STA111 - Lecture 1 Welcome to STA111! 1 What is the difference between Probability and Statistics?

Size: px
Start display at page:

Download "STA111 - Lecture 1 Welcome to STA111! 1 What is the difference between Probability and Statistics?"

Transcription

1 STA111 - Lecture 1 Welcome to STA111! Some basic information: Instructor: Víctor Peña ( vp58@duke.edu) Course Website: 1 What is the difference between Probability and Statistics? Unfortunately, I don t think there is a simple answer to this question (some might even argue that there isn t one at all!). Justin Rising gives this answer on Quora: In probability, we re given a model, and asked what kind of data we re likely to see. In statistics, we re given data, and asked what kind of model is likely to have generated it. This definition is not completely satisfactory (as we will see as we learn more about probability and statistics), but it is a good start. Let s illustrate this with a typical example (see for example the answer by John D. Cook on StackExchange). Suppose we have a bag with a total of 100 jelly beans. Some of them are red, and some of them are green. The probabilist knows the proportion of red to green jelly beans, and wants to know, for example, the probability of drawing 2 red jelly beans in a row. The statistician doesn t know the proportion of red to green jelly beans, and wants to estimate it after having drawn 2 red jelly beans in a row. Let s stick with this example for a bit. The statistician is also interested in: 1. Quantifiying how precise the estimation is. Suppose that the statistician has drawn 98 jelly beans and all of them are red. It seems clear that the estimation after drawing 98 beans will be more precise (in some sense) than the original estimation based on a sample size of 2 beans. 2. Deciding how many jelly beans he should draw until he expects to achieve a sufficient precision. Drawing jelly beans out of a bag is boring, so he might not want to draw all 100 beans and know the proportion with all certainty. The statistician might be content with estimating the proportion sufficiently well. 3. Investigating whether the assumed probabilistic framework corresponds with reality. Imagine that the statistician draws 30 red jelly beans in a row, but knows that the proportion of red/green jelly beans should be roughly 50%. The statistician was planning on estimating the proportion under the assumption that the jelly beans are mixed well. After seeing this, the statistician suspects that it might not be a reasonable assumption whoever put the jelly beans in that bag might have put all the green beans first and didn t mix the beans at all, so it is pretty likely that the first 30 beans are all red, even if the true proportion is 50%. There are other types of questions statisticians are interested in. For example, some statisticians study how, when, and under which assumptions we can infer causal relationships from data (e.g. infer a causal relationship between smoking and cancer from data). We will talk about this later in the course. 1

2 Harvey Motulsky on StackExchange proposes the following diagram which summarizes the section pretty well: Probability General Specific Population Sample Model Data Statistics General Specific Population Sample Model Data In this course we will cover probability first and then move on to statistics (labs will be an exception!). 2 Basic Probability Here I will follow Chapter 1 of our textbook pretty closely. 2.1 Sets, Experiments, Sample Spaces, and Events For us, a set is simply a collection of objects. We can define sets by listing its elements (for example, A = {a, e, i, o, u} or B = {1, 2, 3, 4}) or by giving a complete description (for instance, A is the set of vowels, B is the set of positive integers stricly less than 5). An experiment will be anything whose outcome is yet unknown to us but for which we know the possible set of outcomes in advance. The sample space is the set of possible outcomes. An event is a subset of the sample space. For example: Tossing a coin twice is an experiment with sample space equal to {heads/heads, heads/tails, tails/heads, tails/tails}. An example of event is obtaining the same outcome twice, which corresponds to the subset of the sample space. {heads/heads, tails/tails} Rolling a die is an experiment with sample space equal to {1, 2, 3, 4, 5, 6}. The event obtaining an odd number corresponds to the subset {1, 3, 5} of the sample space. Asking ourselves whether Duke basketball will win the national championship in 2016 also counts as an experiment, since the set of possible outcomes is known ({yes, no}) but the outcome is something we don t know yet. Exercise 1. Come up with 4 examples of experiments. Specify their sample space and give an example of an event for each of them. 2

3 2.2 Interpretations of Probability There are many different interpretations of probability. Philosophers (and some statisticians) are still debating on this issue. Here are 3 very rough explanations of 3 interpretations of probability we will use in this course: Principle of indifference: Break down the sample space until you can convince yourself (and others) that there is no reason to consider one outcome more likely than another. Then assign equal probabilities to all of them. For example, if we are rolling a die and it is fair, we can say that the outcomes 1,2,3,4,5,6 are equally likely because of symmetry or physics. Then, the probability of an event is defined as (number of favorable outcomes)/(number of possible outcomes). Limiting frequencies: This one is easier to understand. The probability of an event can be interpreted as the limit of frequency of times it would occur if we were to repeat the experiment ad infinitum. For instance, we can interpret the probability of the event rolling a die and getting a 6 as the long-run proportion of times we get a 6 as we roll the die again and again. Single events such as the next time I roll a die I will get a 6, or Duke basketball will win the national championship in 2016 don t fit very well here. Degree of belief: The probability of an event is your degree of belief that it will happen. Different people have different opinions and, given an event, two agents can assign different probabilities. If my beliefs about uncertain propositions are coherent and I want to update them in light of data, probability calculus is the way to do it. We will not spend much time discussing the pros and cons of each of them, and our interpretation will depend on the context. Maybe we could use different simbols for the different interpretations, but (almost) nobody does that. If you are interested, you can take a look at this article or ask me. It turns out that the mathematical definition of probability doesn t depend on how we interpret it. A probability measure will be defined as a function that maps events to numbers between 0 and 1 and satisfies some properties. Before we introduce the mathematical definition of probability, though, we need to brush up some basic set theory. 2.3 Basic Set Theory The empty set is the set containing no elements. The symbol denotes set membership and denotes that an element is not a member of a set. If A and B are sets, A is a subset of B (A B) if x A implies x B. Two sets are equal if A B and B A. Now we define some operations on sets: Union: x A B if x A or x B (or both). Intersection: x A B if x A and x B. Complement: (with respect to a universal set Ω) Let A Ω. Then x A c if x Ω but x A. Set difference: Let A and B be subsets of Ω. Then, A \ B = A B c : that is A \ B are the x Ω such that x A and x B. Cardinality: A is the number of elements in A. Power set: P(A) is the collection of all subsets of A. 3

