Ernesto Mordecki. Talk presented at the. Finnish Mathematical Society

Size: px
Start display at page:

Download "Ernesto Mordecki. Talk presented at the. Finnish Mathematical Society"

Transcription

1 EXACT RUIN PROBABILITIES FOR A CLASS Of LÉVY PROCESSES Ernesto Mordecki mordecki Montevideo, Uruguay visiting Åbo Akademi, Turku Talk presented at the Finnish Mathematical Society 11 April 2005, Helsinki, Finland

2 Contents: Introduction 1. The problem: Ruin and Maxima 2. Lévy processes (LP) 3. Examples Brownian motion with drift Compound Poisson Processes Jump-diffusion process (I) Processes with positive jumps with rational transform (II)

3 Exact Ruin Probabilities 1. Jump-diffusion (I) Proof: Wiener-Hopf factorization 2. Rational transform positive jumps (II) Heuristics: Wiener-Hopf factorization Proof: Baxter-Donsker (complex analysis) 3. Open questions 4. References

4 The problem: Ruin and Maxima Mathematical model: X t : Ω R (t 0), is a stochastic process defined (Ω, F, P x ). Notation: X 0 = x, P 0 = P. Problem: Compute the Ruin Probability R(x) = P x ( t 0: X t 0) = P x (inf X t 0)

5 Equivalent Problem: Define the maximum M := sup{y t : t 0} of the symmetric process Y, and find 1 F M (x) = P(M > x) = R(x). Ruin for X = maximum for Y Generalized Problem: Take τ(q) exp(q) indep. of X τ(0) = + and consider now M q := sup{y t : 0 t < τ(q)} We want to find F Mq (x) = P(M q x).

6 Lévy Processes: Definition It starts at X 0 = 0, Independent Increments: If 0 t 1 t n, then X t1, X t2 X t1,..., X tn X tn 1 are independent random variables Stationary Increments: X t+h X t same distribution as X h Also called PIIS: Processes with independent and stationary increments

7 Lévy Processes: Characterization Lévy-Kinchine Formula: E e zx t = e tψ(z), where ψ(z) = az+ 1 2 σ2 z 2 + R (ezy 1 zy1 { y <1} )Π(dy) a R is the drift σ 0 is the variance of the Gaussian part Π is a positive measure on R \ {0}, with (1 y 2 )Π(dy) < +, governing the jumps of X: is the jump measure

8 Example: Brownian motion with drift Let B = (B t ) be a Brownian motion. Define X t = at + σb t We have E e zx t = e tψ(z), where ψ(z) = az σ2 z 2 Conclusion: In Levy-Khinchine formula: Π = 0 indicates absence of jumps

9 Example: Compound Poisson Process Taking T = (T k ) i.i.d.r.v. with distribution exp(λ), define N t = inf{k : T 1 + T T k t}. N = (N t ) is a Poisson process. Consider X t = N t Y k k=1 where Y = (Y k ) are i.i.d.r.v. with distribution F (dy) (independent of T ). Simple computations give: In this case ψ(z) = λ R (ezy 1)F (dy), a = σ = 0 Π(dy) = λf (dy).

10 Example: Jump-diffusion processes X t = at + σb t + N t Y k k=1 with B, N, Y independent, gives ψ(z) = az σ2 z 2 + λ If Y 1 has density f(x) = R (ezy 1)F (dy), pαe αy when y > 0 (1 p)βe βy when y < 0 for some positive α, β and p (0, 1), then ψ(z) =az σ2 z 2 + λp z α z z λ(1 p) β + z

11 Denote M q = sup{t 0} I q = inf{t 0} Theorem 1. If X is a jump-diffusion process, the densities of M q and I q are: f Mq (x) = A 1 exp( p 1 x) + A 2 exp( p 2 x), x > 0 f Iq (x) = B 1 exp( r 1 x) + B 2 exp( r 2 x), x < 0 where equation q ψ(z) = 0 has p 1 and p 2 positive roots r 1 and r 2 negative roots and coefficients are: A 1 = 1 p 1/α A 2 = 1 p 2/α 1 p 1 /p 2 1 p 2 /p 1 B 1 = 1 + r 1/β B 2 = 1 + r 2/β 1 r 1 /r 2 1 r 2 /r 1

12 Proof: Consider the characteristic function of M q and I q : φ + q (z) = E exp(zm q) φ q (z) = E exp(zi q ) and use Rogozin s (1966) WH factorization: q q ψ(z) = φ+ q (z)φ q (z) Uniqueness in WH and complex analysis arguments give the result (roots of q ψ(z) are poles, use residue s calculus)

13 LP with rational transform negative jumps Let X be a LP with jump measure Π(dx) = π + (dx) if x > 0, π (dx) = λp(x)dx if x < 0. (1) where π + arbitrary on (0, + ) (arbitrary positive jumps), and p(x) = n m k k=1 j=1 c kj ( αk ) j ( x) j 1 (j 1)! eα kx, x < 0, is the more general form of a r.v. with rational Laplace transform. P = m m n is the Pole count.

