CS 330 Discussion - Probability

Size: px
Start display at page:

Download "CS 330 Discussion - Probability"

Transcription

1 CS 330 Discussio - Probability March Fudametals of Probability 11 Radom Variables ad Evets A radom variable X is oe whose value is o-determiistic For example, suppose we flip a coi ad set X = 1 if we get heads, ad X = 0 if we get tails The, X is a radom variable sice its value is ot kow prior to the flip The set of values X ca take ad their associated probabilities is referred to as a probabilistic distributio Variables ca be discrete (eg the result of a die) or cotiuous (eg the distace betwee two objects) For this course, we focus o discrete distributios We ca defie a evet E as somethig that may or may ot happe, ad the discuss the probability it happes as P r[e] Whe we discuss radom variables, we may describe the probability they take o certai values usig this otatio For example, P r[x = x] sigifies the probability of the evet X = x We ca defie evets which are fuctios of other evets as well For example, give two evets A, B the evet where both A ad B happe ca be writte as A B (the itersectio, or logical AND) The evet where at least oe of A, B happes is A B (the uio, or logical OR) We ca also defie the complemet of a evet, A C A C is the evet where A does ot happe Note that: P r[a C ] = 1 P r[a] (A B) C = A C B C (A B) C = A C B C P r[a B] P r[a] + P r[b] (this is the uio boud, ad geeralized to multiple evets) P r[a B] = P r[a] + P r[b] P r[a B] (ca be prove pictorially via Ve diagram) We ca also defie evets coditioally o other evets already havig occurred For example, give that we rolled a eve umber o a die, what s the 1

2 probability we rolled a 6? The coditioal probability of B give A is writte as P r[b A] More formally, P r[b A] = P r[b A] P r[a] Some coditioal probabilities ca be very clealy defied i terms of each other Note that P r[b A]P r[a] == P r[a B] = P r[a B]P r[b] The, P r[a B]P r[b] P r[b A] = P r[a] This is Bayes rule For example, if we kow the probability a drug-usig idividual tests positively for drugs, if a test has false positives determiig the probability someoe who tests positive has actually take drugs is t easy However, if we also kow the probability a idividual tests positive overall ad the probability a idividual has take drugs, Bayes rule lets us relate the two quatities easily 12 Mutual Exclusio ad Idepedece Two evets are said to be mutually exclusive if oe happeig meas the other caot happe For example, rollig a 1 ad rollig a eve umber o a die are mutually exclusive evets Formally, A ad B are mutually exclusive if P r[a B] = 0 Two evets are idepedet if kowig whether oe happeed or ot does ot give us ay additioal kowledge as to whether the other happeed or ot For example, while kowig that I rolled a eve umber o a die gives us more ifo about whether I rolled a 6 or ot, kowig that I flipped a coi ad got heads tells me othig about whether I rolled a 6 or ot Formally, A ad B are idepedet if P r[a B] = P r[a] or equivaletly, P r[a B] = P r[a]p r[b] The latter equatio exteds to multiple idepedet evets That is, P r[e 1 E 2 E ] = i P r[e i] if all E i are idepedet I geeral, two evets which have o effect o each other are idepedet So, if we have may evets we kow occur idepedetly, we ca calculate the probability of the joit set of evets occurrig by just multiplyig each of the idividual evets probabilities of occurrig 13 Expected Values For a radom variable X, the expected value ca be deoted as E[X] The expected value ca be thought of as the average outcome Formally, E[X] = x P r[x = x] x For example, if I flip a fair coi ad set X = 1 if the coi gets heads ad X = 0 otherwise, E[X] = 5 We ca also write expected values coditioally - for example, the expected value of a die roll give I got a eve umber The expected value of X coditioed o A happeig is E[X A] For some set of outcomes of some evet E 1 E ad some associated radom variable, E[X] = i P r[e i]e[x E i ] Some radom variables ca be writte as the sum of other radom variables For example, suppose I flip cois, ad deote X 1, X 2 X to be 1 if the ith coi lads heads ad 0 if it lads tails Suppose X is a radom variable which couts the umber of heads I flip I ca write X = X 1 + X 2 X Whe a radom variable is the sum of other radom variables, its expected value is the 2

3 sum of their expected values ie X = i X i E[X] = i E[X i] This is kow as liearity of expectatio It holds eve whe the X i are depedet o each other, makig it a very strog property 2 The Geometric Distributio Suppose we flip a coi that lads heads with probability p ad tails otherwise, util it lads heads How may flips will this take? If X is the umber of flips it takes, the i order for X to equal i, we eed to flip i 1 tails (if we flip heads before the ith flip, we stop) ad the 1 heads So, P r[x = i] = (1 p) i 1 p for all positive itegers i A radom variable with this distributio is said to be geometrically distributed - the set of probabilities is referred to as a geometric distributio Formally, X Geo(p) The geometric distributio is useful i that it lets us predict how may times we may have to repeat some trial util it succeeds For example, i radomized algorithms we might ru a while loop util some coditio is If the chace of that coditio beig met o each iteratio is costat, the umber of iteratios the while loop takes is geometrically distributed Note that P r[x > b] = (1 p) b (we make more tha b flips if the first b flips produce tails) The expected value of the geometric distributio is 1 p Ituitively this makes sese, but we ca also prove it quite simply With probability p, o the first flip, we get heads ad so X = 1 Otherwise, if we flip tails, the umber of remaiig flips is still E[X], so ow X s coditioal expected value is (1 + E[X])) I other words, E[X] = P r[x = 1] E[X X = 1] + P r[x > 1] E[X X > 1] = p 1 + (1 p)(1 + E[X]) This is solved by E[X] = 1 p 3 Probability Problems 31 Coupo Collector We re drawig coupos from a machie, ad there are types of coupos I oe draw, a coupo is picked at radom ad each type of coupo has the same probability to be picked What is the expected umber of draws to get all types of coupos? Let X i be the radom variable represetig the umber of draws to get the i the distict coupo after we have got (i 1) distict coupos We have X i follows a geometric distributio ad the probability of success for each trial is: The expectatio of X i is p i = i + 1 E[X i ] = 1 p i = i + 1 3