4 Two sets A and B are said to be disjoint if A B = (i.e. they have no elements in common). Examples: Let Ω = {1, 2, 3, 4, 5, 6, 7, 8} and A = {0, 1, 2, 3, 4}, B = {2, 3}, C = {3, 4, 5, 7}. Then A B = A, A B = B, B C = {2, 3, 4, 5, 7}, B C = {3}, A C = {0, 1, 2, 3, 4, 5, 7}, A \ B = {0, 1, 4}, A C = {5, 6, 7, 8}, A = 5, B = 2, P(B) = {, {2}, {3}, {2, 3}}, etc. Let N 0 = {0, 1, 2, 3,... }, O = {1, 3, 5, 7,... }, E = {0, 2, 4, 6,... }. Then O N 0, E N 0, O E = N 0, O E =, etc. Exercise 2. Let Ω be the universal set and let A, B Ω. Answer the following questions, justifying your answers. 1. What is A A c? 2. What is A A c? 3. Assume A B. What are A B and A B? We finish this section with a couple of useful results: De Morgan s laws: (A 1 A 2 A n ) c = (A c 1 Ac 2 Ac n) and (A 1 A 2 A n ) c = (A c 1 Ac 2 Ac n). Inclusion-Exclusion formula: A B = A + B A B. 2.4 Mathematical Definition of Probability Let Ω be the sample space of an experiment and A be the collection of events, which is a suitable collection of subsets of Ω. A probability measure is a function that takes events in A as inputs and satisfies: 1. P (A) 1 for all A A. 2. P (Ω) = If A 1, A 2,... are disjoint events, then P ( i A i ) = i P (A i) That is, it assigns numbers between 0 and 1 for all events, the probability of the universal set is 1, and the probability of the union of disjoint events equals the sum of the probabilities of the events. If A is an event, the interpretation of P (A) is the probability that A happens. Examples: Suppose we toss a fair coin twice. Let H denote heads and T denote tails, so the sample space is {HH, HT, TH, TT}. Since the coin is not loaded, they are all equally likely: P ({TT}) = P ({TH}) = P ({HT}) = P ({TT}) = 1/4. The probability of obtaining the same outcome twice is P ({TT} {HH}), and since {TT} and {HH} are disjoint, we have P ({TT} {HH}) = 1/2. Properties: Let Ω be the sample space, and let A 1 and A 2 be events: 1. P ( ) = P (A) 1. 4

5 3. If A 1 A 2, P (A 1 ) P (A 2 ). 4. If A c = Ω \ A is the complement of A, P (A c ) = 1 P (A). 5. P (A 1 A 2 ) = P (A 1 ) + P (A 2 ) P (A 1 A 2 ). 6. P (A 1 ) = P (A 1 A 2 ) + P (A 1 A c 2 ). Exercise 3. Show the properties above.

LECTURE 1. 1 Introduction. 1.1 Sample spaces and events

LECTURE 1. 1 Introduction. 1.1 Sample spaces and events LECTURE 1 1 Introduction The first part of our adventure is a highly selective review of probability theory, focusing especially on things that are most useful in statistics. 1.1 Sample spaces and events

More information

Notes 1 Autumn Sample space, events. S is the number of elements in the set S.)

Notes 1 Autumn Sample space, events. S is the number of elements in the set S.) MAS 108 Probability I Notes 1 Autumn 2005 Sample space, events The general setting is: We perform an experiment which can have a number of different outcomes. The sample space is the set of all possible

More information

The probability of an event is viewed as a numerical measure of the chance that the event will occur.

The probability of an event is viewed as a numerical measure of the chance that the event will occur. Chapter 5 This chapter introduces probability to quantify randomness. Section 5.1: How Can Probability Quantify Randomness? The probability of an event is viewed as a numerical measure of the chance that

More information

Lecture Lecture 5

Lecture Lecture 5 Lecture 4 --- Lecture 5 A. Basic Concepts (4.1-4.2) 1. Experiment: A process of observing a phenomenon that has variation in its outcome. Examples: (E1). Rolling a die, (E2). Drawing a card form a shuffled

More information

P (E) = P (A 1 )P (A 2 )... P (A n ).