14 Characteristic exponent ψ ˆp(z) = So 0 ezy p(y)dy = n m k ( c kj k=1 j=1 αk α k z ) j. ψ(z) = az σ2 z (ezy 1 zh(y))π + (dy) + λ(ˆp(z) 1)

15 Theorem 2 (A. Lewis - EM). (a) On the half space Rz > 0 the equation q ψ(z) = 0 has roots with multiplicities β 1,..., β N n 1,..., n N and such that n n N = P + 1 (σ > 0) of the infi- (b) The characteristic function φ q mum I q is φ q (z) = n k=1 ( αk z ) mk N α k j=1 ( ) nj βj, β j z

16 Proof: (1) Study the roots of q ψ(z) = 0 on Rz > 0 with Rouche s Theorem (we know the poles). (2) Consider Baxter-Donsker (1957) Formula: φ q (iu) = E e ui q = exp { 1 2π ( u ξ(ξ iu) log q q ψ(ξ) ) dξ } (3) Compute the integral over a convenient contour in Rz > 0, computing the residues at the poles, and take limit.

17 Open Questions: Solve a two barrier problem for this class of Processes: Probability of hitting level a > 0 before than hitting level b < 0. (now π + should also be of rational type) Compute the Green Kernel for this class of Processes

18 References Baxter, G. and Donsker M.D. (1957), On the distribution of the supremum functional for processes with stationary independent increments, Transactions of the American Mathematical Society 85, Bertoin, J. (1996), Lévy Processes (Cambridge University Press, Cambridge). Lewis, A., Mordecki, E. Wiener-Hopf factorization for Lévy processes with negative jumps with rational transforms. Preprint (2005). Rogozin, B.A. (1966), On distributions of functionals related to boundary problems for processes with independent increments, Theory of Probability and its Applications XI, Sato, Ken-iti. Lévy processes and infinitely divisible distributions. Cambridge Studies in Advanced Mathematics, 68. Cambridge University Press, Cambridge, 1999.

Ernesto Mordecki 1. Lecture III. PASI - Guanajuato - June 2010

Ernesto Mordecki 1. Lecture III. PASI - Guanajuato - June 2010 Optimal stopping for Hunt and Lévy processes Ernesto Mordecki 1 Lecture III. PASI - Guanajuato - June 2010 1Joint work with Paavo Salminen (Åbo, Finland) 1 Plan of the talk 1. Motivation: from Finance

More information

Wiener-Hopf factorization for Lévy processes having negative jumps with rational transforms

Wiener-Hopf factorization for Lévy processes having negative jumps with rational transforms Wiener-Hopf factorization for Lévy processes having negative jumps with rational transforms Alan L. Lewis and Ernesto Mordecki Newport Beach, California and UDELAR, Montevideo, Uruguay August 4, 25 Abstract

More information

On Optimal Stopping Problems with Power Function of Lévy Processes

On Optimal Stopping Problems with Power Function of Lévy Processes On Optimal Stopping Problems with Power Function of Lévy Processes Budhi Arta Surya Department of Mathematics University of Utrecht 31 August 2006 This talk is based on the joint paper with A.E. Kyprianou:

More information

Infinitely divisible distributions and the Lévy-Khintchine formula

Infinitely divisible distributions and the Lévy-Khintchine formula Infinitely divisible distributions and the Cornell University May 1, 2015 Some definitions Let X be a real-valued random variable with law µ X. Recall that X is said to be infinitely divisible if for every

More information

Convergence of price and sensitivities in Carr s randomization approximation globally and near barrier

Convergence of price and sensitivities in Carr s randomization approximation globally and near barrier Convergence of price and sensitivities in Carr s randomization approximation globally and near barrier Sergei Levendorskĭi University of Leicester Toronto, June 23, 2010 Levendorskĭi () Convergence of

More information

Brownian Motion. 1 Definition Brownian Motion Wiener measure... 3

Brownian Motion. 1 Definition Brownian Motion Wiener measure... 3 Brownian Motion Contents 1 Definition 2 1.1 Brownian Motion................................. 2 1.2 Wiener measure.................................. 3 2 Construction 4 2.1 Gaussian process.................................

More information

Poisson random measure: motivation

Poisson random measure: motivation : motivation The Lévy measure provides the expected number of jumps by time unit, i.e. in a time interval of the form: [t, t + 1], and of a certain size Example: ν([1, )) is the expected number of jumps

More information

Bernstein-gamma functions and exponential functionals of Lévy processes

Bernstein-gamma functions and exponential functionals of Lévy processes Bernstein-gamma functions and exponential functionals of Lévy processes M. Savov 1 joint work with P. Patie 2 FCPNLO 216, Bilbao November 216 1 Marie Sklodowska Curie Individual Fellowship at IMI, BAS,

More information

Jump-type Levy Processes

Jump-type Levy Processes Jump-type Levy Processes Ernst Eberlein Handbook of Financial Time Series Outline Table of contents Probabilistic Structure of Levy Processes Levy process Levy-Ito decomposition Jump part Probabilistic

More information

Stable and extended hypergeometric Lévy processes

Stable and extended hypergeometric Lévy processes Stable and extended hypergeometric Lévy processes Andreas Kyprianou 1 Juan-Carlos Pardo 2 Alex Watson 2 1 University of Bath 2 CIMAT as given at CIMAT, 23 October 2013 A process, and a problem Let X be