4 Let X be the umber of draws to get all coupos The we have 32 Birthday Paradox X = X 1 + X 2 + X E[X] = E[X i ] i=1 E[X] = [ ] Θ( log ) There are k people ad each perso has a radom birthday from days How large should k be such that the chace that two people have the same birthday is at least α Let X be the evet that every perso has a distict birthday The ith perso has ( i+1) optios to have a distict birthday Thus, the probability to have a distict birthday is i+1 The: P r[x] = 1 2 k + 1 P r[x] = 1(1 1 )(1 2 ) (1 k 1 ) Calculus shows us e x 1 x for small x The: P r[x] e ( k 1 + ) P r[x] e k(k 1) The the miimum k eeded is roughly that which solves e k(k 1) = 1 α 33 Balls i Bis Suppose we have balls ad m bis, ad we toss the balls uiformly at radom ito the bis This is called a balls ad bis process, ad is a popular model i practice For example, hashig algorithms ca use a balls ad bis process to aalyze collisios For this sectio, let X i be the umber of balls i ith bi after all balls are throw 331 Balls to fill all bis How large should be before all bis have a ball i expectatio? This is a restatemet of the coupo collector problem, so we get = Θ(m log m) 4

5 332 E[X i ] What is E[X i ]? Note that sice all bis are equivalet from the perspective of throwig balls, E[X i ] is the same for all i The, ad thus m E[X i ] = i=1 E[X i ] = m 333 Most filled bi How large is the most filled bi i expectatio? That is, what is E[max i X i ]? This problem is particularly iterestig for hashig i that it asks what s the expected worst case rutime of checkig a bucket i the hashtable For simplicity, assume there are also bis (that is, m = ) I additio, we will oly try to upper boud the expected value The probability a fixed bi has more tha k balls is the probability that some set of k balls all laded i this bi There are ( k) such sets, so by uio boud, this is ( ) P r(x i k) ( 1 k )k The operatio ( k) is the choose operatio It computes the umber of subsets of size k we ca choose from a set of size ( )! = k k!( k)! Where i! = 1 2 i A useful iequality kow as Stirlig s approximatio bouds ( ) k ( ( ) k )k ( e k k )k The: P r(x i k) ( e k )k ( 1 )k = ( e k )k The, max i X i is at least k if ay X i is at least k: By uio boud: P r(max i X i k) = P r( i=1x i k) P r(max i X i k) ( e k )k 5

6 We kow that max i X i The, we ca upper boud E[max i X i ] as follows: E[max i X i ] k P r(max i X i < k) + P r(max i X i k) 2 ( e k )k + k The first iequality is arrived at by takig the expected value formula ad icreasig all values less tha k to k, ad all other values to The secod is arrived at by boudig the first probability by 1, ad the secod as show above We will the choose k i order to remove the first half of the sum Asymptotically, this will be the same as if we had optimized for k 2 ( e k )k 1 ( e k )k 1 2 ( kk e k ) 2 k k poly() k log k = O(log ) This happes to be solved by k = O( log log log ) k log k = log log log log( log log log ) = log (log log log log log) log log log log log is vaishigly small, so: The, sice 2 ( e k )k 1: log k log k = Θ( log log ) = Θ(log ) log log E[max i X i ] k P r(max i X i k)+ P r(max i X i k) 2 ( e log k )k +k = 1+O( log log ) = O( log log log ) 6

Lecture 6: Coupon Collector s problem

Lecture 6: Coupon Collector s problem Radomized Algorithms Lecture 6: Coupo Collector s problem Sotiris Nikoletseas Professor CEID - ETY Course 2017-2018 Sotiris Nikoletseas, Professor Radomized Algorithms - Lecture 6 1 / 16 Variace: key features

More information

Lecture 2: April 3, 2013

Lecture 2: April 3, 2013 TTIC/CMSC 350 Mathematical Toolkit Sprig 203 Madhur Tulsiai Lecture 2: April 3, 203 Scribe: Shubhedu Trivedi Coi tosses cotiued We retur to the coi tossig example from the last lecture agai: Example. Give,

More information

Discrete Mathematics for CS Spring 2007 Luca Trevisan Lecture 22

Discrete Mathematics for CS Spring 2007 Luca Trevisan Lecture 22 CS 70 Discrete Mathematics for CS Sprig 2007 Luca Trevisa Lecture 22 Aother Importat Distributio The Geometric Distributio Questio: A biased coi with Heads probability p is tossed repeatedly util the first

More information

Discrete Mathematics for CS Spring 2005 Clancy/Wagner Notes 21. Some Important Distributions

Discrete Mathematics for CS Spring 2005 Clancy/Wagner Notes 21. Some Important Distributions CS 70 Discrete Mathematics for CS Sprig 2005 Clacy/Wager Notes 21 Some Importat Distributios Questio: A biased coi with Heads probability p is tossed repeatedly util the first Head appears. What is the

