Because water vapor is the principal greenhouse gas, variations

Size: px
Start display at page:

Download "Because water vapor is the principal greenhouse gas, variations"

Transcription

1 Upper-tropospheric moistening in response to anthropogenic warming Eui-Seok Chung a, Brian Soden a,1, B. J. Sohn b, and Lei Shi c a Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149; b School of Earth and Environmental Sciences, Seoul National University, Seoul , Korea; and c National Climatic Data Center, National Oceanic and Atmospheric Administration, Asheville, NC Edited by John H. Seinfeld, California Institute of Technology, Pasadena, CA, and approved June 27, 2014 (received for review May 23, 2014) Water vapor in the upper troposphere strongly regulates the strength of water-vapor feedback, which is the primary process for amplifying the response of the climate system to external radiative forcings. Monitoring changes in upper-tropospheric water vapor and scrutinizing the causes of such changes are therefore of great importance for establishing the credibility of model projections of past and future climates. Here, we use coupled ocean atmosphere model simulations under different climate-forcing scenarios to investigate satellite-observed changes in global-mean upper-tropospheric water vapor. Our analysis demonstrates that the upper-tropospheric moistening observed over the period cannot be explained by natural causes and results principally from an anthropogenic warming of the climate. By attributing the observed increase directly to human activities, this study verifies the presence of the largest known feedback mechanism for amplifying anthropogenic climate change. detection attribution long-term monitoring Because water vapor is the principal greenhouse gas, variations in its concentration strongly influence the climate s response to both anthropogenic and natural forcings (1). Changes in the amount of water vapor in the upper troposphere play a particularly important role because the trapping of outgoing terrestrial radiation is proportional to the logarithm of watervapor concentration (1, 2), and climate models predict enhanced moistening in the upper troposphere compared with the boundary layer (3). Although short-term fluctuations of upper-tropospheric water vapor are consistent among reanalysis datasets, decadal variations show substantial discrepancies even in sign (4, 5). Hence, long-term monitoring of upper-tropospheric water-vapor changes, and understanding causes responsible for such changes are essential for enhancing confidence in the prediction of future climate change (4, 6). Changes in upper-tropospheric water vapor have been examined based on satellite-observed radiances of 6.7-μm water-vapor channels (3, 7, 8), which are closely related to the layer mean relative humidity in the upper troposphere (9). Decadal trends in upper-tropospheric relative humidity exhibits distinct regional patterns associated with changes in the atmospheric circulation, but the decadal trends over larger domains are small due to opposing changes at regional scales (8). Analyzing the globalscale changes in 6.7-μm water-vapor radiances reveals little change over the past three decades. However, when the 6.7-μm radiances are examined relative to microwave radiance emissions from oxygen, a distinct radiative signature of upper-tropospheric moistening can be revealed (3). Although the presence of a moistening trend has been detected in the satellite record, the cause of this moistening has not been determined. Thus, it remains unclear whether the observed moistening could result from natural fluctuations in the climate system, or whether human activities have significantly contributed to the trend. Because climate feedbacks can behave differently in response to natural climate variations compared with anthropogenic warming (10), fully validating the presence and strength of this feedback ultimately requires the detection of a change in upper-tropospheric water vapor that is directly attributable to human activities. Given the importance of uppertropospheric water vapor, a direct verification of its feedback is critical to establishing the credibility of model projections of anthropogenic climate change. A new set of coordinated climate change experiments have been conducted for the fifth phase of the Coupled Model Intercomparison Project (CMIP5; ref. 11). One of the climate change scenarios included in the CMIP5 is a historical experiment in which coupled ocean atmosphere models are integrated with historical changes in forcing agents over the period Climate variability produced from the historical experiment can then be analyzed in more detail in combination with two related experiments: one integrated with only anthropogenic forcings from well-mixed greenhouse gases, and the other integrated with only natural forcings from volcanoes and changes in solar activity. These two experiments can help identify the causes for recent changes in climate, provided the historical experiment with all forcings is capable of reproducing the observed trends. In this study, we use the historical climate change experiments from CMIP5 to demonstrate that the satellite-observed changes in upper-tropospheric water vapor are inconsistent with naturally forced variability and can only be explained by anthropogenic forcing. Temporal Variations and Trends of Upper-Tropospheric Water Vapor The National Oceanic and Atmospheric Administration (NOAA) operational polar-orbiting satellites have been taking measurements of the 6.7-μm water-vapor channel (channel 12) radiances from Significance The fact that water vapor is the most dominant greenhouse gas underscores the need for an accurate understanding of the changes in its distribution over space and time. Although satellite observations have revealed a moistening trend in the upper troposphere, it has been unclear whether the observed moistening is a facet of natural variability or a direct result of human activities. Here, we use a set of coordinated model experiments to confirm that the satellite-observed increase in upper-tropospheric water vapor over the last three decades is primarily attributable to human activities. This attribution has significant implications for climate sciences because it corroborates the presence of the largest positive feedback in the climate system. Author contributions: E.-S.C. and B.S. designed research; E.-S.C. and B.S. performed research; E.-S.C., B.S., B.J.S., and L.S. analyzed data; and E.-S.C., B.S., and B.J.S. wrote the paper. The authors declare no conflict of interest. This article is a PNAS Direct Submission. Freely available online through the PNAS open access option. 1 To whom correspondence should be addressed. b.soden@miami.edu. This article contains supporting information online at /pnas /-/DCSupplemental. EARTH, ATMOSPHERIC, AND PLANETARY SCIENCES PNAS Early Edition 1of6

2 High-Resolution Infrared Radiation Sounder (HIRS) version 2 (HIRS/2) since November Because climate monitoring was not the primary purpose of the HIRS mission, various attempts have been made to correct for biases, and to minimize intersatellite discrepancies, to make the HIRS record more suitable for climate study (8, 12). The bias-corrected, intercalibrated HIRS water-vapor channel radiance dataset (13) is used to examine the decadal timescale variability of uppertropospheric water vapor. Unfortunately, the continuity of the 6.7-μm water-vapor record ends in 2005 due to the shift of central wavelength from 6.7 μm (HIRS/2) to 6.5 μm (HIRS/3), which also coincides with the end of the CMIP5 historical experiment. We therefore limit our observational analysis to the 27-y period A time series of global, monthly mean brightness temperature anomalies of HIRS channel 12 (T12) is given in Fig. 1A (red line). Brightness temperature anomalies are computed relative to the mean seasonal cycle over the period For the period , the brightness temperature anomalies vary within ±0.4 K, with only a very small positive trend over this period. The time series of HIRS channel 12 brightness temperature anomalies simulated from the CMIP5 historical experiment of 20 coupled ocean atmosphere models (Materials and Methods) is also presented in Fig. 1A. The multimodel ensemble mean is shown by the blue line, with vertical bars denoting the intermodel spread. Note that multimodel averaging dampens the amplitude of the monthly variability compared with that of the satellite observations. Nevertheless, the CMIP5 models capture the observed decadal variability despite substantial biases in climatological mean distribution (14). The observed linear trend in T12 (for more details about uncertainties in estimated linear trends, see SI Materials and Methods) is similar to that computed from the multimodel mean and lies near the center of the distribution of trends from the individual models (Fig. 1, Right). The small magnitude of the trend shown in both the satellite observations and the model ensemble confirms that global-mean upper-tropospheric relative humidity remained nearly constant on decadal timescales (3). In addition to HIRS instruments, the NOAA operational polar-orbiting satellites are equipped with a microwave sounding unit (MSU) that provides weighted-average temperature information for deep atmospheric layers between the surface and the stratosphere, by way of four channels located in the 60-GHz oxygen absorption band. The remote sensing systems (RSS) reprocessed the brightness temperatures from the MSU and its follow-on, advanced MSU (AMSU), to construct a bias-corrected, intercalibrated MSU/AMSU dataset (15). Fig. 1. Time series of global-mean brightness temperature anomaly from satellite observations and CMIP5 historical experiment simulations for: (A) T12, (B) T2, and (C) T2 T12. Error bars in light blue represent ±2 SD of the multimodel ensemble mean. The corresponding histograms of decadal trend from CMIP5 historical experiment simulations are given on Right with dashed lines in blue denoting a decadal trend of multimodel ensemble mean (T12: 0.05 ± 0.01 K decade 1, T2: 0.20 ± 0.10 K decade 1,T2 T12: 0.15 ± 0.04 K decade 1 ). The bin size of histograms is 0.02 K decade 1. The decadal trend of multimodel ensemble mean for which model-simulated changes in T2 T12 were computed under a constant water-vapor scenario is represented by a green dashed line ( 0.08 ± 0.10 K decade 1 ). Vertical lines in red represent a decadal trend from satellite observations (T12: 0.04 ± 0.04 K decade 1, T2: 0.17 ± 0.06 K decade 1, T2 T12: 0.13 ± 0.04 K decade 1 ). Horizontal error bars denote ±2 SE of the linear trend (±2 SE of the linear trend are computed using the method in ref. 20). 2of6 Chung et al.