More information

Analytical properties of scale functions for spectrally negative Lévy processes

Analytical properties of scale functions for spectrally negative Lévy processes Analytical properties of scale functions for spectrally negative Lévy processes Andreas E. Kyprianou 1 Department of Mathematical Sciences, University of Bath 1 Joint work with Terence Chan and Mladen

More information

Exponential functionals of Lévy processes

Exponential functionals of Lévy processes Exponential functionals of Lévy processes Víctor Rivero Centro de Investigación en Matemáticas, México. 1/ 28 Outline of the talk Introduction Exponential functionals of spectrally positive Lévy processes

More information

Lecture 17 Brownian motion as a Markov process

Lecture 17 Brownian motion as a Markov process Lecture 17: Brownian motion as a Markov process 1 of 14 Course: Theory of Probability II Term: Spring 2015 Instructor: Gordan Zitkovic Lecture 17 Brownian motion as a Markov process Brownian motion is

More information

Definition: Lévy Process. Lectures on Lévy Processes and Stochastic Calculus, Braunschweig, Lecture 2: Lévy Processes. Theorem

Definition: Lévy Process. Lectures on Lévy Processes and Stochastic Calculus, Braunschweig, Lecture 2: Lévy Processes. Theorem Definition: Lévy Process Lectures on Lévy Processes and Stochastic Calculus, Braunschweig, Lecture 2: Lévy Processes David Applebaum Probability and Statistics Department, University of Sheffield, UK July

More information

MOMENTS AND CUMULANTS OF THE SUBORDINATED LEVY PROCESSES

MOMENTS AND CUMULANTS OF THE SUBORDINATED LEVY PROCESSES MOMENTS AND CUMULANTS OF THE SUBORDINATED LEVY PROCESSES PENKA MAYSTER ISET de Rades UNIVERSITY OF TUNIS 1 The formula of Faa di Bruno represents the n-th derivative of the composition of two functions

More information

Path Decomposition of Markov Processes. Götz Kersting. University of Frankfurt/Main

Path Decomposition of Markov Processes. Götz Kersting. University of Frankfurt/Main Path Decomposition of Markov Processes Götz Kersting University of Frankfurt/Main joint work with Kaya Memisoglu, Jim Pitman 1 A Brownian path with positive drift 50 40 30 20 10 0 0 200 400 600 800 1000-10

More information

Stochastic Analysis. Prof. Dr. Andreas Eberle

Stochastic Analysis. Prof. Dr. Andreas Eberle Stochastic Analysis Prof. Dr. Andreas Eberle March 13, 212 Contents Contents 2 1 Lévy processes and Poisson point processes 6 1.1 Lévy processes.............................. 7 Characteristic exponents.........................

More information

Stochastic Processes

Stochastic Processes Stochastic Processes A very simple introduction Péter Medvegyev 2009, January Medvegyev (CEU) Stochastic Processes 2009, January 1 / 54 Summary from measure theory De nition (X, A) is a measurable space

More information

Problems 5: Continuous Markov process and the diffusion equation

Problems 5: Continuous Markov process and the diffusion equation Problems 5: Continuous Markov process and the diffusion equation Roman Belavkin Middlesex University Question Give a definition of Markov stochastic process. What is a continuous Markov process? Answer:

More information

ELEMENTS OF PROBABILITY THEORY

ELEMENTS OF PROBABILITY THEORY ELEMENTS OF PROBABILITY THEORY Elements of Probability Theory A collection of subsets of a set Ω is called a σ algebra if it contains Ω and is closed under the operations of taking complements and countable

More information

1 Infinitely Divisible Random Variables

1 Infinitely Divisible Random Variables ENSAE, 2004 1 2 1 Infinitely Divisible Random Variables 1.1 Definition A random variable X taking values in IR d is infinitely divisible if its characteristic function ˆµ(u) =E(e i(u X) )=(ˆµ n ) n where

More information

6. Brownian Motion. Q(A) = P [ ω : x(, ω) A )

6. Brownian Motion. Q(A) = P [ ω : x(, ω) A ) 6. Brownian Motion. stochastic process can be thought of in one of many equivalent ways. We can begin with an underlying probability space (Ω, Σ, P) and a real valued stochastic process can be defined

More information

ON ADDITIVE TIME-CHANGES OF FELLER PROCESSES. 1. Introduction

ON ADDITIVE TIME-CHANGES OF FELLER PROCESSES. 1. Introduction ON ADDITIVE TIME-CHANGES OF FELLER PROCESSES ALEKSANDAR MIJATOVIĆ AND MARTIJN PISTORIUS Abstract. In this note we generalise the Phillips theorem [1] on the subordination of Feller processes by Lévy subordinators

More information

Numerical Methods with Lévy Processes

Numerical Methods with Lévy Processes Numerical Methods with Lévy Processes 1 Objective: i) Find models of asset returns, etc ii) Get numbers out of them. Why? VaR and risk management Valuing and hedging derivatives Why not? Usual assumption:

More information

Small-time asymptotics of stopped Lévy bridges and simulation schemes with controlled bias

Small-time asymptotics of stopped Lévy bridges and simulation schemes with controlled bias Small-time asymptotics of stopped Lévy bridges and simulation schemes with controlled bias José E. Figueroa-López 1 1 Department of Statistics Purdue University Seoul National University & Ajou University

More information

Beyond the color of the noise: what is memory in random phenomena?

