OTT PARSIVEL - ENHANCED PRECIPITATION IDENTIFIER AND NEW GENERATION

Size: px
Start display at page:

Download "OTT PARSIVEL - ENHANCED PRECIPITATION IDENTIFIER AND NEW GENERATION"

Transcription

1 OTT PARSIEL - ENHANCED PRECIPITATION IDENTIFIER AND NEW GENERATION OF PRESENT WEATHER SENSOR BY OTT MESSTECHNIK, GERMANY Authors: (1) Kurt Nemeth OTT Messtechnik GmbH & Co. KG Ludwigstrasse Kempten Germany () Martin Löffler-Mang HTW Fachbereich GIS Goebenstrasse Saarbruecken Germany (1) k.nemeth@ott-hydrometry.com () loeffler-mang@htw-saarland.de Abstract OTT Parsivel : Laser based optical Disdrometer for simultaneous measurement of PARticle Size and ELocity of all liquid and solid precipitation. The state of the art instrument features a multipurpose meteorological instrument for all weather conditions as present weather sensor, optical precipitation gauge, enhanced precipitation identifier, and disdrometer for spectrum classification, visibility and radar reflectivity. Parsivel can be operated as reliable and unattended sensor for automatic weather stations and /or as PC based instrument for science or meteorological applications. The comparison of radar reflectivity between Parsivel and weather radar shows reasonable results and radar reflectivity of Parsivel can be considered even as alternative data source. Parsivel can support and improve significantly the quality based information of the weather radar with ground based enhanced precipitation data. 1. SYSTEM DESCRIPTION 1.1. Background and design requirements The design requirements for the instrument lead to a universal Commercial Off-The-Shelf (COTS) equipment which meets substantially the meteorological and hydrological requirements of the sensor specification according to WMO and NWS regulation as an enhanced precipitation identifier and present weather sensor. The patented extinction method for simultaneous measurements of particle size and velocity of all liquid and solid precipitation performs the direct physical measuring principle and classification of hydrometeors. The instrument provides a full picture of the precipitation event in all weather phenomena and provides accurate reporting of precipitation types and intensities without degradation of performance in severe outdoor environments. Parsivel operates in any climate weather regime and the incorporated heating device minimizes the negative effect of freezing and frozen precipitation accreting critical surfaces on the instrument. 1

2 This piece of equipment detects and identifies 8 different precipitation types as drizzle, mixed drizzle/rain, rain, mixed rain/snow, snow, snow grains, freezing rain and hail. The output data - consisting of raw data, classification related to size and velocity of particles, rain accumulation and intensity, present weather reports and housekeeping data - make the instrument suitable to any kind of meteorological and hydrological application. Fig. 1: OTT Parsivel - Enhanced Precipitation Identification Sensor Parsivel can be integrated into an Automated Surface/Weather Observing System (ASOS/AWOS) as part of the sensor suite. The derived data can be processed and included into the transmitted weather observation report and messages (WMO, SYNOP, METAR and NWS codes). The new generation of Parsivel disdrometer provides the latest state of the art laser optical technology. The data performance has been tested successfully in comparison with a meteorological observer with a distinction rate better than 97%. Due to modern and high speed DSP technology the wide spectrum of precipitation from drizzle to tropical rain with extreme intensities up to 0 mm/min can be acquired and processed without limitation regarding influence of wind and effecting catching orifice problems concerning conventional rain gauges. The instrument supports meteorological observer missions in general and weather service missions for improving severe winter weather warnings for snow and ice conditions, flood forecast and warnings, support to aviation and road traffic, and severe thunderstorm forecast and warnings. The derived radar reflectivity coefficient together with ground based precipitation data improves essentially the performance of the spatial weather radar information, improves the regional weather forecasts and high water early warning system by combination and correlation of precise and overall precipitation network data. 1.. Parsivel feature unique performance Patented extinction measurement procedure Unattended and reliable operation, using maintenance-free laser technology Operable in all environmental and weather conditions (lightning protection and self-regulated heating) Low power and heating operation by software commands Identification of all precipitation types, including mixed precipitation in the melting layer Comprehensive precipitation analysis using -dimensional distribution of size and velocity Special measuring head prevents secondary spectra caused by drops splashing on the sensor head Transmitter and receiver head in perfect design with no obstacles for precipitation catching

3 1.3. Extinction measuring principle The new generation of enhanced precipitation identifier measures directly each single hydrometeor and performs a revolutionary change compared to forward scattered laser optical systems which needs additional sensors onboard and is based on experimental and proofed algorithm to determine the rain rate and identification of precipitation types. U U i U i D A) B) t t C) v A) The sensor's transmitter unit generates a flat, horizontal beam of light, which the receiver unit converts into an electric signal. Fig. : Extinction measuring principle B) This signal changes whenever a hydrometeor falls through the beam anywhere within the measurement area C) The degree of dimming is a measure of the hydrometer s size, and together with duration of the signal, the fall velocity can be derived Multipurpose instrument featuring enhanced precipitation measurements The full data output of precipitation is accomplished with additional algorithm and the derived data make the instrument suitable for the use in various meteorological and hydrological applications featuring five single instruments in one unique unit: Present Weather Sensor ww - Code Parsivel isibility in Precipitation Extinction- Coefficient Rain Gauge Rain Rate Energy of Precipitation Soil Erosion Z/R-Correlation Adjustment of weather Radars Flood waters warning Fig. 3: Meteorological and hydrological applications 3

4 . THE DIFFERENT FEATURES OF THE PARSIEL.1. Precipitation Measurements designed for determining the distribution and amount of precipitation can be carried out maintenance-free with Parsivel, regardless of the intensity, duration or type of precipitation. Additionally, its composition i. e. the distribution of particles with respect to their type is obtained directly from the measured sizes and velocities of each single particle and is recorded statistically... Present Weather Sensor (PWS) The present weather and the types of precipitation (rain, drizzle, snow, hail and sleet) are classified in accordance with a weather code established by the WMO. Unmanned weather stations require automatic detection, reliably and unambiguously. Parsivel can ascertain the type, quantity and composition of the hydrometeor and the atmospheric visibility in every kind of weather!.3. Monitoring of disposal sites The functions of precipitation kinetic energy distribution and precipitation measurement are utilised by Parsivel to record the effect of rain on the condition of the disposal sites in conjunction with other sensors, e. g. ground-condition probes..4. Monitoring road conditions Local intense precipitation can lead to aquaplaning or packed snow on roads. Therefore, rapid traffic warning and control systems are necessary in order to prevent accidents. Precipitation measurement, hydrometeor composition and atmospheric visibility are of considerable importance in such systems. Parsivel is an integrated instrument that measures all required parameters in accurate quality and performance..5. Flood early warning To assure a timely warning of impending high water it is necessary to measure the amount and spatial distribution of precipitation rapidly and accurately. This goal can be achieved by combining weather radar measurements (spatial information with reduced accuracy) and ground based disdrometer measurements: Parsivel provides drop size distributions on the ground and a function to derive a local Z/R relation ready to be used to adjust the radar data. In combination with water level sensors and drainage modelling, a high-performance regional flood early warning system can be erected..6. Expert Software ASDO The corresponding Software ASDO monitors the outdoor precipitation event to comfortable indoor evaluation with windows performance. 4

