Aerodynamics and Flight Mechanics

Size: px
Start display at page:

Download "Aerodynamics and Flight Mechanics"

Transcription

1 Aerodynamics and Flight Mechanics Principal Investigator: Mike Bragg Eric Loth Post Doc s: Graduate Students: Undergraduate Students: Sam Lee Jason Merret Kishwar Hossain Edward Whalen Chris Lamarre Leia Blumenthal 2-1

2 Core Technologies SMART ICING SYSTEMS Research Organization Aerodynamics and Propulsion Flight Mechanics Control and Sensor Integration Human Factors Aircraft Icing Technology IMS Functions Characterize Icing Effects Operate and Monitor IPS Envelope Protection Adaptive Control System Integration Flight Simulation Flight Test 2-2

3 Aerodynamics and Flight Mechanics Goal: Improve the safety of aircraft in icing conditions Objective: Approach: 1) Develop linear and nonlinear iced aircraft models 2) Develop steady state icing characterization methods and identify aerodynamic sensors 3) Identify envelope protection needs and methods 4) Support neural network training, flight simulator development and flight test First use Twin Otter and tunnel data to develop a linear clean and iced model. Use the models to develop characterization and envelope protection. Flight Test Data will then be used to develop and validate the characterization,envelope protection and aircraft models. 2-3

4 Smart Icing System Research K. Hossain, H. Gurbacki E. Whalen, D. Pokhariyal Sam Lee Aerodynamic Sensors J. Merret, R. Oltman, T. Hutchison Flight Test Steady State Characterization Characterization Aircraft Models Flight Mechanics Model Envelope Protection Wind Tunnel Data Flight Mechanics Analysis and Envelope Prediction Flight Simulation THE AERODYNAMICS AND FLIGHT MECHANICS GROUP 2-4

5 Outline Introduction Iced aircraft models Flight mechanics analysis tools Steady icing effects characterization Assessing atmospheric effects on icing characterization Envelope protection Flight test 2-5

6 Iced Aircraft Models Developed clean and iced aircraft model Next generation aircraft based on NASA Twin Otter Flight Dynamics Linear stability and control model based published data Used to develop characterization methods, flight simulator, etc. Nonlinear model based on B.A.R. tunnel data to be discussed by K. Hossain 2-6

7 Linear Aerodynamics Model Development Clean stability and control derivative model from published NASA Twin Otter data Iced model development: Based on NASA Twin Otter data Models for completely iced aircraft and tail-only iced aircraft developed from composite of various sources Iced models originally for a single icing encounter η ice model developed to interpolate/extrapolate to other conditions 2-7

8 h ice Model A linear icing effects model was developed that modified the different stability and control derivatives for various levels of icing C = ( 1+ η k ) C ( A) iced ice C ( A) C (A) = arbitrary stability and control derivative η ice = icing severity parameter k C A = coefficient icing factor A 2-8

9 h ice Formulation η ice = C d ref Cd ( IRT airfoil data) ( IRT airfoil data, cont. max.conditions, t = 10min) C d fit as a function of n and A c E C d data obtained from NASA TMs and , and NACA TNs 4151 and 4155 n = freezing fraction A c = accumulation parameter E = collection efficiency C dref calculated from C d equation using continuous maximum conditions 2-9

10 h Formulation To capture effects of aircraft geometry, the aircraft specific icing severity factor, η, was developed The aircraft specific icing severity factor incorporates the aircraft specific airfoil, chord, and angle of attack C = + η (1 k ) C ( A)iced ice C (A) k C = k η η A C A ice A 2-10

11 Differences Between h and h ice η ice Chord 3 ft. Actual Airfoil NACA 0012 Actual Velocity 175 knots Actual Angle of Attack 0 Actual MVD Actual Actual LWC Actual Actual T Actual Actual Time of encounter Actual Actual η 2-11

12 Effect of T and LWC on h LWC=0.2 LWC=0.65 LWC=1.0 Twin Otter V 130 kts MVD=20 µm h=9000 ft Time=600 s T ( F) 2-12

13 Flight Mechanics Computational Tool Need to develop a flight mechanics simulation capability: model development Steady state characterization Data generation for neural net training and testing Flight mechanics analysis 2-13

14 Flight Dynamics Code, FDC Flight Dynamics Code 1.3 FDC 1.3 is a free source code developed by Marc Rauw Developed using Matlab and Simulink 6 DoF equations, 12 nonlinear ODEs Autopilot/open loop simulations Atmospheric turbulence model (Dryden spectral model) Code modifications Nonlinear aerodynamic model capability Changes in derivatives due to ice accretion simulated as a function of time Incorporated sensor noise Included hinge moment models Simulated gravity waves and microbursts Pitch rate due to wind gusts (q g ) 2-14

15 Flight Mechanics Analysis Example Aircraft Conditions Altitude of 7550 ft Velocity of 155 kts η(t = 0 s) = 0.0 η(t = 600 s) = 0.10 Turbulence: z-acceleration RMS = 0.15 g Referenced From Devesh Pokhariyal s Thesis AIAA AIAA

16 Flight Mechanics Analysis Example Velocity (knots) h ice = 0.0 Wing Iced Tail Iced Time (sec.) h ice = hice= Wing Iced 1.2 Tail Iced hice= AngleofAtack(deg.) Time (sec.) hice= Wing Iced -0.2 Tail Iced ElevatorDeflection(deg.) Time (sec.) hice= 0.0 Thrust (lbf) hice= 0.0 η ice =0.0 Wing Iced Tail Iced Time (sec.) hice= 1.1 η =

17 Hinge Moment Models Models are used in simulations to study the potential use of hinge moment sensors as aerodynamic performance monitors C h and C h_rms capture the effects of icing on the flow field over the airfoil surface. C h_rms is the RMS of the unsteady hinge moment, which is a measure of flow field separation due to ice accretion Models based on hinge moment measurements taken at UIUC on a NACA airfoil with quarter round ice-shapes (AIAA ) 2-17

18 Flight Mechanics Analysis Example Wing Ice Only Tail IceOnly RMS Hinge Moment, Chrms Elevator Aileron Elevator Clean Aileron Clean RM Elevator Aileron Elevator Clean Aileron Clean Angle of Attack, deg Angle of Attack, deg Control surface hinge moment can help identify ice location 2-18

19 Atmospheric Effects on Characterization Concerns about false alarms in the Smart Icing System were raised at Reno 2000 Since the effects of windshear and other atmospheric disturbances may be similar to icing, false alarms in the Smart Icing System could possibly occur Study performed to analyze the effects of microbursts, windshear, and icing on aircraft For more information see: Jason Merret M.S. thesis, AIAA , AIAA

