Estimation of Parameters for Lognormal Rainfall DSD Model for Various Rainfall Types in Durban

Size: px
Start display at page:

Download "Estimation of Parameters for Lognormal Rainfall DSD Model for Various Rainfall Types in Durban"

Transcription

1 Estimation of Parameters for Lognormal Rainfall DSD Model for Various Rainfall Types in Durban Akintunde A. Alonge, Student Member, IEEE and Thomas J. Afullo, Senior Member, SAIEE School of Electrical, Electronics and Computer Engineering, University of KwaZulu-Natal, Durban, South Africa { , Abstract This paper compares the behaviour of existing rainfall drop-size distribution models from 2-year disdrometer measurements in Durban (29 o 97 S, 0 o 95 E). The measurements were classified into four rainfall types: drizzle, widespread, shower and thunderstorm. Initial results indicate that the tropical 2-parameter lognormal model has the best fit for the location at different rainfall rates, especially at high rainfall rate. Consequently, the Method of Moment estimation technique is applied to derive the three input parameters of the lognormal model for rainfall types in Durban. The proposed model was seen to compare well with our measurements for various rainfall types. Index Terms Rainfall drop size distribution, rainfall types, method of moment, lognormal DSD model. I. INTRODUCTION Satellite and terrestrial communication systems deployed at microwave and millimetric frequencies (up to GHz and above) are prone to attenuation due to precipitation []. Precipitations (or hydrometeors) are known to be a major concern to link budget engineers particularly with respect to bandwidth availability and efficiency [2]. In past research involving studies of precipitation effects on signal transmission [] [8], rainfall has been identified as the active phenomena responsible for signal outages and losses during transmission. Instances of outages (either short or long) due to rainfall in packet-oriented networks often result in irreplaceable loss of time and resources. Hence, it is necessary to reduce these losses by embarking on corrective schemes which eliminate to a great extent the effects of rainfall on communication systems. The two well-known microstructural parameters used by researchers in the determination of rainfall attenuation are: rainfall rate and rain drop size distribution (or rainfall DSD) [2]. In this work, we approach rainfall attenuation studies for various rainfall types by modeling the rainfall DSD for Durban, evaluating their respective performances and deriving input parameters for the best model. The models under consideration include negative exponential model by Marshall and Palmer [], modified gamma model by Ulbrich [4] and tropical lognormal model by Ajayi et al. [5]. In this paper, we investigate rainfall DSD with the aid of Joss-Waldvogel impact disdrometer measurements available at the University of KwaZulu-Natal, Durban, South Africa between the period of January 2009 and December 20. II. THEORY OF RAIN DROPSIZE DISTRIBUTION Rainfall is made up of tiny droplets of spherical or oblateshaped particles whose number density contribute to attenuation in a microwave or satellite link [6]. The mechanism of rain drop attenuation are of two kinds: reflection mechanism and absorption mechanism. The two mechanisms are dependent on the transmission frequency and polarization sequence of a microwave link. Usually, rain droplets tend to produce reflection of transmitted signals at wavelengths larger than its diameter and absorption at smaller wavelengths [7]. In theory, the reflection encountered during rainfall account for the scattering mechanisms of signals due to rainfall this results in destructive coupling signals (noise) being added to the transmitted signal. The coefficients produced by scattering can range from real to complex values, which are very helpful, in the calculations of propagation coefficients. Mulangu et al. [7] and Odedina et al. [6] in their recent study determined the scattering parameters for locations in Botswana and South Africa respectively. The knowledge of these scattering parameters is helpful in the computation of the specific attenuation on signals due to rainfall droplets. Generally, the contribution of rain droplets to attenuation depends on other parameters such as rainfall rate, drop diameter, drop temperature, number of rain drops, fall velocity (or terminal velocity) of drops and drop diameter interval [2]. While the drop diameter and drop temperature influence the scattering coefficients, other parameters help in the determination of the rainfall DSD and the resulting attenuation. The presence of these microphysical rainfall parameters can be used in the estimation of rainfall specific attenuation, and thus path attenuation, due to rain drops. The specific attenuation, A s, due to rainfall drops is given as: () where N(D) is the rainfall drop-size distribution in m - mm - and Q t (D) is the extinction cross section (ECS) of the arriving rain droplets in mm 2. As seen in (), rainfall DSD is an integral parameter in the attenuation function, hence, it is important to get a suitable model that fits the measurement. III. DETERMINATION OF RAINFALL DROPSIZE DISTRIBUTION An important process in the estimation of rainfall attenuation involves the determination of rainfall drop-size distribution. The disdrometer computation for rainfall DSD, N(D), is given as: (2) where n i represents the number of available rain drops per

2 bin, A represents the sampling area of the disdrometer (taken as m 2 ), T is given as the sampling time of the disdrometer (taken as 60s), v(d i ) represents the corresponding fall velocity of the rain drops and D i is the diameter interval of the rain drops at the ith channel of the disdrometer. A. Rain Drop-size Distribution Statistical Functions Statistical functions for rainfall DSD have also been developed to represent N(D) for different rainfall regions and rainfall types. Popular among them are: Marshall- Palmer model [], modified gamma distribution by Ulbrich [4] and the tropical lognormal model by Ajayi et al. [5]. The modified gamma distribution is given by: expλ where N(D i ) has the same definition as (2), N o is the drop density per unit volume (or intercept parameter) in m - mm -, μ the shape parameter and Λ is the slope parameter. Typical values for the European region are obtained from Atlas et al. [8] where μ = 2, N o = R -0.5 m - mm - and Λ = 7.09 R A special case of () occurs when the shape parameter (µ) equals zero where, N(D i ), becomes the Marshall-Palmer negative exponential model given by: and, expλ 4 Λ (5) where a and b are regression parameters of the rainfall variable, R. All other parameters retain the same definition as given in (). Table I gives the values for the parameters in (4) and (5) by Marshall and Palmer (M-P) and other values for drizzle, widespread and thunderstorm rain types suggested by Joss et al. [9]. While carrying out his work on four sites in South Africa in 2006, Owolawi [] obtained M-P parameters for Durban. He defined N o as a function of two parameters a and a 2 where No =. His parameters for Durban are given as : a = 500, a 2 = 0.26, a = 4. and b = Lastly, the lognormal rainfall DSD model is given as: 2 exp 2 ln (6) where N T is the total number of drops per unit volume or concentration (in m - ), D i is the drop diameter in mm, µ is the mean of ln (D i ) and σ is the standard deviation. The input parameters for (6) are defined by the functions below: (7) ln (8) ln (9) TABLE I TYPICAL VALUES FOR N O AND Λ Parameters N o a Λ a General (M-P) b Joss-Drizzle b Joss-Widespread b Joss-Thunderstorm 400 a obtained from the studies of Marshall and Palmer [] b obtained from the studies of Joss et al.[9] TABLE II b AJAYI AND ADIMULA CONSTANTS FOR TROPICAL LOGNORMAL MODEL Rain type Drizzle Widespread Shower Thunderstorm N T µ σ 2 a o b o A µ B µ A σ B σ Ajayi and Adimula [5] obtained values for various rainfall types in the tropical region by using the Method of Moment technique to determine all the unknown variables in equation (7-9). The result of their study is available in Table II. In this study, we intend to compare all the described rainfall DSD models with the measurements from the South African subtropical region to examine their suitability for our location. The model equations presented in ()-(9) will form the basis of our studies for Durban, South Africa. B. Data Acquisition and Measurement The measurements for this research work were undertaken at the Howard campus site of the University of KwaZulu- Natal, Durban. The one-minute rainfall data was acquired via the Joss-Waldvogel RD-80 impact disdrometer. It is installed at the School of Electrical, Electronics and Computer Engineering at latitude 0 º 58 E and longitude 29 º 52 S at a height of 9.7m. The disdrometer has 20 dedicated bins with average bin diameter ranging from 0.59 mm to 5.7 mm. It has a sampling time of oneminute and measures in real-time, quantities such as rain rate, rain drop-size, rain accumulation and rain reflectivity. Between January 2009 and December 20, a total of rain events (622 rainfall samples) were recorded with a few instances of equipment outages during the period. For the purpose of this study, the following procedure was undertaken to process the data: A maximum duration of five minutes was assumed as the interval between two independent rain events and samples with total sum of drops less than were discarded. The samples were then categorized, using similar classifications in [2], [5] and [] according to the following rainfall regimes in: drizzle (0 < R < 5 mm/h), widespread (5 R < mm/h), shower ( R < 40 mm/h) and thunderstorm (>40 mm/h). Table III shows the summary of the data collected for the stated period while Fig. shows the time series of a typical rain event. The event occurred on April 25, 2009 between 62 hours and 722 hrs; a maximum rainfall rate of 7.5 mm/h was recorded. In this particular event, it is observed that all the various rainfall types were present. The rainfall started as a drizzle rain type, and later transited into widespread and shower types. On attaining its peak as thunderstorm rainfall type at 69 hrs, it gradually decayed.