5 Fig. 4: Screenshot ASDO Tabular view and D Mode The sensor transmits all data to a PC and supports the observer with full information of present weather and precipitation and provides a history of precipitation falls stored in a data base. Present weather icon, all derived precipitation data and weather codes as well as housekeeping data like supply, voltage laser output energy and firmware related information are displayed as digital information. Fig. 5: Screenshot ASDO- 3D Mode The precipitation spectrum can be evaluated as graphical displays and spectrum distribution in and 3 dimensional mode. All data are stored in a powerful data base and can be retrieved by browser with related date and time and displayed in equal form as online display. All configuration tasks like time interval from 10 sec to 10 minutes, baud rate and size of telegram and others can be selected and stored as configured variables. 5

6 3. COMPARISON WITH WEATHER RADAR 3.1. Radar reflectivity in case of rain Conventional precipitation radars measure the radar reflectivity which is the total backscatter cross section of all scatterers divided by the pulse volume P. If the Rayleigh approximation is valid and the individual particles are assumed to be spherical with a diameter D k, can be written as = 1 P 5 K k = 4 P P P D (1) 6 k where is the wavelength and K = ( r 1) ( r + ) is the dielectric factor ( r = n ; r relative permittivity, n complex index of refraction). The equivalent radar reflectivity factor Z e is defined as Z e 5 4 K = () w where w K is the dielectric factor for water, indicating that the scatterers are expected to be water spheres. In rain K in (1) is identified by K w. Therefore, the estimate of the radar reflectivity factor from measured drop size distributions, Z M, can be expressed as the sixth moment of the drop size distribution with respect to the volume, N D ) : ( Z M = N( D ) D dd (3) 6 Because rain drops with a volume equivalent diameter, D, larger than 1 mm are oblate rather than spherical, the backscatter cross sections of these particles differ from those of spheres with the same volume. The difference depends on the departure from the spherical shape and the spatial distribution of their orientation. The error in estimating Z e with (3) (when assuming the drops are spherical with a diameter equal to D ) is not considered a predominant source of error compared to other uncertainties when comparing radar measured Z e to estimates from ground measurements of drop size distributions. Therefore, (3) can be accepted to be a good estimate of Z e. In the case of Parsivel the integral can be evaluated as a sum over discrete measured size classes by: Z M = i ni D tfv 6 i i (4) where n i = number of measured drops in class i during time t, D i = mean diameter in class i, F = measuring area, and v i = mean velocity of drops in class i. The denominator tfv i is neccessary because the drops are counted by area and time and have to be transferred to a volume distribution. Here t was chosen as 30 s. 6

7 50 a) 40 PARSIEL radar reflectivity dbz radar time in hours 50 b) 40 radar reflectivity in dbz PARSIEL radar time in hours Fig. 6: a) Time series of the radar reflectivity factor in dbz during a rain event, 6 May 1999, 00:00-04:00 CEST, comparison of measured (C-Band Radar, dashed line) and estimated data from drop size spectra (Parsivel, solid line); additionally, the error bars represent the standard deviation of the area average of the radar data. b) Same as a), but for the period 04:00-08:00 CEST. 7

8 Reflectivity data in dbz are presented for the early hours of 6 May 1999 (Figs. a and b) derived (i) from drop size distributions obtained by the optical disdrometer Parsivel and (ii) from radar data. The Parsivel was mounted on a platform in the Forschungszentrum Karlsruhe, 0 m to the side and 15 m below the antenna of the C-band-radar ( = 5.4 cm). For further operational concepts Parsivel can be connected directly at weather radar site and installed in the surrounding of the radar in order to provide differentiated radar support data for calibration purpose. For a reasonable comparison, the radar signals were averaged over a complete azimuthal scan on the lowest elevation (0.4 degrees) in the nearest range gate (1.5 to km) using the following procedure: A volume scan was performed every 5 minutes, then the spatial average and standard deviation of the innermost scan-circle was calculated. This average was taken as an estimate of the radarmeasured, five-minute averaged reflectivity at the radar site. The spatial standard deviation provides an indication of the uncertainty of that estimate. From the drop size distribution measured with Parsivel, Z M was calculated every 30 s with (4) and then averaged over five minutes. During the 8 hours of measurement, Z e (radar) attained values between 5 and 40 dbz. The spatial standard deviation of the radar data (error bars), which also serves as a measure for the spatial homogeneity of the rainfall, ranged from 10 to 40 dbz (minimum at 0:30 hours, maximum at 6:15 hours). From 3:30 hours its level increased from 15 dbz to the maximum and then came to rest at a level of approximately 5 dbz. The compared data agree reasonably well when taking the error bars into account, since most differences between radar means and Parsivel estimates range from 0 to ± 5 dbz and do not exceed 10 dbz. Point measurements are compared with volume data! 3.. Estimation of radar reflectivity from snow measurements In case of snow it is also possible to calculate some radar reflectivity factors from the measured snow size spectra. But a lot of more aspects have to be taken into account. For readers who are interested in such estimations there exists a special paper: M. Löffler-Mang and U. Blahak, Estimation of the Equivalent Radar Reflectivity Factor from Measured Snow Size Spectra. J. Appl. Meteorol., ol. 40, No. 4, pp , April 001. OTT MESSTECHNIK GmbH & Co. KG Ludwigstraße 16 D Kempten GERMANY Tel. 0831/ Fax 0831/ info@ott-hydrometry.de 8

Radar rain gauges new alternative for urban measurement networks. Copyright OTT Hydromet 2018

Radar rain gauges new alternative for urban measurement networks. Copyright OTT Hydromet 2018 Radar rain gauges new alternative for urban measurement networks Stormwater event in the city of Münster July 28 th 2014 4 Ernst Mennerich Stormwater event in the city of Münster July 28 th 2014 5 Ernst

More information

Precipitation type from the Thies disdrometer

Precipitation type from the Thies disdrometer Precipitation type from the Thies disdrometer Hannelore I. Bloemink 1, Eckhard Lanzinger 2 1 Royal Netherlands Meteorological Institute (KNMI) Instrumentation Division P.O. Box 201, 3730 AE De Bilt, The