20 Microburst Taken From Mulgund and Stengel, Journal of Aircraft, 1993 Microburst model used from Oseguera and Bowles, NASA TM

21 Wind Model Validation 11.0 FDC (Cessna 402B) Journal of Aircraft (Cessna 402B) Angle of Attack (deg) Time (s) 2-21

22 Results for Microbursts and Icing Angle of Attack (deg) Microburst #5 Microburst #9 η ice = 0.50, η/η ice = 0.08 η ice = 0.91, η/η ice = 0.09 η ice = 1.10, η/η ice = Time (sec) Velocity (kts) Microburst #5 Microburst #9 η ice = 0.50, η/η ice = 0.08 η ice = 0.91, η/η ice = 0.09 η ice = 1.10, η/η ice = Time (sec) 2-22

23 Results for Microbursts and Icing Altitude (ft) Microburst #5 Microburst #9 η ice = 0.50, η/η ice = 0.08 η ice = 0.91, η/η ice = 0.09 η ice = 1.10, η/η ice = Altitude (ft) Elevator Deflection (deg) Microburst #5 Microburst #9 η ice = 0.50, η/η ice = 0.08 η ice = 0.91, η/η ice = 0.09 η ice = 1.10, η/η ice = Time (sec) Time (sec) 2-23

24 Gravity Waves Result of density variation with height Commonly caused by mountains Propagate vertically Horizontal wavelengths vary from 1 km to 100+ km Velocity amplitudes are small in the troposphere, but can be large in the mesosphere Gravity waves and icing are not exclusive events and frequently occur simultaneously 2-24

25 Gravity Wave Model Only the vertical velocity modeled in FDC using the same method as the microbursts Wavelengths varied from 1 to 64 km Amplitudes of 0, 0.5,1 and 2 m/s studied Several combinations of gravity waves, icing and random atmospheric turbulence studied Icing, η = 0.0, 0.04, and 0.08 z-acceleration RMS = 0.15g 2-25

26 Icing and Gravity Wave Results Angle of Attack (Filtered) (deg) 2.0 Amplitude 0.5 m/s, Period 229 sec, and η = 0.00 Amplitude 0.5 m/s, Period 229 sec, and η = 0.08 Amplitude 0.5 m/s, Period 229 sec, and η = 0.00 Amplitude 0.5 m/s, Period 229 sec, and η = 0.08 Icing η = Time (sec) 2-26

27 Atmospheric Effects Conclusions Microbursts are easy to distinguish because of the rapid rates of change Effects are similar but of different magnitude or occur at different times (late in the encounter) Gravity Waves are more difficult to distinguish Should be distinguishable because of the mechanics of the phenomenon Turbulence modeling is important and varying scale length changes the effects of the turbulence More accurate method of varying turbulence is to vary the intensity Pitch rate effect is minimal and could be neglected to save computation time 2-27

28 Iced Aircraft Envelope Protection Aerodynamically the iced aircraft needs to be protected from: Wing stall Horizontal tail stall Excessive bank angle or roll upset. Loss of longitudinal and lateral control K. Hossain will present the open loop method and V. Sharma the closed loop methods under development for SIS 2-28

29 Flight Test Goal: Objective: Improve the safety of aircraft in icing conditions. 1) Acquire and analyze flight data to assist in the development of icing characterization 2) Evaluate characterization methods in flight Approach: In cooperation with NASA acquire detailed flight dynamics data on the Twin Otter with and without ice. Use data to develop and test ID and characterization methods including the effects of dynamic input, sensor noise, repeatability, uncertainty, IPS detection, etc. Ed Whalen will present flight test research results 2-29

Aerodynamics and Flight Mechanics

Aerodynamics and Flight Mechanics Aerodynamics and Flight Mechanics Principal Investigator: Mike Bragg, Eric Loth Post Doc s: Andy Broeren, Sam Lee Graduate Students: Holly Gurbachi(CRI), Tim Hutchison, Devesh Pokhariyal, Ryan Oltman,

More information

Aerodynamics and Flight Mechanics

Aerodynamics and Flight Mechanics Aerodynamics and Flight Mechanics Principal Investigator: Post Doc s: Graduate Students: Undergraduate Students: Mike Bragg Eric Loth Andy Broeren Sam Lee Jason Merret Kishwar Hossain Edward Whalen Chris

More information

Aerodynamics and Flight Mechanics

Aerodynamics and Flight Mechanics Aerodynamics and Flight Mechanics Principal Investigators: Mike Bragg Eric Loth Graduate Students: Holly Gurbacki (CRI support) Tim Hutchison Devesh Pokhariyal (CRI support) Ryan Oltman 3-1 SMART ICING

More information

AIAA Envelope Protection and Atmospheric Disturbances in Icing Encounters

AIAA Envelope Protection and Atmospheric Disturbances in Icing Encounters AIAA 22-814 Envelope Protection and Atmospheric Disturbances in Icing Encounters J.M. Merret, K.N. Hossain, and M.B. Bragg University of Illinois Urbana, IL 4th AIAA Aerospace Sciences Meetings & Exhibit

More information

Flight Test Data Analysis

Flight Test Data Analysis Flight Test Data Analysis Edward Whalen University of Illinois 3-2 Flight Test Objective: Approach: To develop and evaluate the identification and characterization methods used in the smart icing system

More information

Fundamentals of Airplane Flight Mechanics

Fundamentals of Airplane Flight Mechanics David G. Hull Fundamentals of Airplane Flight Mechanics With 125 Figures and 25 Tables y Springer Introduction to Airplane Flight Mechanics 1 1.1 Airframe Anatomy 2 1.2 Engine Anatomy 5 1.3 Equations of

More information

AIAA Sensing Aircraft Effects by Flap Hinge Moment Measurement

AIAA Sensing Aircraft Effects by Flap Hinge Moment Measurement AIAA 99-349 Sensing Aircraft Effects by Flap Hinge Moment Measurement Holly M. Gurbacki and Michael B. Bragg University of Illinois at Urbana-Champaign Urbana, IL 7th Applied Aerodynamics Conference June

More information

FLIGHT DYNAMICS. Robert F. Stengel. Princeton University Press Princeton and Oxford

FLIGHT DYNAMICS. Robert F. Stengel. Princeton University Press Princeton and Oxford FLIGHT DYNAMICS Robert F. Stengel Princeton University Press Princeton and Oxford Preface XV Chapter One Introduction 1 1.1 ELEMENTS OF THE AIRPLANE 1 Airframe Components 1 Propulsion Systems 4 1.2 REPRESENTATIVE