3 Rainfall Rate (mm/h) Fig.. Time series of thunderstorm event in Durban on April 25, 2009 between 62 hours and 722 hours. TABLE III SUMMARY OF RAIN EVENTS RECORDED FROM 2009 TO 20 Rain Types Drizzle (0-5mm/h) Widespread (5-mm/h) Shower (-40mm/h) Thunderstorm (>40 mm/h) Number of events Total number of raindrops Number of Samples ,569,75 42,50 75,5, ,5, ,0 54 Therefore, it can be said that thunderstorm rainfall types are bound at the edges by the combination of other rainfall types. C. Computational Procedure and Modeling The main thrust of this study is to investigate, among other things, the behaviour of statistical models for rain DSD and obtain important rainfall relationships for various rain types. The rainfall DSD statistical models such as Marshall-Palmer model, Joss model, tropical lognormal model and modified gamma model are compared with measured rainfall DSD. The Method of Moment (MM) estimation technique is applied afterwards to estimate the input parameters of the lognormal model for various rainfall types in Durban. By adopting a similar approach used for lognormal model in [5], [] [], we define the kth-moment generator for a lognormal DSD model as: exp 2 () The parameters of N T, µ and σ 2 have described in (6). The measured moment to be acquired from the data is given in [4] by:, () Time (Mins) where D i is the mid-class diameter of a drop class and D i is the diameter interval between the drop-sizes of different classes. The solutions of () for the third, fourth and sixth moments which correspond to known rainfall indices are provided in the studies of Kozu et al. [] and Timothy et al. [] and are given by: exp (2) () (4) where L, L 4 and L 6 represent the natural logarithms of the measured moments M, M 4 and M 6. The solutions N T, µ and σ 2 given in (2) (4) are fitted statistically with rainfall rate, using regression technique, to derive empirical relationships for Durban. IV RESULTS AND DISCUSSIONS A. Comparison of Rain DSD with Statistical Rain DSD Models in Durban Applying equations (2)-(9), we obtained the rainfall DSD for various types as given in Figures 2-5. For each of the statistical models, the input parameters closer to the South African subtropical region were considered. Durban is classified as coastal savannah, with rainfall pattern closer to that of the tropics, albeit with lower rainfall accumulation [5]. Therefore, the typical values for negative exponential rainfall DSD (Marshal-Palmer and Joss) were obtained from Table I; Owolawi parameters for Durban was also applied. Ajayi et al. values in Table II for various rainfall types in tropical regions were used as input parameters in the lognormal rain DSD model and finally, the Atlas and Ulbrich values were used in the case of the modified gamma DSD model. The results of the rainfall DSD for the four rainfall types used in this study were at different rainfall rates: 4.99 mm/h (drizzle), 7.4 mm/h (widespread), 7.67 mm/m (shower) and 7.5 mm/h (thunderstorm). These rainfall rates are selected spectral within their respective rainfall types, however, they can provide an insight into the behaviour of the existing statistical models. For drizzle rainfall type (0 < R< 5 mm/h), as shown in Fig. 2, we considered R = 4.99 m/h from the rainfall samples. By comparing the measured rainfall DSD with the other statistical models, it appears the M-P (general) model performs better particularly at this low rainfall rate value. The modified gamma model and M-P (Joss) appear to under-estimate the measured rain DSD, while the tropical lognormal model over-estimates particularly at middiameter bounds. It could be said from our observation that the distribution is better represented by the Marshall-Palmer model. For widespread rainfall type (5 mm/h R < mm/h) in Fig., it was observed that all the statistical models underestimates the measured rain DSD to certain variation at R = 7.4 mm/h; it also appears that M-P (Joss) and M-P (general) coincide within this rainfall regime. The lognormal model performs better in this regard because it takes the shape of our measured DSD although it under-estimates it. In Fig. 4, the results for shower rainfall type ( mm/h R < 40 mm/h) indicate that the tropical lognormal model follows the path of the measured rainfall DSD at R = 7.67 mm/h. M-P (Joss) slightly under-estimates the measurement between.2 mm and 2 mm diameter bounds. Other statistical models are observed to perform fairly better,

4 N(D) (m - mm - ) Fig. 2. Rainfall DSD at Durban for drizzle rainfall types at 4.99 mm/h. N(D) (m - mm - ) Fig.. Rainfall DSD at Durban for widespread rainfall types at 7.4 mm/h. N(D) (m - mm - ) M-P (General) M-P (Joss) Lognormal (Ajayi et al.) M-P (general) M-P (Joss) Lognormal (Ajayi et al.) Fig. 4. Rainfall DSD at Durban for shower rainfall type at 7.67 mm/h. N (D) (m - mm - ) M-P (general) M-P (Joss) Lognormal (Ajayi et. al.) M-P (General) M-P Joss lognormal (Ajayi) Fig. 5. Rainfall DSD at Durban for thunderstorm rainfall types at 7.5 mm/h. albeit, with over-estimation at lower drop diameter bound. Lastly, for thunderstorm rainfall type (40 mm/h R < 20 mm/h), the tropical lognormal model again fits the measured rainfall DSD shape. Although, it appears the modified gamma model has a good fit also, the lognormal parameters provided by Ajayi et al. under-estimate the measured DSD in Durban. Generally, it is observed that the larger diameter drops (at lower drop densities) appear more prominent at showery and thunderstorm rain events, while smaller diameter drops (at higher drop densities) appear at drizzle and widespread rain events. The results from Figures 2-5 have shown that only the tropical lognormal model by Ajayi and Adimula, though with cases of DSD under-estimation, to a large extent, is closer to the measured DSD in Durban. This is closely followed by the gamma model based on the fact that it caters for a spectrum of rain drop diameters below 2 mm. The negative exponential models (Marshall-Palmer and Joss) grossly performs poorly most especially at higher rainfall rates which is of interest to microwave studies. B. Parameters of Lognormal Rainfall DSD for Durban The case for modeling parameters for lognormal model in Durban has been shown in the results from Figures 2 5. It is important to note that only lognormal and gamma models cater for rain drops in the lower diameter region of any rain DSD. It is on this premise that we estimate our parameters for various rainfall types in Durban. From the modeling results, it is observed that the solution of µ ranges from.02 to.57. On the hand, σ 2 ranges from 0 to 0.6. There is also a confirmation that a positive correlation exists for the parameters of µ and σ 2 with respect to the measured rainfall rate for our location. Results from our model for the parameters of lognormal model in Durban are presented in Table IV. Our proposed model is examined at rainfall rates of 4 mm/h, 9 mm/h, 26 mm/h and 76.4 mm/h; these values represent the drop-size distribution spectral of the various rainfall types for the proposed model. Our graphical results representing the listed rainfall rates are shown in Figures 6-9. It should be noted that even though the proposed lognormal model for Durban fitted the rainfall DSD at these rainfall rates, there are still deviations in our values. This is attributed to the sharp changes in the values of µ which influences the location of the modeled DSD, with σ and N T, both scaling the DSD. The fitting procedures for µ and σ alongside their irregular variation at different rainfall rates also contributed to some of the deviations noticed in our model. As expected for drizzle rainfall type in Durban in Fig. 6, it is observed that a large percentage of the rain drop-size fall below the mm diameter bound; this is also reflected in our model. It should be noted that for widespread rain types at 9 mm/h (Fig. 7), majority of the rain drops are well above mm and closer to the bound for 4 mm diameter mark. TABLE IV ESTIMATED CONSTANTS FOR LOGNORMAL MODEL IN DURBAN Rain type N T µ σ 2 a o b o A µ B µ A σ B σ Drizzle Widespread Shower Thunderstorm