More information

0, otherwise. EX = E(X 1 + X n ) = EX j = np and. Var(X j ) = np(1 p). Var(X) = Var(X X n ) =

0, otherwise. EX = E(X 1 + X n ) = EX j = np and. Var(X j ) = np(1 p). Var(X) = Var(X X n ) = PROBABILITY MODELS 35 10. Discrete probability distributios I this sectio, we discuss several well-ow discrete probability distributios ad study some of their properties. Some of these distributios, lie

More information

Lecture 12: November 13, 2018

Lecture 12: November 13, 2018 Mathematical Toolkit Autum 2018 Lecturer: Madhur Tulsiai Lecture 12: November 13, 2018 1 Radomized polyomial idetity testig We will use our kowledge of coditioal probability to prove the followig lemma,

More information

Final Review for MATH 3510

Final Review for MATH 3510 Fial Review for MATH 50 Calculatio 5 Give a fairly simple probability mass fuctio or probability desity fuctio of a radom variable, you should be able to compute the expected value ad variace of the variable

More information

Randomized Algorithms I, Spring 2018, Department of Computer Science, University of Helsinki Homework 1: Solutions (Discussed January 25, 2018)

Randomized Algorithms I, Spring 2018, Department of Computer Science, University of Helsinki Homework 1: Solutions (Discussed January 25, 2018) Radomized Algorithms I, Sprig 08, Departmet of Computer Sciece, Uiversity of Helsiki Homework : Solutios Discussed Jauary 5, 08). Exercise.: Cosider the followig balls-ad-bi game. We start with oe black

More information

An Introduction to Randomized Algorithms

An Introduction to Randomized Algorithms A Itroductio to Radomized Algorithms The focus of this lecture is to study a radomized algorithm for quick sort, aalyze it usig probabilistic recurrece relatios, ad also provide more geeral tools for aalysis

More information

n outcome is (+1,+1, 1,..., 1). Let the r.v. X denote our position (relative to our starting point 0) after n moves. Thus X = X 1 + X 2 + +X n,

n outcome is (+1,+1, 1,..., 1). Let the r.v. X denote our position (relative to our starting point 0) after n moves. Thus X = X 1 + X 2 + +X n, CS 70 Discrete Mathematics for CS Sprig 2008 David Wager Note 9 Variace Questio: At each time step, I flip a fair coi. If it comes up Heads, I walk oe step to the right; if it comes up Tails, I walk oe

More information

f X (12) = Pr(X = 12) = Pr({(6, 6)}) = 1/36

f X (12) = Pr(X = 12) = Pr({(6, 6)}) = 1/36 Probability Distributios A Example With Dice If X is a radom variable o sample space S, the the probablity that X takes o the value c is Similarly, Pr(X = c) = Pr({s S X(s) = c} Pr(X c) = Pr({s S X(s)

More information

HOMEWORK 2 SOLUTIONS

HOMEWORK 2 SOLUTIONS HOMEWORK SOLUTIONS CSE 55 RANDOMIZED AND APPROXIMATION ALGORITHMS 1. Questio 1. a) The larger the value of k is, the smaller the expected umber of days util we get all the coupos we eed. I fact if = k

More information

f X (12) = Pr(X = 12) = Pr({(6, 6)}) = 1/36

f X (12) = Pr(X = 12) = Pr({(6, 6)}) = 1/36 Probability Distributios A Example With Dice If X is a radom variable o sample space S, the the probability that X takes o the value c is Similarly, Pr(X = c) = Pr({s S X(s) = c}) Pr(X c) = Pr({s S X(s)

More information

6.3 Testing Series With Positive Terms

6.3 Testing Series With Positive Terms 6.3. TESTING SERIES WITH POSITIVE TERMS 307 6.3 Testig Series With Positive Terms 6.3. Review of what is kow up to ow I theory, testig a series a i for covergece amouts to fidig the i= sequece of partial

More information

Random Variables, Sampling and Estimation

Random Variables, Sampling and Estimation Chapter 1 Radom Variables, Samplig ad Estimatio 1.1 Itroductio This chapter will cover the most importat basic statistical theory you eed i order to uderstad the ecoometric material that will be comig

More information

As stated by Laplace, Probability is common sense reduced to calculation.

As stated by Laplace, Probability is common sense reduced to calculation. Note: Hadouts DO NOT replace the book. I most cases, they oly provide a guidelie o topics ad a ituitive feel. The math details will be covered i class, so it is importat to atted class ad also you MUST

More information

Design and Analysis of Algorithms

Design and Analysis of Algorithms Desig ad Aalysis of Algorithms Probabilistic aalysis ad Radomized algorithms Referece: CLRS Chapter 5 Topics: Hirig problem Idicatio radom variables Radomized algorithms Huo Hogwei 1 The hirig problem

More information

CS 171 Lecture Outline October 09, 2008

CS 171 Lecture Outline October 09, 2008 CS 171 Lecture Outlie October 09, 2008 The followig theorem comes very hady whe calculatig the expectatio of a radom variable that takes o o-egative iteger values. Theorem: Let Y be a radom variable that

More information

Problems from 9th edition of Probability and Statistical Inference by Hogg, Tanis and Zimmerman:

Problems from 9th edition of Probability and Statistical Inference by Hogg, Tanis and Zimmerman: Math 224 Fall 2017 Homework 4 Drew Armstrog Problems from 9th editio of Probability ad Statistical Iferece by Hogg, Tais ad Zimmerma: Sectio 2.3, Exercises 16(a,d),18. Sectio 2.4, Exercises 13, 14. Sectio

More information

PRACTICE PROBLEMS FOR THE FINAL

PRACTICE PROBLEMS FOR THE FINAL PRACTICE PROBLEMS FOR THE FINAL Math 36Q Fall 25 Professor Hoh Below is a list of practice questios for the Fial Exam. I would suggest also goig over the practice problems ad exams for Exam ad Exam 2 to

More information

Discrete Mathematics and Probability Theory Summer 2014 James Cook Note 15

Discrete Mathematics and Probability Theory Summer 2014 James Cook Note 15 CS 70 Discrete Mathematics ad Probability Theory Summer 2014 James Cook Note 15 Some Importat Distributios I this ote we will itroduce three importat probability distributios that are widely used to model

More information

CS161 Handout 05 Summer 2013 July 10, 2013 Mathematical Terms and Identities

CS161 Handout 05 Summer 2013 July 10, 2013 Mathematical Terms and Identities CS161 Hadout 05 Summer 2013 July 10, 2013 Mathematical Terms ad Idetities Thaks to Ady Nguye ad Julie Tibshirai for their advice o this hadout. This hadout covers mathematical otatio ad idetities that

More information

Lecture 2 February 8, 2016

Lecture 2 February 8, 2016 MIT 6.854/8.45: Advaced Algorithms Sprig 206 Prof. Akur Moitra Lecture 2 February 8, 206 Scribe: Calvi Huag, Lih V. Nguye I this lecture, we aalyze the problem of schedulig equal size tasks arrivig olie

More information

Lecture 2: Concentration Bounds

Lecture 2: Concentration Bounds CSE 52: Desig ad Aalysis of Algorithms I Sprig 206 Lecture 2: Cocetratio Bouds Lecturer: Shaya Oveis Ghara March 30th Scribe: Syuzaa Sargsya Disclaimer: These otes have ot bee subjected to the usual scrutiy

More information

( ) = p and P( i = b) = q.

( ) = p and P( i = b) = q. MATH 540 Radom Walks Part 1 A radom walk X is special stochastic process that measures the height (or value) of a particle that radomly moves upward or dowward certai fixed amouts o each uit icremet of

More information

STAT Homework 1 - Solutions

STAT Homework 1 - Solutions STAT-36700 Homework 1 - Solutios Fall 018 September 11, 018 This cotais solutios for Homework 1. Please ote that we have icluded several additioal commets ad approaches to the problems to give you better

More information

Axioms of Measure Theory

Axioms of Measure Theory MATH 532 Axioms of Measure Theory Dr. Neal, WKU I. The Space Throughout the course, we shall let X deote a geeric o-empty set. I geeral, we shall ot assume that ay algebraic structure exists o X so that

More information

CEE 522 Autumn Uncertainty Concepts for Geotechnical Engineering

CEE 522 Autumn Uncertainty Concepts for Geotechnical Engineering CEE 5 Autum 005 Ucertaity Cocepts for Geotechical Egieerig Basic Termiology Set A set is a collectio of (mutually exclusive) objects or evets. The sample space is the (collectively exhaustive) collectio

More information

Quick Review of Probability

Quick Review of Probability Quick Review of Probability Berli Che Departmet of Computer Sciece & Iformatio Egieerig Natioal Taiwa Normal Uiversity Refereces: 1. W. Navidi. Statistics for Egieerig ad Scietists. Chapter 2 & Teachig

More information

Quick Review of Probability

Quick Review of Probability Quick Review of Probability Berli Che Departmet of Computer Sciece & Iformatio Egieerig Natioal Taiwa Normal Uiversity Refereces: 1. W. Navidi. Statistics for Egieerig ad Scietists. Chapter & Teachig Material.

More information

CS / MCS 401 Homework 3 grader solutions

CS / MCS 401 Homework 3 grader solutions CS / MCS 401 Homework 3 grader solutios assigmet due July 6, 016 writte by Jāis Lazovskis maximum poits: 33 Some questios from CLRS. Questios marked with a asterisk were ot graded. 1 Use the defiitio of

More information

4. Partial Sums and the Central Limit Theorem

4. Partial Sums and the Central Limit Theorem 1 of 10 7/16/2009 6:05 AM Virtual Laboratories > 6. Radom Samples > 1 2 3 4 5 6 7 4. Partial Sums ad the Cetral Limit Theorem The cetral limit theorem ad the law of large umbers are the two fudametal theorems

More information

1 Hash tables. 1.1 Implementation

1 Hash tables. 1.1 Implementation Lecture 8 Hash Tables, Uiversal Hash Fuctios, Balls ad Bis Scribes: Luke Johsto, Moses Charikar, G. Valiat Date: Oct 18, 2017 Adapted From Virgiia Williams lecture otes 1 Hash tables A hash table is a

More information

Sets and Probabilistic Models

Sets and Probabilistic Models ets ad Probabilistic Models Berli Che Departmet of Computer ciece & Iformatio Egieerig Natioal Taiwa Normal Uiversity Referece: - D. P. Bertsekas, J. N. Tsitsiklis, Itroductio to Probability, ectios 1.1-1.2