More information

Stability and Control Some Characteristics of Lifting Surfaces, and Pitch-Moments

Stability and Control Some Characteristics of Lifting Surfaces, and Pitch-Moments Stability and Control Some Characteristics of Lifting Surfaces, and Pitch-Moments The lifting surfaces of a vehicle generally include the wings, the horizontal and vertical tail, and other surfaces such

More information

Aircraft Performance Sensitivity to Icing Cloud Conditions

Aircraft Performance Sensitivity to Icing Cloud Conditions 45 th Aerospace Sciences Meeting & Exhibit AIAA-2007-0086 January 8-11, 2007 Reno, NV Aircraft Performance Sensitivity to Icing Cloud Conditions Scot E. Campbell 1, Andy P. Broeren 2, and Michael B. Bragg

More information

Aircraft Icing. FAR 25, Appendix C charts. Prof. Dr. Serkan ÖZGEN. Dept. Aerospace Engineering, METU Fall 2015

Aircraft Icing. FAR 25, Appendix C charts. Prof. Dr. Serkan ÖZGEN. Dept. Aerospace Engineering, METU Fall 2015 Aircraft Icing FAR 25, Appendix C charts Prof. Dr. Serkan ÖZGEN Dept. Aerospace Engineering, METU Fall 2015 Outline FAR 25 and FAR 29 Appendix C charts Using FAR 25 Appendix C charts Liquid water content

More information

PRINCIPLES OF FLIGHT

PRINCIPLES OF FLIGHT 1 Considering a positive cambered aerofoil, the pitching moment when Cl=0 is: A infinite B positive (nose-up). C negative (nose-down). D equal to zero. 2 The angle between the aeroplane longitudinal axis

More information

Why Should You Consider a Freezing Point Depressant Ice Protection System? Icing Certification Present and Future. CAV Aerospace Limited

Why Should You Consider a Freezing Point Depressant Ice Protection System? Icing Certification Present and Future. CAV Aerospace Limited Why Should You Consider a Freezing Point Depressant Ice Protection System? Icing Certification Present and Future OVERVIEW Presentation Aircraft Review of Current Icing Environments Pending Changes to

More information

Aircraft Design I Tail loads

Aircraft Design I Tail loads Horizontal tail loads Aircraft Design I Tail loads What is the source of loads? How to compute it? What cases should be taken under consideration? Tail small wing but strongly deflected Linearized pressure

More information

Autopilot Analysis and EP Scheme for the Twin Otter under Iced Conditions.

Autopilot Analysis and EP Scheme for the Twin Otter under Iced Conditions. Autopilot Analysis and EP Scheme for the Twin Otter under Iced Conditions. Vikrant Sharma University of Illinois 4-46 Objectives Investigate the autopilot behavior under iced conditions. Develop an envelope

More information

Aeroelastic Gust Response

Aeroelastic Gust Response Aeroelastic Gust Response Civil Transport Aircraft - xxx Presented By: Fausto Gill Di Vincenzo 04-06-2012 What is Aeroelasticity? Aeroelasticity studies the effect of aerodynamic loads on flexible structures,

More information

Introduction to Flight Dynamics

Introduction to Flight Dynamics Chapter 1 Introduction to Flight Dynamics Flight dynamics deals principally with the response of aerospace vehicles to perturbations in their flight environments and to control inputs. In order to understand

More information

Wind Tunnel Experiments of Stall Flutter with Structural Nonlinearity

Wind Tunnel Experiments of Stall Flutter with Structural Nonlinearity Wind Tunnel Experiments of Stall Flutter with Structural Nonlinearity Ahmad Faris R.Razaami School of Aerospace Engineering, Universiti Sains Malaysia, Penang, MALAYSIA Norizham Abdul Razak School of Aerospace

More information

AEROSPACE ENGINEERING

AEROSPACE ENGINEERING AEROSPACE ENGINEERING Subject Code: AE Course Structure Sections/Units Topics Section A Engineering Mathematics Topics (Core) 1 Linear Algebra 2 Calculus 3 Differential Equations 1 Fourier Series Topics

More information

Introduction to Aeronautics

Introduction to Aeronautics Introduction to Aeronautics ARO 101 Sections 03 & 04 Sep 30, 2015 thru Dec 9, 2015 Instructor: Raymond A. Hudson Week #8 Lecture Material 1 Topics For Week #8 Airfoil Geometry & Nomenclature Identify the

More information

MODIFICATION OF AERODYNAMIC WING LOADS BY FLUIDIC DEVICES

MODIFICATION OF AERODYNAMIC WING LOADS BY FLUIDIC DEVICES Journal of KONES Powertrain and Transport, Vol. 21, No. 2 2014 MODIFICATION OF AERODYNAMIC WING LOADS BY FLUIDIC DEVICES Institute of Aviation Department of Aerodynamics and Flight Mechanics Krakowska

More information

A SIMPLIFIED ANALYSIS OF NONLINEAR LONGITUDINAL DYNAMICS AND CONCEPTUAL CONTROL SYSTEM DESIGN

A SIMPLIFIED ANALYSIS OF NONLINEAR LONGITUDINAL DYNAMICS AND CONCEPTUAL CONTROL SYSTEM DESIGN A SIMPLIFIED ANALYSIS OF NONLINEAR LONGITUDINAL DYNAMICS AND CONCEPTUAL CONTROL SYSTEM DESIGN ROBBIE BUNGE 1. Introduction The longitudinal dynamics of fixed-wing aircraft are a case in which classical

More information

Flight Dynamics, Simulation, and Control

Flight Dynamics, Simulation, and Control Flight Dynamics, Simulation, and Control For Rigid and Flexible Aircraft Ranjan Vepa CRC Press Taylor & Francis Group Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group, an

More information

AE Stability and Control of Aerospace Vehicles

AE Stability and Control of Aerospace Vehicles AE 430 - Stability and ontrol of Aerospace Vehicles Static/Dynamic Stability Longitudinal Static Stability Static Stability We begin ith the concept of Equilibrium (Trim). Equilibrium is a state of an

More information

Task A-1.13: Experimental Measurement of Ice Accretion and Shedding of Rotating Airfoils

Task A-1.13: Experimental Measurement of Ice Accretion and Shedding of Rotating Airfoils Task A-1.13: Experimental Measurement of Ice Accretion and Shedding of Rotating Airfoils Dr. Jose L Palacios Research Associate jlp324@psu.edu Yiqiang Han Research Assistant ARMY Program Review April 7,