More information

PRECIPITATION TYPE AND RAINFALL INTENSITY FROM THE PLUDIX DISDROMETER DURING THE WASSERKUPPE CAMPAIGN

PRECIPITATION TYPE AND RAINFALL INTENSITY FROM THE PLUDIX DISDROMETER DURING THE WASSERKUPPE CAMPAIGN PRECIPITATION TYPE AND RAINFALL INTENSITY FROM THE PLUDIX DISDROMETER DURING THE WASSERKUPPE CAMPAIGN Clelia Caracciolo1, Franco Prodi1,2, Leo Pio D Adderio2 and Eckhard Lanzinger4 1 University of Ferrara,

More information

Meteorology 311. RADAR Fall 2016

Meteorology 311. RADAR Fall 2016 Meteorology 311 RADAR Fall 2016 What is it? RADAR RAdio Detection And Ranging Transmits electromagnetic pulses toward target. Tranmission rate is around 100 s pulses per second (318-1304 Hz). Short silent

More information

Fundamentals of Radar Display. Atmospheric Instrumentation

Fundamentals of Radar Display. Atmospheric Instrumentation Fundamentals of Radar Display Outline Fundamentals of Radar Display Scanning Strategies Basic Geometric Varieties WSR-88D Volume Coverage Patterns Classic Radar Displays and Signatures Precipitation Non-weather

More information

A FIELD STUDY TO CHARACTERISE THE MEASUREMENT OF PRECIPITATION USING DIFFERENT TYPES OF SENSOR. Judith Agnew 1 and Mike Brettle 2

A FIELD STUDY TO CHARACTERISE THE MEASUREMENT OF PRECIPITATION USING DIFFERENT TYPES OF SENSOR. Judith Agnew 1 and Mike Brettle 2 A FIELD STUDY TO CHARACTERISE THE MEASUREMENT OF PRECIPITATION USING DIFFERENT TYPES OF SENSOR Judith Agnew 1 and Mike Brettle 2 1 STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire,

More information

Chapter 2: Polarimetric Radar

Chapter 2: Polarimetric Radar Chapter 2: Polarimetric Radar 2.1 Polarimetric radar vs. conventional radar Conventional weather radars transmit and receive linear electromagnetic radiation whose electric field is parallel to the local

More information

A TEST OF THE PRECIPITATION AMOUNT AND INTENSITY MEASUREMENTS WITH THE OTT PLUVIO

A TEST OF THE PRECIPITATION AMOUNT AND INTENSITY MEASUREMENTS WITH THE OTT PLUVIO A TEST OF THE PRECIPITATION AMOUNT AND INTENSITY MEASUREMENTS WITH THE OTT PLUVIO Wiel M.F. Wauben, Instrumental Department, Royal Netherlands Meteorological Institute (KNMI) P.O. Box 201, 3730 AE De Bilt,

More information

Vaisala AviMet Automated Weather Observing System

Vaisala AviMet Automated Weather Observing System Vaisala AviMet Automated Weather Observing System Solutions to meet your challenges Our mission: to help you operate succesfully Safe, economical, reliable and flexible operation of your airport is ensured

More information

*Corresponding author address: Charles Barrere, Weather Decision Technologies, 1818 W Lindsey St, Norman, OK

*Corresponding author address: Charles Barrere, Weather Decision Technologies, 1818 W Lindsey St, Norman, OK P13R.11 Hydrometeorological Decision Support System for the Lower Colorado River Authority *Charles A. Barrere, Jr. 1, Michael D. Eilts 1, and Beth Clarke 2 1 Weather Decision Technologies, Inc. Norman,

More information

AUTOMATIC MONITORING OF BOUNDARY LAYER STRUCTURES WITH CEILOMETER ABSTRACT

AUTOMATIC MONITORING OF BOUNDARY LAYER STRUCTURES WITH CEILOMETER ABSTRACT AUTOMATIC MONITORING OF BOUNDARY LAYER STRUCTURES WITH CEILOMETER Christoph Münkel 1, Reijo Roininen 1 Vaisala GmbH, Schnackenburgallee 1d, 55 Hamburg, Germany Phone +9 89 1, Fax +9 89 11, E-mail christoph.muenkel@vaisala.com

More information

Raindrops. Precipitation Rate. Precipitation Rate. Precipitation Measurements. Methods of Precipitation Measurement. are shaped liked hamburger buns!

Raindrops. Precipitation Rate. Precipitation Rate. Precipitation Measurements. Methods of Precipitation Measurement. are shaped liked hamburger buns! Precipitation Measurements Raindrops are shaped liked hamburger buns! (Smaller drops are more spherical) Dr. Christopher M. Godfrey University of North Carolina at Asheville Methods of Precipitation Measurement

More information

Disdromètres et mesure de pluie

Disdromètres et mesure de pluie Cours Mesures Environnementales : isdromètres et mesure de pluie Auguste Gires (auguste.gires@leesu.enpc.fr) Chair Hydrology for Resilient Cities (sponsored by Veolia) (EU Climate KIC) (EU INTER-REG NWE)

More information

REPORTS ON THE PROGRESS IN ADDRESSING THE WORK PLAN OF THE EXPERT TEAM. Standardization in instrumentation and observations

REPORTS ON THE PROGRESS IN ADDRESSING THE WORK PLAN OF THE EXPERT TEAM. Standardization in instrumentation and observations WORLD METEOROLOGICAL ORGANIZATION COMMISSION FOR INSTRUMENTS AND METHODS OF OBSERVATION OPAG SURFACE EXPERT TEAM ON SURFACE TECHNOLOGY AND MEASUREMENT TECHNIQUES Second Session CIMO/OPAG SURFACE/ ET ST&MT

More information

Sensor Guide WS100 Radar Precipitation Sensor

Sensor Guide WS100 Radar Precipitation Sensor Abbeon Cal, Inc., 1363 Donlon Street Unit 1, Ventura, CA 93003-8387 - 800-922-0977 www.abbeon.com - E-mail: abbeoncal@abbeon.com Sensor Guide WS100 Radar Precipitation Sensor October 2017 Sensor Guide:

More information

Visibility and present weather sensors. you can trust... visibly better

Visibility and present weather sensors. you can trust... visibly better Visibility and present weather sensors you can trust... Biral HSS sensors visibly better CONTENTS HSS Application Examples PAGE 2 (this page) APPLICATION EXAMPLES 1 (Highway and Research) TRACK RECORD

More information

Precipitation type detection Present Weather Sensor

Precipitation type detection Present Weather Sensor Precipitation type detection Present Weather Sensor Project no. 1289 Final report February 24 H. Bloemink MI/INSA/IO Contents 1 Introduction...3 2 Present weather determination...3 3 Experiment...4 3.1

More information

WMO SPICE. World Meteorological Organization. Solid Precipitation Intercomparison Experiment - Overall results and recommendations