P (E) = P (A 1 )P (A 2 )... P (A n ). Lecture 9: Conditional probability II: breaking complex events into smaller events, methods to solve probability problems, Bayes rule, law of total probability, Bayes theorem Discrete Structures II (Summer

More information

Lecture notes for probability. Math 124

Lecture notes for probability. Math 124 Lecture notes for probability Math 124 What is probability? Probabilities are ratios, expressed as fractions, decimals, or percents, determined by considering results or outcomes of experiments whose result

More information

Basic Probability. Introduction

Basic Probability. Introduction Basic Probability Introduction The world is an uncertain place. Making predictions about something as seemingly mundane as tomorrow s weather, for example, is actually quite a difficult task. Even with

More information

Fundamentals of Probability CE 311S

Fundamentals of Probability CE 311S Fundamentals of Probability CE 311S OUTLINE Review Elementary set theory Probability fundamentals: outcomes, sample spaces, events Outline ELEMENTARY SET THEORY Basic probability concepts can be cast in

More information

2011 Pearson Education, Inc

2011 Pearson Education, Inc Statistics for Business and Economics Chapter 3 Probability Contents 1. Events, Sample Spaces, and Probability 2. Unions and Intersections 3. Complementary Events 4. The Additive Rule and Mutually Exclusive

More information

Statistical Inference

Statistical Inference Statistical Inference Lecture 1: Probability Theory MING GAO DASE @ ECNU (for course related communications) mgao@dase.ecnu.edu.cn Sep. 11, 2018 Outline Introduction Set Theory Basics of Probability Theory

More information

Econ 325: Introduction to Empirical Economics

Econ 325: Introduction to Empirical Economics Econ 325: Introduction to Empirical Economics Lecture 2 Probability Copyright 2010 Pearson Education, Inc. Publishing as Prentice Hall Ch. 3-1 3.1 Definition Random Experiment a process leading to an uncertain

More information

STA Module 4 Probability Concepts. Rev.F08 1

STA Module 4 Probability Concepts. Rev.F08 1 STA 2023 Module 4 Probability Concepts Rev.F08 1 Learning Objectives Upon completing this module, you should be able to: 1. Compute probabilities for experiments having equally likely outcomes. 2. Interpret

More information

I - Probability. What is Probability? the chance of an event occuring. 1classical probability. 2empirical probability. 3subjective probability

I - Probability. What is Probability? the chance of an event occuring. 1classical probability. 2empirical probability. 3subjective probability What is Probability? the chance of an event occuring eg 1classical probability 2empirical probability 3subjective probability Section 2 - Probability (1) Probability - Terminology random (probability)

More information

CMPSCI 240: Reasoning about Uncertainty

CMPSCI 240: Reasoning about Uncertainty CMPSCI 240: Reasoning about Uncertainty Lecture 2: Sets and Events Andrew McGregor University of Massachusetts Last Compiled: January 27, 2017 Outline 1 Recap 2 Experiments and Events 3 Probabilistic Models

More information

STAT 111 Recitation 1

STAT 111 Recitation 1 STAT 111 Recitation 1 Linjun Zhang January 20, 2017 What s in the recitation This class, and the exam of this class, is a mix of statistical concepts and calculations. We are going to do a little bit of

More information

CIS 2033 Lecture 5, Fall

CIS 2033 Lecture 5, Fall CIS 2033 Lecture 5, Fall 2016 1 Instructor: David Dobor September 13, 2016 1 Supplemental reading from Dekking s textbook: Chapter2, 3. We mentioned at the beginning of this class that calculus was a prerequisite

More information

Probability: Terminology and Examples Class 2, Jeremy Orloff and Jonathan Bloom

Probability: Terminology and Examples Class 2, Jeremy Orloff and Jonathan Bloom 1 Learning Goals Probability: Terminology and Examples Class 2, 18.05 Jeremy Orloff and Jonathan Bloom 1. Know the definitions of sample space, event and probability function. 2. Be able to organize a

More information

Problems from Probability and Statistical Inference (9th ed.) by Hogg, Tanis and Zimmerman.

Problems from Probability and Statistical Inference (9th ed.) by Hogg, Tanis and Zimmerman. Math 224 Fall 2017 Homework 1 Drew Armstrong Problems from Probability and Statistical Inference (9th ed.) by Hogg, Tanis and Zimmerman. Section 1.1, Exercises 4,5,6,7,9,12. Solutions to Book Problems.

More information

Section F Ratio and proportion

Section F Ratio and proportion Section F Ratio and proportion Ratio is a way of comparing two or more groups. For example, if something is split in a ratio 3 : 5 there are three parts of the first thing to every five parts of the second

More information

Probability (Devore Chapter Two)

Probability (Devore Chapter Two) Probability (Devore Chapter Two) 1016-345-01: Probability and Statistics for Engineers Fall 2012 Contents 0 Administrata 2 0.1 Outline....................................... 3 1 Axiomatic Probability 3

More information

HW2 Solutions, for MATH441, STAT461, STAT561, due September 9th

HW2 Solutions, for MATH441, STAT461, STAT561, due September 9th HW2 Solutions, for MATH44, STAT46, STAT56, due September 9th. You flip a coin until you get tails. Describe the sample space. How many points are in the sample space? The sample space consists of sequences

More information

Announcements. Lecture 5: Probability. Dangling threads from last week: Mean vs. median. Dangling threads from last week: Sampling bias

Announcements. Lecture 5: Probability. Dangling threads from last week: Mean vs. median. Dangling threads from last week: Sampling bias Recap Announcements Lecture 5: Statistics 101 Mine Çetinkaya-Rundel September 13, 2011 HW1 due TA hours Thursday - Sunday 4pm - 9pm at Old Chem 211A If you added the class last week please make sure to