5 N(D) (m-mm-) 0 0. Probability density function (mm-) Drizzle (4 mm/h) Widespread (9 mm/h) Shower (26 mm/h) Thunderstorm (76 mm/h) Mean diameter of drops (mm) Fig. 6. Rainfall DSD at Durban for drizzle rainfall type at 4 mm/h. N(D) (m - mm - ) Fig. 7. Rainfall DSD at Durban for widespread rainfall type at 9 mm/h. N(D) (m - mm - ) Fig. 8. Rainfall DSD at Durban for Shower rainfall type at 26 mm/h. N(D) (m - mm - ) Fig. 9. Rainfall DSD at Durban for thunderstorm rainfall type at 76.4 mm/h. Showery rainfall type at 26 mm/h also has its rain drop diameter bound closer to 4 mm, which the proposed model generally estimated between 5 mm and 6 mm as seen in Fig. 8. For thunderstorm rainfall type at 76.4 mm/h in Fig. 9, our model shows a general estimation for all mean drop diameters present. In most cases of thunderstorm rain types in Durban, most of the disdrometer bins were active with the Fig.. Lognormal PDF of the mean diameters of the drops at different rainfall rates. preponderance of drops in the larger diameter category (between 4 mm and 5.7 mm). This is expected because at higher rainfall rates, agglomeration of smaller diameter rain drops do occur, forming larger diameter rain drops as suggested in [] [2]. This is due to the general microphysics of the rainfall atmosphere during rainfall conditions. Fig. shows the probability density functions (PDFs) for the different rainfall types. Based on the PDFs, it was noticed that for Durban, the peak probabilities decreased with increasing rainfall rates. The consequence of this confirms the fact that in Durban, drizzle rain types have the largest concentration of smaller diameter rain drops, while the thunderstorm rainfall types have the largest concentration of larger diameter rain drops. Therefore, it can be said that Durban experiences a higher percentage of drizzle rainfall events, than other rainfall events, for most part of the year. CONCLUSION In this study, we examined three statistical rainfall DSD models. It was established that the tropical lognormal DSD model, followed by gamma DSD model, are the most appropriate models for Durban based on their advantage of good estimation for rain drops at lower diameter regions. We employed the Method of Moment estimators to compute the two-parameter lognormal relationships for Durban for four rainfall types: drizzle, widespread, shower and thunderstorm. The proposed model for Durban is seen to compare well with measurements from our disdrometer. With these results, an overall rainfall DSD for South Africa can be developed. This will essentially be helpful in the development of rainfall attenuation models for Durban and other major cities in South Africa. REFERENCES [] R.K. Crane, Electromagnetic Wave Propagation Through Rain. New York: John Wiley, 996, pp 40. [2] G.O. Ajayi, S. Feng, S.M. Radicella, B.M. Reddy (Ed), Handbook on Radiopropagation Related to Satellite Communications in Tropical and Subtropical Countries, Trieste: ICTP, 996, pp [] J. S. Marshall and W. Palmer, The distributions of raindrop with size, Journal of Meteorology, 5, pp , 948. [4] C.W. Ulbrich, Natural variation in the analytical form of the raindrop size distribution, J. of Climate and Applied Meteor., vol. 2, pp , 98. [5] I.A Adimula and G.O. Ajayi, Variation in raindrop size distribution and specific attenuation due to rain in Nigeria, Ann. Telecom, vol.5, No. -2, pp. 87 9, 996.

6 [6] M.O. Odedina and T.J. Afullo, Determination of rain attenuation from electromagnetic scattering by spherical raindrops: Theory and experiment, Radio Sci., vol. 45, 20. [7] C.T. Mulangu and T.J. Afullo, Variability of the propagation coefficients for microwave links in southern Africa, Radio Sci., vol. 44, [8] D. Atlas and C.W. Ulbrich, The physical basis for attenuationrainfall relationships and the measurement of rainfall parameters by combined attenuation and radar methods, J. Rech. Atmos., 8, pp , 974. [9] J. Joss, J.C. Thams and A. Waldvogel, The Variation of raindropsize distribution at Locarno, Proc. of Inter. Conf. on Cloud Physics, pp. 69-7, 968. [] P.A. Owolawi, Rainfall rate and rain drop size distribution models for line-of-sight millimetric systems in South Africa. M.Sc thesis submitted to the University of KwaZulu-Natal, Durban, [] K.I. Timothy, J.T. Ong and E.B.L. Choo, Raindrop size distribution using method of moments for terrestrial and satellite communication applications in Singapore, IEEE Antennas Propagat., vol. 50, pp , October [2] S. Das, A. Maitra and A.K. Shukla, Rain attenuation modeling in the - GHz frequency using drop size distributions for different climatic zones in tropical India, Progress in Electromagnetics Research, vol. 25, pp , 20. [] T. Kozu and K. Nakamura, Rainfall parameter estimation from dualradar measurements combining reflectivity profile and path-integrated attenuation, J. of Atmos. and Oceanic tech., pp , 99. [4] G.O. Ajayi and R.L. Olsen, Modeling of a tropical raindrop size distribution for microwave and millimeter wave applications, Radio Science, Vol. 20, number 2, pp , Apr [5] M.O. Fashuyi, P.A. Owolawi and T.O. Afullo, Rainfall rate modelling for LoS radio systems in South Africa, Trans. of South African Inst. of Elect. Engineers (SAIEE), vol. 97, pp. 74 8, Akintunde A. Alonge received the BEng. (First Class Hon) degree from the Federal University of Technology, Akure, Nigeria (2007). He is presently undergoing his M.Sc. studies at the University of KwaZulu-Natal (UKZN), Durban, South Africa. His research interests include radio planning and budgeting, wireless communication systems and signal processing. Thomas J. Afullo received the BSc. (Hon) Electrical Engineering from the University of Nairobi, Kenya (979), the MSEE from West Virginia University, USA (98), and the Bijzondre License in Technology and Ph.D in Electrical Engineering from the Vrije Universiteit Brussel (VUB), Belgium (989). He is currently an Associate Professor, School of Electrical, Electronic & Computer Engineering, University of KwaZulu- Natal (UKZN), Durban, South Africa.

Comparison of Two Methods to Evaluate the Lognormal Raindrop Size Distribution Model in Durban

Comparison of Two Methods to Evaluate the Lognormal Raindrop Size Distribution Model in Durban Comparison of Two Methods to Evaluate the Lognormal Raindrop Size Distribution Model in Durban Oluwumi Adetan, Member, IEEE and Thomas J. Afullo, Senior Member, SAIEE School of Electrical, Electronic and

More information

A Analysis of Raindrop Diameters for Rainfall Attenuation in Southern Africa

A Analysis of Raindrop Diameters for Rainfall Attenuation in Southern Africa International Journal of Electrical and Computer Engineering (IJECE) Vol. 6, No. 1, February 2016, pp. 82~89 ISSN: 2088-8708, DOI:.1191/ijece.v6i1.8746 82 A Analysis of Raindrop Diameters for Rainfall

More information

Systematic Variation of Rain Rate and Radar Reflectivity Relations for Micro Wave Applications in a Tropical Location.

Systematic Variation of Rain Rate and Radar Reflectivity Relations for Micro Wave Applications in a Tropical Location. IOSR Journal of Applied Physics (IOSR-JAP) e-issn: 2278-4861.Volume 7, Issue 6 Ver. I (Nov. - Dec. 215), PP 23-29 www.iosrjournals Systematic Variation of Rain Rate and Radar Reflectivity Relations for

More information

DETERMINATION OF SPECIFIC RAIN ATTENUATION USING DIFFERENT TOTAL CROSS SECTION MODELS FOR SOUTHERN AFRICA

DETERMINATION OF SPECIFIC RAIN ATTENUATION USING DIFFERENT TOTAL CROSS SECTION MODELS FOR SOUTHERN AFRICA 20 DETERMINATION OF SPECIFIC RAIN ATTENUATION USING DIFFERENT TOTAL CROSS SECTION MODELS FOR SOUTHERN AFRICA S.J. Malinga*, P.A. Owolawi** and T.J.O. Afullo*** * Dept. of Electrical Engineering, Mangosuthu

More information

Characteristics of Seasonal Attenuation and Fading for Line-of-Sight Links in South Africa

Characteristics of Seasonal Attenuation and Fading for Line-of-Sight Links in South Africa 1 Characteristics of Seasonal Attenuation and Fading for Line-of-Sight Links in South Africa Modupe O. Odedina, Thomas J.O. Afullo, Senior Member, SAIEE Abstract The characteristics of seasonal rain attenuation

More information

OBTAINING RAINDROP SIZE MODEL USING METHOD OF MOMENT AND ITS APPLICATIONS FOR SOUTH AFRICA RADIO SYSTEMS

OBTAINING RAINDROP SIZE MODEL USING METHOD OF MOMENT AND ITS APPLICATIONS FOR SOUTH AFRICA RADIO SYSTEMS Progress In Electromagnetics Research B, Vol. 46, 119 138, 2013 OBTAINING RAINDROP SIZE MODEL USING METHOD OF MOMENT AND ITS APPLICATIONS FOR SOUTH AFRICA RADIO SYSTEMS Senzo J. Malinga and Pius A. Owolawi