WMO SPICE. World Meteorological Organization. Solid Precipitation Intercomparison Experiment - Overall results and recommendations WMO World Meteorological Organization Working together in weather, climate and water WMO SPICE Solid Precipitation Intercomparison Experiment - Overall results and recommendations CIMO-XVII Amsterdam,

More information

A SMART SYSTEM FRAMEWORK ENABLING AN INNOVATIVE WEATHER AWARENESS SYSTEM FOR AIRPORTS AND BEYOND

A SMART SYSTEM FRAMEWORK ENABLING AN INNOVATIVE WEATHER AWARENESS SYSTEM FOR AIRPORTS AND BEYOND A SMART SYSTEM FRAMEWORK ENABLING AN INNOVATIVE WEATHER AWARENESS SYSTEM FOR AIRPORTS AND BEYOND Christian Schiefer, Sebastian Kauczok, Andre Weipert WSN16 WMO WWRP 4th International Symposium on Nowcasting

More information

The Hydrologic Cycle: How Do River Forecast Centers Measure the Parts?

The Hydrologic Cycle: How Do River Forecast Centers Measure the Parts? The Hydrologic Cycle: How Do River Forecast Centers Measure the Parts? Greg Story Meteorologist National Weather Service Fort Worth, TX Overview n Introduction What is the mission of an RFC? n The Hydrologic

More information

Utilization of Dual-pol data

Utilization of Dual-pol data WMO/ASEAN Training Workshop on Weather Radar Data Quality and Standardization Utilization of Dual-pol data 8 February 2018 Hiroshi Yamauchi Observation Department Japan Meteorological Agency Japan Meteorological

More information

Atmospheric Lidar The Atmospheric Lidar (ATLID) is a high-spectral resolution lidar and will be the first of its type to be flown in space.

Atmospheric Lidar The Atmospheric Lidar (ATLID) is a high-spectral resolution lidar and will be the first of its type to be flown in space. www.esa.int EarthCARE mission instruments ESA s EarthCARE satellite payload comprises four instruments: the Atmospheric Lidar, the Cloud Profiling Radar, the Multi-Spectral Imager and the Broad-Band Radiometer.

More information

Remote Sensing in Meteorology: Satellites and Radar. AT 351 Lab 10 April 2, Remote Sensing

Remote Sensing in Meteorology: Satellites and Radar. AT 351 Lab 10 April 2, Remote Sensing Remote Sensing in Meteorology: Satellites and Radar AT 351 Lab 10 April 2, 2008 Remote Sensing Remote sensing is gathering information about something without being in physical contact with it typically

More information

EROSION. D1.1 Disdrometers in EROSION. Sagsnr B. Deliverable: D1.1 (Public) Authors: Charlotte Hasager (DTU) and Flemming Vejen (DMI)

EROSION. D1.1 Disdrometers in EROSION. Sagsnr B. Deliverable: D1.1 (Public) Authors: Charlotte Hasager (DTU) and Flemming Vejen (DMI) EROSION D1.1 Disdrometers in EROSION Deliverable: D1.1 (Public) Authors: Charlotte Hasager (DTU) and Flemming Vejen (DMI) Publication: September, 2017 1 D1.1 Disdrometers in EROSION Copyright: Forsidefoto:

More information

The Montague Doppler Radar, An Overview

The Montague Doppler Radar, An Overview ISSUE PAPER SERIES The Montague Doppler Radar, An Overview June 2018 NEW YORK STATE TUG HILL COMMISSION DULLES STATE OFFICE BUILDING 317 WASHINGTON STREET WATERTOWN, NY 13601 (315) 785-2380 WWW.TUGHILL.ORG

More information

REQUIREMENTS FOR WEATHER RADAR DATA. Review of the current and likely future hydrological requirements for Weather Radar data

REQUIREMENTS FOR WEATHER RADAR DATA. Review of the current and likely future hydrological requirements for Weather Radar data WORLD METEOROLOGICAL ORGANIZATION COMMISSION FOR BASIC SYSTEMS OPEN PROGRAMME AREA GROUP ON INTEGRATED OBSERVING SYSTEMS WORKSHOP ON RADAR DATA EXCHANGE EXETER, UK, 24-26 APRIL 2013 CBS/OPAG-IOS/WxR_EXCHANGE/2.3

More information

Non catchment type instruments for snowfall measurement: General considerations and

Non catchment type instruments for snowfall measurement: General considerations and Non catchment type instruments for snowfall measurement: General considerations and issues encountered during the WMO CIMO SPICE experiment, and derived recommendations Authors : Yves Alain Roulet (1),

More information

Preliminary assessment of LAWR performance in tropical regions with high intensity convective rainfall

Preliminary assessment of LAWR performance in tropical regions with high intensity convective rainfall Preliary assessment of LAWR performance in tropical regions with high intensity convective rainfall Chris Nielsen: DHI Water and Environment (Malaysia), Fanny Dugelay, Universitéde Nice Sophia Antipolis,

More information

Use of lightning data to improve observations for aeronautical activities

Use of lightning data to improve observations for aeronautical activities Use of lightning data to improve observations for aeronautical activities Françoise Honoré Jean-Marc Yvagnes Patrick Thomas Météo_France Toulouse France I Introduction Aeronautical activities are very

More information

Estimation of Z-R relationship and comparative analysis of precipitation data from colocated rain-gauge, vertical radar and disdrometer

Estimation of Z-R relationship and comparative analysis of precipitation data from colocated rain-gauge, vertical radar and disdrometer Estimation of Z-R relationship and comparative analysis of precipitation data from colocated rain-gauge, vertical radar and disdrometer Isabel Cyr Civil and Environmental Engineering (2 year) Submission

More information

THE INTERNATIONAL REVIEW OF WEATHER, CLIMATE AND HYDROLOGY TECHNOLOGIES AND SERVICES

THE INTERNATIONAL REVIEW OF WEATHER, CLIMATE AND HYDROLOGY TECHNOLOGIES AND SERVICES THE INTERNATIONAL REVIEW OF WEATHER, CLIMATE AND HYDROLOGY TECHNOLOGIES AND SERVICES Meteorological T E C H N O L O G Y I N T E R N A T I O N A L THE GREATEST SHOW YET! FULL METEOROLOGICAL TECHNOLOGY WORLD

More information

Precipitation estimate of a heavy rain event using a C-band solid-state polarimetric radar

Precipitation estimate of a heavy rain event using a C-band solid-state polarimetric radar Precipitation estimate of a heavy rain event using a C-band solid-state polarimetric radar Hiroshi Yamauchi 1, Ahoro Adachi 1, Osamu Suzuki 2, Takahisa Kobayashi 3 1 Meteorological Research Institute,