3 We use the MSU/AMSU channel 2 brightness temperatures (T2) in which the stratospheric contribution is removed using a combination of different viewing angles (16, 17). The time series of the observed T2 anomalies indicates sporadic warming and cooling associated with El Niño La Niña events with a distinct warming trend over this period. Although the amplitude of this interannual variability is not captured in the multimodel mean (blue line in Fig. 1B) because El Niño La Niña events do not occur simultaneously among the models, the multimodel ensemble mean of the historical experiment does show decadalscale warming that is consistent with the MSU/AMSU observations. The observed trend in T2 (Fig. 1, Right) is slightly smaller than that predicted by the multimodel ensemble mean although it lies well within the distribution of individual model trends and is consistent with previous studies (18, 19). The water-vapor channel radiances are influenced not only by variations in water-vapor concentration, which alter the atmospheric opacity, but also by atmospheric temperature variations, which alter the Plank emission. Although spatiotemporal variations in water vapor are significant, changes in atmospheric oxygen concentrations, which determine T2 emissions, are negligible (3). Thus, the difference T2 T12 measures the divergence in emission levels between upper-tropospheric water vapor and oxygen. This divergence provides a direct measure of the extent of upper-tropospheric moistening; i.e., the increased concentration of water vapor elevates the emission level for T12 and offsets the warming evident in T2, which experiences no change in emission level (3). Based on these properties, a time series of the brightness temperature difference, T2 T12, is constructed to quantify the global-scale changes in upper-tropospheric water vapor for both satellite observations and CMIP5 historical simulations (Fig. 1C). El Niño La Niña events dominate subdecadal-scale variations in the satellite observations but are not evident in the CMIP5 ensemble mean due to multimodel averaging. However, on decadal timescales both the satellite observations and the coupled ocean atmosphere model simulations exhibit a distinct increase in global-mean upper-tropospheric water vapor. Moreover, the observed linear trend in T2 T12 is very similar to that predicted by the multimodel mean and lies near the center of the distribution of individual model trends. To demonstrate that the difference T2 T12 is a measure of the concentration of upper-tropospheric water vapor, the modelsimulated changes in T2 T12 are computed by holding the concentration of water vapor constant over time. The resulting trend (green line in Fig. 1C) is near zero and lies well outside both the model simulations with changing water vapor and the observed trend. Both calculations use the same sets of temperature profiles, indicating that the increase in T2 T12 is due to the increased concentration of water vapor in the upper troposphere and not due to changes in temperature. EARTH, ATMOSPHERIC, AND PLANETARY SCIENCES Fig. 2. Time series of global-mean brightness temperature anomaly of (A) T12, (B) T2, and (C) T2 T12, simulated from CMIP5 preindustrial control experiment for a 27-y period. Each line denotes an individual coupled ocean atmosphere model. The corresponding histograms of decadal trend are given on Right with the bin size of 0.02 K decade 1. The decadal trend of multimodel ensemble mean for which model-simulated changes in T2 T12 were computed under a constant water-vapor scenario is represented by a green dashed line (0.00 ± 0.01 K decade 1 ) with a horizontal error bar denoting ±2 SE of the linear trend. Vertical lines in red represent decadal trends from satellite observations over the period Chung et al. PNAS Early Edition 3of6

4 Fig. 3. Decadal trends of multimodel ensemble mean brightness temperature simulated from CMIP5 historical experiment (red circles), HistoricalNat (blue triangles), and HistoricalGHG (green triangles) for five 30-y periods: (A) T12, (B) T2, and (C) T2 T12. Error bars denote ±2 SEofthe linear trend. Detection and Attribution of the Moistening Trend To examine whether internally generated variability could produce the moistening trend, we analyze output of the corresponding CMIP5 preindustrial control run (11), which contains only unforced, internal climate variability. In contrast to the historical experiment, none of the simulated brightness temperature records (T12, T2, or T2 T12) show a significant trend over a 27-y period (Fig. 2). The histograms presented on the right further demonstrate that decadal trends with a magnitude equal to that observed do not occur in any of the unforced experiments. A constant water-vapor scenario results in nearzero trends in T2 T12. These results suggest that the uppertropospheric moistening observed during the satellite era does not result from internal variability but from a combination of historical changes in anthropogenic and natural forcings. To examine different forcing contributions, we assess the relative contribution of anthropogenic greenhouse gases to historical changes in the upper-tropospheric water vapor by analyzing two additional CMIP5 experiments linked to the historical experiment. In these experiments, the coupled ocean atmosphere models are integrated with anthropogenic greenhouse gases (i.e., historicalghg), and with natural forcing sources (i.e., historicalnat), respectively. For 12 out of 20 models in which output is available for all three experiments, the decadal trends are computed for the five 30-y periods. Fig. 3 compares decadal trends for the multimodel ensemble mean with horizontal error bars denoting ±2 SE of the linear trend (±2 SE of the linear trend are computed using the method in ref. 20). Decadal trends of the model-simulated T12 show both positive and negative values for the historicalnat experiment, but signs are predominantly positive for the historicalghg experiment. Although the influences of changes in aerosols and land use cannot be ruled out, an increase in anthropogenic greenhouse gases seems to be responsible for the decadal trend over the satellite era, because trends from the historical and historicalnat experiments lie clearly outside each other s range. For decadal trends of T2, the range of estimated decadal trends is generally wider for historicalnat than historicalghg (Fig. 3B), indicating that subdecadal variability could be more significant in the former. The increase of anthropogenic greenhouse gases consistently leads to a warming trend for all periods. Although the impact of natural forcing sources can negate greenhouse-gas-induced warming signals (e.g., for the period ; refs ), it is mostly weaker and more variable. Given these characteristics, the warming trend over the satellite era is primarily attributable to the increase of anthropogenic greenhouse gases. For the T2 T12 (Fig. 3C), decadal trends for historicalghg and historicalnat fall within each other s range for the first two periods, but become significantly different from each other in later periods. The magnitude of decadal trend due to natural forcings is generally small, whereas the contribution of anthropogenic greenhouse gases is always positive, and is amplified throughout the whole period. Comparisons with the historical experiment indicate that decadal trends for the historical experiment are affected by changes in natural forcing sources, as well as anthropogenic greenhouse gases. For example, a negative (thus drying) trend for the historical experiment over the period is mainly induced by natural forcing sources, because increases in anthropogenic greenhouse gases induce a significantly positive (moistening) trend. Concerning the satellite-derived moistening trend in recent decades, the relations of trend and associated range among three experiments lead to the conclusion that an increase in anthropogenic greenhouse gases is the main cause of increased moistening in the upper troposphere. Discussion and Conclusions To illustrate the importance of the observed upper-tropospheric moistening in amplifying the climate sensitivity, radiative kernels (24 26) are used to quantify the strength of the water-vapor feedback from all levels with that obtained for the upper troposphere alone (SI Materials and Methods). The histogram in Fig. 4 compares the distribution of model-simulated water-vapor feedback during the historical scenario with and without historical forcings. Simulations with anthropogenically induced warming Fig. 4. The histogram shows a distribution of the water-vapor feedback strength computed using a radiative kernel for two 10-y periods (i.e., and ) of the historical scenario with a red line denoting a multimodel mean (1.92 ± 0.99 W m 2 K 1 ). The bin size of the histogram is 0.2 W m 2 K 1. A blue dashed line indicates a multimodel mean of the water-vapor feedback strength for which water vapor in the troposphere would change under natural forcing alone (i.e., HistNat), and the case that the evolution of upper-tropospheric water vapor was not modified by HistNat is represented by a green dashed line (i.e., Hist UTWV-only). The multimodel mean values for the HistNat and Hist UTWV-only are 0.08 ± 0.99 Wm 2 K 1 and 1.53 ± 0.87 W m 2 K 1, respectively. Horizontal error bars represent ±2 intermodel SD. A violet dashed line denotes the observational estimate of the water vapor feedback for the period ( 1.2 W m 2 K 1 )(27). 4of6 Chung et al.