More information

FAULT DETECTION AND FAULT TOLERANT APPROACHES WITH AIRCRAFT APPLICATION. Andrés Marcos

FAULT DETECTION AND FAULT TOLERANT APPROACHES WITH AIRCRAFT APPLICATION. Andrés Marcos FAULT DETECTION AND FAULT TOLERANT APPROACHES WITH AIRCRAFT APPLICATION 2003 Louisiana Workshop on System Safety Andrés Marcos Dept. Aerospace Engineering and Mechanics, University of Minnesota 28 Feb,

More information

Envelopes for Flight Through Stochastic Gusts

Envelopes for Flight Through Stochastic Gusts AIAA Atmospheric Flight Mechanics Conference 08-11 August 2011, Portland, Oregon AIAA 2011-6213 Envelopes for Flight Through Stochastic Gusts Johnhenri R. Richardson, Ella M. Atkins, Pierre T. Kabamba,

More information

MODELING OF DUST DEVIL ON MARS AND FLIGHT SIMULATION OF MARS AIRPLANE

MODELING OF DUST DEVIL ON MARS AND FLIGHT SIMULATION OF MARS AIRPLANE MODELING OF DUST DEVIL ON MARS AND FLIGHT SIMULATION OF MARS AIRPLANE Hirotaka Hiraguri*, Hiroshi Tokutake* *Kanazawa University, Japan hiraguri@stu.kanazawa-u.ac.jp;tokutake@se.kanazawa-u.ac.jp Keywords:

More information

In-flight Ice Accretion Prediction Code

In-flight Ice Accretion Prediction Code In-flight Ice Accretion Prediction Code Vladimír HORÁK*, Zdeněk CHÁRA** *Corresponding author University of Defence in Brno, Kounicova 65, 612 00 Brno, Czech Republic vladimir.horak@unob.cz **Institute

More information

Flight Dynamics and Control. Lecture 3: Longitudinal stability Derivatives G. Dimitriadis University of Liege

Flight Dynamics and Control. Lecture 3: Longitudinal stability Derivatives G. Dimitriadis University of Liege Flight Dynamics and Control Lecture 3: Longitudinal stability Derivatives G. Dimitriadis University of Liege Previously on AERO0003-1 We developed linearized equations of motion Longitudinal direction

More information

Smart Icing Systems Research Organization Technologies Core Aerodynamcs Control and Aircraft Flight Human and Sensor Icing Mechanics Factors Propulsio

Smart Icing Systems Research Organization Technologies Core Aerodynamcs Control and Aircraft Flight Human and Sensor Icing Mechanics Factors Propulsio Flight Controls and Sensors Investigators: Tamer Baοsar (CSL/ECE) Principal Perkins Λ (CSL/ECE) William Petros Voulgaris (CSL/AAE) Graduate Students: Li (NASA Support) Wen Melody Λ (CRI Support) James

More information

Mechanics of Flight. Warren F. Phillips. John Wiley & Sons, Inc. Professor Mechanical and Aerospace Engineering Utah State University WILEY

Mechanics of Flight. Warren F. Phillips. John Wiley & Sons, Inc. Professor Mechanical and Aerospace Engineering Utah State University WILEY Mechanics of Flight Warren F. Phillips Professor Mechanical and Aerospace Engineering Utah State University WILEY John Wiley & Sons, Inc. CONTENTS Preface Acknowledgments xi xiii 1. Overview of Aerodynamics

More information

Aerodynamics SYST 460/560. George Mason University Fall 2008 CENTER FOR AIR TRANSPORTATION SYSTEMS RESEARCH. Copyright Lance Sherry (2008)

Aerodynamics SYST 460/560. George Mason University Fall 2008 CENTER FOR AIR TRANSPORTATION SYSTEMS RESEARCH. Copyright Lance Sherry (2008) Aerodynamics SYST 460/560 George Mason University Fall 2008 1 CENTER FOR AIR TRANSPORTATION SYSTEMS RESEARCH Copyright Lance Sherry (2008) Ambient & Static Pressure Ambient Pressure Static Pressure 2 Ambient

More information

List of symbols. Latin symbols. Symbol Property Unit

List of symbols. Latin symbols. Symbol Property Unit Abstract Aircraft icing continues to be a threat for modern day aircraft. Icing occurs when supercooled large droplets (SLD s) impinge on the body of the aircraft. These droplets can bounce off, freeze

More information

Flight and Orbital Mechanics

Flight and Orbital Mechanics Flight and Orbital Mechanics Lecture slides Challenge the future 1 Flight and orbital mechanics Flight Mechanics practice questions Dr. ir. Mark Voskuijl 20-11-2013 Delft University of Technology Challenge

More information

Airfoil Ice-Accretion Aerodynamics Simulation

Airfoil Ice-Accretion Aerodynamics Simulation Airfoil Ice-Accretion Aerodynamics Simulation M. Bragg and A. Broeren University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 H. Addy and M. Potapczuk NASA Glenn Research Center, Cleveland,

More information

AIAA Aerodynamic Performance of an NLF Airfoils with Simulated Ice

AIAA Aerodynamic Performance of an NLF Airfoils with Simulated Ice AIAA 99-373 Aerodynamic Performance of an NLF Airfoils with Simulated Ice D.G. Jackson and M.B. Bragg University of Illinois Urbana, IL 37th AIAA Aerospace Sciences Meetings & Exhibit 4 January 999/Reno,NV

More information

Mech 6091 Flight Control System Course Project. Team Member: Bai, Jing Cui, Yi Wang, Xiaoli

Mech 6091 Flight Control System Course Project. Team Member: Bai, Jing Cui, Yi Wang, Xiaoli Mech 6091 Flight Control System Course Project Team Member: Bai, Jing Cui, Yi Wang, Xiaoli Outline 1. Linearization of Nonlinear F-16 Model 2. Longitudinal SAS and Autopilot Design 3. Lateral SAS and Autopilot

More information

Contribution of Airplane design parameters on Roll Coupling اي داءالبارامترات التصميميه للطائره على ازدواج الحركي

Contribution of Airplane design parameters on Roll Coupling اي داءالبارامترات التصميميه للطائره على ازدواج الحركي International Journal of Mechanical & Mechatronics Engineering IJMME-IJENS Vol:13 No:06 7 Contribution of Airplane design parameters on Roll Coupling اي داءالبارامترات التصميميه للطائره على ازدواج الحركي

More information

Applications of Linear and Nonlinear Robustness Analysis Techniques to the F/A-18 Flight Control Laws

Applications of Linear and Nonlinear Robustness Analysis Techniques to the F/A-18 Flight Control Laws AIAA Guidance, Navigation, and Control Conference 10-13 August 2009, Chicago, Illinois AIAA 2009-5675 Applications of Linear and Nonlinear Robustness Analysis Techniques to the F/A-18 Flight Control Laws