More information

Severe Weather Watches, Advisories & Warnings

Severe Weather Watches, Advisories & Warnings Severe Weather Watches, Advisories & Warnings Tornado Watch Issued by the Storm Prediction Center when conditions are favorable for the development of severe thunderstorms and tornadoes over a larger-scale

More information

* * * Table (1) Table (2)

* * * Table (1) Table (2) A step Forward to Atomize the Sudan Meteorological Authority (SMA) Net work Y.S. Odan Surface Instruments Department Tel: 00249 912220246 E-mail yaseen@ersad.gov.sd Abstract AWS has been introduced to

More information

Convective Structures in Clear-Air Echoes seen by a Weather Radar

Convective Structures in Clear-Air Echoes seen by a Weather Radar Convective Structures in Clear-Air Echoes seen by a Weather Radar Martin Hagen Deutsches Zentrum für Luft- und Raumfahrt Oberpfaffenhofen, Germany Weather Radar Weather radar are normally used to locate

More information

Field study of the latest transmissometers at Hong Kong International Airport

Field study of the latest transmissometers at Hong Kong International Airport Field study of the latest transmissometers at Hong Kong International Airport P. W. Chan Hong Kong Observatory 134A Nathan Road, Kowloon, Hong Kong, China Tel:+852 2926 8435, Fax: +852 2311 9448, Email:

More information

CLIMATE CHANGE ADAPTATION BY MEANS OF PUBLIC PRIVATE PARTNERSHIP TO ESTABLISH EARLY WARNING SYSTEM

CLIMATE CHANGE ADAPTATION BY MEANS OF PUBLIC PRIVATE PARTNERSHIP TO ESTABLISH EARLY WARNING SYSTEM CLIMATE CHANGE ADAPTATION BY MEANS OF PUBLIC PRIVATE PARTNERSHIP TO ESTABLISH EARLY WARNING SYSTEM By: Dr Mamadou Lamine BAH, National Director Direction Nationale de la Meteorologie (DNM), Guinea President,

More information

1. Introduction. 2. The data. P13.15 The effect of a wet radome on dualpol data quality

1. Introduction. 2. The data. P13.15 The effect of a wet radome on dualpol data quality P3.5 The effect of a wet radome on dualpol data quality Michael Frech Deutscher Wetterdienst Hohenpeissenberg Meteorological Observatory, Germany. Introduction Operational radar systems typically are equipped

More information

MODERN TECHNOLOGIES IN HYDRO-METEOROLOGICAL INFORMATION SYSTEMS

MODERN TECHNOLOGIES IN HYDRO-METEOROLOGICAL INFORMATION SYSTEMS MODERN TECHNOLOGIES IN HYDRO-METEOROLOGICAL INFORMATION SYSTEMS MARK HEGGLI, INNOVATIVE HYDROLOGY CONSULTING METEOROLOGIST/HYDROLOGIST TO THE WORLD BANK AREAS OF TECHNOLOGY ADVANCEMENT RECENT TECHNOLOGY

More information

Disdrometric data analysis and related microphysical processes

Disdrometric data analysis and related microphysical processes Author: Garcia Facultat de Física, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain. Advisor: Joan Bech Rustullet Abstract: The present paper consists in the analysis of Rain Drop Size Distribution

More information

Aurora Bell*, Alan Seed, Ross Bunn, Bureau of Meteorology, Melbourne, Australia

Aurora Bell*, Alan Seed, Ross Bunn, Bureau of Meteorology, Melbourne, Australia 15B.1 RADAR RAINFALL ESTIMATES AND NOWCASTS: THE CHALLENGING ROAD FROM RESEARCH TO WARNINGS Aurora Bell*, Alan Seed, Ross Bunn, Bureau of Meteorology, Melbourne, Australia 1. Introduction Warnings are

More information

AWOS. Automated Weather Observing Systems COASTAL

AWOS. Automated Weather Observing Systems COASTAL AWOS Automated Weather Observing Systems COASTAL Environmental Systems Monitor Monitor Your Your World World Coastal s Experience & Expertise Since 1981, Coastal Environmental Systems, Inc. (Coastal) has

More information

Quality assurance for sensors at the Deutscher Wetterdienst (DWD)

Quality assurance for sensors at the Deutscher Wetterdienst (DWD) Quality assurance for sensors at the Deutscher Wetterdienst (DWD) Quality assurance / maintenance / calibration Holger Dörschel, Dr Tilman Holfelder WMO International Conference on Automatic Weather Stations

More information

Ed Tomlinson, PhD Bill Kappel Applied Weather Associates LLC. Tye Parzybok Metstat Inc. Bryan Rappolt Genesis Weather Solutions LLC

Ed Tomlinson, PhD Bill Kappel Applied Weather Associates LLC. Tye Parzybok Metstat Inc. Bryan Rappolt Genesis Weather Solutions LLC Use of NEXRAD Weather Radar Data with the Storm Precipitation Analysis System (SPAS) to Provide High Spatial Resolution Hourly Rainfall Analyses for Runoff Model Calibration and Validation Ed Tomlinson,

More information

Exploring the role of new technologies in quantifying precipitation levels and urban flooding

Exploring the role of new technologies in quantifying precipitation levels and urban flooding Exploring the role of new technologies in quantifying precipitation levels and urban flooding Jörg Rieckermann Urban Water Management Eawag, Swiss Federal Institute of Aquatic Science and Technology Motivation

More information

Complete Weather Intelligence for Public Safety from DTN

Complete Weather Intelligence for Public Safety from DTN Complete Weather Intelligence for Public Safety from DTN September 2017 White Paper www.dtn.com / 1.800.610.0777 From flooding to tornados to severe winter storms, the threats to public safety from weather-related

More information

Development of Innovative Technology to Provide Low-Cost Surface Atmospheric Observations in Data-sparse Regions

Development of Innovative Technology to Provide Low-Cost Surface Atmospheric Observations in Data-sparse Regions Development of Innovative Technology to Provide Low-Cost Surface Atmospheric Observations in Data-sparse Regions Paul Kucera and Martin Steinson University Corporation for Atmospheric Research/COMET 3D-Printed

More information

What s New in the NWS? Georgia Association of Floodplain Management. Lans P. Rothfusz Meteorologist in Charge Peachtree City, GA 27 March 2012

What s New in the NWS? Georgia Association of Floodplain Management. Lans P. Rothfusz Meteorologist in Charge Peachtree City, GA 27 March 2012 What s New in the NWS? Georgia Association of Floodplain Management Lans P. Rothfusz Meteorologist in Charge Peachtree City, GA 27 March 2012 Overview Summer Outlook Radar future is here! CoCoRAHS Appeal

More information

Recent Improvement of Integrated Observation Systems in JMA

Recent Improvement of Integrated Observation Systems in JMA Recent Improvement of Integrated Observation Systems in JMA Mr Osamu Suzuki and Mr Yoshihiko Tahara Japan Meteorological Agency 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan Tel: +81-3-3212-8341, Fax:

More information

WeatherHawk Weather Station Protocol

WeatherHawk Weather Station Protocol WeatherHawk Weather Station Protocol Purpose To log atmosphere data using a WeatherHawk TM weather station Overview A weather station is setup to measure and record atmospheric measurements at 15 minute

More information

WLS70: A NEW COMPACT DOPPLER WIND LIDAR FOR BOUNDARY LAYER DYNAMIC STUDIES.