5 Table 1. A list of CMIP5 climate models used in this study Modeling center Model name Model expanded name Commonwealth Scientific and Industrial Research Organization and Bureau of Meteorology ACCESS1-0 Australian Community Climate and Earth System Simulator, version 1.0 Beijing Normal University BNU-ESM Beijing Normal University Earth System Model National Center for Atmospheric Research CCSM4 Community Climate System Model, version 4 Centre National de Recherches Météorologiques CNRM-CM5 CNRM Coupled Global Climate Model, version 5 (CNRM) NOAA/Geophysical Fluid Dynamics Laboratory (GFDL) GFDL-CM3 GFDL Climate Model, version 3 NOAA/GFDL GFDL-ESM2G GFDL Earth System Model with Generalized Ocean Layer Dynamics component NOAA/GFDL GDFL-ESM2M GDFL Earth System Model with Modular Ocean Model 4 (MOM4) component National Aeronautics and Space Administration GISS-E2-R GISS Model E2, coupled with the Russell ocean model Goddard Institute for Space Studies (GISS) Met Office Hadley Centre HadGEM2-ES Hadley Centre Global Environment Model, version 2-Earth System Institute for Numerical Mathematics (INM) INM-CM4 INM Coupled Model, version 4 Institut Pierre-Simon Laplace (IPSL) IPSL-CM5A-LR IPSL Coupled Model, version 5, coupled with Nucleus for European Modelling of the Ocean (NEMO), low resolution IPSL IPSL-CM5A-MR IPSL Coupled Model, version 5, coupled with NEMO, mid resolution Japan Agency for Marine Earth Science and Technology, Atmosphere and Ocean Research Institute (The University of Tokyo); and National Institute for Environmental Studies MIROC-ESM-CHEM Model for Interdisciplinary Research on Climate Earth System Model, atmospheric chemistry coupled version Japan Agency for Marine Earth Science and Technology, Atmosphere and Ocean Research Institute (The University of Tokyo); and National Institute for Environmental Studies Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for Environmental Studies, and Japan Agency for Marine-Earth Science and Technology MIROC-ESM Model for Interdisciplinary Research on Climate Earth System Model MIROC5 Model for Interdisciplinary Research on Climate, version 5 Max Planck Institute for Meteorology (MPI-M) MPI-ESM-LR Max Planck Institute Earth System Model, low resolution MPI-M MPI-ESM-P Max Planck Institute Earth System Model, paleo version Meteorological Research Institute (MRI) MRI-CGCM3 MRI Coupled Atmosphere-Ocean General Circulation Model, version 3 Norwegian Climate Centre (NCC) NorESM1-M Norwegian Earth System Model, version 1 (mid resolution) NCC NorESM1-ME Norwegian Earth System Model, version 1 (version with carbon cycle) EARTH, ATMOSPHERIC, AND PLANETARY SCIENCES simulate large positive feedbacks from water vapor and are distinctly different from generated from natural forcing alone (blue dashed line). To highlight the importance of the upper troposphere, the feedback calculations are repeated using only watervapor changes in the troposphere above 600 hpa from the historical simulation (green dashed line in Fig. 4). Approximately 80% of the total water-vapor feedback results from water vapor in the upper troposphere. Although the absolute increase in water vapor is small at these levels, the absorptivity scales with the fractional changes in water vapor, which are typically 2 3 times larger in the upper troposphere compared with the surface (SI Materials and Methods). Note that the observational estimate for the period (27) lies within the distribution of model simulations only when anthropogenic forcing is included, further indicating that the observed changes in upper-tropospheric water vapor are a direct result of anthropogenic warming. Bias-corrected, intercalibrated satellite observations produce a radiative signature, suggesting that moisture in the upper troposphere has increased over the past 30 y (3). When integrated with historical changes in forcing agents, coupled ocean atmosphere models are found to produce decadal trends consistent with satellite observations. In contrast, coupled ocean atmosphere models fail to capture observed trends in the preindustrial control experiment, suggesting that upper-tropospheric moistening over the satellite era is not an internally generated variability. Two additional model experiments, integrated with anthropogenic greenhouse gases and natural forcing sources separately, further indicate that the observed moistening trend is mainly induced by an increase in anthropogenic greenhouse gases. As a result, it is expected that the influence of a projected increase in anthropogenic greenhouse gases will amplify upper-tropospheric moistening, and is thus likely to amplify global warming via enhanced water-vapor feedback. Materials and Methods Decadal trends of upper-tropospheric water vapor determined from the satellite observations are compared with those simulated from CMIP5 coupled ocean atmosphere climate models, to ascertain whether the satellitedetermined decadal-scale variations are due to anthropogenic forcing agents. In doing so, the historical experiment output from 20 climate models (ACCESS1-0, BNU-ESM, CCSM4, CNRM-CM5, GFDL-CM3, GDFL-ESM2G, GFDL-ESM2M, GISS-E2-R, HadGEM2-ES, INMCM4, IPSL-CM5A-LR, IPSL-CM5A-MR, MIROC- ESM-CHEM,MIROC-ESM,MIROC5,MPI-ESM-LR,MPI-ESM-P,MRI-CGCM3, NorESM1-M, and NorESM1-ME; see Table 1 for information about climate models) is contrasted with the corresponding preindustrial control run results (i.e., picontrol) that represent an unforced climate variability. The output of ocean atmosphere coupling experiments is analyzed, as suppressing the ocean atmosphere interactions could inhibit the internally generated variability that might not be in phase with externally forced variability (28, 29). Chung et al. PNAS Early Edition 5of6