More information

CHAPTER 2 RAIN ATTENUATION THEORY AND LITERATURE REVIEW

CHAPTER 2 RAIN ATTENUATION THEORY AND LITERATURE REVIEW CHAPTER 2 RAIN ATTENUATION THEORY AND LITERATURE REVIEW 2.1 Introduction The growing demand of communication services has congested the currently available radio spectrum to such an extent that a need

More information

Rainfall Microstructural Analysis for Microwave Link Networks: Comparison at Equatorial and Subtropical Africa

Rainfall Microstructural Analysis for Microwave Link Networks: Comparison at Equatorial and Subtropical Africa Progress In Electromagnetics Research B, Vol. 59, 45 58, 204 Rainfall Microstructural Analysis for Microwave Link Networks: Comparison at Equatorial and Subtropical Africa Akintunde Alonge * and Thomas

More information

THE CHARACTERISTICS OF DROP SIZE DISTRIBUTIONS AND CLASSIFICATIONS OF CLOUD TYPES USING GUDUCK WEATHER RADAR, BUSAN, KOREA

THE CHARACTERISTICS OF DROP SIZE DISTRIBUTIONS AND CLASSIFICATIONS OF CLOUD TYPES USING GUDUCK WEATHER RADAR, BUSAN, KOREA THE CHARACTERISTICS OF DROP SIZE DISTRIBUTIONS AND CLASSIFICATIONS OF CLOUD TYPES USING GUDUCK WEATHER RADAR, BUSAN, KOREA Dong-In Lee 1, Min Jang 1, Cheol-Hwan You 2, Byung-Sun Kim 2, Jae-Chul Nam 3 Dept.

More information

Comparison of drop size distribution between stations in Eastern and Western coasts of India

Comparison of drop size distribution between stations in Eastern and Western coasts of India J. Ind. Geophys. Union ( April 2007 ) Vol.11, No.2, pp.111-116 Comparison of drop size distribution between stations in Eastern and Western coasts of India R.Harikumar, V.Sasi Kumar, S.Sampath and P.V.S.S.K.Vinayak

More information

CHAPTER V ALTITUDINAL AND TEMPORAL VARIATION OF RAIN DROP SIZE DISTRIBUTION DURING A RAIN SPELL

CHAPTER V ALTITUDINAL AND TEMPORAL VARIATION OF RAIN DROP SIZE DISTRIBUTION DURING A RAIN SPELL CHAPTER V ALTITUDINAL AND TEMPORAL VARIATION OF RAIN DROP SIZE DISTRIBUTION DURING A RAIN SPELL CHAPTER V ALTITUDINAL AND TEMPORAL VARIATION OF RAIN DROP SIZE DISTRIBUTION DURING A RAIN SPELL 5.1. INTRODUCTION

More information

Investigation of Radiowave Propagation Impairment at Super High Frequency due to Rain in Akure

Investigation of Radiowave Propagation Impairment at Super High Frequency due to Rain in Akure American International Journal of Contemporary Research Vol. 2 No.; October 212 Investigation of Radiowave Propagation Impairment at Super High Frequency due to Rain in Akure Oluwadare E. J. Department

More information

Modeling of rain drop size distribution for a tropical hot semi-arid site in India

Modeling of rain drop size distribution for a tropical hot semi-arid site in India Indian Journal of Radio & Space Physics Vol 40, December 2011, pp 330-339 Modeling of rain drop size distribution for a tropical hot semi-arid site in India B S Jassal 1,$,*, Anurag Vidyarthi 1,#, R Gowri

More information

Diagnosing the Intercept Parameter for Exponential Raindrop Size Distribution Based on Video Disdrometer Observations: Model Development

Diagnosing the Intercept Parameter for Exponential Raindrop Size Distribution Based on Video Disdrometer Observations: Model Development Diagnosing the Intercept Parameter for Exponential Raindrop Size Distribution Based on Video Disdrometer Observations: Model Development Guifu Zhang 1, Ming Xue 1,2, Qing Cao 1 and Daniel Dawson 1,2 1

More information

PRECIPITATION TYPE AND RAINFALL INTENSITY FROM THE PLUDIX DISDROMETER DURING THE WASSERKUPPE CAMPAIGN

PRECIPITATION TYPE AND RAINFALL INTENSITY FROM THE PLUDIX DISDROMETER DURING THE WASSERKUPPE CAMPAIGN PRECIPITATION TYPE AND RAINFALL INTENSITY FROM THE PLUDIX DISDROMETER DURING THE WASSERKUPPE CAMPAIGN Clelia Caracciolo1, Franco Prodi1,2, Leo Pio D Adderio2 and Eckhard Lanzinger4 1 University of Ferrara,

More information

4/25/18. Precipitation and Radar GEF4310 Cloud Physics. Schedule, Spring Global precipitation patterns

4/25/18. Precipitation and Radar GEF4310 Cloud Physics. Schedule, Spring Global precipitation patterns Precipitation and Radar GEF4310 Cloud Physics Trude Storelvmo, Dept. of Geoscience, U. of Oslo Spring 2018 Schedule, Spring 2018 Week # Monday (exercises) Wednesday (lectures) 3 (15/1) No class (17/1)

More information

The Shape Slope Relation in Observed Gamma Raindrop Size Distributions: Statistical Error or Useful Information?

The Shape Slope Relation in Observed Gamma Raindrop Size Distributions: Statistical Error or Useful Information? 116 JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY VOLUME The Shape Slope Relation in Observed Gamma Raindrop Size Distributions: Statistical Error or Useful Information? GUIFU ZHANG, J.VIVEKANANDAN, AND

More information

For those 5 x5 boxes that are primarily land, AE_RnGd is simply an average of AE_Rain_L2B; the ensuing discussion pertains entirely to oceanic boxes.

For those 5 x5 boxes that are primarily land, AE_RnGd is simply an average of AE_Rain_L2B; the ensuing discussion pertains entirely to oceanic boxes. AMSR-E Monthly Level-3 Rainfall Accumulations Algorithm Theoretical Basis Document Thomas T. Wilheit Department of Atmospheric Science Texas A&M University 2007 For those 5 x5 boxes that are primarily

More information

Developing a Z-R Relationship with Uniform Sampling. Kate A O Dell. Dr. Michael L Larsen (Mentor)

Developing a Z-R Relationship with Uniform Sampling. Kate A O Dell. Dr. Michael L Larsen (Mentor) Generated using version 3.0 of the official AMS LATEX template Developing a Z-R Relationship with Uniform Sampling Kate A O Dell Department of Physics and Astronomy, College of Charleston, Charleston SC

More information

Some characteristics of earth-space path propagation phenomena at a tropical location

Some characteristics of earth-space path propagation phenomena at a tropical location Indian Journal of Radio & Space Physics Vol 41, August 2012, pp 481-487 Some characteristics of earth-space path propagation phenomena at a tropical location Animesh Maitra $,*, Arpita Adhikari & Aniruddha

More information

Disdrometric data analysis and related microphysical processes

Disdrometric data analysis and related microphysical processes Author: Garcia Facultat de Física, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain. Advisor: Joan Bech Rustullet Abstract: The present paper consists in the analysis of Rain Drop Size Distribution

More information

Australian Journal of Basic and Applied Sciences. Statistics of Rainfall Rate at 60 minutes Integration Time in Malaysia

Australian Journal of Basic and Applied Sciences. Statistics of Rainfall Rate at 60 minutes Integration Time in Malaysia AENSI Journals Australian Journal of Basic and Applied Sciences ISSN:1991-8178 Journal home page: www.ajbasweb.com Statistics of Rainfall Rate at 60 minutes Integration Time in Malaysia Nuurul Hudaa Mohd

More information

ANALYSIS OF RAIN RATE AND RAIN ATTENUATION FOR EARTH-SPACE COMMUNICATION LINKS OVER UYO - AKWA IBOM STATE

ANALYSIS OF RAIN RATE AND RAIN ATTENUATION FOR EARTH-SPACE COMMUNICATION LINKS OVER UYO - AKWA IBOM STATE Nigerian Journal of Technology (NIJOTECH) Vol. 35 No. 1, January 2016, pp. 137 143 Copyright Faculty of Engineering, University of Nigeria, Nsukka, ISSN: 0331-8443 www.nijotech.com http://dx.doi.org/10.4314/njt.v35i1.21

More information

On the Influence of Assumed Drop Size Distribution Form on Radar-Retrieved Thunderstorm Microphysics