WLS70: A NEW COMPACT DOPPLER WIND LIDAR FOR BOUNDARY LAYER DYNAMIC STUDIES. WLS70: A NEW COMPACT DOPPLER WIND LIDAR FOR BOUNDARY LAYER DYNAMIC STUDIES. VALIDATION RESULTS AND INTERCOMPARISON IN THE FRAME OF THE 8TH CIMO-WMO CAMPAIGN. S. Lolli 1, L.Sauvage 1, M. Boquet 1, 1 Leosphere,

More information

Regional influence on road slipperiness during winter precipitation events. Marie Eriksson and Sven Lindqvist

Regional influence on road slipperiness during winter precipitation events. Marie Eriksson and Sven Lindqvist Regional influence on road slipperiness during winter precipitation events Marie Eriksson and Sven Lindqvist Physical Geography, Department of Earth Sciences, Göteborg University Box 460, SE-405 30 Göteborg,

More information

HYDROLOGICAL MODELING APPLICATIONS OF HIGH RESOLUTION RAIN RADAR

HYDROLOGICAL MODELING APPLICATIONS OF HIGH RESOLUTION RAIN RADAR HYDROLOGICAL MODELING APPLICATIONS OF HIGH RESOLUTION RAIN RADAR Luke Sutherland-Stacey, Paul Shucksmith and Geoff Austin Physics Department, University of Auckland ABSTRACT In many hydrological modelling

More information

IMS4 ARWIS. Airport Runway Weather Information System. Real-time data, forecasts and early warnings

IMS4 ARWIS. Airport Runway Weather Information System. Real-time data, forecasts and early warnings Airport Runway Weather Information System Real-time data, forecasts and early warnings Airport Runway Weather Information System FEATURES: Detection and prediction of runway conditions Alarms on hazardous

More information

GIS Frameworks in the National Weather Service

GIS Frameworks in the National Weather Service GIS Frameworks in the National Weather Service Eugene Derner Senior Hydrologist NOAA/National Weather Service Missouri Basin River Forecast Center Agenda GIS Brief History In-house GIS Weather GIS Applications

More information

Mutah University, P.O. Box 7, Mutah, Al-Karak, 61710, Jordan 2 Department of Electrical Engineering,

Mutah University, P.O. Box 7, Mutah, Al-Karak, 61710, Jordan 2 Department of Electrical Engineering, American Journal of Applied Sciences 5 (12): 1764-1768, 2008 ISSN 1546-9239 2008 Science Publications Models for Mixed Ensemble of Hydrometeors and their Use in Calculating the Total Random Cross Section

More information

Winter and summer weather studies using high resolution radar data

Winter and summer weather studies using high resolution radar data Winter and summer weather studies using high resolution radar data Tim Böhme 1 1 Deutscher Wetterdienst, Frankfurter Str. 135, 63067 Offenbach am Main, Germany (Dated: 29 August 2014) Tim Böhme 1. Introduction

More information

IMPROVEMENTS OF POLARIMETRIC RADAR ECHO CLASSIFICATIONS. Ronald Hannesen* Selex-Gematronik, Neuss, Germany

IMPROVEMENTS OF POLARIMETRIC RADAR ECHO CLASSIFICATIONS. Ronald Hannesen* Selex-Gematronik, Neuss, Germany P13.14 IMPROVEMENTS OF POLARIMETRIC RADAR ECHO CLASSIFICATIONS Ronald Hannesen* Selex-Gematronik, Neuss, Germany 1. INTRODUCTION A two-step radar echo classification is applied on polarimetric radar data:

More information

What we are trying to accomplish during the winter season

What we are trying to accomplish during the winter season What we are trying to accomplish during the winter season Safety first None of this is worth getting hurt over. Change your observation time if you delay your normal observation for safety reasons. Accuracy

More information

Multi Radar Multi Sensor NextGen Weather Program. Presentation materials sourced from: Ken Howard HydroMet Research Group NSSL Warning R&D Division

Multi Radar Multi Sensor NextGen Weather Program. Presentation materials sourced from: Ken Howard HydroMet Research Group NSSL Warning R&D Division Multi Radar Multi Sensor NextGen Weather Program Presentation materials sourced from: Ken Howard HydroMet Research Group NSSL Warning R&D Division What is Multiple Radar Multi Sensor System () is the world

More information

Observations needed for verification of additional forecast products

Observations needed for verification of additional forecast products Observations needed for verification of additional forecast products Clive Wilson ( & Marion Mittermaier) 12th Workshop on Meteorological Operational Systems, ECMWF, 2-6 November 2009 Additional forecast

More information

MetConsole AWOS. (Automated Weather Observation System) Make the most of your energy SM

MetConsole AWOS. (Automated Weather Observation System) Make the most of your energy SM MetConsole AWOS (Automated Weather Observation System) Meets your aviation weather needs with inherent flexibility, proven reliability Make the most of your energy SM Automated Weather Observation System

More information

WEATHER MULTI-SENSOR. Vaisala Weather Transmitter WXT510. Change the Way You Measure Weather

WEATHER MULTI-SENSOR. Vaisala Weather Transmitter WXT510. Change the Way You Measure Weather WXT510 WEATHER MULTI-SENSOR Vaisala Weather Transmitter WXT510 Change the Way You Measure Weather Vaisala Weather Transmitter WXT510 The Most Essential of Weather The Vaisala Weather Transmitter WXT510

More information

MTO s Road Weather Information System (RWIS)

MTO s Road Weather Information System (RWIS) MTO s Road Weather Information System (RWIS) Ontario Good Roads Association Managing Winter Operations Workshop October 19, 2017 Overview of MTO s Road Weather Information Station (RWIS) RWIS for Winter

More information

Experimental Test of the Effects of Z R Law Variations on Comparison of WSR-88D Rainfall Amounts with Surface Rain Gauge and Disdrometer Data

Experimental Test of the Effects of Z R Law Variations on Comparison of WSR-88D Rainfall Amounts with Surface Rain Gauge and Disdrometer Data JUNE 2001 NOTES AND CORRESPONDENCE 369 Experimental Test of the Effects of Z R Law Variations on Comparison of WSR-88D Rainfall Amounts with Surface Rain Gauge and Disdrometer Data CARLTON W. ULBRICH Department