6 Forcing agents included in the historical experiment are: well-mixed greenhouse gases, tropospheric and stratospheric ozone, land use, volcanoes, solar forcing, sulfate, black carbon, organic carbon, dust, and sea salt, and their detailed prescriptions may vary depending on models. The CMIP5 includes two additional experiments designed to investigate the response of the climate system to changes in anthropogenic sources (i.e., historicalghg), and natural sources (historicalnat). Ref. 11 provides detailed information on the CMIP5 experiments. To avoid uncertainties inherent to the inversion processes of satellite-observed radiances, atmospheric profiles of temperature and specific humidity produced from the CMIP5 experiments are inserted into a fast radiative transfer model (30) to compute synthetic brightness temperatures that would be observed by satellites for given atmospheric conditions. ACKNOWLEDGMENTS. We thank two anonymous reviewers and the editor for their constructive and valuable comments, which led to an improved version of the manuscript. We acknowledge the World Climate Research Programme s Working Group on Coupled Modeling, which is responsible for CMIP, and we thank the climate modelling groups (listed in Materials and Methods) for producing and making available their model output. For CMIP, the US Department of Energy s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. This research was supported by grants from the National Aeronautics and Space Administration and the National Oceanic and Atmospheric Administration Climate Program Office. B.J.S. was supported by the Korea Meteorological Administration Research and Development Program under Grant CATER Held IM, Soden BJ (2000) Water vapor feedback and global warming. Annu Rev Energy Environ 25: Allan RP (2012) The role of water vapour in Earth s energy flows. Surv Geophys 33(3-4): Soden BJ, Jackson DL, Ramaswamy V, Schwarzkopf MD, Huang X (2005) The radiative signature of upper tropospheric moistening. Science 310(5749): Paltridge G, Arking A, Pook M (2009) Trends in middle- and upper-level tropospheric humidity from NCEP reanalysis data. Theor Appl Climatol 98: Dessler AE, Davis SM (2010) Trends in tropospheric humidity from reanalysis systems. J Geophys Res 115(D19):D Sherwood SC, Roca R, Weckwerth TM, Andronova NG (2010) Tropospheric water vapor, convection, and climate. Rev Geophys 48(2):RG Bates JJ, Wu X, Jackson DL (1996) Interannual variability of upper-tropospheric water vapor band brightness temperature. J Clim 9(2): Bates JJ, Jackson DL (2001) Trends in upper-tropospheric humidity. Geophys Res Lett 28(9): Soden BJ, Bretherton FP (1993) Upper tropospheric relative humidity from the GOES 6.7 μm channel: Method and climatology for July J Geophys Res 98(D9): 16,669 16, Colman RA, Hanson LI (2013) On atmospheric radiative feedbacks associated with climate variability and change. Clim Dyn 40(1-2): Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4): Jackson DL, Soden BJ (2007) Detection and correction of diurnal sampling bias in HIRS/2 brightness temperatures. J Atmos Ocean Technol 24(8): Shi L, Bates JJ (2011) Three decades of intersatellite-calibrated High-Resolution Infrared Radiation Sounder upper tropospheric water vapor. J Geophys Res 116(D4):D Tian B, et al. (2013) Evaluating CMIP5 models using AIRS tropospheric air temperature and specific humidity climatology. J Geophys Res Atmos 118(1): Mears CA, Wentz FJ (2009) Construction of the Remote Sensing Systems V3.2 atmospheric temperature records from the MSU and AMSU microwave sounders. J Atmos Ocean Technol 26(6): Spencer RW, Christy JR (1992) Precision and radiosonde validation of satellite gridpoint temperature anomalies. Part II: A tropospheric retrieval and trends during J Clim 5(8): Mears CA, Wentz FJ (2009) Construction of the RSS V3.2 lower-tropospheric temperature dataset from the MSU and AMSU microwave sounders. J Atmos Ocean Technol 26(8): Santer BD, et al. (2005) Amplification of surface temperature trends and variability in the tropical atmosphere. Science 309(5740): Fu Q, Manabe S, Johanson CM (2011) On the warming in the tropical upper troposphere: Models versus observations. Geophys Res Lett 38(15):L Weatherhead EC, et al. (1998) Factors affecting the detection of trends: Statistical considerations and applications to environmental data. J Geophys Res 103(D14): 17,149 17, Ammann CM, Meehl GA, Washington WM, Zender CS (2003) A monthly and latitudinally varying volcanic forcing dataset in simulations of 20th century climate. Geophys Res Lett 30(12): Meehl GA, et al. (2004) Combinations of natural and anthropogenic forcings in twentieth-century climate. J Clim 17(19): Trenberth KE, Dai A (2007) Effects of Mount Pinatubo volcanic eruption on the hydrological cycle as an analog of geoengineering. Geophys Res Lett 34(15):L Soden BJ, et al. (2008) Quantifying climate feedbacks using radiative kernels. J Clim 21(14): Shell KM, Kiehl JT, Shields CA (2008) Using the radiative kernel technique to calculate climate feedbacks in NCAR s Community Atmospheric Model. J Clim 21(10): Vial J, Dufresne J-J, Bony S (2013) On the interpretation of inter-model spread in CMIP5 climate sensitivity estimates. Clim Dyn 41(11-12): Dessler AE (2013) Observations of climate feedbacks over and comparisons to climate models. J Clim 26(1): Loeb NG, et al. (2012) Observed changes in top-of-the-atmosphere radiation and upper-ocean heating consistent within uncertainty. Nat Geosci 5(2): Meehl GA, et al. (2013) Externally forced and internally generated decadal climate variability associated with the Interdecadal Pacific Oscillation. J Clim 26(18): Hocking J, et al. (2011) RTTOV v10 Users Guide. NWP SAF (European Organisation for the Exploitation of Meteorological Satellites, Darmstadt, Germany). 6of6 Chung et al.

7 Supporting Information Chung et al /pnas SI Materials and Methods Uncertainty in Linear Trends from Satellite Observations. The influences of time span on the computation of trends are examined for the satellite observations of High-Resolution Infrared Radiation Sounder (HIRS) channel 12 and microwave sounding unit (MSU) channel 2. Fig. S1 presents least-squares linear trends as a function of the time length denoted by the end year of a period staring from Vertical error bars represent ±2 SE of the estimated trend computed following ref. 1, indicating that the uncertainty in a least-squares linear fit diminishes with the increase in time span. The changes in linear trend with respect to time span are smaller for MSU channel 2 compared with HIRS channel 12. Vertical Profiles of Water-Vapor Changes and their Implication for the Water-Vapor Feedback. Water-vapor changes in the troposphere and their implication for the water-vapor feedback are examined for the historical and historicalnat scenarios using output from 12 models (BNU-ESM, CCSM4, CNRM-CM5, GFDL-CM3, GFDL-ESM2M, GISS-E2-R, HadGEM2-ES, IPSL-CM5A- LR, MIROC-ESM-CHEM, MIROC-ESM, MRI-CGCM3, and NorESM1-M; see Table S1 for information about climate models). Fig. S2 shows the absolute and fractional changes in specific humidity as a function of pressure over the period with circles and horizontal error bars denoting multimodel mean and ±2 intermodel SD, respectively. Despite noticeable intermodel spread, the increase in water vapor is evident, particularly, in the lower troposphere for the historical scenario. Anthropogenic warming results in relatively smaller water-vapor increases in the upper troposphere, however fractional changes are greatest there. In contrast, fractional changes do not show the amplified upper-tropospheric moistening under natural forcing alone. Because the trapping of terrestrial radiation by water vapor is proportional to the logarithm of its concentration, the implication of the amplified upper-tropospheric moistening for the watervapor feedback was assessed by quantifying the feedback strength over two 10-y periods (i.e., and ) for three cases. First, the feedback strength was determined for the historical scenario-simulated water-vapor changes using a radiative kernel method (2 4). The feedback strength computations were repeated for the case that water vapor would change under natural forcing alone. In so doing, the water vapor profiles were modified using the trend determined from the historicalnat scenario. To quantify the part of the total water-vapor feedback related to the upper-tropospheric moistening, the feedback computations were also conducted for the modified water-vapor profiles but with retaining historical scenario-simulated watervapor changes in the upper troposphere. The feedback strengths for the three cases are compared in Fig Weatherhead EC, et al. (1998) Factors affecting the detection of trends: Statistical considerations and applications to environmental data. J Geophys Res 103(D14): 17,149 17, Soden BJ, et al. (2008) Quantifying climate feedbacks using radiative kernels. J Clim 21(14): Shell KM, Kiehl JT, Shields CA (2008) Using the radiative kernel technique to calculate climate feedbacks in NCAR s Community Atmospheric Model. J Clim 21(10): Vial J, Dufresne J-J, Bony S (2013) On the interpretation of inter-model spread in CMIP5 climate sensitivity estimates. Clim Dyn 41(11-12): Chung et al. 1of4