More information

Sets and Probabilistic Models

Sets and Probabilistic Models ets ad Probabilistic Models Berli Che Departmet of Computer ciece & Iformatio Egieerig Natioal Taiwa Normal iversity Referece: - D. P. Bertsekas, J. N. Tsitsiklis, Itroductio to Probability, ectios 1.1-1.2

More information

Discrete Mathematics and Probability Theory Spring 2012 Alistair Sinclair Note 15

Discrete Mathematics and Probability Theory Spring 2012 Alistair Sinclair Note 15 CS 70 Discrete Mathematics ad Probability Theory Sprig 2012 Alistair Siclair Note 15 Some Importat Distributios The first importat distributio we leared about i the last Lecture Note is the biomial distributio

More information

UNIT 2 DIFFERENT APPROACHES TO PROBABILITY THEORY

UNIT 2 DIFFERENT APPROACHES TO PROBABILITY THEORY UNIT 2 DIFFERENT APPROACHES TO PROBABILITY THEORY Structure 2.1 Itroductio Objectives 2.2 Relative Frequecy Approach ad Statistical Probability 2. Problems Based o Relative Frequecy 2.4 Subjective Approach

More information

Lecture 1: Asymptotics

Lecture 1: Asymptotics A Theorist s Toolit CMU 8-89T, Fall ) Lecture : Asymptotics September 9, Lecturer: Rya O Doell Scribe: Misha Lavrov I additio to the boo refereces provided at the ed of this documet, two chapters of lecture

More information

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao,David Tse Note 12

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao,David Tse Note 12 CS 70 Discrete Mathematics ad Probability Theory Fall 2009 Satish Rao,David Tse Note 12 Two Killer Applicatios I this lecture, we will see two killer apps of elemetary probability i Computer Sciece. 1.

More information

Infinite Sequences and Series

Infinite Sequences and Series Chapter 6 Ifiite Sequeces ad Series 6.1 Ifiite Sequeces 6.1.1 Elemetary Cocepts Simply speakig, a sequece is a ordered list of umbers writte: {a 1, a 2, a 3,...a, a +1,...} where the elemets a i represet

More information

Conditional Probability. Given an event M with non zero probability and the condition P( M ) > 0, Independent Events P A P (AB) B P (B)

Conditional Probability. Given an event M with non zero probability and the condition P( M ) > 0, Independent Events P A P (AB) B P (B) Coditioal robability Give a evet M with o zero probability ad the coditio ( M ) > 0, ( / M ) ( M ) ( M ) Idepedet Evets () ( ) ( ) () ( ) ( ) ( ) Examples ) Let items be chose at radom from a lot cotaiig

More information

Math 216A Notes, Week 5

Math 216A Notes, Week 5 Math 6A Notes, Week 5 Scribe: Ayastassia Sebolt Disclaimer: These otes are ot early as polished (ad quite possibly ot early as correct) as a published paper. Please use them at your ow risk.. Thresholds

More information

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 19

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 19 CS 70 Discrete Mathematics ad Probability Theory Sprig 2016 Rao ad Walrad Note 19 Some Importat Distributios Recall our basic probabilistic experimet of tossig a biased coi times. This is a very simple

More information

EE 4TM4: Digital Communications II Probability Theory

EE 4TM4: Digital Communications II Probability Theory 1 EE 4TM4: Digital Commuicatios II Probability Theory I. RANDOM VARIABLES A radom variable is a real-valued fuctio defied o the sample space. Example: Suppose that our experimet cosists of tossig two fair

More information

On Random Line Segments in the Unit Square

On Random Line Segments in the Unit Square O Radom Lie Segmets i the Uit Square Thomas A. Courtade Departmet of Electrical Egieerig Uiversity of Califoria Los Ageles, Califoria 90095 Email: tacourta@ee.ucla.edu I. INTRODUCTION Let Q = [0, 1] [0,

More information

It is always the case that unions, intersections, complements, and set differences are preserved by the inverse image of a function.

It is always the case that unions, intersections, complements, and set differences are preserved by the inverse image of a function. MATH 532 Measurable Fuctios Dr. Neal, WKU Throughout, let ( X, F, µ) be a measure space ad let (!, F, P ) deote the special case of a probability space. We shall ow begi to study real-valued fuctios defied

More information

Lecture 2: Probability, Random Variables and Probability Distributions. GENOME 560, Spring 2017 Doug Fowler, GS

Lecture 2: Probability, Random Variables and Probability Distributions. GENOME 560, Spring 2017 Doug Fowler, GS Lecture 2: Probability, Radom Variables ad Probability Distributios GENOME 560, Sprig 2017 Doug Fowler, GS (dfowler@uw.edu) 1 Course Aoucemets Problem Set 1 will be posted Due ext Thursday before class

More information

Convergence of random variables. (telegram style notes) P.J.C. Spreij

Convergence of random variables. (telegram style notes) P.J.C. Spreij Covergece of radom variables (telegram style otes).j.c. Spreij this versio: September 6, 2005 Itroductio As we kow, radom variables are by defiitio measurable fuctios o some uderlyig measurable space

More information

Topic 8: Expected Values

Topic 8: Expected Values Topic 8: Jue 6, 20 The simplest summary of quatitative data is the sample mea. Give a radom variable, the correspodig cocept is called the distributioal mea, the epectatio or the epected value. We begi

More information

Learning Theory: Lecture Notes

Learning Theory: Lecture Notes Learig Theory: Lecture Notes Kamalika Chaudhuri October 4, 0 Cocetratio of Averages Cocetratio of measure is very useful i showig bouds o the errors of machie-learig algorithms. We will begi with a basic