More information

Numeric Simulation of Glider Winch Launches. Andreas Gäb, Christoph Santel

Numeric Simulation of Glider Winch Launches. Andreas Gäb, Christoph Santel Numeric Simulation of Glider Winch Launches Andreas Gäb, Christoph Santel Communicated by Prof. Dr.-Ing. D. Moormann Institute of Flight System Dynamics RWTH Aachen University Jul. 28-Aug. 4, 2010 XXX

More information

A WAVELET BASED FLIGHT DATA PREPROCESSING METHOD FOR FLIGHT CHARACTERISTICS ESTIMATION AND FAULT DETECTION

A WAVELET BASED FLIGHT DATA PREPROCESSING METHOD FOR FLIGHT CHARACTERISTICS ESTIMATION AND FAULT DETECTION A WAVELET BASED FLIGHT DATA PREPROCESSING METHOD FOR FLIGHT CHARACTERISTICS ESTIMATION AND FAULT DETECTION Masaru Naruoka Japan Aerospace Exploration Agency Keywords: Flight analyses, Multiresolution Analysis,

More information

16.333: Lecture # 14. Equations of Motion in a Nonuniform Atmosphere. Gusts and Winds

16.333: Lecture # 14. Equations of Motion in a Nonuniform Atmosphere. Gusts and Winds 16.333: Lecture # 14 Equations of Motion in a Nonuniform Atmosphere Gusts and Winds 1 Fall 2004 16.333 12 2 Equations of Motion Analysis to date has assumed that the atmosphere is calm and fixed Rarely

More information

German Aerospace Center (DLR)

German Aerospace Center (DLR) German Aerospace Center (DLR) AEROGUST M30 Progress Meeting 23-24 November 2017, Bordeaux Presented by P. Bekemeryer / J. Nitzsche With contributions of C. Kaiser 1, S. Görtz 2, R. Heinrich 2, J. Nitzsche

More information

Alternative Expressions for the Velocity Vector Velocity restricted to the vertical plane. Longitudinal Equations of Motion

Alternative Expressions for the Velocity Vector Velocity restricted to the vertical plane. Longitudinal Equations of Motion Linearized Longitudinal Equations of Motion Robert Stengel, Aircraft Flig Dynamics MAE 33, 008 Separate solutions for nominal and perturbation flig paths Assume that nominal path is steady and in the vertical

More information

FREQUENCY DOMAIN FLUTTER ANALYSIS OF AIRCRAFT WING IN SUBSONIC FLOW

FREQUENCY DOMAIN FLUTTER ANALYSIS OF AIRCRAFT WING IN SUBSONIC FLOW FREQUENCY DOMAIN FLUTTER ANALYSIS OF AIRCRAFT WING IN SUBSONIC FLOW Ms.K.Niranjana 1, Mr.A.Daniel Antony 2 1 UG Student, Department of Aerospace Engineering, Karunya University, (India) 2 Assistant professor,

More information

SPC Aerodynamics Course Assignment Due Date Monday 28 May 2018 at 11:30

SPC Aerodynamics Course Assignment Due Date Monday 28 May 2018 at 11:30 SPC 307 - Aerodynamics Course Assignment Due Date Monday 28 May 2018 at 11:30 1. The maximum velocity at which an aircraft can cruise occurs when the thrust available with the engines operating with the

More information

Reduced reliance on wind tunnel data

Reduced reliance on wind tunnel data Reduced reliance on wind tunnel data The recreation of the industrial gust loads process, using CFD in place of experimental data Investigation of the underlying assumptions of the current industrial gust

More information

In-Flight Mixed Phase Ice Accretion Prediction on Finite Wings with TAICE-3D

In-Flight Mixed Phase Ice Accretion Prediction on Finite Wings with TAICE-3D 7 TH EUROPEAN CONFERENCE FOR AERONAUTICS AND AEROSPACE SCIENCES (EUCASS) DOI: 339 In-Flight Mixed Phase Ice Accretion Prediction on Finite Wings with TAICE-3D Erdem Ayan and Serkan Özgen Turkish Aerospace

More information

Atmospheric Hazards to Flight! Robert Stengel,! Aircraft Flight Dynamics, MAE 331, Frames of Reference

Atmospheric Hazards to Flight! Robert Stengel,! Aircraft Flight Dynamics, MAE 331, Frames of Reference Atmospheric Hazards to Flight! Robert Stengel,! Aircraft Flight Dynamics, MAE 331, 2016!! Microbursts!! Wind Rotors!! Wake Vortices!! Clear Air Turbulence Copyright 2016 by Robert Stengel. All rights reserved.

More information

Experimental Aircraft Parameter Estimation

Experimental Aircraft Parameter Estimation Experimental Aircraft Parameter Estimation AA241X May 14 2014 Stanford University Overview 1. System & Parameter Identification 2. Energy Performance Estimation Propulsion OFF Propulsion ON 3. Stability

More information

Flight Dynamics and Control

Flight Dynamics and Control Flight Dynamics and Control Lecture 1: Introduction G. Dimitriadis University of Liege Reference material Lecture Notes Flight Dynamics Principles, M.V. Cook, Arnold, 1997 Fundamentals of Airplane Flight

More information

Suboptimal adaptive control system for flight quality improvement

Suboptimal adaptive control system for flight quality improvement Suboptimal adaptive control system for flight uality improvement Andrzej Tomczyk Department of Avionics and Control, Faculty of Mechanical Engineering and Aeronautics Rzeszów University of Technology,

More information

Study. Aerodynamics. Small UAV. AVL Software

Study. Aerodynamics. Small UAV. AVL Software Study of the Aerodynamics of a Small UAV using AVL Software Prepared For: Prof. Luis Bernal Prepared By: Paul Dorman April 24, 2006 Table of Contents Introduction.1 Aerodynamic Data...2 Flight Assessment..