More information

Novel Product Line FMCW Cloud Radars

Novel Product Line FMCW Cloud Radars Novel Product Line RPG Dual Polarization Dual Frequency Scanning Cloud Radar Systems: Configurations and Applications Edited by Dr. Alexander Myagkov and Dr. Thomas Rose 1 2 Benefit from high operation

More information

Measurement and Analysis of offshore fog occurrences

Measurement and Analysis of offshore fog occurrences Measurement and Analysis of offshore fog occurrences Jörg Bendfeld, S. Balluff and S. Krauter University of Paderborn, Pohlweg 55, 33098 Paderborn Germany 1. Abstract The occurrence of fog presents a hazard

More information

IMS4 AWOS. Automated Weather Observation System. Integrates all airport weather data

IMS4 AWOS. Automated Weather Observation System. Integrates all airport weather data Integrates all airport weather data IMS4 AWOS FEATURES: Integrates all airport weather data Scalable up to ICAO category CAT III Conforms to the ICAO and WMO regulations and recommendations AWOS data on

More information

Orbit and Transmit Characteristics of the CloudSat Cloud Profiling Radar (CPR) JPL Document No. D-29695

Orbit and Transmit Characteristics of the CloudSat Cloud Profiling Radar (CPR) JPL Document No. D-29695 Orbit and Transmit Characteristics of the CloudSat Cloud Profiling Radar (CPR) JPL Document No. D-29695 Jet Propulsion Laboratory California Institute of Technology Pasadena, CA 91109 26 July 2004 Revised

More information

Chapter Introduction. Weather. Patterns. Forecasts Chapter Wrap-Up

Chapter Introduction. Weather. Patterns. Forecasts Chapter Wrap-Up Chapter Introduction Lesson 1 Lesson 2 Lesson 3 Describing Weather Weather Patterns Weather Forecasts Chapter Wrap-Up How do scientists describe and predict weather? What do you think? Before you begin,

More information

Storm top detection and prediction

Storm top detection and prediction Page 1 of 21 Storm top detection and prediction Abstract ( 28 of 265070 ) United States Patent 7,714,767 Kronfeld, et al. May 11, 2010 A radar system is configured to predict future storm cell characteristics

More information

Using a novel Hail Sensor to Optimize Weather Radar

Using a novel Hail Sensor to Optimize Weather Radar Using a novel Hail Sensor to Optimize Weather Radar By: Christian Ruckstuhl, Justin D Atri, Serge Mattli, Martin Loeffler-Mang, Dominik Schoen, Edgar Wetzel, and Urs Germann 2 World s first online network

More information

Lab 6 Radar Imagery Interpretation

Lab 6 Radar Imagery Interpretation Lab 6 Radar Imagery Interpretation Background Weather radar (radio detection and ranging) is another very useful remote sensing tool used in meteorological forecasting. Microwave radar was developed in

More information

Unique Vaisala Global Lightning Dataset GLD360 TM

Unique Vaisala Global Lightning Dataset GLD360 TM Unique Vaisala Global Lightning Dataset GLD360 TM / THE ONLY LIGHTNING DETECTION NETWORK CAPABLE OF DELIVERING HIGH-QUALITY DATA ANYWHERE IN THE WORLD GLD360 provides high-quality lightning data anywhere

More information

Road weather forecasts and MDSS in Slovakia

Road weather forecasts and MDSS in Slovakia ID: 0030 Road weather forecasts and MDSS in Slovakia M. Benko Slovak Hydrometeorological Institute (SHMI), Jeséniova 17, 83315 Bratislava, Slovakia Corresponding author s E-mail: martin.benko@shmu.sk ABSTRACT

More information

OBSERVATIONS OF WINTER STORMS WITH 2-D VIDEO DISDROMETER AND POLARIMETRIC RADAR

OBSERVATIONS OF WINTER STORMS WITH 2-D VIDEO DISDROMETER AND POLARIMETRIC RADAR P. OBSERVATIONS OF WINTER STORMS WITH -D VIDEO DISDROMETER AND POLARIMETRIC RADAR Kyoko Ikeda*, Edward A. Brandes, and Guifu Zhang National Center for Atmospheric Research, Boulder, Colorado. Introduction

More information

Regional Flash Flood Guidance and Early Warning System

Regional Flash Flood Guidance and Early Warning System WMO Training for Trainers Workshop on Integrated approach to flash flood and flood risk management 24-28 October 2010 Kathmandu, Nepal Regional Flash Flood Guidance and Early Warning System Dr. W. E. Grabs

More information

Snow Measurement Guidelines for National Weather Service Snow Spotters

Snow Measurement Guidelines for National Weather Service Snow Spotters Snow Measurement Guidelines for National Weather Service Snow Spotters National Weather Service Forecast Office Northern Indiana October 2004 Table of Contents Introduction 3 Definitions.. 3 Relaying Real

More information

Ocean Rain And Ice-phase precipitation measurement Network

Ocean Rain And Ice-phase precipitation measurement Network Ocean Rain And Ice-phase precipitation measurement Network Christian Klepp 1,2, Andrea Dahl 3 1,2 University of Hamburg, Max Planck Institute for Meteorology, Germany 3 Eigenbrodt GmbH & Co. KG, Königsmoor,

More information

Winter Maintenance on Ontario s Highways

Winter Maintenance on Ontario s Highways Ministry of Transportation Winter Maintenance on Ontario s Highways MTO Eastern Region November 18, 2015, Northumberland County Council Outline 1. Winter Maintenance Areas - Eastern Region 2. Winter Maintenance

More information

Huw W. Lewis *, Dawn L. Harrison and Malcolm Kitchen Met Office, United Kingdom

Huw W. Lewis *, Dawn L. Harrison and Malcolm Kitchen Met Office, United Kingdom 2.6 LOCAL VERTICAL PROFILE CORRECTIONS USING DATA FROM MULTIPLE SCAN ELEVATIONS Huw W. Lewis *, Dawn L. Harrison and Malcolm Kitchen Met Office, United Kingdom 1. INTRODUCTION The variation of reflectivity

More information

Inter-comparison of Raingauges on Rainfall Amount and Intensity Measurements in a Tropical Environment

Inter-comparison of Raingauges on Rainfall Amount and Intensity Measurements in a Tropical Environment Inter-comparison of Raingauges on Rainfall Amount and Intensity Measurements in a Tropical Environment CHAN Ying-wa, Yu Choi-loi and TAM Kwong-hung Hong Kong Observatory 134A Nathan Road, Tsim Sha Tsui,