More information

the time it takes until a radioactive substance undergoes a decay

the time it takes until a radioactive substance undergoes a decay 1 Probabilities 1.1 Experiments with randomness Wewillusethetermexperimentinaverygeneralwaytorefertosomeprocess that produces a random outcome. Examples: (Ask class for some first) Here are some discrete

More information

Topic -2. Probability. Larson & Farber, Elementary Statistics: Picturing the World, 3e 1

Topic -2. Probability. Larson & Farber, Elementary Statistics: Picturing the World, 3e 1 Topic -2 Probability Larson & Farber, Elementary Statistics: Picturing the World, 3e 1 Probability Experiments Experiment : An experiment is an act that can be repeated under given condition. Rolling a

More information

Lecture 1 : The Mathematical Theory of Probability

Lecture 1 : The Mathematical Theory of Probability Lecture 1 : The Mathematical Theory of Probability 0/ 30 1. Introduction Today we will do 2.1 and 2.2. We will skip Chapter 1. We all have an intuitive notion of probability. Let s see. What is the probability

More information

Section 13.3 Probability

Section 13.3 Probability 288 Section 13.3 Probability Probability is a measure of how likely an event will occur. When the weather forecaster says that there will be a 50% chance of rain this afternoon, the probability that it

More information

Statistics for Financial Engineering Session 2: Basic Set Theory March 19 th, 2006

Statistics for Financial Engineering Session 2: Basic Set Theory March 19 th, 2006 Statistics for Financial Engineering Session 2: Basic Set Theory March 19 th, 2006 Topics What is a set? Notations for sets Empty set Inclusion/containment and subsets Sample spaces and events Operations

More information

Introduction to Probability. Ariel Yadin. Lecture 1. We begin with an example [this is known as Bertrand s paradox]. *** Nov.

Introduction to Probability. Ariel Yadin. Lecture 1. We begin with an example [this is known as Bertrand s paradox]. *** Nov. Introduction to Probability Ariel Yadin Lecture 1 1. Example: Bertrand s Paradox We begin with an example [this is known as Bertrand s paradox]. *** Nov. 1 *** Question 1.1. Consider a circle of radius

More information

Lecture 8: Conditional probability I: definition, independence, the tree method, sampling, chain rule for independent events

Lecture 8: Conditional probability I: definition, independence, the tree method, sampling, chain rule for independent events Lecture 8: Conditional probability I: definition, independence, the tree method, sampling, chain rule for independent events Discrete Structures II (Summer 2018) Rutgers University Instructor: Abhishek

More information

Chapter 14. From Randomness to Probability. Copyright 2012, 2008, 2005 Pearson Education, Inc.

Chapter 14. From Randomness to Probability. Copyright 2012, 2008, 2005 Pearson Education, Inc. Chapter 14 From Randomness to Probability Copyright 2012, 2008, 2005 Pearson Education, Inc. Dealing with Random Phenomena A random phenomenon is a situation in which we know what outcomes could happen,

More information

4. Probability of an event A for equally likely outcomes:

4. Probability of an event A for equally likely outcomes: University of California, Los Angeles Department of Statistics Statistics 110A Instructor: Nicolas Christou Probability Probability: A measure of the chance that something will occur. 1. Random experiment:

More information

Chapter 6: Probability The Study of Randomness

Chapter 6: Probability The Study of Randomness Chapter 6: Probability The Study of Randomness 6.1 The Idea of Probability 6.2 Probability Models 6.3 General Probability Rules 1 Simple Question: If tossing a coin, what is the probability of the coin

More information

Lecture 3 Probability Basics

Lecture 3 Probability Basics Lecture 3 Probability Basics Thais Paiva STA 111 - Summer 2013 Term II July 3, 2013 Lecture Plan 1 Definitions of probability 2 Rules of probability 3 Conditional probability What is Probability? Probability

More information

Lecture 1. ABC of Probability

Lecture 1. ABC of Probability Math 408 - Mathematical Statistics Lecture 1. ABC of Probability January 16, 2013 Konstantin Zuev (USC) Math 408, Lecture 1 January 16, 2013 1 / 9 Agenda Sample Spaces Realizations, Events Axioms of Probability

More information

3.2 Probability Rules

3.2 Probability Rules 3.2 Probability Rules The idea of probability rests on the fact that chance behavior is predictable in the long run. In the last section, we used simulation to imitate chance behavior. Do we always need

More information

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 14

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 14 CS 70 Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 14 Introduction One of the key properties of coin flips is independence: if you flip a fair coin ten times and get ten

More information

Sociology 6Z03 Topic 10: Probability (Part I)

Sociology 6Z03 Topic 10: Probability (Part I) Sociology 6Z03 Topic 10: Probability (Part I) John Fox McMaster University Fall 2014 John Fox (McMaster University) Soc 6Z03: Probability I Fall 2014 1 / 29 Outline: Probability (Part I) Introduction Probability

More information

P (A) = P (B) = P (C) = P (D) =

P (A) = P (B) = P (C) = P (D) = STAT 145 CHAPTER 12 - PROBABILITY - STUDENT VERSION The probability of a random event, is the proportion of times the event will occur in a large number of repititions. For example, when flipping a coin,

More information

Probability Theory Review

Probability Theory Review Cogsci 118A: Natural Computation I Lecture 2 (01/07/10) Lecturer: Angela Yu Probability Theory Review Scribe: Joseph Schilz Lecture Summary 1. Set theory: terms and operators In this section, we provide