8 Fig. S1. Decadal trends of observed brightness temperatures as a function of time span for (A) HIRS channel 12 (T12), (B) MSU channel 2 (T2), and (C) MSU channel 2 HIRS channel 12 (T2 T12). Years specified on abscissa denote the end year of time period starting from Error bars denote ±2 SE of the linear trend. Chung et al. 2of4

9 Fig. S2. Changes in water vapor in the troposphere. (A) The absolute changes in specific humidity (unit: gram per kilogram per decade) as a function of pressure for the historical (red) and historicalnat (blue) scenarios over the period (B) Same as in A, but for fractional changes in specific humidity (unit: percent). Circles and horizontal error bars denote multimodel mean and ±2 intermodel SD, respectively. Chung et al. 3of4

10 Table S1. CMIP5 climate models listed in the Supporting Information Modeling center Model name Model expanded name Beijing Normal University BNU-ESM Beijing Normal University Earth System Model National Center for Atmospheric Research CCSM4 Community Climate System Model, version 4 Centre National de Recherches Météorologiques (CNRM) CNRM-CM5 CNRM Coupled Global Climate Model, version 5 National Oceanic and Atmospheric Administration GFDL-CM3 GFDL Climate Model, version 3 (NOAA)/Geophysical Fluid Dynamics Laboratory (GFDL) NOAA/GFDL GDFL-ESM2M GDFL Earth System Model with Modular Ocean Model 4 component National Aeronautics and Space Administration Goddard GISS-E2-R GISS Model E2, coupled with the Russell ocean model Institute for Space Studies (GISS) Met Office Hadley Centre HadGEM2-ES Hadley Centre Global Environment Model, version 2-Earth System Institut Pierre-Simon Laplace (IPSL) IPSL-CM5A-LR IPSL Coupled Model, version 5, coupled with Nucleus for European Modelling of the Ocean, low resolution Japan Agency for Marine Earth Science and Technology, Atmosphere and Ocean Research Institute (The University of Tokyo); and National Institute for Environmental Studies Japan Agency for Marine Earth Science and Technology, Atmosphere and Ocean Research Institute (The University of Tokyo); and National Institute for Environmental Studies MIROC-ESM-CHEM MIROC-ESM Model for Interdisciplinary Research on Climate Earth System Model, atmospheric chemistry coupled version Model for Interdisciplinary Research on Climate Earth System Model Meteorological Research Institute (MRI) MRI-CGCM3 MRI Coupled Atmosphere-Ocean General Circulation Model, version 3 Norwegian Climate Centre NorESM1-M Norwegian Earth System Model, version 1 (mid resolution) Chung et al. 4of4

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION In the format provided by the authors and unedited. SUPPLEMENTARY INFORMATION DOI: 10.1038/NGEO2988 Hemispheric climate shifts driven by anthropogenic aerosol-cloud interactions Eui-Seok Chung and Brian

More information

Twenty-first-century projections of North Atlantic tropical storms from CMIP5 models

Twenty-first-century projections of North Atlantic tropical storms from CMIP5 models SUPPLEMENTARY INFORMATION DOI: 10.1038/NCLIMATE1530 Twenty-first-century projections of North Atlantic tropical storms from CMIP5 models SUPPLEMENTARY FIGURE 1. Annual tropical Atlantic SST anomalies (top

More information

Supplement of Insignificant effect of climate change on winter haze pollution in Beijing

Supplement of Insignificant effect of climate change on winter haze pollution in Beijing Supplement of Atmos. Chem. Phys., 18, 17489 17496, 2018 https://doi.org/10.5194/acp-18-17489-2018-supplement Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License.

More information

Evaluation of CMIP5 Simulated Clouds and TOA Radiation Budgets in the SMLs Using NASA Satellite Observations

Evaluation of CMIP5 Simulated Clouds and TOA Radiation Budgets in the SMLs Using NASA Satellite Observations Evaluation of CMIP5 Simulated Clouds and TOA Radiation Budgets in the SMLs Using NASA Satellite Observations Erica K. Dolinar Xiquan Dong and Baike Xi University of North Dakota This talk is based on Dolinar

More information

Desert Amplification in a Warming Climate

Desert Amplification in a Warming Climate Supporting Tables and Figures Desert Amplification in a Warming Climate Liming Zhou Department of Atmospheric and Environmental Sciences, SUNY at Albany, Albany, NY 12222, USA List of supporting tables

More information

S16. ASSESSING THE CONTRIBUTIONS OF EAST AFRICAN AND WEST PACIFIC WARMING TO THE 2014 BOREAL SPRING EAST AFRICAN DROUGHT

S16. ASSESSING THE CONTRIBUTIONS OF EAST AFRICAN AND WEST PACIFIC WARMING TO THE 2014 BOREAL SPRING EAST AFRICAN DROUGHT S6. ASSESSING THE CONTRIBUTIONS OF EAST AFRICAN AND WEST PACIFIC WARMING TO THE 204 BOREAL SPRING EAST AFRICAN DROUGHT Chris Funk, Shraddhanand Shukla, Andy Hoell, and Ben Livneh This document is a supplement

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature11576 1. Trend patterns of SST and near-surface air temperature Bucket SST and NMAT have a similar trend pattern particularly in the equatorial Indo- Pacific (Fig. S1), featuring a reduced

More information

Stratospheric Influences on MSU-Derived Tropospheric Temperature. Trends: A Direct Error Analysis

Stratospheric Influences on MSU-Derived Tropospheric Temperature. Trends: A Direct Error Analysis Stratospheric Influences on MSU-Derived Tropospheric Temperature Trends: A Direct Error Analysis Qiang Fu and Celeste M. Johanson Department of Atmospheric Sciences, University of Washington, Seattle,

More information

Supporting Information for Relation of the double-itcz bias to the atmospheric energy budget in climate models

Supporting Information for Relation of the double-itcz bias to the atmospheric energy budget in climate models GEOPHYSICAL RESEARCH LETTERS Supporting Information for Relation of the double-itcz bias to the atmospheric energy budget in climate models Ori Adam 1, Tapio Schneider 1,2, Florent Brient 1, and Tobias

More information

Drylands face potential threat under 2 C global warming target

Drylands face potential threat under 2 C global warming target In the format provided by the authors and unedited. SUPPLEMENTARY INFORMATION DOI: 10.1038/NCLIMATE3275 Drylands face potential threat under 2 C global warming target Jianping Huang 1 *, Haipeng Yu 1,

More information

Supplementary Figure 1 Observed change in wind and vertical motion. Anomalies are regime differences between periods and obtained

Supplementary Figure 1 Observed change in wind and vertical motion. Anomalies are regime differences between periods and obtained Supplementary Figure 1 Observed change in wind and vertical motion. Anomalies are regime differences between periods 1999 2013 and 1979 1998 obtained from ERA-interim. Vectors are horizontal wind at 850

More information

Supplementary Information for:

Supplementary Information for: Supplementary Information for: Linkage between global sea surface temperature and hydroclimatology of a major river basin of India before and after 1980 P. Sonali, Ravi S. Nanjundiah, & D. Nagesh Kumar

More information

Supplementary Figure 1 A figure of changing surface air temperature and top-1m soil moisture: (A) Annual mean surface air temperature, and (B) top

Supplementary Figure 1 A figure of changing surface air temperature and top-1m soil moisture: (A) Annual mean surface air temperature, and (B) top Supplementary Figure 1 A figure of changing surface air temperature and top-1m soil moisture: (A) Annual mean surface air temperature, and (B) top 1-m soil moisture averaged over California from CESM1.