On the Influence of Assumed Drop Size Distribution Form on Radar-Retrieved Thunderstorm Microphysics FEBRUARY 2006 B R A N D E S E T A L. 259 On the Influence of Assumed Drop Size Distribution Form on Radar-Retrieved Thunderstorm Microphysics EDWARD A. BRANDES, GUIFU ZHANG, AND JUANZHEN SUN National Center

More information

A Discussion on the Applicable Condition of Rayleigh Scattering

A Discussion on the Applicable Condition of Rayleigh Scattering www.ijrsa.org International Journal of Remote Sensing Applications (IJRSA) Volume 5, 015 doi: 10.14355/ijrsa.015.05.007 A Discussion on the Applicable Condition of Rayleigh Scattering Nan Li *1, Yiqing

More information

Impact of seasonal variation of raindrop size distribution (DSD) on DSD retrieval methods based on polarimetric radar measurements

Impact of seasonal variation of raindrop size distribution (DSD) on DSD retrieval methods based on polarimetric radar measurements Impact of seasonal variation of raindrop size distribution (DSD) on DSD retrieval methods based on polarimetric radar measurements K.Amar Jyothi 1, T.Narayana Rao 2, S.Vijaya Bhaskara Rao 3, S.Rajendran

More information

Rain Rate-Radar Reflectivity Relationship for Drop Size Distribution and Rain Attenuation Calculation of Ku Band Signals

Rain Rate-Radar Reflectivity Relationship for Drop Size Distribution and Rain Attenuation Calculation of Ku Band Signals Rain Rate-Radar Reflectivity Relationship for Drop Size Distribution and Rain Attenuation Calculation of Ku Band Signals Govardhani.Immadi #1, Sarat K Kotamraju #2, Habibulla Khan #3, M.Venkata Narayana

More information

ESTIMATING RAINFALL EROSIVITY BY DROP SIZE DISTRIBUTION

ESTIMATING RAINFALL EROSIVITY BY DROP SIZE DISTRIBUTION Università degli Studi di Palermo Dipartimento di Scienze Agrarie e Forestali DOTTORATO DI RICERCA IN SCIENZE AGRARIE, FORESTALI E AMBIENTALI INDIRIZZO IDRONOMIA AMBIENTALE, XXIX CICLO ESTIMATING RAINFALL

More information

Comparison of DPSK and MSK bit error rates for K and Rayleigh-lognormal fading distributions

Comparison of DPSK and MSK bit error rates for K and Rayleigh-lognormal fading distributions Comparison of DPSK and MSK bit error rates for K and Rayleigh-lognormal fading distributions Ali Abdi and Mostafa Kaveh ABSTRACT The composite Rayleigh-lognormal distribution is mathematically intractable

More information

ERAD Drop size distribution retrieval from polarimetric radar measurements. Proceedings of ERAD (2002): c Copernicus GmbH 2002

ERAD Drop size distribution retrieval from polarimetric radar measurements. Proceedings of ERAD (2002): c Copernicus GmbH 2002 Proceedings of ERAD (2002): 134 139 c Copernicus GmbH 2002 ERAD 2002 Drop size distribution retrieval from polarimetric radar measurements E. Gorgucci 1, V. Chandrasekar 2, and V. N. Bringi 2 1 Istituto

More information

Active rain-gauge concept for liquid clouds using W-band and S-band Doppler radars

Active rain-gauge concept for liquid clouds using W-band and S-band Doppler radars Active rain-gauge concept for liquid clouds using W-band and S-band Doppler radars Leyda León-Colón *a, Sandra L. Cruz-Pol *a, Stephen M. Sekelsky **b a Dept. of Electrical and Computer Engineering, Univ.

More information

Chapter 2: Polarimetric Radar

Chapter 2: Polarimetric Radar Chapter 2: Polarimetric Radar 2.1 Polarimetric radar vs. conventional radar Conventional weather radars transmit and receive linear electromagnetic radiation whose electric field is parallel to the local

More information

ESCI Cloud Physics and Precipitation Processes Lesson 9 - Precipitation Dr. DeCaria

ESCI Cloud Physics and Precipitation Processes Lesson 9 - Precipitation Dr. DeCaria ESCI 34 - Cloud Physics and Precipitation Processes Lesson 9 - Precipitation Dr. DeCaria References: A Short Course in Cloud Physics, 3rd ed., Rogers and Yau, Ch. 1 Microphysics of Clouds and Precipitation

More information

Simulation of polarimetric radar variables in rain at S-, C- and X-band wavelengths

Simulation of polarimetric radar variables in rain at S-, C- and X-band wavelengths Adv. Geosci., 16, 27 32, 28 www.adv-geosci.net/16/27/28/ Author(s) 28. This work is distributed under the Creative Commons Attribution 3. License. Advances in Geosciences Simulation of polarimetric radar

More information

In Situ Comparisons with the Cloud Radar Retrievals of Stratus Cloud Effective Radius

In Situ Comparisons with the Cloud Radar Retrievals of Stratus Cloud Effective Radius In Situ Comparisons with the Cloud Radar Retrievals of Stratus Cloud Effective Radius A. S. Frisch and G. Feingold Cooperative Institute for Research in the Atmosphere National Oceanic and Atmospheric

More information

Metrological requirements for a laboratory rainfall simulator. M. Colli* 1,2, M. Stagnaro 1,2, L. Lanza 1,2, P. La Barbera 1

Metrological requirements for a laboratory rainfall simulator. M. Colli* 1,2, M. Stagnaro 1,2, L. Lanza 1,2, P. La Barbera 1 Metrological requirements for a laboratory rainfall simulator M. Colli* 1,2, M. Stagnaro 1,2, L. Lanza 1,2, P. La Barbera 1 Rainfall in Urban and Natural Systems 1 University of Genova, Dep. of Civil,

More information

Vertical Profiles of Rain Drop-Size Distribution over Tropical Semi-Arid- Region, Kadapa (14.47 N; E), India

Vertical Profiles of Rain Drop-Size Distribution over Tropical Semi-Arid- Region, Kadapa (14.47 N; E), India Vertical Profiles of Rain Drop-Size Distribution over Tropical Semi-Arid- Region, Kadapa (14.47 N; 78.82 E), India K.Hemalatha, D.Punyaseshudu Department of Physics, Rayaseema University, Kurnool Corresponding

More information

Performance Evaluation of Empirical Rain Rate Models for Computing Rain Attenuation

Performance Evaluation of Empirical Rain Rate Models for Computing Rain Attenuation International Journal of Systems Science and Applied Mathematics 2016; 1(4): 86-90 http://www.sciencepublishinggroup.com/j/ijssam doi: 10.11648/j.ijssam.20160104.19 Performance Evaluation of Empirical

More information

A Method for Estimating Rain Rate and Drop Size Distribution from Polarimetric Radar Measurements

A Method for Estimating Rain Rate and Drop Size Distribution from Polarimetric Radar Measurements 830 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 39, NO. 4, APRIL 2001 A Method for Estimating Rain Rate and Drop Size Distribution from Polarimetric Radar Measurements Guifu Zhang, J. Vivekanandan,

More information

Remote Sensing in Meteorology: Satellites and Radar. AT 351 Lab 10 April 2, Remote Sensing

Remote Sensing in Meteorology: Satellites and Radar. AT 351 Lab 10 April 2, Remote Sensing Remote Sensing in Meteorology: Satellites and Radar AT 351 Lab 10 April 2, 2008 Remote Sensing Remote sensing is gathering information about something without being in physical contact with it typically

More information

Diagnosing the Intercept Parameter for Exponential Raindrop Size Distribution Based on Video Disdrometer Observations: Model Development

Diagnosing the Intercept Parameter for Exponential Raindrop Size Distribution Based on Video Disdrometer Observations: Model Development NOVEMBER 2008 Z H A N G E T A L. 2983 Diagnosing the Intercept Parameter for Exponential Raindrop Size Distribution Based on Video Disdrometer Observations: Model Development GUIFU ZHANG* School of Meteorology,

More information

RAINDROP SIZE DISTRIBUTION RETRIEVAL AND EVALUATION USING AN S-BAND RADAR PROFILER

RAINDROP SIZE DISTRIBUTION RETRIEVAL AND EVALUATION USING AN S-BAND RADAR PROFILER RAINDROP SIZE DISTRIBUTION RETRIEVAL AND EVALUATION USING AN S-BAND RADAR PROFILER by FANG FANG B.S.E.E. University of Central Florida, 3 A thesis submitted in partial fulfillment of the requirements for

