIK WIRTSCHAFT SOZIALES LECTURE NOTES Prof. Dr. Georg Rill October 23 download: http://homepages.fh-regensburg.de/%7erig3965/

More information

Physics 111 Final Exam May 5, 2015

Physics 111 Final Exam May 5, 2015 Physics 111 Final Exam May 5, 2015 Name Section University ID Please fill in your computer answer sheet as follows: 1) In the NAME grid, fill in your last name, leave one blank space, then your first name.

More information

Springs Old Exam Questions

Springs Old Exam Questions Springs Old Exam Questions Q1. A spring has a stiffness of 15 Nm 1. Calculate the extension of the spring when a weight of 8.0 N is suspended on it. Give your answer in metres. extension of spring... m

More information

Chapter 3: Fundamentals of Mechanics and Heat. 1/11/00 Electromechanical Dynamics 1

Chapter 3: Fundamentals of Mechanics and Heat. 1/11/00 Electromechanical Dynamics 1 Chapter 3: Fundamentals of Mechanics and Heat 1/11/00 Electromechanical Dynamics 1 Force Linear acceleration of an object is proportional to the applied force: F = m a x(t) F = force acting on an object

More information

Get Solution of These Packages & Learn by Video Tutorials on FRICTION

Get Solution of These Packages & Learn by Video Tutorials on  FRICTION 1. FRICTION : When two bodies are kept in contact, electromagnetic forces act between the charged particles (molecules) at the surfaces of the bodies. Thus, each body exerts a contact force of the other.

More information

1. A baseball player throws a ball horizontally. Which statement best describes the ball's motion after it is thrown? [Neglect the effect of

1. A baseball player throws a ball horizontally. Which statement best describes the ball's motion after it is thrown? [Neglect the effect of 1. A baseball player throws a ball horizontally. Which statement best describes the ball's motion after it is thrown? [Neglect the effect of friction.] A) Its vertical speed remains the same, and its horizontal

More information

16.07 Dynamics Final Exam

16.07 Dynamics Final Exam Name:... Massachusetts Institute of Technology 16.07 Dynamics Final Exam Tuesday, December 20, 2005 Problem 1 (8) Problem 2 (8) Problem 3 (10) Problem 4 (10) Problem 5 (10) Problem 6 (10) Problem 7 (10)

More information

Governors. Chapter : Governors l 653

Governors. Chapter : Governors l 653 18 Chapter : Governors l 653 Features 1. Introduction.. Tpes of Governors. 3. Centrifugal Governors. 4. Terms Used in Governors. 5. Watt Governor. 6. Porter Governor. 7. Proell Governor. 8. Hartnell Governor.

More information