More information

Use of the models Safran-Crocus-Mepra in operational avalanche forecasting

Use of the models Safran-Crocus-Mepra in operational avalanche forecasting Use of the models Safran-Crocus-Mepra in operational avalanche forecasting Coléou C *, Giraud G, Danielou Y, Dumas J-L, Gendre C, Pougatch E CEN, Météo France, Grenoble, France. ABSTRACT: Avalanche forecast

More information

Observation strategies for severe rain in The Netherlands

Observation strategies for severe rain in The Netherlands Observation strategies for severe rain in The Netherlands Herman Russchenberg Delft University of Technology Challenge the future Our Earth is slowly warming The world population is moving into the cities

More information

Utilising Radar and Satellite Based Nowcasting Tools for Aviation Purposes in South Africa. Erik Becker

Utilising Radar and Satellite Based Nowcasting Tools for Aviation Purposes in South Africa. Erik Becker Utilising Radar and Satellite Based Nowcasting Tools for Aviation Purposes in South Africa Erik Becker Morné Gijben, Mary-Jane Bopape, Stephanie Landman South African Weather Service: Nowcasting and Very

More information

Vaisala Weather Radar.

Vaisala Weather Radar. Vaisala Weather Radar. You will see more. Your next weather radar. We chose the new Vaisala radar as we believe it s the best on the market. The new Vaisala radars and software tools are warmly welcomed

More information

SIRWEC 2012 Helsinki, March Finland. Miroslav Škuthan Central Forecasting Office Czech Hydrometeorological Institute

SIRWEC 2012 Helsinki, March Finland. Miroslav Škuthan Central Forecasting Office Czech Hydrometeorological Institute ID: 0069 CHMI Standing International Road Weather Commission Helsinki, 23-25 March Finland Miroslav Škuthan Central Forecasting Office Czech Hydrometeorological Institute Road Weather Data Presentation

More information

The next generation in weather radar software.

The next generation in weather radar software. The next generation in weather radar software. PUBLISHED BY Vaisala Oyj Phone (int.): +358 9 8949 1 P.O. Box 26 Fax: +358 9 8949 2227 FI-00421 Helsinki Finland Try IRIS Focus at iris.vaisala.com. Vaisala

More information

personal weather station

personal weather station personal weather station Master your own climate measurements on your smartphone TRAINING BOOK Pitch The Netatmo Personal Weather Station helps you master your own climate measurements on your smartphone.

More information

INCA-CE achievements and status

INCA-CE achievements and status INCA-CE achievements and status Franziska Strauss Yong Wang Alexander Kann Benedikt Bica Ingo Meirold-Mautner INCA Central Europe Integrated nowcasting for the Central European area This project is implemented

More information

BUFR Table D List of common sequences

BUFR Table D List of common sequences BUFR Table D List of common sequences F X Category of sequences Identifier NONE Category 01 Location and identification sequences (Temperature and humidity instrumentation) 3 01 130 0 03 002 Generic type

More information

Estimating extinction coefficient and aerosol concentration profiles in the atmospheric surface boundary layer with commercial lidar ceilometers

Estimating extinction coefficient and aerosol concentration profiles in the atmospheric surface boundary layer with commercial lidar ceilometers Estimating extinction coefficient and aerosol concentration profiles in the atmospheric surface boundary layer with commercial lidar ceilometers Christoph Münkel Senior Scientist Vaisala GmbH, Hamburg,

More information

Mr. P s Science Test!

Mr. P s Science Test! WEATHER- 2017 Mr. P s Science Test! # Name Date 1. Draw and label a weather station model. (10 pts) 2. The is the layer of the atmosphere with our weather. 3. Meteorologists classify clouds in about different

More information

MeteoGroup RoadMaster. The world s leading winter road weather solution

MeteoGroup RoadMaster. The world s leading winter road weather solution MeteoGroup RoadMaster The world s leading winter road weather solution Discover why RoadMaster is the world s leading winter road weather solution. Managing winter road maintenance means that you carry

More information

Marine Corps Installations East Regional METOC Center MCAS Cherry Point, NC Standardized Weather Warnings Definitions

Marine Corps Installations East Regional METOC Center MCAS Cherry Point, NC Standardized Weather Warnings Definitions Marine Corps Installations East Regional METOC Center MCAS Cherry Point, NC Standardized Weather Warnings Definitions Updated: 25 June 2012 MCIE Standardized Weather Warnings Warning Local Wind Warning

More information

ABB Remote Sensing Atmospheric Emitted Radiance Interferometer AERI system overview. Applications

ABB Remote Sensing Atmospheric Emitted Radiance Interferometer AERI system overview. Applications The ABB Atmospheric Emitted Radiance Interferometer AERI provides thermodynamic profiling, trace gas detection, atmospheric cloud aerosol study, air quality monitoring, and more. AERI high level overview

More information

The known requirements for Arctic climate services

The known requirements for Arctic climate services The known requirements for Arctic climate services based on findings described in STT White paper 8/2015 Johanna Ekman / EC PHORS STT Regional drivers The Arctic region is home to almost four million people

More information

National Climatic Data Center DATA DOCUMENTATION FOR DATA SET 6406 (DSI-6406) ASOS SURFACE 1-MINUTE, PAGE 2 DATA. July 12, 2006

National Climatic Data Center DATA DOCUMENTATION FOR DATA SET 6406 (DSI-6406) ASOS SURFACE 1-MINUTE, PAGE 2 DATA. July 12, 2006 DATA DOCUMENTATION FOR DATA SET 6406 (DSI-6406) ASOS SURFACE 1-MINUTE, PAGE 2 DATA July 12, 2006 151 Patton Ave. Asheville, NC 28801-5001 USA Table of Contents Topic Page Number 1. Abstract... 3 2. Element

More information

RAINDROP SIZE DISTRIBUTION RETRIEVAL AND EVALUATION USING AN S-BAND RADAR PROFILER

RAINDROP SIZE DISTRIBUTION RETRIEVAL AND EVALUATION USING AN S-BAND RADAR PROFILER RAINDROP SIZE DISTRIBUTION RETRIEVAL AND EVALUATION USING AN S-BAND RADAR PROFILER by FANG FANG B.S.E.E. University of Central Florida, 3 A thesis submitted in partial fulfillment of the requirements for

More information

17 th Annual Snow & Ice Symposium Columbus, OH. Snow & Ice Management Association Copyright 2014 SALT BRINE & SNOW AND ICE CONTROL.

17 th Annual Snow & Ice Symposium Columbus, OH. Snow & Ice Management Association Copyright 2014 SALT BRINE & SNOW AND ICE CONTROL. SALT BRINE & SNOW AND ICE CONTROL Agenda Goals and Objectives Storm Management Surface Temperatures How Materials Work Liquids in S&I Control Brine Production Pre wetting Anti icing Building Blocks Clearly

More information