More information

Future freshwater stress for island populations

Future freshwater stress for island populations Future freshwater stress for island populations Kristopher B. Karnauskas, Jeffrey P. Donnelly and Kevin J. Anchukaitis Summary: Top left: Overview map of the four island stations located in the U.S. state

More information

Climate model simulations of the observed early-2000s hiatus of global warming

Climate model simulations of the observed early-2000s hiatus of global warming Climate model simulations of the observed early-2000s hiatus of global warming Gerald A. Meehl 1, Haiyan Teng 1, and Julie M. Arblaster 1,2 1. National Center for Atmospheric Research, Boulder, CO 2. CAWCR,

More information

Stratospheric Influences on MSU-Derived Tropospheric Temperature Trends: A Direct Error Analysis

Stratospheric Influences on MSU-Derived Tropospheric Temperature Trends: A Direct Error Analysis 4636 JOURNAL OF CLIMATE Stratospheric Influences on MSU-Derived Tropospheric Temperature Trends: A Direct Error Analysis QIANG FU ANDCELESTE M. JOHANSON Department of Atmospheric Sciences, University of

More information

The Two Types of ENSO in CMIP5 Models

The Two Types of ENSO in CMIP5 Models 1 2 3 The Two Types of ENSO in CMIP5 Models 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Seon Tae Kim and Jin-Yi Yu * Department of Earth System

More information

Abstract: The question of whether clouds are the cause of surface temperature

Abstract: The question of whether clouds are the cause of surface temperature Cloud variations and the Earth s energy budget A.E. Dessler Dept. of Atmospheric Sciences Texas A&M University College Station, TX Abstract: The question of whether clouds are the cause of surface temperature

More information

Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades

Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades SUPPLEMENTARY INFORMATION DOI: 10.1038/NGEO2277 Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades Masato Mori 1*, Masahiro Watanabe 1, Hideo Shiogama 2, Jun Inoue 3,

More information

Snow occurrence changes over the central and eastern United States under future. warming scenarios

Snow occurrence changes over the central and eastern United States under future. warming scenarios Snow occurrence changes over the central and eastern United States under future warming scenarios Liang Ning 1,2,3* and Raymond S. Bradley 2 1 Key Laboratory of Virtual Geographic Environment of Ministry

More information

Supplementary Information for Impacts of a warming marginal sea on torrential rainfall organized under the Asian summer monsoon

Supplementary Information for Impacts of a warming marginal sea on torrential rainfall organized under the Asian summer monsoon 1 2 3 4 5 6 7 8 9 10 11 Supplementary Information for Impacts of a warming marginal sea on torrential rainfall organized under the Asian summer monsoon 12 13 14 Atsuyoshi Manda 1, Hisashi Nakamura 2,4,

More information

9.12 EVALUATION OF CLIMATE-MODEL SIMULATIONS OF HIRS WATER-VAPOUR CHANNEL RADIANCES

9.12 EVALUATION OF CLIMATE-MODEL SIMULATIONS OF HIRS WATER-VAPOUR CHANNEL RADIANCES 9.12 EVALUATION OF CLIMATE-MODEL SIMULATIONS OF HIRS WATER-VAPOUR CHANNEL RADIANCES Richard P. Allan* and Mark A. Ringer Hadley Centre for Climate Prediction and Research Met Office, Bracknell, Berkshire,

More information

More extreme precipitation in the world s dry and wet regions

More extreme precipitation in the world s dry and wet regions More extreme precipitation in the world s dry and wet regions Markus G. Donat, Andrew L. Lowry, Lisa V. Alexander, Paul A. O Gorman, Nicola Maher Supplementary Table S1: CMIP5 simulations used in this

More information

The importance of ENSO phase during volcanic eruptions for detection and attribution

The importance of ENSO phase during volcanic eruptions for detection and attribution Geophysical Research Letters Supporting Information for The importance of ENSO phase during volcanic eruptions for detection and attribution Flavio Lehner 1, Andrew P. Schurer 2, Gabriele C. Hegerl 2,

More information

The two types of ENSO in CMIP5 models

The two types of ENSO in CMIP5 models GEOPHYSICAL RESEARCH LETTERS, VOL. 39,, doi:10.1029/2012gl052006, 2012 The two types of ENSO in CMIP5 models Seon Tae Kim 1 and Jin-Yi Yu 1 Received 12 April 2012; revised 14 May 2012; accepted 15 May

More information

Significant anthropogenic-induced changes. of climate classes since 1950

Significant anthropogenic-induced changes. of climate classes since 1950 Significant anthropogenic-induced changes of climate classes since 95 (Supplementary Information) Duo Chan and Qigang Wu * School of Atmospheric Science, Nanjing University, Hankou Road #22, Nanjing, Jiangsu,

More information

Supplemental Material for

Supplemental Material for Supplemental Material for Northern North Atlantic Sea Level in CMIP5 Climate Models: Evaluation of Mean State, Variability, and Trends against Altimetric Observations Kristin Richter, a Jan Even Øie Nilsen,

More information

Consequences for Climate Feedback Interpretations

Consequences for Climate Feedback Interpretations CO 2 Forcing Induces Semi-direct Effects with Consequences for Climate Feedback Interpretations Timothy Andrews and Piers M. Forster School of Earth and Environment, University of Leeds, Leeds, LS2 9JT,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Effect of remote sea surface temperature change on tropical cyclone potential intensity Gabriel A. Vecchi Geophysical Fluid Dynamics Laboratory NOAA Brian J. Soden Rosenstiel School for Marine and Atmospheric

More information

INVESTIGATING THE SIMULATIONS OF HYDROLOGICAL and ENERGY CYCLES OF IPCC GCMS OVER THE CONGO AND UPPER BLUE NILE BASINS

INVESTIGATING THE SIMULATIONS OF HYDROLOGICAL and ENERGY CYCLES OF IPCC GCMS OVER THE CONGO AND UPPER BLUE NILE BASINS INVESTIGATING THE SIMULATIONS OF HYDROLOGICAL and ENERGY CYCLES OF IPCC GCMS OVER THE CONGO AND UPPER BLUE NILE BASINS Mohamed Siam, and Elfatih A. B. Eltahir. Civil & Environmental Engineering Department,

More information

Intercomparison of temperature trends in IPCC CMIP5 simulations with observations, reanalyses and CMIP3 models

Intercomparison of temperature trends in IPCC CMIP5 simulations with observations, reanalyses and CMIP3 models doi:10.5194/gmd-6-1705-2013 Author(s) 2013. CC Attribution 3.0 License. Geoscientific Model Development Open Access Intercomparison of temperature trends in IPCC CMIP5 simulations with observations, reanalyses

More information

Using HIRS Observations to Construct Long-Term Global Temperature and Water Vapor Profile Time Series