More information

SDS 321: Introduction to Probability and Statistics

SDS 321: Introduction to Probability and Statistics SDS 321: Introduction to Probability and Statistics Lecture 2: Conditional probability Purnamrita Sarkar Department of Statistics and Data Science The University of Texas at Austin www.cs.cmu.edu/ psarkar/teaching

More information

Formalizing Probability. Choosing the Sample Space. Probability Measures

Formalizing Probability. Choosing the Sample Space. Probability Measures Formalizing Probability Choosing the Sample Space What do we assign probability to? Intuitively, we assign them to possible events (things that might happen, outcomes of an experiment) Formally, we take

More information

Properties of Probability

Properties of Probability Econ 325 Notes on Probability 1 By Hiro Kasahara Properties of Probability In statistics, we consider random experiments, experiments for which the outcome is random, i.e., cannot be predicted with certainty.

More information

k P (X = k)

k P (X = k) Math 224 Spring 208 Homework Drew Armstrong. Suppose that a fair coin is flipped 6 times in sequence and let X be the number of heads that show up. Draw Pascal s triangle down to the sixth row (recall

More information

3.1 Events, Sample Spaces, and Probability

3.1 Events, Sample Spaces, and Probability Chapter 3 Probability Probability is the tool that allows the statistician to use sample information to make inferences about or to describe the population from which the sample was drawn. 3.1 Events,

More information

Probability Theory and Simulation Methods

Probability Theory and Simulation Methods Feb 28th, 2018 Lecture 10: Random variables Countdown to midterm (March 21st): 28 days Week 1 Chapter 1: Axioms of probability Week 2 Chapter 3: Conditional probability and independence Week 4 Chapters

More information

Independence. P(A) = P(B) = 3 6 = 1 2, and P(C) = 4 6 = 2 3.

Independence. P(A) = P(B) = 3 6 = 1 2, and P(C) = 4 6 = 2 3. Example: A fair die is tossed and we want to guess the outcome. The outcomes will be 1, 2, 3, 4, 5, 6 with equal probability 1 6 each. If we are interested in getting the following results: A = {1, 3,

More information

Compound Events. The event E = E c (the complement of E) is the event consisting of those outcomes which are not in E.

Compound Events. The event E = E c (the complement of E) is the event consisting of those outcomes which are not in E. Compound Events Because we are using the framework of set theory to analyze probability, we can use unions, intersections and complements to break complex events into compositions of events for which it

More information

Mathematical Foundations of Computer Science Lecture Outline October 18, 2018

Mathematical Foundations of Computer Science Lecture Outline October 18, 2018 Mathematical Foundations of Computer Science Lecture Outline October 18, 2018 The Total Probability Theorem. Consider events E and F. Consider a sample point ω E. Observe that ω belongs to either F or

More information

Introduction to Probability

Introduction to Probability Introduction to Probability Gambling at its core 16th century Cardano: Books on Games of Chance First systematic treatment of probability 17th century Chevalier de Mere posed a problem to his friend Pascal.

More information

MAT 271E Probability and Statistics

MAT 271E Probability and Statistics MAT 71E Probability and Statistics Spring 013 Instructor : Class Meets : Office Hours : Textbook : Supp. Text : İlker Bayram EEB 1103 ibayram@itu.edu.tr 13.30 1.30, Wednesday EEB 5303 10.00 1.00, Wednesday

More information

Probability Year 10. Terminology

Probability Year 10. Terminology Probability Year 10 Terminology Probability measures the chance something happens. Formally, we say it measures how likely is the outcome of an event. We write P(result) as a shorthand. An event is some

More information

Preliminary Statistics Lecture 2: Probability Theory (Outline) prelimsoas.webs.com

Preliminary Statistics Lecture 2: Probability Theory (Outline) prelimsoas.webs.com 1 School of Oriental and African Studies September 2015 Department of Economics Preliminary Statistics Lecture 2: Probability Theory (Outline) prelimsoas.webs.com Gujarati D. Basic Econometrics, Appendix

More information

Lecture 1: Probability Fundamentals

Lecture 1: Probability Fundamentals Lecture 1: Probability Fundamentals IB Paper 7: Probability and Statistics Carl Edward Rasmussen Department of Engineering, University of Cambridge January 22nd, 2008 Rasmussen (CUED) Lecture 1: Probability

More information

General Info. Grading

General Info. Grading Syllabus & Policies General Info Lecture 1: Introduction, Set Theory, and Boolean Algebra Classroom: Perkins 2-072 Time: Mon - Fri, 2:00-3:15 pm Wed, 3:30-4:30 pm Sta 111 Colin Rundel May 13, 2014 Professor:

More information

Toss 1. Fig.1. 2 Heads 2 Tails Heads/Tails (H, H) (T, T) (H, T) Fig.2

Toss 1. Fig.1. 2 Heads 2 Tails Heads/Tails (H, H) (T, T) (H, T) Fig.2 1 Basic Probabilities The probabilities that we ll be learning about build from the set theory that we learned last class, only this time, the sets are specifically sets of events. What are events? Roughly,

More information

Probability COMP 245 STATISTICS. Dr N A Heard. 1 Sample Spaces and Events Sample Spaces Events Combinations of Events...