Beyond the color of the noise: what is memory in random phenomena? Beyond the color of the noise: what is memory in random phenomena? Gennady Samorodnitsky Cornell University September 19, 2014 Randomness means lack of pattern or predictability in events according to

More information

Quenched Limit Laws for Transient, One-Dimensional Random Walk in Random Environment

Quenched Limit Laws for Transient, One-Dimensional Random Walk in Random Environment Quenched Limit Laws for Transient, One-Dimensional Random Walk in Random Environment Jonathon Peterson School of Mathematics University of Minnesota April 8, 2008 Jonathon Peterson 4/8/2008 1 / 19 Background

More information

Scale functions for spectrally negative Lévy processes and their appearance in economic models

Scale functions for spectrally negative Lévy processes and their appearance in economic models Scale functions for spectrally negative Lévy processes and their appearance in economic models Andreas E. Kyprianou 1 Department of Mathematical Sciences, University of Bath 1 This is a review talk and

More information

1. Stochastic Process

1. Stochastic Process HETERGENEITY IN QUANTITATIVE MACROECONOMICS @ TSE OCTOBER 17, 216 STOCHASTIC CALCULUS BASICS SANG YOON (TIM) LEE Very simple notes (need to add references). It is NOT meant to be a substitute for a real

More information

Brownian motion. Samy Tindel. Purdue University. Probability Theory 2 - MA 539

Brownian motion. Samy Tindel. Purdue University. Probability Theory 2 - MA 539 Brownian motion Samy Tindel Purdue University Probability Theory 2 - MA 539 Mostly taken from Brownian Motion and Stochastic Calculus by I. Karatzas and S. Shreve Samy T. Brownian motion Probability Theory

More information

The strictly 1/2-stable example

The strictly 1/2-stable example The strictly 1/2-stable example 1 Direct approach: building a Lévy pure jump process on R Bert Fristedt provided key mathematical facts for this example. A pure jump Lévy process X is a Lévy process such

More information

Self-similar Markov processes

Self-similar Markov processes Self-similar Markov processes Andreas E. Kyprianou 1 1 Unversity of Bath Which are our favourite stochastic processes? Markov chains Diffusions Brownian motion Cts-time Markov processes with jumps Lévy

More information

Additive Lévy Processes

Additive Lévy Processes Additive Lévy Processes Introduction Let X X N denote N independent Lévy processes on. We can construct an N-parameter stochastic process, indexed by N +, as follows: := X + + X N N for every := ( N )

More information

A slow transient diusion in a drifted stable potential

A slow transient diusion in a drifted stable potential A slow transient diusion in a drifted stable potential Arvind Singh Université Paris VI Abstract We consider a diusion process X in a random potential V of the form V x = S x δx, where δ is a positive

More information

Stochastic Areas and Applications in Risk Theory

Stochastic Areas and Applications in Risk Theory Stochastic Areas and Applications in Risk Theory July 16th, 214 Zhenyu Cui Department of Mathematics Brooklyn College, City University of New York Zhenyu Cui 49th Actuarial Research Conference 1 Outline

More information

Lecture 4: Introduction to stochastic processes and stochastic calculus

Lecture 4: Introduction to stochastic processes and stochastic calculus Lecture 4: Introduction to stochastic processes and stochastic calculus Cédric Archambeau Centre for Computational Statistics and Machine Learning Department of Computer Science University College London

More information

A Lévy-Fokker-Planck equation: entropies and convergence to equilibrium

A Lévy-Fokker-Planck equation: entropies and convergence to equilibrium 1/ 22 A Lévy-Fokker-Planck equation: entropies and convergence to equilibrium I. Gentil CEREMADE, Université Paris-Dauphine International Conference on stochastic Analysis and Applications Hammamet, Tunisia,

More information

Exercises. T 2T. e ita φ(t)dt.

Exercises. T 2T. e ita φ(t)dt. Exercises. Set #. Construct an example of a sequence of probability measures P n on R which converge weakly to a probability measure P but so that the first moments m,n = xdp n do not converge to m = xdp.

More information

1. Stochastic Processes and filtrations

1. Stochastic Processes and filtrations 1. Stochastic Processes and 1. Stoch. pr., A stochastic process (X t ) t T is a collection of random variables on (Ω, F) with values in a measurable space (S, S), i.e., for all t, In our case X t : Ω S

More information

Introduction to self-similar growth-fragmentations

Introduction to self-similar growth-fragmentations Introduction to self-similar growth-fragmentations Quan Shi CIMAT, 11-15 December, 2017 Quan Shi Growth-Fragmentations CIMAT, 11-15 December, 2017 1 / 34 Literature Jean Bertoin, Compensated fragmentation

More information

Harnack Inequalities and Applications for Stochastic Equations

Harnack Inequalities and Applications for Stochastic Equations p. 1/32 Harnack Inequalities and Applications for Stochastic Equations PhD Thesis Defense Shun-Xiang Ouyang Under the Supervision of Prof. Michael Röckner & Prof. Feng-Yu Wang March 6, 29 p. 2/32 Outline