Using HIRS Observations to Construct Long-Term Global Temperature and Water Vapor Profile Time Series Using HIRS Observations to Construct Long-Term Global Temperature and Water Vapor Profile Time Series Lei Shi and John J. Bates National Climatic Data Center, National Oceanic and Atmospheric Administration

More information

Reconciling the Observed and Modeled Southern Hemisphere Circulation Response to Volcanic Eruptions Supplemental Material

Reconciling the Observed and Modeled Southern Hemisphere Circulation Response to Volcanic Eruptions Supplemental Material JOURNAL OF GEOPHYSICAL RESEARCH, VOL.???, XXXX, DOI:10.1002/, 1 2 3 Reconciling the Observed and Modeled Southern Hemisphere Circulation Response to Volcanic Eruptions Supplemental Material Marie C. McGraw

More information

Using observations to constrain climate project over the Amazon - Preliminary results and thoughts

Using observations to constrain climate project over the Amazon - Preliminary results and thoughts Using observations to constrain climate project over the Amazon - Preliminary results and thoughts Rong Fu & Wenhong Li Georgia Tech. & UT Austin CCSM Climate Variability Working Group Session June 19,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION DOI: 10.1038/NGEO2517 Two distinct influences of Arctic warming on cold winters over North America and East Asia Jong-Seong Kug 1, Jee-Hoon Jeong 2*, Yeon-Soo Jang 1, Baek-Min

More information

4C.4 TRENDS IN LARGE-SCALE CIRCULATIONS AND THERMODYNAMIC STRUCTURES IN THE TROPICS DERIVED FROM ATMOSPHERIC REANALYSES AND CLIMATE CHANGE EXPERIMENTS

4C.4 TRENDS IN LARGE-SCALE CIRCULATIONS AND THERMODYNAMIC STRUCTURES IN THE TROPICS DERIVED FROM ATMOSPHERIC REANALYSES AND CLIMATE CHANGE EXPERIMENTS 4C.4 TRENDS IN LARGE-SCALE CIRCULATIONS AND THERMODYNAMIC STRUCTURES IN THE TROPICS DERIVED FROM ATMOSPHERIC REANALYSES AND CLIMATE CHANGE EXPERIMENTS Junichi Tsutsui Central Research Institute of Electric

More information

Global Warming Attenuates the. Tropical Atlantic-Pacific Teleconnection

Global Warming Attenuates the. Tropical Atlantic-Pacific Teleconnection 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Supplementary Information for Global Warming Attenuates the Tropical Atlantic-Pacific Teleconnection Fan Jia 1, Lixin Wu 2*, Bolan

More information

Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere-ocean climate models

Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere-ocean climate models GEOPHYSICAL RESEARCH LETTERS, VOL. 39,, doi:10.1029/2012gl051607, 2012 Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere-ocean climate models Timothy Andrews, 1 Jonathan M. Gregory,

More information

Understanding Climate Feedbacks Using Radiative Kernels

Understanding Climate Feedbacks Using Radiative Kernels Understanding Climate Feedbacks Using Radiative Kernels Brian Soden Rosenstiel School for Marine and Atmospheric Science University of Miami Overview of radiative kernels Recent advances in understanding

More information

Satellite-Based Reconstruction of the Tropical Oceanic Clear-Sky Outgoing Longwave Radiation and Comparison with Climate Models

Satellite-Based Reconstruction of the Tropical Oceanic Clear-Sky Outgoing Longwave Radiation and Comparison with Climate Models 15 JANUARY 2014 G A S T I N E A U E T A L. 941 Satellite-Based Reconstruction of the Tropical Oceanic Clear-Sky Outgoing Longwave Radiation and Comparison with Climate Models GUILLAUME GASTINEAU LOCEAN/IPSL,

More information

Research Article Detecting Warming Hiatus Periods in CMIP5 Climate Model Projections

Research Article Detecting Warming Hiatus Periods in CMIP5 Climate Model Projections International Atmospheric Sciences Volume 6, Article ID 9657659, 7 pages http://dx.doi.org/.55/6/9657659 Research Article Detecting Warming Hiatus Periods in CMIP5 Climate Model Projections Tony W. Li

More information

Supplemental material

Supplemental material Supplemental material The multivariate bias correction algorithm presented by Bürger et al. (2011) is based on a linear transformation that is specified in terms of the observed and climate model multivariate

More information

Paul W. Stackhouse, Jr., NASA Langley Research Center

Paul W. Stackhouse, Jr., NASA Langley Research Center An Assessment of Actual and Potential Building Climate Zone Change and Variability From the Last 30 Years Through 2100 Using NASA s MERRA and CMIP5 Simulations Paul W. Stackhouse, Jr., NASA Langley Research

More information

Reply to Comments on A Bias in the Midtropospheric Channel Warm Target Factor on the NOAA-9 Microwave Sounding Unit

Reply to Comments on A Bias in the Midtropospheric Channel Warm Target Factor on the NOAA-9 Microwave Sounding Unit 1014 J O U R N A L O F A T M O S P H E R I C A N D O C E A N I C T E C H N O L O G Y VOLUME 30 Reply to Comments on A Bias in the Midtropospheric Channel Warm Target Factor on the NOAA-9 Microwave Sounding

More information

Decadal shifts of East Asian summer monsoon in a climate. model free of explicit GHGs and aerosols

Decadal shifts of East Asian summer monsoon in a climate. model free of explicit GHGs and aerosols Decadal shifts of East Asian summer monsoon in a climate model free of explicit GHGs and aerosols Renping Lin, Jiang Zhu* and Fei Zheng International Center for Climate and Environment Sciences, Institute

More information

Changes in the El Nino s spatial structure under global warming. Sang-Wook Yeh Hanyang University, Korea

Changes in the El Nino s spatial structure under global warming. Sang-Wook Yeh Hanyang University, Korea Changes in the El Nino s spatial structure under global warming Sang-Wook Yeh Hanyang University, Korea Changes in El Nino spatial structure Yeh et al. (2009) McPhaden et al. (2009) Why the spatial structure

More information

PUBLICATIONS. Geophysical Research Letters

PUBLICATIONS. Geophysical Research Letters PUBLICATIONS Geophysical Research Letters RESEARCH LETTER Key Points: Biases in the unperturbed climatology contribute to the uncertainty in climate change projections Biases in the climatological SST

More information

Detectability of Changes in the Walker Circulation in Response to Global Warming*

Detectability of Changes in the Walker Circulation in Response to Global Warming* 4038 J O U R N A L O F C L I M A T E VOLUME 26 Detectability of Changes in the Walker Circulation in Response to Global Warming* PEDRO N. DINEZIO International Pacific Research Center, School of Ocean

More information

Understanding the regional pattern of projected future changes in extreme precipitation

Understanding the regional pattern of projected future changes in extreme precipitation In the format provided by the authors and unedited. Understanding the regional pattern of projected future changes in extreme precipitation S. Pfahl 1 *,P.A.O Gorman 2 and E. M. Fischer 1 Changes in extreme

More information

Energetic and precipitation responses in the Sahel to sea surface temperature perturbations

Energetic and precipitation responses in the Sahel to sea surface temperature perturbations Energetic and precipitation responses in the Sahel to sea surface temperature perturbations Spencer A. Hill Yi Ming, Isaac Held, Leo Donner, Ming Zhao Motivations Severe uncertainty in rainfall response

More information

Karonga Climate Profile: Full Technical Version

Karonga Climate Profile: Full Technical Version Karonga Climate Profile: Full Technical Version Prepared by: University of Cape Town November 2017 For enquiries regarding this Climate Profile, please contact Lisa van Aardenne (lisa@csag.uct.ac.za) or

More information

On the interpretation of inter-model spread in CMIP5 climate sensitivity

On the interpretation of inter-model spread in CMIP5 climate sensitivity Climate Dynamics manuscript No. (will be inserted by the editor) 1 2 On the interpretation of inter-model spread in CMIP5 climate sensitivity estimates 3 Jessica Vial Jean-Louis Dufresne Sandrine Bony

More information

Early benefits of mitigation in risk of regional climate extremes

Early benefits of mitigation in risk of regional climate extremes In the format provided by the authors and unedited. DOI: 10.1038/NCLIMATE3259 Early benefits of mitigation in risk of regional climate extremes Andrew Ciavarella 1 *, Peter Stott 1,2 and Jason Lowe 1,3

More information

Supplementary Figure S1: Uncertainty of runoff changes Assessments of. R [mm/yr/k] for each model and the ensemble mean.