Probability COMP 245 STATISTICS. Dr N A Heard. 1 Sample Spaces and Events Sample Spaces Events Combinations of Events... Probability COMP 245 STATISTICS Dr N A Heard Contents Sample Spaces and Events. Sample Spaces........................................2 Events........................................... 2.3 Combinations

More information

Event A: at least one tail observed A:

Event A: at least one tail observed A: Chapter 3 Probability 3.1 Events, sample space, and probability Basic definitions: An is an act of observation that leads to a single outcome that cannot be predicted with certainty. A (or simple event)

More information

Topic 5 Basics of Probability

Topic 5 Basics of Probability Topic 5 Basics of Probability Equally Likely Outcomes and the Axioms of Probability 1 / 13 Outline Equally Likely Outcomes Axioms of Probability Consequences of the Axioms 2 / 13 Introduction A probability

More information

Business Statistics. Lecture 3: Random Variables and the Normal Distribution

Business Statistics. Lecture 3: Random Variables and the Normal Distribution Business Statistics Lecture 3: Random Variables and the Normal Distribution 1 Goals for this Lecture A little bit of probability Random variables The normal distribution 2 Probability vs. Statistics Probability:

More information

Mutually Exclusive Events

Mutually Exclusive Events 172 CHAPTER 3 PROBABILITY TOPICS c. QS, 7D, 6D, KS Mutually Exclusive Events A and B are mutually exclusive events if they cannot occur at the same time. This means that A and B do not share any outcomes

More information

4 Lecture 4 Notes: Introduction to Probability. Probability Rules. Independence and Conditional Probability. Bayes Theorem. Risk and Odds Ratio

4 Lecture 4 Notes: Introduction to Probability. Probability Rules. Independence and Conditional Probability. Bayes Theorem. Risk and Odds Ratio 4 Lecture 4 Notes: Introduction to Probability. Probability Rules. Independence and Conditional Probability. Bayes Theorem. Risk and Odds Ratio Wrong is right. Thelonious Monk 4.1 Three Definitions of

More information

Probability Year 9. Terminology

Probability Year 9. Terminology Probability Year 9 Terminology Probability measures the chance something happens. Formally, we say it measures how likely is the outcome of an event. We write P(result) as a shorthand. An event is some

More information

Lecture 1. Chapter 1. (Part I) Material Covered in This Lecture: Chapter 1, Chapter 2 ( ). 1. What is Statistics?

Lecture 1. Chapter 1. (Part I) Material Covered in This Lecture: Chapter 1, Chapter 2 ( ). 1. What is Statistics? Lecture 1 (Part I) Material Covered in This Lecture: Chapter 1, Chapter 2 (2.1 --- 2.6). Chapter 1 1. What is Statistics? 2. Two definitions. (1). Population (2). Sample 3. The objective of statistics.

More information

Mean, Median and Mode. Lecture 3 - Axioms of Probability. Where do they come from? Graphically. We start with a set of 21 numbers, Sta102 / BME102

Mean, Median and Mode. Lecture 3 - Axioms of Probability. Where do they come from? Graphically. We start with a set of 21 numbers, Sta102 / BME102 Mean, Median and Mode Lecture 3 - Axioms of Probability Sta102 / BME102 Colin Rundel September 1, 2014 We start with a set of 21 numbers, ## [1] -2.2-1.6-1.0-0.5-0.4-0.3-0.2 0.1 0.1 0.2 0.4 ## [12] 0.4

More information

3 PROBABILITY TOPICS

3 PROBABILITY TOPICS Chapter 3 Probability Topics 135 3 PROBABILITY TOPICS Figure 3.1 Meteor showers are rare, but the probability of them occurring can be calculated. (credit: Navicore/flickr) Introduction It is often necessary

More information

Lecture 2: Probability. Readings: Sections Statistical Inference: drawing conclusions about the population based on a sample

Lecture 2: Probability. Readings: Sections Statistical Inference: drawing conclusions about the population based on a sample Lecture 2: Probability Readings: Sections 5.1-5.3 1 Introduction Statistical Inference: drawing conclusions about the population based on a sample Parameter: a number that describes the population a fixed

More information

P (A B) P ((B C) A) P (B A) = P (B A) + P (C A) P (A) = P (B A) + P (C A) = Q(A) + Q(B).

P (A B) P ((B C) A) P (B A) = P (B A) + P (C A) P (A) = P (B A) + P (C A) = Q(A) + Q(B). Lectures 7-8 jacques@ucsdedu 41 Conditional Probability Let (Ω, F, P ) be a probability space Suppose that we have prior information which leads us to conclude that an event A F occurs Based on this information,

More information

Chapter 7: Section 7-1 Probability Theory and Counting Principles

Chapter 7: Section 7-1 Probability Theory and Counting Principles Chapter 7: Section 7-1 Probability Theory and Counting Principles D. S. Malik Creighton University, Omaha, NE D. S. Malik Creighton University, Omaha, NE Chapter () 7: Section 7-1 Probability Theory and

More information

Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 10

Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 10 EECS 70 Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 10 Introduction to Basic Discrete Probability In the last note we considered the probabilistic experiment where we flipped

More information

Week 2. Section Texas A& M University. Department of Mathematics Texas A& M University, College Station 22 January-24 January 2019

Week 2. Section Texas A& M University. Department of Mathematics Texas A& M University, College Station 22 January-24 January 2019 Week 2 Section 1.2-1.4 Texas A& M University Department of Mathematics Texas A& M University, College Station 22 January-24 January 2019 Oğuz Gezmiş (TAMU) Topics in Contemporary Mathematics II Week2 1

More information

Continuing Probability.