More information

arxiv:cond-mat/ v2 [cond-mat.stat-mech] 23 Feb 1998

arxiv:cond-mat/ v2 [cond-mat.stat-mech] 23 Feb 1998 Multiplicative processes and power laws arxiv:cond-mat/978231v2 [cond-mat.stat-mech] 23 Feb 1998 Didier Sornette 1,2 1 Laboratoire de Physique de la Matière Condensée, CNRS UMR6632 Université des Sciences,

More information

Optimal stopping, Appell polynomials and Wiener-Hopf factorization

Optimal stopping, Appell polynomials and Wiener-Hopf factorization arxiv:1002.3746v1 [math.pr] 19 Feb 2010 Optimal stopping, Appell polynomials and Wiener-Hopf factorization Paavo Salminen Åbo Aademi, Mathematical Department, Fänrisgatan 3 B, FIN-20500 Åbo, Finland, email:

More information

1 IEOR 6712: Notes on Brownian Motion I

1 IEOR 6712: Notes on Brownian Motion I Copyright c 005 by Karl Sigman IEOR 67: Notes on Brownian Motion I We present an introduction to Brownian motion, an important continuous-time stochastic process that serves as a continuous-time analog

More information

A FEW REMARKS ON THE SUPREMUM OF STABLE PROCESSES P. PATIE

A FEW REMARKS ON THE SUPREMUM OF STABLE PROCESSES P. PATIE A FEW REMARKS ON THE SUPREMUM OF STABLE PROCESSES P. PATIE Abstract. In [1], Bernyk et al. offer a power series and an integral representation for the density of S 1, the maximum up to time 1, of a regular

More information

MARTINGALES: VARIANCE. EY = 0 Var (Y ) = σ 2

MARTINGALES: VARIANCE. EY = 0 Var (Y ) = σ 2 MARTINGALES: VARIANCE SIMPLEST CASE: X t = Y 1 +... + Y t IID SUM V t = X 2 t σ 2 t IS A MG: EY = 0 Var (Y ) = σ 2 V t+1 = (X t + Y t+1 ) 2 σ 2 (t + 1) = V t + 2X t Y t+1 + Y 2 t+1 σ 2 E(V t+1 F t ) =

More information

Local vs. Nonlocal Diffusions A Tale of Two Laplacians

Local vs. Nonlocal Diffusions A Tale of Two Laplacians Local vs. Nonlocal Diffusions A Tale of Two Laplacians Jinqiao Duan Dept of Applied Mathematics Illinois Institute of Technology Chicago duan@iit.edu Outline 1 Einstein & Wiener: The Local diffusion 2

More information

Filtrations, Markov Processes and Martingales. Lectures on Lévy Processes and Stochastic Calculus, Braunschweig, Lecture 3: The Lévy-Itô Decomposition

Filtrations, Markov Processes and Martingales. Lectures on Lévy Processes and Stochastic Calculus, Braunschweig, Lecture 3: The Lévy-Itô Decomposition Filtrations, Markov Processes and Martingales Lectures on Lévy Processes and Stochastic Calculus, Braunschweig, Lecture 3: The Lévy-Itô Decomposition David pplebaum Probability and Statistics Department,

More information

9 Brownian Motion: Construction

9 Brownian Motion: Construction 9 Brownian Motion: Construction 9.1 Definition and Heuristics The central limit theorem states that the standard Gaussian distribution arises as the weak limit of the rescaled partial sums S n / p n of

More information

Notes 9 : Infinitely divisible and stable laws

Notes 9 : Infinitely divisible and stable laws Notes 9 : Infinitely divisible and stable laws Math 733 - Fall 203 Lecturer: Sebastien Roch References: [Dur0, Section 3.7, 3.8], [Shi96, Section III.6]. Infinitely divisible distributions Recall: EX 9.

More information

On the quantiles of the Brownian motion and their hitting times.

On the quantiles of the Brownian motion and their hitting times. On the quantiles of the Brownian motion and their hitting times. Angelos Dassios London School of Economics May 23 Abstract The distribution of the α-quantile of a Brownian motion on an interval [, t]

More information

Fractional Laplacian

Fractional Laplacian Fractional Laplacian Grzegorz Karch 5ème Ecole de printemps EDP Non-linéaire Mathématiques et Interactions: modèles non locaux et applications Ecole Supérieure de Technologie d Essaouira, du 27 au 30 Avril

More information

Problem 1A. Calculus. Problem 3A. Real analysis. f(x) = 0 x = 0.

Problem 1A. Calculus. Problem 3A. Real analysis. f(x) = 0 x = 0. Problem A. Calculus Find the length of the spiral given in polar coordinates by r = e θ, < θ 0. Solution: The length is 0 θ= ds where by Pythagoras ds = dr 2 + (rdθ) 2 = dθ 2e θ, so the length is 0 2e

More information

Approximations of displacement interpolations by entropic interpolations

Approximations of displacement interpolations by entropic interpolations Approximations of displacement interpolations by entropic interpolations Christian Léonard Université Paris Ouest Mokaplan 10 décembre 2015 Interpolations in P(X ) X : Riemannian manifold (state space)

More information

Markov processes and queueing networks

Markov processes and queueing networks Inria September 22, 2015 Outline Poisson processes Markov jump processes Some queueing networks The Poisson distribution (Siméon-Denis Poisson, 1781-1840) { } e λ λ n n! As prevalent as Gaussian distribution