More information

The Influence of Fog on the Propagation of the Electromagnetic Waves under Lithuanian Climate Conditions

The Influence of Fog on the Propagation of the Electromagnetic Waves under Lithuanian Climate Conditions PIERS ONLINE, VOL. 5, NO. 6, 2009 576 The Influence of Fog on the Propagation of the Electromagnetic Waves under Lithuanian Climate Conditions S. Tamosiunas 1, 2, M. Tamosiunaite 1, 2, M. Zilinskas 1,

More information

Year to year variation of rainfall rate and rainfall regime in Ota, southwest Nigeria for the year 2012 to 2015

Year to year variation of rainfall rate and rainfall regime in Ota, southwest Nigeria for the year 2012 to 2015 Journal of Physics: Conference eries PAPER OPEN ACCE Year to year variation of rainfall rate and rainfall regime in Ota, southwest Nigeria for the year 212 to 215 o cite this article: V Omotosho et al

More information

1306 JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY VOLUME 15

1306 JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY VOLUME 15 1306 JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY VOLUME 15 The Effect of Vertical Air Motions on Rain Rates and Median Volume Diameter Determined from Combined UHF and VHF Wind Profiler Measurements

More information

L-Moment Method Applied to Observed Raindrop Size Distributions

L-Moment Method Applied to Observed Raindrop Size Distributions P8A.16 L-Moment Method Applied to Observed Raindrop Size Distributions Donna V. Kliche, Andrew G. Detwiler, Paul L. Smith, and Roger W. Johnson South Dakota School of Mines and Technology, Rapid City,

More information

Listening to Raindrops from Underwater: An Acoustic Disdrometer

Listening to Raindrops from Underwater: An Acoustic Disdrometer 1640 JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY VOLUME 18 Listening to Raindrops from Underwater: An Acoustic Disdrometer JEFFREY A. NYSTUEN Applied Physics Laboratory, University of Washington, Seattle,

More information

Experimental Test of the Effects of Z R Law Variations on Comparison of WSR-88D Rainfall Amounts with Surface Rain Gauge and Disdrometer Data

Experimental Test of the Effects of Z R Law Variations on Comparison of WSR-88D Rainfall Amounts with Surface Rain Gauge and Disdrometer Data JUNE 2001 NOTES AND CORRESPONDENCE 369 Experimental Test of the Effects of Z R Law Variations on Comparison of WSR-88D Rainfall Amounts with Surface Rain Gauge and Disdrometer Data CARLTON W. ULBRICH Department

More information

MAIN ATTRIBUTES OF THE PRECIPITATION PRODUCTS DEVELOPED BY THE HYDROLOGY SAF PROJECT RESULTS OF THE VALIDATION IN HUNGARY

MAIN ATTRIBUTES OF THE PRECIPITATION PRODUCTS DEVELOPED BY THE HYDROLOGY SAF PROJECT RESULTS OF THE VALIDATION IN HUNGARY MAIN ATTRIBUTES OF THE PRECIPITATION PRODUCTS DEVELOPED BY THE HYDROLOGY SAF PROJECT RESULTS OF THE VALIDATION IN HUNGARY Eszter Lábó OMSZ-Hungarian Meteorological Service, Budapest, Hungary labo.e@met.hu

More information

N P Amrutha Kumari, S Balaji Kumar, J Jayalakshmi & K Krishna Reddy $,*

N P Amrutha Kumari, S Balaji Kumar, J Jayalakshmi & K Krishna Reddy $,* Indian Journal of Radio & Space Physics Vol 43, February 2014, pp 57-66 Raindrop size distribution variations in JAL and NILAM cyclones induced precipitation observed over Kadapa (14.47 o N, 78.82 o E),

More information

1. Introduction. 2. The data. P13.15 The effect of a wet radome on dualpol data quality

1. Introduction. 2. The data. P13.15 The effect of a wet radome on dualpol data quality P3.5 The effect of a wet radome on dualpol data quality Michael Frech Deutscher Wetterdienst Hohenpeissenberg Meteorological Observatory, Germany. Introduction Operational radar systems typically are equipped

More information

Remote Sensing of Precipitation

Remote Sensing of Precipitation Lecture Notes Prepared by Prof. J. Francis Spring 2003 Remote Sensing of Precipitation Primary reference: Chapter 9 of KVH I. Motivation -- why do we need to measure precipitation with remote sensing instruments?

More information

Raindrop Size Distributions and Z-R Relations in Coastal Rainfall For Periods With and Without a Radar Brightband

Raindrop Size Distributions and Z-R Relations in Coastal Rainfall For Periods With and Without a Radar Brightband American Meteorological Society 11 th Conference on Mesoscale Processes October 2005, Albuquerque, NM JP4J.1 Raindrop Size Distributions and Z-R Relations in Coastal Rainfall For Periods With and Without

More information

P14R.11 INFERENCE OF MEAN RAINDROP SHAPES FROM DUAL-POLARIZATION DOPPLER SPECTRA OBSERVATIONS

P14R.11 INFERENCE OF MEAN RAINDROP SHAPES FROM DUAL-POLARIZATION DOPPLER SPECTRA OBSERVATIONS P14R.11 INFERENCE OF MEAN RAINDROP SHAPES FROM DUAL-POLARIZATION DOPPLER SPECTRA OBSERVATIONS Dmitri N. Moisseev and V. Chandrasekar Colorado State University, Fort Collins, CO 1. INTRODUCTION Direct observations

More information

Observation strategies for severe rain in The Netherlands

Observation strategies for severe rain in The Netherlands Observation strategies for severe rain in The Netherlands Herman Russchenberg Delft University of Technology Challenge the future Our Earth is slowly warming The world population is moving into the cities

More information

Measurements of a network of mobile radars during the experimental campaign of the HydroRad project

Measurements of a network of mobile radars during the experimental campaign of the HydroRad project ERAD 2012 - THE SEVENTH EUROPEAN CONFERENCE ON RADAR IN METEOROLOGY AND HYDROLOGY Measurements of a network of mobile radars during the experimental campaign of the HydroRad project Kalogiros J. 1, Anagnostou

More information

Analysis of Video Disdrometer and Polarimetric Radar Data to Characterize Rain Microphysics in Oklahoma

Analysis of Video Disdrometer and Polarimetric Radar Data to Characterize Rain Microphysics in Oklahoma 2238 J O U R N A L O F A P P L I E D M E T E O R O L O G Y A N D C L I M A T O L O G Y VOLUME 47 Analysis of Video Disdrometer and Polarimetric Radar Data to Characterize Rain Microphysics in Oklahoma

More information

An Annual Cycle of Arctic Cloud Microphysics

An Annual Cycle of Arctic Cloud Microphysics An Annual Cycle of Arctic Cloud Microphysics M. D. Shupe Science and Technology Corporation National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado T. Uttal

More information

RAIN MAP FOR RADIOWAVE PROPAGATION DESIGN IN SAUDI ARABIA

RAIN MAP FOR RADIOWAVE PROPAGATION DESIGN IN SAUDI ARABIA International Journal of Infrared and Millimeter Waves, Vol. 7, No. 11, 1986 RAIN MAP FOR RADIOWAVE PROPAGATION DESIGN IN SAUDI ARABIA Adel A. Ali, Mohammed A. Alhaider, and Mustafa A. Shatila College

More information

Precipitation classification at mid-latitudes in terms of drop size distribution parameters

Precipitation classification at mid-latitudes in terms of drop size distribution parameters Adv. Geosci., 16, 11 17, 2008 Author(s) 2008. This work is distributed under the Creative Commons Attribution 3.0 License. Advances in Geosciences Precipitation classification at mid-latitudes in terms

More information

Characteristics of the Mirror Image of Precipitation Observed by the TRMM Precipitation Radar

Characteristics of the Mirror Image of Precipitation Observed by the TRMM Precipitation Radar VOLUME 19 JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY FEBRUARY 2002 Characteristics of the Mirror Image of Precipitation Observed by the TRMM Precipitation Radar JI LI ANDKENJI NAKAMURA Institute for

More information

13B.4 CPOL RADAR-DERIVED DSD STATISTICS OF STRATIFORM AND CONVECTIVE RAIN FOR TWO REGIMES IN DARWIN, AUSTRALIA

13B.4 CPOL RADAR-DERIVED DSD STATISTICS OF STRATIFORM AND CONVECTIVE RAIN FOR TWO REGIMES IN DARWIN, AUSTRALIA 13B.4 CPOL RADAR-DERIVED DSD STATISTICS OF STRATIFORM AND CONVECTIVE RAIN FOR TWO REGIMES IN DARWIN, AUSTRALIA M. Thurai 1*, V. N. Bringi 1, and P. T. May 2 1 Colorado State University, Fort Collins, Colorado,