More information

An Experimental Validation of Numerical Post-Stall Aerodynamic Characteristics of a Wing

An Experimental Validation of Numerical Post-Stall Aerodynamic Characteristics of a Wing Proceedings of ICTACEM 2017 International Conference on Theoretical, Applied, Computational and Experimental Mechanics December 28-30, 2017, IIT Kharagpur, India ICTACEM-2017/XXXX(paper No.) An Experimental

More information

SPECIAL CONDITION. Water Load Conditions. SPECIAL CONDITION Water Load Conditions

SPECIAL CONDITION. Water Load Conditions. SPECIAL CONDITION Water Load Conditions Doc. No. : SC-CVLA.051-01 Issue : 1d Date : 04-Aug-009 Page : 1 of 13 SUBJECT : CERTIFICATION SPECIFICATION : VLA.51 PRIMARY GROUP / PANEL : 03 (Structure) SECONDARY GROUPE / PANEL : -- NATURE : SCN VLA.51

More information

April 15, 2011 Sample Quiz and Exam Questions D. A. Caughey Page 1 of 9

April 15, 2011 Sample Quiz and Exam Questions D. A. Caughey Page 1 of 9 April 15, 2011 Sample Quiz Exam Questions D. A. Caughey Page 1 of 9 These pages include virtually all Quiz, Midterm, Final Examination questions I have used in M&AE 5070 over the years. Note that some

More information

EFFECT OF SIDESLIP ANGLE ON THE BALANCE OF AIRCRAFT MOMENTS THROUGH STEADY - STATE SPIN

EFFECT OF SIDESLIP ANGLE ON THE BALANCE OF AIRCRAFT MOMENTS THROUGH STEADY - STATE SPIN International Journal of Civil Engineering Technology (IJCIET) Volume 8, Issue 10, October 2017, pp. 627 633, Article ID: IJCIET_08_10_065 Available online at http://http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=8&itype=10

More information

AIRFRAME NOISE MODELING APPROPRIATE FOR MULTIDISCIPLINARY DESIGN AND OPTIMIZATION

AIRFRAME NOISE MODELING APPROPRIATE FOR MULTIDISCIPLINARY DESIGN AND OPTIMIZATION AIRFRAME NOISE MODELING APPROPRIATE FOR MULTIDISCIPLINARY DESIGN AND OPTIMIZATION AIAA-2004-0689 Serhat Hosder, Joseph A. Schetz, Bernard Grossman and William H. Mason Virginia Tech Work sponsored by NASA

More information

State-Space Representation of Unsteady Aerodynamic Models

State-Space Representation of Unsteady Aerodynamic Models State-Space Representation of Unsteady Aerodynamic Models -./,1231-44567 &! %! $! #! "! x α α k+1 A ERA x = 1 t α 1 α x C L (k t) = C ERA C Lα C L α α α ERA Model fast dynamics k + B ERA t quasi-steady

More information

/ m U) β - r dr/dt=(n β / C) β+ (N r /C) r [8+8] (c) Effective angle of attack. [4+6+6]

/ m U) β - r dr/dt=(n β / C) β+ (N r /C) r [8+8] (c) Effective angle of attack. [4+6+6] Code No: R05322101 Set No. 1 1. (a) Explain the following terms with examples i. Stability ii. Equilibrium. (b) Comment upon the requirements of stability of a i. Military fighter aircraft ii. Commercial

More information

3 JAA Special Publication JAA-SP-6-8E efficiency of damping estimation. It is pointed out, however, that damping is not always an appropriate index to

3 JAA Special Publication JAA-SP-6-8E efficiency of damping estimation. It is pointed out, however, that damping is not always an appropriate index to First International Symposium on Flutter and its Application, 6 3 ETENSION OF DISCRETE-TIME FLUTTER PREDICTION METHOD TO A HIGHER-MODE SYSTEM Hiroshi Torii + Meijo University, Nagoya, Japan Conventionally

More information

Nonlinear Aerodynamic Predictions Of Aircraft and Missiles Employing Trailing-Edge Flaps

Nonlinear Aerodynamic Predictions Of Aircraft and Missiles Employing Trailing-Edge Flaps Nonlinear Aerodynamic Predictions Of Aircraft and Missiles Employing Trailing-Edge Flaps Daniel J. Lesieutre 1 Nielsen Engineering & Research, Inc., Santa Clara, CA, 95054 The nonlinear missile aerodynamic

More information

CDS 101/110a: Lecture 8-1 Frequency Domain Design

CDS 101/110a: Lecture 8-1 Frequency Domain Design CDS 11/11a: Lecture 8-1 Frequency Domain Design Richard M. Murray 17 November 28 Goals: Describe canonical control design problem and standard performance measures Show how to use loop shaping to achieve

More information

Chapter 1 Lecture 2. Introduction 2. Topics. Chapter-1

Chapter 1 Lecture 2. Introduction 2. Topics. Chapter-1 Chapter 1 Lecture 2 Introduction 2 Topics 1.4 Equilibrium of airplane 1.5 Number of equations of motion for airplane in flight 1.5.1 Degrees of freedom 1.5.2 Degrees of freedom for a rigid airplane 1.6

More information

Chapter 4 The Equations of Motion

Chapter 4 The Equations of Motion Chapter 4 The Equations of Motion Flight Mechanics and Control AEM 4303 Bérénice Mettler University of Minnesota Feb. 20-27, 2013 (v. 2/26/13) Bérénice Mettler (University of Minnesota) Chapter 4 The Equations

More information

Adaptive Augmentation of a Fighter Aircraft Autopilot Using a Nonlinear Reference Model

Adaptive Augmentation of a Fighter Aircraft Autopilot Using a Nonlinear Reference Model Proceedings of the EuroGNC 13, 2nd CEAS Specialist Conference on Guidance, Navigation & Control, Delft University of Technology, Delft, The Netherlands, April -12, 13 Adaptive Augmentation of a Fighter

More information

Aerodynamic Resonance in Transonic Airfoil Flow. J. Nitzsche, R. H. M. Giepman. Institute of Aeroelasticity, German Aerospace Center (DLR), Göttingen

Aerodynamic Resonance in Transonic Airfoil Flow. J. Nitzsche, R. H. M. Giepman. Institute of Aeroelasticity, German Aerospace Center (DLR), Göttingen Aerodynamic Resonance in Transonic Airfoil Flow J. Nitzsche, R. H. M. Giepman Institute of Aeroelasticity, German Aerospace Center (DLR), Göttingen Source: A. Šoda, PhD thesis, 2006 Slide 2/39 Introduction

More information

Limit Cycle Oscillations of a Typical Airfoil in Transonic Flow

Limit Cycle Oscillations of a Typical Airfoil in Transonic Flow Limit Cycle Oscillations of a Typical Airfoil in Transonic Flow Denis B. Kholodar, United States Air Force Academy, Colorado Springs, CO 88 Earl H. Dowell, Jeffrey P. Thomas, and Kenneth C. Hall Duke University,

More information

Small-Scale Propellers Operating in the Vortex Ring State

Small-Scale Propellers Operating in the Vortex Ring State 49 th AIAA Aerospace Sciences Meeting AIAA 2011-1254 4-7 anuary 2011, Orlando, FL Small-Scale Propellers Operating in the Vortex Ring State Omkar R. Shetty and Michael S. Selig University of Illinois at