More information

Lecture 21 Representations of Martingales

Lecture 21 Representations of Martingales Lecture 21: Representations of Martingales 1 of 11 Course: Theory of Probability II Term: Spring 215 Instructor: Gordan Zitkovic Lecture 21 Representations of Martingales Right-continuous inverses Let

More information

Universal examples. Chapter The Bernoulli process

Universal examples. Chapter The Bernoulli process Chapter 1 Universal examples 1.1 The Bernoulli process First description: Bernoulli random variables Y i for i = 1, 2, 3,... independent with P [Y i = 1] = p and P [Y i = ] = 1 p. Second description: Binomial

More information

Malliavin Calculus in Finance

Malliavin Calculus in Finance Malliavin Calculus in Finance Peter K. Friz 1 Greeks and the logarithmic derivative trick Model an underlying assent by a Markov process with values in R m with dynamics described by the SDE dx t = b(x

More information

The Contour Process of Crump-Mode-Jagers Branching Processes

The Contour Process of Crump-Mode-Jagers Branching Processes The Contour Process of Crump-Mode-Jagers Branching Processes Emmanuel Schertzer (LPMA Paris 6), with Florian Simatos (ISAE Toulouse) June 24, 2015 Crump-Mode-Jagers trees Crump Mode Jagers (CMJ) branching

More information

Stochastic Partial Differential Equations with Levy Noise

Stochastic Partial Differential Equations with Levy Noise Stochastic Partial Differential Equations with Levy Noise An Evolution Equation Approach S..PESZAT and J. ZABCZYK Institute of Mathematics, Polish Academy of Sciences' CAMBRIDGE UNIVERSITY PRESS Contents

More information

Karhunen-Loève Expansions of Lévy Processes

Karhunen-Loève Expansions of Lévy Processes Karhunen-Loève Expansions of Lévy Processes Daniel Hackmann June 2016, Barcelona supported by the Austrian Science Fund (FWF), Project F5509-N26 Daniel Hackmann (JKU Linz) KLE s of Lévy Processes 0 / 40

More information

(A n + B n + 1) A n + B n

(A n + B n + 1) A n + B n 344 Problem Hints and Solutions Solution for Problem 2.10. To calculate E(M n+1 F n ), first note that M n+1 is equal to (A n +1)/(A n +B n +1) with probability M n = A n /(A n +B n ) and M n+1 equals

More information

An introduction to Lévy processes

An introduction to Lévy processes with financial modelling in mind Department of Statistics, University of Oxford 27 May 2008 1 Motivation 2 3 General modelling with Lévy processes Modelling financial price processes Quadratic variation

More information

Lecture Characterization of Infinitely Divisible Distributions

Lecture Characterization of Infinitely Divisible Distributions Lecture 10 1 Characterization of Infinitely Divisible Distributions We have shown that a distribution µ is infinitely divisible if and only if it is the weak limit of S n := X n,1 + + X n,n for a uniformly

More information

Multi-Factor Lévy Models I: Symmetric alpha-stable (SαS) Lévy Processes

Multi-Factor Lévy Models I: Symmetric alpha-stable (SαS) Lévy Processes Multi-Factor Lévy Models I: Symmetric alpha-stable (SαS) Lévy Processes Anatoliy Swishchuk Department of Mathematics and Statistics University of Calgary Calgary, Alberta, Canada Lunch at the Lab Talk

More information

Functional Limit theorems for the quadratic variation of a continuous time random walk and for certain stochastic integrals

Functional Limit theorems for the quadratic variation of a continuous time random walk and for certain stochastic integrals Functional Limit theorems for the quadratic variation of a continuous time random walk and for certain stochastic integrals Noèlia Viles Cuadros BCAM- Basque Center of Applied Mathematics with Prof. Enrico

More information

process on the hierarchical group

process on the hierarchical group Intertwining of Markov processes and the contact process on the hierarchical group April 27, 2010 Outline Intertwining of Markov processes Outline Intertwining of Markov processes First passage times of

More information

Lévy processes and Lévy copulas with an application in insurance

Lévy processes and Lévy copulas with an application in insurance Lévy processes and Lévy copulas with an application in insurance Martin Hunting Thesis for the degree of Master of Science Mathematical statistics University of Bergen, Norway June, 2007 This thesis is

More information

Shifting processes with cyclically exchangeable increments at random

Shifting processes with cyclically exchangeable increments at random Shifting processes with cyclically exchangeable increments at random Gerónimo URIBE BRAVO (Collaboration with Loïc CHAUMONT) Instituto de Matemáticas UNAM Universidad Nacional Autónoma de México www.matem.unam.mx/geronimo

More information

Lévy-VaR and the Protection of Banks and Insurance Companies. A joint work by. Olivier Le Courtois, Professor of Finance and Insurance.