More information

Lecture 1 Probability and Statistics

Lecture 1 Probability and Statistics Wikipedia: Lecture 1 Probability ad Statistics Bejami Disraeli, British statesma ad literary figure (1804 1881): There are three kids of lies: lies, damed lies, ad statistics. popularized i US by Mark

More information

Math 155 (Lecture 3)

Math 155 (Lecture 3) Math 55 (Lecture 3) September 8, I this lecture, we ll cosider the aswer to oe of the most basic coutig problems i combiatorics Questio How may ways are there to choose a -elemet subset of the set {,,,

More information

Distribution of Random Samples & Limit theorems

Distribution of Random Samples & Limit theorems STAT/MATH 395 A - PROBABILITY II UW Witer Quarter 2017 Néhémy Lim Distributio of Radom Samples & Limit theorems 1 Distributio of i.i.d. Samples Motivatig example. Assume that the goal of a study is to

More information

Chapter 3. Strong convergence. 3.1 Definition of almost sure convergence

Chapter 3. Strong convergence. 3.1 Definition of almost sure convergence Chapter 3 Strog covergece As poited out i the Chapter 2, there are multiple ways to defie the otio of covergece of a sequece of radom variables. That chapter defied covergece i probability, covergece i

More information

Topic 9: Sampling Distributions of Estimators

Topic 9: Sampling Distributions of Estimators Topic 9: Samplig Distributios of Estimators Course 003, 2016 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

More information

Frequentist Inference

Frequentist Inference Frequetist Iferece The topics of the ext three sectios are useful applicatios of the Cetral Limit Theorem. Without kowig aythig about the uderlyig distributio of a sequece of radom variables {X i }, for

More information

Massachusetts Institute of Technology

Massachusetts Institute of Technology Solutios to Quiz : Sprig 006 Problem : Each of the followig statemets is either True or False. There will be o partial credit give for the True False questios, thus ay explaatios will ot be graded. Please

More information

Lecture 01: the Central Limit Theorem. 1 Central Limit Theorem for i.i.d. random variables

Lecture 01: the Central Limit Theorem. 1 Central Limit Theorem for i.i.d. random variables CSCI-B609: A Theorist s Toolkit, Fall 06 Aug 3 Lecture 0: the Cetral Limit Theorem Lecturer: Yua Zhou Scribe: Yua Xie & Yua Zhou Cetral Limit Theorem for iid radom variables Let us say that we wat to aalyze

More information

Homework 5 Solutions

Homework 5 Solutions Homework 5 Solutios p329 # 12 No. To estimate the chace you eed the expected value ad stadard error. To do get the expected value you eed the average of the box ad to get the stadard error you eed the

More information

Expectation and Variance of a random variable

Expectation and Variance of a random variable Chapter 11 Expectatio ad Variace of a radom variable The aim of this lecture is to defie ad itroduce mathematical Expectatio ad variace of a fuctio of discrete & cotiuous radom variables ad the distributio

More information

Random Models. Tusheng Zhang. February 14, 2013

Random Models. Tusheng Zhang. February 14, 2013 Radom Models Tusheg Zhag February 14, 013 1 Radom Walks Let me describe the model. Radom walks are used to describe the motio of a movig particle (object). Suppose that a particle (object) moves alog the

More information

Discrete probability distributions

Discrete probability distributions Discrete probability distributios I the chapter o probability we used the classical method to calculate the probability of various values of a radom variable. I some cases, however, we may be able to develop

More information

Lecture 7: Properties of Random Samples

Lecture 7: Properties of Random Samples Lecture 7: Properties of Radom Samples 1 Cotiued From Last Class Theorem 1.1. Let X 1, X,...X be a radom sample from a populatio with mea µ ad variace σ

More information

STA 348 Introduction to Stochastic Processes. Lecture 1

STA 348 Introduction to Stochastic Processes. Lecture 1 STA 348 Itroductio to Stochastic Processes Lecture 1 1 Admiis-trivia Istructor: Sotirios Damouras Proouced Sho-tee-ree-os or Sam Cotact Ifo: email: sotirios.damouras@utoroto.ca Office hours: SE/DV 4062,

More information

Poisson approximations

Poisson approximations The Bi, p) ca be thought of as the distributio of a sum of idepedet idicator radom variables X +...+ X, with {X i = } deotig a head o the ith toss of a coi. The ormal approximatio to the Biomial works

More information

Approximations and more PMFs and PDFs

Approximations and more PMFs and PDFs Approximatios ad more PMFs ad PDFs Saad Meimeh 1 Approximatio of biomial with Poisso Cosider the biomial distributio ( b(k,,p = p k (1 p k, k λ: k Assume that is large, ad p is small, but p λ at the limit.

More information

2 Statistical Principles

2 Statistical Principles 2 Statistical Priciples This lecture will serve two mai goals. First we will itroduce ad the tool of radom hash fuctios. Secod we itroduce a radomized/probabilistic view of algorithms ad data aalysis.