More information

Frequency Domain System Identification for a Small, Low-Cost, Fixed-Wing UAV

Frequency Domain System Identification for a Small, Low-Cost, Fixed-Wing UAV Frequency Domain System Identification for a Small, Low-Cost, Fixed-Wing UAV Andrei Dorobantu, Austin M. Murch, Bernie Mettler, and Gary J. Balas, Department of Aerospace Engineering & Mechanics University

More information

MAV Unsteady Characteristics in-flight Measurement with the Help of SmartAP Autopilot

MAV Unsteady Characteristics in-flight Measurement with the Help of SmartAP Autopilot MAV Unsteady Characteristics in-flight Measurement with the Help of SmartAP Autopilot S. Serokhvostov, N. Pushchin and K. Shilov Moscow Institute of Physics and Technology Department of Aeromechanics and

More information

Performance. 7. Aircraft Performance -Basics

Performance. 7. Aircraft Performance -Basics Performance 7. Aircraft Performance -Basics In general we are interested in finding out certain performance characteristics of a vehicle. These typically include: how fast and how slow an aircraft can

More information

State Estimation for Autopilot Control of Small Unmanned Aerial Vehicles in Windy Conditions

State Estimation for Autopilot Control of Small Unmanned Aerial Vehicles in Windy Conditions University of Colorado, Boulder CU Scholar Aerospace Engineering Sciences Graduate Theses & Dissertations Aerospace Engineering Sciences Summer 7-23-2014 State Estimation for Autopilot Control of Small

More information

Transonic Aerodynamics Wind Tunnel Testing Considerations. W.H. Mason Configuration Aerodynamics Class

Transonic Aerodynamics Wind Tunnel Testing Considerations. W.H. Mason Configuration Aerodynamics Class Transonic Aerodynamics Wind Tunnel Testing Considerations W.H. Mason Configuration Aerodynamics Class Transonic Aerodynamics History Pre WWII propeller tip speeds limited airplane speed Props did encounter

More information

Aero-Propulsive-Elastic Modeling Using OpenVSP

Aero-Propulsive-Elastic Modeling Using OpenVSP Aero-Propulsive-Elastic Modeling Using OpenVSP August 8, 213 Kevin W. Reynolds Intelligent Systems Division, Code TI NASA Ames Research Center Our Introduction To OpenVSP Overview! Motivation and Background!

More information

NEURAL NETWORK ADAPTIVE SEMI-EMPIRICAL MODELS FOR AIRCRAFT CONTROLLED MOTION

NEURAL NETWORK ADAPTIVE SEMI-EMPIRICAL MODELS FOR AIRCRAFT CONTROLLED MOTION NEURAL NETWORK ADAPTIVE SEMI-EMPIRICAL MODELS FOR AIRCRAFT CONTROLLED MOTION Mikhail V. Egorchev, Dmitry S. Kozlov, Yury V. Tiumentsev Moscow Aviation Institute (MAI), Moscow, Russia Keywords: aircraft,

More information

Airplane Icing. Accidents That Shaped Our Safety Regulations. Federal Aviation Administration

Airplane Icing. Accidents That Shaped Our Safety Regulations. Federal Aviation Administration Airplane Icing Accidents That Shaped Our Safety Regulations Presented to: AE598 UW Aerospace Engineering Colloquium By: Don Stimson, Topics Icing Basics Certification Requirements Ice Protection Systems

More information

FREEZING CONTAMINATION : AIRCRAFT ICING

FREEZING CONTAMINATION : AIRCRAFT ICING FREEZING CONTAMINATION : AIRCRAFT ICING EFFECTS ON AIRCRAFT Different types of accretion Intensity of ice accretion Consequences of accretion Vulnerability factors examples Specific vulnerabilities Detection

More information

Given the water behaves as shown above, which direction will the cylinder rotate?

Given the water behaves as shown above, which direction will the cylinder rotate? water stream fixed but free to rotate Given the water behaves as shown above, which direction will the cylinder rotate? ) Clockwise 2) Counter-clockwise 3) Not enough information F y U 0 U F x V=0 V=0

More information

8.7 Calculation of windshear hazard factor based on Doppler LIDAR data. P.W. Chan * Hong Kong Observatory, Hong Kong, China

8.7 Calculation of windshear hazard factor based on Doppler LIDAR data. P.W. Chan * Hong Kong Observatory, Hong Kong, China 8.7 Calculation of windshear hazard factor based on Doppler LIDAR data P.W. Chan * Hong Kong Observatory, Hong Kong, China Paul Robinson, Jason Prince Aerotech Research 1. INTRODUCTION In the alerting

More information

Department of Aerospace Engineering and Mechanics University of Minnesota Written Preliminary Examination: Control Systems Friday, April 9, 2010

Department of Aerospace Engineering and Mechanics University of Minnesota Written Preliminary Examination: Control Systems Friday, April 9, 2010 Department of Aerospace Engineering and Mechanics University of Minnesota Written Preliminary Examination: Control Systems Friday, April 9, 2010 Problem 1: Control of Short Period Dynamics Consider the

More information

Giovanni Tarantino, Dipartimento di Fisica e Tecnologie Relative, Università di Palermo (Italia)

Giovanni Tarantino, Dipartimento di Fisica e Tecnologie Relative, Università di Palermo (Italia) THE INTERACTIVE PHYSICS FLIGHT SIMULATOR Giovanni Tarantino, Dipartimento di Fisica e Tecnologie Relative, Università di Palermo (Italia) Abstract This paper describes a modelling approach to the dynamics

More information

Stability and Control

Stability and Control Stability and Control Introduction An important concept that must be considered when designing an aircraft, missile, or other type of vehicle, is that of stability and control. The study of stability is

More information

AIAA Investigation of Reynolds Number Effects on a Generic Fighter Configuration in the National Transonic Facility (Invited)

AIAA Investigation of Reynolds Number Effects on a Generic Fighter Configuration in the National Transonic Facility (Invited) Investigation of Reynolds Number Effects on a Generic Fighter Configuration in the National Transonic Facility (Invited) W. G. Tomek, R. M. Hall, R. A. Wahls, J. M. Luckring, and L. R. Owens NASA Langley

More information

CHAPTER 3 ANALYSIS OF NACA 4 SERIES AIRFOILS

CHAPTER 3 ANALYSIS OF NACA 4 SERIES AIRFOILS 54 CHAPTER 3 ANALYSIS OF NACA 4 SERIES AIRFOILS The baseline characteristics and analysis of NACA 4 series airfoils are presented in this chapter in detail. The correlations for coefficient of lift and