More information

DSD characteristics of a cool-season tornadic storm using C-band polarimetric radar and two 2D-video disdrometers

DSD characteristics of a cool-season tornadic storm using C-band polarimetric radar and two 2D-video disdrometers DSD characteristics of a cool-season tornadic storm using C-band polarimetric radar and two 2D-video disdrometers M. Thurai 1, W. A. Petersen 2, and L. D. Carey 3 1 Colorado State University, Fort Collins,

More information

Estimation of rain induced attenuation on earthspace

Estimation of rain induced attenuation on earthspace Estimation of rain induced attenuation on earthspace path K. Ramakrishna Department of Physics, Rayalaseema University(Erstwhile S K U PG Centre), Kurnool, Andhra Pradesh, India Prof.D. Punyaseshudu Department

More information

PUBLICATIONS. Radio Science. Modeling rainfall drop size distribution in southern England using a Gaussian Mixture Model

PUBLICATIONS. Radio Science. Modeling rainfall drop size distribution in southern England using a Gaussian Mixture Model PUBLICATIONS RESEARCH ARTICLE Key Point: A Gaussian Mixture Model may fit the rainfall DSD better than standard models Modeling rainfall drop size distribution in southern England using a Gaussian Mixture

More information

Precipitation estimate of a heavy rain event using a C-band solid-state polarimetric radar

Precipitation estimate of a heavy rain event using a C-band solid-state polarimetric radar Precipitation estimate of a heavy rain event using a C-band solid-state polarimetric radar Hiroshi Yamauchi 1, Ahoro Adachi 1, Osamu Suzuki 2, Takahisa Kobayashi 3 1 Meteorological Research Institute,

More information

16.4 SENSITIVITY OF TORNADOGENESIS IN VERY-HIGH RESOLUTION NUMERICAL SIMULATIONS TO VARIATIONS IN MODEL MICROPHYSICAL PARAMETERS

16.4 SENSITIVITY OF TORNADOGENESIS IN VERY-HIGH RESOLUTION NUMERICAL SIMULATIONS TO VARIATIONS IN MODEL MICROPHYSICAL PARAMETERS 1. SENSITIVITY OF TORNADOGENESIS IN VERY-HIGH RESOLUTION NUMERICAL SIMULATIONS TO VARIATIONS IN MODEL MICROPHYSICAL PARAMETERS Nathan A. Snook* and Ming Xue University of Oklahoma, Norman, Oklahoma 1.

More information

Tropical Rainfall Rate Relations Assessments from Dual Polarized X-band Weather Radars

Tropical Rainfall Rate Relations Assessments from Dual Polarized X-band Weather Radars Tropical Rainfall Rate Relations Assessments from Dual Polarized X-band Weather Radars Carlos R. Wah González, José G. Colom Ustáriz, Leyda V. León Colón Department of Electrical and Computer Engineering

More information

The mathematics of scattering and absorption and emission

The mathematics of scattering and absorption and emission The mathematics of scattering and absorption and emission The transmittance of an layer depends on its optical depth, which in turn depends on how much of the substance the radiation has to pass through,

More information

Dancers from Dora Stratou welcome us to Greece Ionian Sea Rainfall Experiment

Dancers from Dora Stratou welcome us to Greece Ionian Sea Rainfall Experiment Dancers from Dora Stratou welcome us to Greece Ionian Sea Rainfall Experiment Southwest of Pylos, Messinia the Ionian Sea is over 3 km deep within 20 km of shore One of the biggest impacts of climate change

More information

Rainfall estimation for the first operational S-band polarimetric radar in Korea

Rainfall estimation for the first operational S-band polarimetric radar in Korea Rainfall estimation for the first operational S-band polarimetric radar in Korea Cheol-Hwan You 1, Dong-In Lee 2, Mi-Young Kang 2 and Young-Su Bang 2 1 Atmospheric Environmental Research Institute, Pukyong

More information

Nazario D. Ramírez-Beltrán*, E. J. Suarez-Vázquez and S. Cruz-Pol University of Puerto Rico, Mayagüez, Puerto Rico

Nazario D. Ramírez-Beltrán*, E. J. Suarez-Vázquez and S. Cruz-Pol University of Puerto Rico, Mayagüez, Puerto Rico P1.22 EFFECTS OF DROP SIZE DISTRIBUTION ON NEXRAD RAIN RATE ESTIMATION Nazario D. Ramírez-Beltrán*, E. J. Suarez-Vázquez and S. Cruz-Pol University of Puerto Rico, Mayagüez, Puerto Rico 1. Introduction

More information

Retrieval of Latent Heating Profiles from TRMM Radar Data

Retrieval of Latent Heating Profiles from TRMM Radar Data 6.3 Retrieval of Latent Heating Profiles from TRMM Radar Data *1 +1 *2 Shinsuke Satoh, Akira Noda and Toshio Iguchi *1,*2) Communications Research Laboratory, Japan +1) Ocean Research Institute, Japan

More information

Preliminary assessment of LAWR performance in tropical regions with high intensity convective rainfall

Preliminary assessment of LAWR performance in tropical regions with high intensity convective rainfall Preliary assessment of LAWR performance in tropical regions with high intensity convective rainfall Chris Nielsen: DHI Water and Environment (Malaysia), Fanny Dugelay, Universitéde Nice Sophia Antipolis,

More information

Ten years analysis of Tropospheric refractivity variations

Ten years analysis of Tropospheric refractivity variations ANNALS OF GEOPHYSICS, VOL. 47, N. 4, August 2004 Ten years analysis of Tropospheric refractivity variations Stergios A. Isaakidis and Thomas D. Xenos Department of Electrical and Computer Engineering,

More information

A FIELD STUDY TO CHARACTERISE THE MEASUREMENT OF PRECIPITATION USING DIFFERENT TYPES OF SENSOR. Judith Agnew 1 and Mike Brettle 2

A FIELD STUDY TO CHARACTERISE THE MEASUREMENT OF PRECIPITATION USING DIFFERENT TYPES OF SENSOR. Judith Agnew 1 and Mike Brettle 2 A FIELD STUDY TO CHARACTERISE THE MEASUREMENT OF PRECIPITATION USING DIFFERENT TYPES OF SENSOR Judith Agnew 1 and Mike Brettle 2 1 STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire,

More information

OBSERVATIONS OF WINTER STORMS WITH 2-D VIDEO DISDROMETER AND POLARIMETRIC RADAR

OBSERVATIONS OF WINTER STORMS WITH 2-D VIDEO DISDROMETER AND POLARIMETRIC RADAR P. OBSERVATIONS OF WINTER STORMS WITH -D VIDEO DISDROMETER AND POLARIMETRIC RADAR Kyoko Ikeda*, Edward A. Brandes, and Guifu Zhang National Center for Atmospheric Research, Boulder, Colorado. Introduction

More information

Analysis of Cumulative Distribution Function of 2-year Rainfall Measurements in Ogbomoso, Nigeria

Analysis of Cumulative Distribution Function of 2-year Rainfall Measurements in Ogbomoso, Nigeria International Journal of Applied Science and Engineering 2012. 10, 3: 171-179 Analysis of Cumulative Distribution Function of 2-year ainfall Measurements in Ogbomoso, Nigeria Folasade Abiola Semirea,b,*,

More information

THE DETECTABILITY OF TORNADIC SIGNATURES WITH DOPPLER RADAR: A RADAR EMULATOR STUDY

THE DETECTABILITY OF TORNADIC SIGNATURES WITH DOPPLER RADAR: A RADAR EMULATOR STUDY P15R.1 THE DETECTABILITY OF TORNADIC SIGNATURES WITH DOPPLER RADAR: A RADAR EMULATOR STUDY Ryan M. May *, Michael I. Biggerstaff and Ming Xue University of Oklahoma, Norman, Oklahoma 1. INTRODUCTION The

More information

Precipitation Induced Signatures in SAR Images

Precipitation Induced Signatures in SAR Images Precipitation Induced Signatures in SAR Images Andreas Danklmayer #1, Madhukar Chandra 2 # Microwaves and Radar Institute, German Aerospace Center(DLR) PO Box 1116, D - 82230 Wessling, Germany 1 Andreas.Danklmayer@dlr.de