More information

Understanding Samples

Understanding Samples 1 Will Moroe CS 109 Samplig ad Bootstrappig Lecture Notes #17 August 2, 2017 Based o a hadout by Chris Piech I this chapter we are goig to talk about statistics calculated o samples from a populatio. We

More information

Analysis of Algorithms. Introduction. Contents

Analysis of Algorithms. Introduction. Contents Itroductio The focus of this module is mathematical aspects of algorithms. Our mai focus is aalysis of algorithms, which meas evaluatig efficiecy of algorithms by aalytical ad mathematical methods. We

More information

Chapter 5. Inequalities. 5.1 The Markov and Chebyshev inequalities

Chapter 5. Inequalities. 5.1 The Markov and Chebyshev inequalities Chapter 5 Iequalities 5.1 The Markov ad Chebyshev iequalities As you have probably see o today s frot page: every perso i the upper teth percetile ears at least 1 times more tha the average salary. I other

More information

Ch3. Asymptotic Notation

Ch3. Asymptotic Notation Ch. Asymptotic Notatio copyright 006 Preview of Chapters Chapter How to aalyze the space ad time complexities of program Chapter Review asymptotic otatios such as O, Ω, Θ, o for simplifyig the aalysis

More information

Lecture 12: September 27

Lecture 12: September 27 36-705: Itermediate Statistics Fall 207 Lecturer: Siva Balakrisha Lecture 2: September 27 Today we will discuss sufficiecy i more detail ad the begi to discuss some geeral strategies for costructig estimators.

More information

CS166 Handout 02 Spring 2018 April 3, 2018 Mathematical Terms and Identities

CS166 Handout 02 Spring 2018 April 3, 2018 Mathematical Terms and Identities CS166 Hadout 02 Sprig 2018 April 3, 2018 Mathematical Terms ad Idetities Thaks to Ady Nguye ad Julie Tibshirai for their advice o this hadout. This hadout covers mathematical otatio ad idetities that may

More information

A PROBABILITY PRIMER

A PROBABILITY PRIMER CARLETON COLLEGE A ROBABILITY RIMER SCOTT BIERMAN (Do ot quote without permissio) A robability rimer INTRODUCTION The field of probability ad statistics provides a orgaizig framework for systematically

More information

Skip lists: A randomized dictionary

Skip lists: A randomized dictionary Discrete Math for Bioiformatics WS 11/12:, by A. Bocmayr/K. Reiert, 31. Otober 2011, 09:53 3001 Sip lists: A radomized dictioary The expositio is based o the followig sources, which are all recommeded

More information

Binomial Distribution

Binomial Distribution 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0 1 2 3 4 5 6 7 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Overview Example: coi tossed three times Defiitio Formula Recall that a r.v. is discrete if there are either a fiite umber of possible

More information

7.1 Convergence of sequences of random variables

7.1 Convergence of sequences of random variables Chapter 7 Limit Theorems Throughout this sectio we will assume a probability space (, F, P), i which is defied a ifiite sequece of radom variables (X ) ad a radom variable X. The fact that for every ifiite

More information

Lecture 2: Probability, Random Variables and Probability Distributions. GENOME 560, Spring 2015 Doug Fowler, GS

Lecture 2: Probability, Random Variables and Probability Distributions. GENOME 560, Spring 2015 Doug Fowler, GS Lecture 2: Probability, Radom Variables ad Probability Distributios GENOME 560, Sprig 2015 Doug Fowler, GS (dfowler@uw.edu) 1 Course Aoucemets Problem Set 1 will be posted Due ext Thursday before class

More information

Sequences A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence

Sequences A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence Sequeces A sequece of umbers is a fuctio whose domai is the positive itegers. We ca see that the sequece 1, 1, 2, 2, 3, 3,... is a fuctio from the positive itegers whe we write the first sequece elemet

More information

Lecture Chapter 6: Convergence of Random Sequences

Lecture Chapter 6: Convergence of Random Sequences ECE5: Aalysis of Radom Sigals Fall 6 Lecture Chapter 6: Covergece of Radom Sequeces Dr Salim El Rouayheb Scribe: Abhay Ashutosh Doel, Qibo Zhag, Peiwe Tia, Pegzhe Wag, Lu Liu Radom sequece Defiitio A ifiite

More information

Topic 9: Sampling Distributions of Estimators

Topic 9: Sampling Distributions of Estimators Topic 9: Samplig Distributios of Estimators Course 003, 2018 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

More information

Problem Set 4 Due Oct, 12

Problem Set 4 Due Oct, 12 EE226: Radom Processes i Systems Lecturer: Jea C. Walrad Problem Set 4 Due Oct, 12 Fall 06 GSI: Assae Gueye This problem set essetially reviews detectio theory ad hypothesis testig ad some basic otios

More information

LOGO. Chapter 2 Discrete Random Variables(R.V) Part1. iugaza2010.blogspot.com

LOGO. Chapter 2 Discrete Random Variables(R.V) Part1. iugaza2010.blogspot.com 1 LOGO Chapter 2 Discrete Radom Variables(R.V) Part1 iugaza2010.blogspot.com 2.1 Radom Variables A radom variable over a sample space is a fuctio that maps every sample poit (i.e. outcome) to a real umber.