Lévy-VaR and the Protection of Banks and Insurance Companies. A joint work by. Olivier Le Courtois, Professor of Finance and Insurance. Lévy-VaR and the Protection of Banks and Insurance Companies A joint work by Olivier Le Courtois, Professor of Finance and Insurance and Christian Walter, Actuary and Consultant Institutions : EM Lyon

More information

The random variable 1

The random variable 1 The random variable 1 Contents 1. Definition 2. Distribution and density function 3. Specific random variables 4. Functions of one random variable 5. Mean and variance 2 The random variable A random variable

More information

OBSTACLE PROBLEMS FOR NONLOCAL OPERATORS: A BRIEF OVERVIEW

OBSTACLE PROBLEMS FOR NONLOCAL OPERATORS: A BRIEF OVERVIEW OBSTACLE PROBLEMS FOR NONLOCAL OPERATORS: A BRIEF OVERVIEW DONATELLA DANIELLI, ARSHAK PETROSYAN, AND CAMELIA A. POP Abstract. In this note, we give a brief overview of obstacle problems for nonlocal operators,

More information

Gaussian processes for inference in stochastic differential equations

Gaussian processes for inference in stochastic differential equations Gaussian processes for inference in stochastic differential equations Manfred Opper, AI group, TU Berlin November 6, 2017 Manfred Opper, AI group, TU Berlin (TU Berlin) inference in SDE November 6, 2017

More information

Outline. A Central Limit Theorem for Truncating Stochastic Algorithms

Outline. A Central Limit Theorem for Truncating Stochastic Algorithms Outline A Central Limit Theorem for Truncating Stochastic Algorithms Jérôme Lelong http://cermics.enpc.fr/ lelong Tuesday September 5, 6 1 3 4 Jérôme Lelong (CERMICS) Tuesday September 5, 6 1 / 3 Jérôme

More information

Some Tools From Stochastic Analysis

Some Tools From Stochastic Analysis W H I T E Some Tools From Stochastic Analysis J. Potthoff Lehrstuhl für Mathematik V Universität Mannheim email: potthoff@math.uni-mannheim.de url: http://ls5.math.uni-mannheim.de To close the file, click

More information

Subordinated Brownian Motion: Last Time the Process Reaches its Supremum

Subordinated Brownian Motion: Last Time the Process Reaches its Supremum Sankhyā : The Indian Journal of Statistics 25, Volume 77-A, Part, pp. 46-64 c 24, Indian Statistical Institute Subordinated Brownian Motion: Last Time the Process Reaches its Supremum Stergios B. Fotopoulos,

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 7 9/25/2013

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 7 9/25/2013 MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.65/15.070J Fall 013 Lecture 7 9/5/013 The Reflection Principle. The Distribution of the Maximum. Brownian motion with drift Content. 1. Quick intro to stopping times.

More information

Optimal Stopping and Maximal Inequalities for Poisson Processes

Optimal Stopping and Maximal Inequalities for Poisson Processes Optimal Stopping and Maximal Inequalities for Poisson Processes D.O. Kramkov 1 E. Mordecki 2 September 10, 2002 1 Steklov Mathematical Institute, Moscow, Russia 2 Universidad de la República, Montevideo,

More information

Lecture 10: Semi-Markov Type Processes

Lecture 10: Semi-Markov Type Processes Lecture 1: Semi-Markov Type Processes 1. Semi-Markov processes (SMP) 1.1 Definition of SMP 1.2 Transition probabilities for SMP 1.3 Hitting times and semi-markov renewal equations 2. Processes with semi-markov

More information

Contents. 1 Preliminaries 3. Martingales

Contents. 1 Preliminaries 3. Martingales Table of Preface PART I THE FUNDAMENTAL PRINCIPLES page xv 1 Preliminaries 3 2 Martingales 9 2.1 Martingales and examples 9 2.2 Stopping times 12 2.3 The maximum inequality 13 2.4 Doob s inequality 14

More information

The Laplace driven moving average a non-gaussian stationary process

The Laplace driven moving average a non-gaussian stationary process The Laplace driven moving average a non-gaussian stationary process 1, Krzysztof Podgórski 2, Igor Rychlik 1 1 Mathematical Sciences, Mathematical Statistics, Chalmers 2 Centre for Mathematical Sciences,

More information

Lecture 1: Pragmatic Introduction to Stochastic Differential Equations

Lecture 1: Pragmatic Introduction to Stochastic Differential Equations Lecture 1: Pragmatic Introduction to Stochastic Differential Equations Simo Särkkä Aalto University, Finland (visiting at Oxford University, UK) November 13, 2013 Simo Särkkä (Aalto) Lecture 1: Pragmatic

More information

The Analog Formulation of Sparsity Implies Infinite Divisibility and Rules Out Bernoulli-Gaussian Priors

The Analog Formulation of Sparsity Implies Infinite Divisibility and Rules Out Bernoulli-Gaussian Priors The Analog Formulation of Sparsity Implies Infinite Divisibility and ules Out Bernoulli-Gaussian Priors Arash Amini, Ulugbek S. Kamilov, and Michael Unser Biomedical Imaging Group BIG) École polytechnique

More information

Other properties of M M 1

Other properties of M M 1 Other properties of M M 1 Přemysl Bejda premyslbejda@gmail.com 2012 Contents 1 Reflected Lévy Process 2 Time dependent properties of M M 1 3 Waiting times and queue disciplines in M M 1 Contents 1 Reflected

More information

Potentials of stable processes

Potentials of stable processes Potentials of stable processes A. E. Kyprianou A. R. Watson 5th December 23 arxiv:32.222v [math.pr] 4 Dec 23 Abstract. For a stable process, we give an explicit formula for the potential measure of the