More information

OCEANIC SHIPBOARD PRECIPITATION VALIDATION PROJECT

OCEANIC SHIPBOARD PRECIPITATION VALIDATION PROJECT Oceanic Precipitation Validation OCEANIC SHIPBOARD PRECIPITATION VALIDATION PROJECT 1, 2 1 KlimaCampus, Meteorological Institute, University of Hamburg, Germany 2 Max Planck Institute for Meteorology,

More information

Rainfall field reconstruction using rain attenuation of microwave mesh networks

Rainfall field reconstruction using rain attenuation of microwave mesh networks Rainfall field reconstruction using rain attenuation of microwave mesh networks 117 Rainfall field reconstruction using rain attenuation of microwave mesh networks Gemalyn Dacillo Abrajano 1 and Minoru

More information

Impact of proxy variables of the rain column height on monthly oceanic rainfall estimations from passive microwave sensors

Impact of proxy variables of the rain column height on monthly oceanic rainfall estimations from passive microwave sensors International Journal of Remote Sensing Vol., No., 0 June 0, 9 7 Impact of proxy variables of the rain column height on monthly oceanic rainfall estimations from passive microwave sensors JI-HYE KIM, DONG-BIN

More information

HYDROLOGICAL MODELING APPLICATIONS OF HIGH RESOLUTION RAIN RADAR

HYDROLOGICAL MODELING APPLICATIONS OF HIGH RESOLUTION RAIN RADAR HYDROLOGICAL MODELING APPLICATIONS OF HIGH RESOLUTION RAIN RADAR Luke Sutherland-Stacey, Paul Shucksmith and Geoff Austin Physics Department, University of Auckland ABSTRACT In many hydrological modelling

More information

Weather forecasting and fade mitigation

Weather forecasting and fade mitigation Weather forecasting and fade mitigation GSAW 2005 Robert J Watson & Duncan D Hodges r.j.watson@bath.ac.uk & d.d.hodges@bath.ac.uk Telecommunications, Space and Radio Group University of Bath 1 Introduction

More information

Uncertainty assessment of current size-resolved parameterizations for below-cloud particle scavenging by rain

Uncertainty assessment of current size-resolved parameterizations for below-cloud particle scavenging by rain Atmos. Chem. Phys., 1, 5685 575, 21 www.atmos-chem-phys.net/1/5685/21/ doi:1.5194/acp-1-5685-21 Author(s 21. CC Attribution 3. License. Atmospheric Chemistry and Physics Uncertainty assessment of current

More information

Ocean Rain And Ice-phase precipitation measurement Network

Ocean Rain And Ice-phase precipitation measurement Network Ocean Rain And Ice-phase precipitation measurement Network Christian Klepp 1,2, Andrea Dahl 3 1,2 University of Hamburg, Max Planck Institute for Meteorology, Germany 3 Eigenbrodt GmbH & Co. KG, Königsmoor,

More information

Preliminary result of hail detection using an operational S-band polarimetric radar in Korea

Preliminary result of hail detection using an operational S-band polarimetric radar in Korea Preliminary result of hail detection using an operational S-band polarimetric radar in Korea Mi-Young Kang 1, Dong-In Lee 1,2, Cheol-Hwan You 2, and Sol-Ip Heo 3 1 Department of Environmental Atmospheric

More information

2.4 EFFECT OF ATMOSPHERIC HYDROMETEORS ON MILLIMETER WAVE TRANSMISSIONS

2.4 EFFECT OF ATMOSPHERIC HYDROMETEORS ON MILLIMETER WAVE TRANSMISSIONS 2.4 EFFECT OF ATMOSPHERIC HYDROMETEORS ON MILLIMETER WAVE TRANSMISSIONS Donna F. Tucker, Dallas W. Smith, Daniel DePardo University of Kansas, Lawrence, Kansas Timothy Euler, Peter Youngberg, Harold W.

More information

Estimation of Seasonal and Annual Albedo of the Earth s Atmosphere over Kano, Nigeria

Estimation of Seasonal and Annual Albedo of the Earth s Atmosphere over Kano, Nigeria IOSR Journal of Applied Physics (IOSR-JAP) e-issn: 2278-4861.Volume 6, Issue 5 Ver. I (Sep.-Oct. 2014), PP 56-62 Estimation of Seasonal and Annual Albedo of the Earth s Atmosphere over Kano, Nigeria Audu,

More information

Correcting Microwave Precipitation Retrievals for near- Surface Evaporation

Correcting Microwave Precipitation Retrievals for near- Surface Evaporation Correcting Microwave Precipitation Retrievals for near- Surface Evaporation The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation

More information

Daniel J. Cecil 1 Mariana O. Felix 1 Clay B. Blankenship 2. University of Alabama - Huntsville. University Space Research Alliance

Daniel J. Cecil 1 Mariana O. Felix 1 Clay B. Blankenship 2. University of Alabama - Huntsville. University Space Research Alliance 12A.4 SEVERE STORM ENVIRONMENTS ON DIFFERENT CONTINENTS Daniel J. Cecil 1 Mariana O. Felix 1 Clay B. Blankenship 2 1 University of Alabama - Huntsville 2 University Space Research Alliance 1. INTRODUCTION

More information

Ed Tomlinson, PhD Bill Kappel Applied Weather Associates LLC. Tye Parzybok Metstat Inc. Bryan Rappolt Genesis Weather Solutions LLC

Ed Tomlinson, PhD Bill Kappel Applied Weather Associates LLC. Tye Parzybok Metstat Inc. Bryan Rappolt Genesis Weather Solutions LLC Use of NEXRAD Weather Radar Data with the Storm Precipitation Analysis System (SPAS) to Provide High Spatial Resolution Hourly Rainfall Analyses for Runoff Model Calibration and Validation Ed Tomlinson,

More information

Towards simultaneous retrieval of water cloud and drizzle using ground-based radar, lidar, and microwave radiometer

Towards simultaneous retrieval of water cloud and drizzle using ground-based radar, lidar, and microwave radiometer Towards simultaneous retrieval of water cloud and drizzle using ground-based radar, lidar, and microwave radiometer Stephanie Rusli David P. Donovan Herman Russchenberg Introduction microphysical structure

More information

SNOWFALL RATE RETRIEVAL USING AMSU/MHS PASSIVE MICROWAVE DATA

SNOWFALL RATE RETRIEVAL USING AMSU/MHS PASSIVE MICROWAVE DATA SNOWFALL RATE RETRIEVAL USING AMSU/MHS PASSIVE MICROWAVE DATA Huan Meng 1, Ralph Ferraro 1, Banghua Yan 2 1 NOAA/NESDIS/STAR, 5200 Auth Road Room 701, Camp Spring, MD, USA 20746 2 Perot Systems Government

More information

Probability models for weekly rainfall at Thrissur

Probability models for weekly rainfall at Thrissur Journal of Tropical Agriculture 53 (1) : 56-6, 015 56 Probability models for weekly rainfall at Thrissur C. Laly John * and B. Ajithkumar *Department of Agricultural Statistics, College of Horticulture,

More information

Correction of Radar Reflectivity and Differential Reflectivity for Rain Attenuation at X Band. Part I: Theoretical and Empirical Basis

Correction of Radar Reflectivity and Differential Reflectivity for Rain Attenuation at X Band. Part I: Theoretical and Empirical Basis VOLUME 22 J O U R N A L O F A T M O S P H E R I C A N D O C E A N I C T E C H N O L O G Y NOVEMBER 2005 Correction of Radar Reflectivity and Differential Reflectivity for Rain Attenuation at X Band. Part

More information

The microwave links that form a wireless communication

The microwave links that form a wireless communication Environmental Sensor Networks Using Existing Wireless Communication Systems for Rainfall and Wind Velocity Measurements Hagit Messer, Artem Zinevich, and Pinhas Alpert The microwave links that form a wireless

More information

Main features of rain drop size distributions observed in Benin, West Africa, with optical disdrometers

Main features of rain drop size distributions observed in Benin, West Africa, with optical disdrometers GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L23807, doi:10.1029/2008gl035755, 2008 Main features of rain drop size distributions observed in Benin, West Africa, with optical disdrometers Sounmaila Moumouni,

More information

Orbit and Transmit Characteristics of the CloudSat Cloud Profiling Radar (CPR) JPL Document No. D-29695

Orbit and Transmit Characteristics of the CloudSat Cloud Profiling Radar (CPR) JPL Document No. D-29695 Orbit and Transmit Characteristics of the CloudSat Cloud Profiling Radar (CPR) JPL Document No. D-29695 Jet Propulsion Laboratory California Institute of Technology Pasadena, CA 91109 26 July 2004 Revised

More information