More information

A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence

A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence Sequeces A sequece of umbers is a fuctio whose domai is the positive itegers. We ca see that the sequece,, 2, 2, 3, 3,... is a fuctio from the positive itegers whe we write the first sequece elemet as

More information

Shannon s noiseless coding theorem

Shannon s noiseless coding theorem 18.310 lecture otes May 4, 2015 Shao s oiseless codig theorem Lecturer: Michel Goemas I these otes we discuss Shao s oiseless codig theorem, which is oe of the foudig results of the field of iformatio

More information

Seunghee Ye Ma 8: Week 5 Oct 28

Seunghee Ye Ma 8: Week 5 Oct 28 Week 5 Summary I Sectio, we go over the Mea Value Theorem ad its applicatios. I Sectio 2, we will recap what we have covered so far this term. Topics Page Mea Value Theorem. Applicatios of the Mea Value

More information

Putnam Training Exercise Counting, Probability, Pigeonhole Principle (Answers)

Putnam Training Exercise Counting, Probability, Pigeonhole Principle (Answers) Putam Traiig Exercise Coutig, Probability, Pigeohole Pricile (Aswers) November 24th, 2015 1. Fid the umber of iteger o-egative solutios to the followig Diohatie equatio: x 1 + x 2 + x 3 + x 4 + x 5 = 17.

More information

The Hypergeometric Coupon Collection Problem and its Dual

The Hypergeometric Coupon Collection Problem and its Dual Joural of Idustrial ad Systes Egieerig Vol., o., pp -7 Sprig 7 The Hypergeoetric Coupo Collectio Proble ad its Dual Sheldo M. Ross Epstei Departet of Idustrial ad Systes Egieerig, Uiversity of Souther

More information

4.3 Growth Rates of Solutions to Recurrences

4.3 Growth Rates of Solutions to Recurrences 4.3. GROWTH RATES OF SOLUTIONS TO RECURRENCES 81 4.3 Growth Rates of Solutios to Recurreces 4.3.1 Divide ad Coquer Algorithms Oe of the most basic ad powerful algorithmic techiques is divide ad coquer.

More information

Mathematical Statistics - MS

Mathematical Statistics - MS Paper Specific Istructios. The examiatio is of hours duratio. There are a total of 60 questios carryig 00 marks. The etire paper is divided ito three sectios, A, B ad C. All sectios are compulsory. Questios

More information

Pb ( a ) = measure of the plausibility of proposition b conditional on the information stated in proposition a. & then using P2

Pb ( a ) = measure of the plausibility of proposition b conditional on the information stated in proposition a. & then using P2 Axioms for Probability Logic Pb ( a ) = measure of the plausibility of propositio b coditioal o the iformatio stated i propositio a For propositios a, b ad c: P: Pb ( a) 0 P2: Pb ( a& b ) = P3: Pb ( a)

More information

Homework Set #3 - Solutions

Homework Set #3 - Solutions EE 15 - Applicatios of Covex Optimizatio i Sigal Processig ad Commuicatios Dr. Adre Tkaceko JPL Third Term 11-1 Homework Set #3 - Solutios 1. a) Note that x is closer to x tha to x l i the Euclidea orm

More information

Output Analysis and Run-Length Control

Output Analysis and Run-Length Control IEOR E4703: Mote Carlo Simulatio Columbia Uiversity c 2017 by Marti Haugh Output Aalysis ad Ru-Legth Cotrol I these otes we describe how the Cetral Limit Theorem ca be used to costruct approximate (1 α%

More information

Simulation. Two Rule For Inverting A Distribution Function

Simulation. Two Rule For Inverting A Distribution Function Simulatio Two Rule For Ivertig A Distributio Fuctio Rule 1. If F(x) = u is costat o a iterval [x 1, x 2 ), the the uiform value u is mapped oto x 2 through the iversio process. Rule 2. If there is a jump

More information

Problem Set 2 Solutions

Problem Set 2 Solutions CS271 Radomess & Computatio, Sprig 2018 Problem Set 2 Solutios Poit totals are i the margi; the maximum total umber of poits was 52. 1. Probabilistic method for domiatig sets 6pts Pick a radom subset S

More information

Riemann Sums y = f (x)

Riemann Sums y = f (x) Riema Sums Recall that we have previously discussed the area problem I its simplest form we ca state it this way: The Area Problem Let f be a cotiuous, o-egative fuctio o the closed iterval [a, b] Fid

More information

6 Integers Modulo n. integer k can be written as k = qn + r, with q,r, 0 r b. So any integer.

6 Integers Modulo n. integer k can be written as k = qn + r, with q,r, 0 r b. So any integer. 6 Itegers Modulo I Example 2.3(e), we have defied the cogruece of two itegers a,b with respect to a modulus. Let us recall that a b (mod ) meas a b. We have proved that cogruece is a equivalece relatio

More information

Chapter 1. Probability

Chapter 1. Probability Chapter. Probability. Set defiitios 2. Set operatios 3. Probability itroduced through sets ad relative frequecy 4. Joit ad coditioal probability 5. Idepedet evets 6. Combied experimets 7. Beroulli trials

More information

ACO Comprehensive Exam 9 October 2007 Student code A. 1. Graph Theory

ACO Comprehensive Exam 9 October 2007 Student code A. 1. Graph Theory 1. Graph Theory Prove that there exist o simple plaar triagulatio T ad two distict adjacet vertices x, y V (T ) such that x ad y are the oly vertices of T of odd degree. Do ot use the Four-Color Theorem.

More information

Sets. Sets. Operations on Sets Laws of Algebra of Sets Cardinal Number of a Finite and Infinite Set. Representation of Sets Power Set Venn Diagram

Sets. Sets. Operations on Sets Laws of Algebra of Sets Cardinal Number of a Finite and Infinite Set. Representation of Sets Power Set Venn Diagram Sets MILESTONE Sets Represetatio of Sets Power Set Ve Diagram Operatios o Sets Laws of lgebra of Sets ardial Number of a Fiite ad Ifiite Set I Mathematical laguage all livig ad o-livig thigs i uiverse

More information