More information

Large-eddy simulations for wind turbine blade: rotational augmentation and dynamic stall

Large-eddy simulations for wind turbine blade: rotational augmentation and dynamic stall Large-eddy simulations for wind turbine blade: rotational augmentation and dynamic stall Y. Kim, I.P. Castro, and Z.T. Xie Introduction Wind turbines operate in the atmospheric boundary layer and their

More information

CHAPTER 1. Introduction

CHAPTER 1. Introduction CHAPTER 1 Introduction Linear geometric control theory was initiated in the beginning of the 1970 s, see for example, [1, 7]. A good summary of the subject is the book by Wonham [17]. The term geometric

More information

An Experimental Investigation on Surface Water Transport and Ice Accreting Process Pertinent to Wind Turbine Icing Phenomena

An Experimental Investigation on Surface Water Transport and Ice Accreting Process Pertinent to Wind Turbine Icing Phenomena An Experimental Investigation on Surface Water Transport and Ice Accreting Process Pertinent to Wind Turbine Icing Phenomena Dr. Hui HU Advanced Flow Diagnostics and Experimental Aerodynamics Laboratory

More information

PRELIMINARY STUDY OF RELATIONSHIPS BETWEEN STABILITY AND CONTROL CHARACTERISTICS AND AFFORDABILITY FOR HIGH-PERFORMANCE AIRCRAFT

PRELIMINARY STUDY OF RELATIONSHIPS BETWEEN STABILITY AND CONTROL CHARACTERISTICS AND AFFORDABILITY FOR HIGH-PERFORMANCE AIRCRAFT AIAA-98-4265 PRELIMINARY STUDY OF RELATIONSHIPS BETWEEN STABILITY AND CONTROL CHARACTERISTICS AND AFFORDABILITY FOR HIGH-PERFORMANCE AIRCRAFT Marilyn E. Ogburn* NASA Langley Research Center Hampton, VA

More information

Aircraft Performance, Stability and control with experiments in Flight. Questions

Aircraft Performance, Stability and control with experiments in Flight. Questions Aircraft Performance, Stability and control with experiments in Flight Questions Q. If only the elevator size of a given aircraft is decreased; keeping horizontal tail area unchanged; then the aircraft

More information

DEMONSTRATION OF THE OPTIMAL CONTROL MODIFICATION FOR GENERAL AVIATION: DESIGN AND SIMULATION. A Thesis by. Scott Reed

DEMONSTRATION OF THE OPTIMAL CONTROL MODIFICATION FOR GENERAL AVIATION: DESIGN AND SIMULATION. A Thesis by. Scott Reed DEMONSTRATION OF THE OPTIMAL CONTROL MODIFICATION FOR GENERAL AVIATION: DESIGN AND SIMULATION A Thesis by Scott Reed Bachelor of Science, Wichita State University, 2009 Submitted to the Department of Aerospace

More information

Transonic Flutter Prediction of Supersonic Jet Trainer with Various External Store Configurations

Transonic Flutter Prediction of Supersonic Jet Trainer with Various External Store Configurations Transonic Flutter Prediction of Supersonic Jet Trainer with Various External Store Configurations In Lee * Korea Advanced Institute of Science and Technology, Daejeon, 305-701, Korea Hyuk-Jun Kwon Agency

More information

Stability and Control Analysis in Twin-Boom Vertical Stabilizer Unmanned Aerial Vehicle (UAV)

Stability and Control Analysis in Twin-Boom Vertical Stabilizer Unmanned Aerial Vehicle (UAV) International Journal of Scientific and Research Publications, Volume 4, Issue 2, February 2014 1 Stability and Control Analysis in Twin-Boom Vertical Stabilizer Unmanned Aerial Vehicle UAV Lasantha Kurukularachchi*;

More information

Onboard Estimation of Impaired Aircraft Performance Envelope

Onboard Estimation of Impaired Aircraft Performance Envelope Onboard Estimation of Impaired Aircraft Performance Envelope P. K. Menon *, J. Kim, P. Sengupta, S. S. Vaddi, B. Yang **, J. Kwan Optimal Synthesis Inc., Los Altos, CA 94022-2777 A methodology for estimating

More information

Evaluation of the Drag Reduction Potential and Static Stability Changes of C-130 Aft Body Strakes

Evaluation of the Drag Reduction Potential and Static Stability Changes of C-130 Aft Body Strakes U.S. Air Force T&E Days 2009 10-12 February 2009, Albuquerque, New Mexico AIAA 2009-1721 Evaluation of the Drag Reduction Potential and Static Stability Changes of C-130 Aft Body Strakes Heather G. Pinsky

More information

Leveraging STAR-CCM+ for Aircraft Applications. Durrell Rittenberg, Ph.D.

Leveraging STAR-CCM+ for Aircraft Applications. Durrell Rittenberg, Ph.D. Leveraging STAR-CCM+ for Aircraft Applications Durrell Rittenberg, Ph.D. Overview of Icing with STAR-CCM+ Icing in aerospace Common applications Impact of icing on Aircraft safety Common icing conditions

More information

Simulation of Non-Linear Flight Control Using Backstepping Method

Simulation of Non-Linear Flight Control Using Backstepping Method Proceedings of the 2 nd International Conference of Control, Dynamic Systems, and Robotics Ottawa, Ontario, Canada, May 7 8, 2015 Paper No. 182 Simulation of Non-Linear Flight Control Using Backstepping

More information

ANALYSIS OF MULTIPLE FLIGHT CONTROL ARCHITECTURES ON A SIX DEGREE OF FREEDOM GENERAL AVIATION AIRCRAFT. A Thesis by. John Taylor Oxford, Jr.

ANALYSIS OF MULTIPLE FLIGHT CONTROL ARCHITECTURES ON A SIX DEGREE OF FREEDOM GENERAL AVIATION AIRCRAFT. A Thesis by. John Taylor Oxford, Jr. ANALYSIS OF MULTIPLE FLIGHT CONTROL ARCHITECTURES ON A SIX DEGREE OF FREEDOM GENERAL AVIATION AIRCRAFT A Thesis by John Taylor Oxford, Jr. Bachelor of Science, Georgia Institute of Technology, 2007 Submitted

More information

Introduction to Aerospace Engineering

Introduction to Aerospace Engineering Introduction to Aerospace Engineering 5. Aircraft Performance 5.1 Equilibrium Flight In order to discuss performance, stability, and control, we must first establish the concept of equilibrium flight.

More information