More information

1 Independent increments

1 Independent increments Tel Aviv University, 2008 Brownian motion 1 1 Independent increments 1a Three convolution semigroups........... 1 1b Independent increments.............. 2 1c Continuous time................... 3 1d Bad

More information

Hardy-Stein identity and Square functions

Hardy-Stein identity and Square functions Hardy-Stein identity and Square functions Daesung Kim (joint work with Rodrigo Bañuelos) Department of Mathematics Purdue University March 28, 217 Daesung Kim (Purdue) Hardy-Stein identity UIUC 217 1 /

More information

arxiv: v1 [math.pr] 30 Mar 2014

arxiv: v1 [math.pr] 30 Mar 2014 Binomial discrete time ruin probability with Parisian delay Irmina Czarna Zbigniew Palmowski Przemys law Świ atek October 8, 2018 arxiv:1403.7761v1 [math.pr] 30 Mar 2014 Abstract. In this paper we analyze

More information

arxiv: v2 [math.pr] 15 Jul 2015

arxiv: v2 [math.pr] 15 Jul 2015 STRIKINGLY SIMPLE IDENTITIES RELATING EXIT PROBLEMS FOR LÉVY PROCESSES UNDER CONTINUOUS AND POISSON OBSERVATIONS arxiv:157.3848v2 [math.pr] 15 Jul 215 HANSJÖRG ALBRECHER AND JEVGENIJS IVANOVS Abstract.

More information

Lecture 19 : Brownian motion: Path properties I

Lecture 19 : Brownian motion: Path properties I Lecture 19 : Brownian motion: Path properties I MATH275B - Winter 2012 Lecturer: Sebastien Roch References: [Dur10, Section 8.1], [Lig10, Section 1.5, 1.6], [MP10, Section 1.1, 1.2]. 1 Invariance We begin

More information

Limit theorems for multipower variation in the presence of jumps

Limit theorems for multipower variation in the presence of jumps Limit theorems for multipower variation in the presence of jumps Ole E. Barndorff-Nielsen Department of Mathematical Sciences, University of Aarhus, Ny Munkegade, DK-8 Aarhus C, Denmark oebn@imf.au.dk

More information

Mittag-Leffler and Principle of the Argument

Mittag-Leffler and Principle of the Argument Mittag-Leffler and Principle of the Argument Thursday, November 21, 2013 1:54 PM Homework 3 due Friday, November 22 at 5 PM. Homework 4 will be posted tonight, due Wednesday, December 11 at 5 PM. We'll

More information

Selected Exercises on Expectations and Some Probability Inequalities

Selected Exercises on Expectations and Some Probability Inequalities Selected Exercises on Expectations and Some Probability Inequalities # If E(X 2 ) = and E X a > 0, then P( X λa) ( λ) 2 a 2 for 0 < λ

More information

Lecture 22 Girsanov s Theorem

Lecture 22 Girsanov s Theorem Lecture 22: Girsanov s Theorem of 8 Course: Theory of Probability II Term: Spring 25 Instructor: Gordan Zitkovic Lecture 22 Girsanov s Theorem An example Consider a finite Gaussian random walk X n = n

More information

Stochastic Differential Equations.

Stochastic Differential Equations. Chapter 3 Stochastic Differential Equations. 3.1 Existence and Uniqueness. One of the ways of constructing a Diffusion process is to solve the stochastic differential equation dx(t) = σ(t, x(t)) dβ(t)

More information

Lecture 12. F o s, (1.1) F t := s>t

Lecture 12. F o s, (1.1) F t := s>t Lecture 12 1 Brownian motion: the Markov property Let C := C(0, ), R) be the space of continuous functions mapping from 0, ) to R, in which a Brownian motion (B t ) t 0 almost surely takes its value. Let

More information

Childrens game Up The River. Each player has three boats; throw a non-standard die, choose one boat to advance. At end of round, every boat is moved

Childrens game Up The River. Each player has three boats; throw a non-standard die, choose one boat to advance. At end of round, every boat is moved Childrens game Up The River. Each player has three boats; throw a non-standard die, choose one boat to advance. At end of round, every boat is moved backwards one step; boats at last step are lost.. 1

More information

Time Quantization and q-deformations

Time Quantization and q-deformations Time Quantization and q-deformations Claudio Albanese and Stephan Lawi Department of Mathematics, 100 St. George Street, University of Toronto, M5S 3G3, Toronto, Canada E-mail: albanese@math.toronto.edu,

More information

Octavio Arizmendi, Ole E. Barndorff-Nielsen and Víctor Pérez-Abreu

Octavio Arizmendi, Ole E. Barndorff-Nielsen and Víctor Pérez-Abreu ON FREE AND CLASSICAL TYPE G DISTRIBUTIONS Octavio Arizmendi, Ole E. Barndorff-Nielsen and Víctor Pérez-Abreu Comunicación del CIMAT No I-9-4/3-4-29 (PE /CIMAT) On Free and Classical Type G Distributions

More information

Risk Bounds for Lévy Processes in the PAC-Learning Framework

Risk Bounds for Lévy Processes in the PAC-Learning Framework Risk Bounds for Lévy Processes in the PAC-Learning Framework Chao Zhang School of Computer Engineering anyang Technological University Dacheng Tao School of Computer Engineering anyang Technological University

More information