Continuing Probability. Continuing Probability. Wrap up: Probability Formalism. Events, Conditional Probability, Independence, Bayes Rule Probability Space: Formalism Simplest physical model of a uniform probability space: Red

More information

Probability Space: Formalism Simplest physical model of a uniform probability space:

Probability Space: Formalism Simplest physical model of a uniform probability space: Lecture 16: Continuing Probability Probability Space: Formalism Simplest physical model of a uniform probability space: Probability Space: Formalism Simplest physical model of a non-uniform probability

More information

2. Probability. Chris Piech and Mehran Sahami. Oct 2017

2. Probability. Chris Piech and Mehran Sahami. Oct 2017 2. Probability Chris Piech and Mehran Sahami Oct 2017 1 Introduction It is that time in the quarter (it is still week one) when we get to talk about probability. Again we are going to build up from first

More information

The enumeration of all possible outcomes of an experiment is called the sample space, denoted S. E.g.: S={head, tail}

The enumeration of all possible outcomes of an experiment is called the sample space, denoted S. E.g.: S={head, tail} Random Experiment In random experiments, the result is unpredictable, unknown prior to its conduct, and can be one of several choices. Examples: The Experiment of tossing a coin (head, tail) The Experiment

More information

Probability Theory and Applications

Probability Theory and Applications Probability Theory and Applications Videos of the topics covered in this manual are available at the following links: Lesson 4 Probability I http://faculty.citadel.edu/silver/ba205/online course/lesson

More information

Independence 1 2 P(H) = 1 4. On the other hand = P(F ) =

Independence 1 2 P(H) = 1 4. On the other hand = P(F ) = Independence Previously we considered the following experiment: A card is drawn at random from a standard deck of cards. Let H be the event that a heart is drawn, let R be the event that a red card is

More information

6.2 Introduction to Probability. The Deal. Possible outcomes: STAT1010 Intro to probability. Definitions. Terms: What are the chances of?

6.2 Introduction to Probability. The Deal. Possible outcomes: STAT1010 Intro to probability. Definitions. Terms: What are the chances of? 6.2 Introduction to Probability Terms: What are the chances of?! Personal probability (subjective) " Based on feeling or opinion. " Gut reaction.! Empirical probability (evidence based) " Based on experience

More information

MA : Introductory Probability

MA : Introductory Probability MA 320-001: Introductory Probability David Murrugarra Department of Mathematics, University of Kentucky http://www.math.uky.edu/~dmu228/ma320/ Spring 2017 David Murrugarra (University of Kentucky) MA 320:

More information

324 Stat Lecture Notes (1) Probability

324 Stat Lecture Notes (1) Probability 324 Stat Lecture Notes 1 robability Chapter 2 of the book pg 35-71 1 Definitions: Sample Space: Is the set of all possible outcomes of a statistical experiment, which is denoted by the symbol S Notes:

More information

Recap. The study of randomness and uncertainty Chances, odds, likelihood, expected, probably, on average,... PROBABILITY INFERENTIAL STATISTICS

Recap. The study of randomness and uncertainty Chances, odds, likelihood, expected, probably, on average,... PROBABILITY INFERENTIAL STATISTICS Recap. Probability (section 1.1) The study of randomness and uncertainty Chances, odds, likelihood, expected, probably, on average,... PROBABILITY Population Sample INFERENTIAL STATISTICS Today. Formulation

More information

Lecture Notes 1 Basic Probability. Elements of Probability. Conditional probability. Sequential Calculation of Probability

Lecture Notes 1 Basic Probability. Elements of Probability. Conditional probability. Sequential Calculation of Probability Lecture Notes 1 Basic Probability Set Theory Elements of Probability Conditional probability Sequential Calculation of Probability Total Probability and Bayes Rule Independence Counting EE 178/278A: Basic

More information

Lecture 10: Probability distributions TUESDAY, FEBRUARY 19, 2019

Lecture 10: Probability distributions TUESDAY, FEBRUARY 19, 2019 Lecture 10: Probability distributions DANIEL WELLER TUESDAY, FEBRUARY 19, 2019 Agenda What is probability? (again) Describing probabilities (distributions) Understanding probabilities (expectation) Partial

More information

MAT 271E Probability and Statistics

MAT 271E Probability and Statistics MAT 7E Probability and Statistics Spring 6 Instructor : Class Meets : Office Hours : Textbook : İlker Bayram EEB 3 ibayram@itu.edu.tr 3.3 6.3, Wednesday EEB 6.., Monday D. B. Bertsekas, J. N. Tsitsiklis,

More information

Probability Basics Review

Probability Basics Review CS70: Jean Walrand: Lecture 16 Events, Conditional Probability, Independence, Bayes Rule Probability Basics Review Setup: Set notation review A B A [ B A \ B 1 Probability Basics Review 2 Events 3 Conditional

More information

2. A SMIDGEON ABOUT PROBABILITY AND EVENTS. Wisdom ofttimes consists of knowing what to do next. Herbert Hoover

2. A SMIDGEON ABOUT PROBABILITY AND EVENTS. Wisdom ofttimes consists of knowing what to do next. Herbert Hoover CIVL 303 pproximation and Uncertainty JW Hurley, RW Meier MIDGEON BOUT ROBBILITY ND EVENT Wisdom ofttimes consists of knowing what to do next Herbert Hoover DEFINITION Experiment any action or process

More information

STAT Chapter 3: Probability

STAT Chapter 3: Probability Basic Definitions STAT 515 --- Chapter 3: Probability Experiment: A process which leads to a single outcome (called a sample point) that cannot be predicted with certainty. Sample Space (of an experiment):

More information

Monty Hall Puzzle. Draw a tree diagram of possible choices (a possibility tree ) One for each strategy switch or no-switch

Monty Hall Puzzle. Draw a tree diagram of possible choices (a possibility tree ) One for each strategy switch or no-switch Monty Hall Puzzle Example: You are asked to select one of the three doors to open. There is a large prize behind one of the doors and if you select that door, you win the prize. After you select a door,

More information

CS70: Jean Walrand: Lecture 16.

CS70: Jean Walrand: Lecture 16. CS70: Jean Walrand: Lecture 16. Events, Conditional Probability, Independence, Bayes Rule 1. Probability Basics Review 2. Events 3. Conditional Probability 4. Independence of Events 5. Bayes Rule Probability

More information

HW MATH425/525 Lecture Notes 1

HW MATH425/525 Lecture Notes 1 HW MATH425/525 Lecture Notes 1 Definition 4.1 If an experiment can be repeated under the same condition, its outcome cannot be predicted with certainty, and the collection of its every possible outcome

More information

Chap 4 Probability p227 The probability of any outcome in a random phenomenon is the proportion of times the outcome would occur in a long series of

Chap 4 Probability p227 The probability of any outcome in a random phenomenon is the proportion of times the outcome would occur in a long series of Chap 4 Probability p227 The probability of any outcome in a random phenomenon is the proportion of times the outcome would occur in a long series of repetitions. (p229) That is, probability is a long-term

More information

AMS7: WEEK 2. CLASS 2

AMS7: WEEK 2. CLASS 2 AMS7: WEEK 2. CLASS 2 Introduction to Probability. Probability Rules. Independence and Conditional Probability. Bayes Theorem. Risk and Odds Ratio Friday April 10, 2015 Probability: Introduction Probability:

More information

Venn Diagrams; Probability Laws. Notes. Set Operations and Relations. Venn Diagram 2.1. Venn Diagrams; Probability Laws. Notes

Venn Diagrams; Probability Laws. Notes. Set Operations and Relations. Venn Diagram 2.1. Venn Diagrams; Probability Laws. Notes Lecture 2 s; Text: A Course in Probability by Weiss 2.4 STAT 225 Introduction to Probability Models January 8, 2014 s; Whitney Huang Purdue University 2.1 Agenda s; 1 2 2.2 Intersection: the intersection

More information

Probability Rules. MATH 130, Elements of Statistics I. J. Robert Buchanan. Fall Department of Mathematics

Probability Rules. MATH 130, Elements of Statistics I. J. Robert Buchanan. Fall Department of Mathematics Probability Rules MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2018 Introduction Probability is a measure of the likelihood of the occurrence of a certain behavior

More information

Name: Exam 2 Solutions. March 13, 2017

Name: Exam 2 Solutions. March 13, 2017 Department of Mathematics University of Notre Dame Math 00 Finite Math Spring 07 Name: Instructors: Conant/Galvin Exam Solutions March, 07 This exam is in two parts on pages and contains problems worth

More information

UNIT 5 ~ Probability: What Are the Chances? 1

UNIT 5 ~ Probability: What Are the Chances? 1 UNIT 5 ~ Probability: What Are the Chances? 1 6.1: Simulation Simulation: The of chance behavior, based on a that accurately reflects the phenomenon under consideration. (ex 1) Suppose we are interested

More information

CS 441 Discrete Mathematics for CS Lecture 19. Probabilities. CS 441 Discrete mathematics for CS. Probabilities

CS 441 Discrete Mathematics for CS Lecture 19. Probabilities. CS 441 Discrete mathematics for CS. Probabilities CS 441 Discrete Mathematics for CS Lecture 19 Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Experiment: a procedure that yields one of the possible outcomes Sample space: a set of possible outcomes

More information

Single Maths B: Introduction to Probability

Single Maths B: Introduction to Probability Single Maths B: Introduction to Probability Overview Lecturer Email Office Homework Webpage Dr Jonathan Cumming j.a.cumming@durham.ac.uk CM233 None! http://maths.dur.ac.uk/stats/people/jac/singleb/ 1 Introduction

More information

Chapter 5 : Probability. Exercise Sheet. SHilal. 1 P a g e

Chapter 5 : Probability. Exercise Sheet. SHilal. 1 P a g e 1 P a g e experiment ( observing / measuring ) outcomes = results sample space = set of all outcomes events = subset of outcomes If we collect all outcomes we are forming a sample space If we collect some

More information

Probabilistic models

Probabilistic models Kolmogorov (Andrei Nikolaevich, 1903 1987) put forward an axiomatic system for probability theory. Foundations of the Calculus of Probabilities, published in 1933, immediately became the definitive formulation

More information

Stat 225 Week 1, 8/20/12-8/24/12, Notes: Set Theory

Stat 225 Week 1, 8/20/12-8/24/12, Notes: Set Theory Stat 225 Week 1, 8/20/12-8/24/12, Notes: Set Theory The Fall 2012 Stat 225 T.A.s September 7, 2012 The material in this handout is intended to cover general set theory topics. Information includes (but

More information