Supplementary Figure S1: Uncertainty of runoff changes Assessments of. R [mm/yr/k] for each model and the ensemble mean. Supplementary Figure S1: Uncertainty of runoff changes Assessments of R [mm/yr/k] for each model and the ensemble mean. 1 Supplementary Figure S2: Schematic diagrams of methods The top panels show uncertainty

More information

Ocean carbon cycle feedbacks in the tropics from CMIP5 models

Ocean carbon cycle feedbacks in the tropics from CMIP5 models WWW.BJERKNES.UIB.NO Ocean carbon cycle feedbacks in the tropics from CMIP5 models Jerry Tjiputra 1, K. Lindsay 2, J. Orr 3, J. Segschneider 4, I. Totterdell 5, and C. Heinze 1 1 Bjerknes Centre for Climate

More information

Geophysical Research Letters. Supporting Information for. Ozone-induced climate change propped up by the Southern Hemisphere oceanic front

Geophysical Research Letters. Supporting Information for. Ozone-induced climate change propped up by the Southern Hemisphere oceanic front Geophysical Research Letters Supporting Information for Ozone-induced climate change propped up by the Southern Hemisphere oceanic front Authors and affiliations Fumiaki Ogawa, Geophysical Institute, University

More information

Supplementary Figure 1: Time series of 48 N AMOC maximum from six model historical simulations based on different models. For each model, the wavelet

Supplementary Figure 1: Time series of 48 N AMOC maximum from six model historical simulations based on different models. For each model, the wavelet Supplementary Figure 1: Time series of 48 N AMOC maximum from six model historical simulations based on different models. For each model, the wavelet analysis of AMOC is also shown; bold contours mark

More information

Explaining Changes in Extremes and Decadal Climate Fluctuations

Explaining Changes in Extremes and Decadal Climate Fluctuations Explaining Changes in Extremes and Decadal Climate Fluctuations Gerald A. Meehl Julie Arblaster, Claudia Tebaldi, Aixue Hu, Ben Santer Explaining changes implies attributing those changes to some cause

More information

Low-level wind, moisture, and precipitation relationships near the South Pacific Convergence Zone in CMIP3/CMIP5 models

Low-level wind, moisture, and precipitation relationships near the South Pacific Convergence Zone in CMIP3/CMIP5 models Low-level wind, moisture, and precipitation relationships near the South Pacific Convergence Zone in CMIP3/CMIP5 models Matthew J. Niznik and Benjamin R. Lintner Rutgers University 25 April 2012 niznik@envsci.rutgers.edu

More information

Southern Hemisphere jet latitude biases in CMIP5 models linked to shortwave cloud forcing

Southern Hemisphere jet latitude biases in CMIP5 models linked to shortwave cloud forcing GEOPHYSICAL RESEARCH LETTERS, VOL.???, XXXX, DOI:10.1029/, 1 2 Southern Hemisphere jet latitude biases in CMIP5 models linked to shortwave cloud forcing Paulo Ceppi, 1 Yen-Ting Hwang, 1 Dargan M. W. Frierson,

More information

Supplemental Material

Supplemental Material Supplemental Material Copyright 2018 American Meteorological Society Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided

More information

Forcing of anthropogenic aerosols on temperature trends of the subthermocline

Forcing of anthropogenic aerosols on temperature trends of the subthermocline Forcing of anthropogenic aerosols on temperature trends of the subthermocline southern Indian Ocean Tim Cowan* 1,2, Wenju Cai 1, Ariaan Purich 1, Leon Rotstayn 1 and Matthew H. England 2 1 CSIRO Marine

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION DOI: 10.1038/NGEO1189 Different magnitudes of projected subsurface ocean warming around Greenland and Antarctica Jianjun Yin 1*, Jonathan T. Overpeck 1, Stephen M. Griffies 2,

More information

ENSO amplitude changes in climate change commitment to atmospheric CO 2 doubling

ENSO amplitude changes in climate change commitment to atmospheric CO 2 doubling GEOPHYSICAL RESEARCH LETTERS, VOL. 33, L13711, doi:10.1029/2005gl025653, 2006 ENSO amplitude changes in climate change commitment to atmospheric CO 2 doubling Sang-Wook Yeh, 1 Young-Gyu Park, 1 and Ben

More information

Introduction to climate modelling: Evaluating climate models

Introduction to climate modelling: Evaluating climate models Introduction to climate modelling: Evaluating climate models Why? How? Professor David Karoly School of Earth Sciences, University of Melbourne Experiment design Detection and attribution of climate change

More information

Detection and Attribution of Observed Changes in Northern Hemisphere Spring Snow Cover

Detection and Attribution of Observed Changes in Northern Hemisphere Spring Snow Cover 6904 J O U R N A L O F C L I M A T E VOLUME 26 Detection and Attribution of Observed Changes in Northern Hemisphere Spring Snow Cover DAVID E. RUPP AND PHILIP W. MOTE Oregon Climate Change Research Institute,

More information

9.7 Climate Sensitivity and Climate Feedbacks

9.7 Climate Sensitivity and Climate Feedbacks Evaluation of Models Chapter precipitation projections was explained by the differences in global model boundary conditions, although much of the spread in projected summer precipitation was explained

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION DOI: 10.1038/NGEO1854 Anthropogenic aerosol forcing of Atlantic tropical storms N. J. Dunstone 1, D. S. Smith 1, B. B. B. Booth 1, L. Hermanson 1, R. Eade 1 Supplementary information

More information

NOTES AND CORRESPONDENCE. On the Radiative and Dynamical Feedbacks over the Equatorial Pacific Cold Tongue

NOTES AND CORRESPONDENCE. On the Radiative and Dynamical Feedbacks over the Equatorial Pacific Cold Tongue 15 JULY 2003 NOTES AND CORRESPONDENCE 2425 NOTES AND CORRESPONDENCE On the Radiative and Dynamical Feedbacks over the Equatorial Pacific Cold Tongue DE-ZHENG SUN NOAA CIRES Climate Diagnostics Center,

More information

Anthropogenic forcing dominates global mean sea-level rise since 1970

Anthropogenic forcing dominates global mean sea-level rise since 1970 Anthropogenic forcing dominates global mean sea-level rise since 1970 Aimée B. A. Slangen 1,2 *, John A. Church 1, Cecile Agosta 3, Xavier Fettweis 3, Ben Marzeion 4 and Kristin Richter 5 1 CSIRO Oceans

More information

MONITORING PRESENT DAY CHANGES IN WATER VAPOUR AND THE RADIATIVE ENERGY BALANCE USING SATELLITE DATA, REANALYSES AND MODELS

MONITORING PRESENT DAY CHANGES IN WATER VAPOUR AND THE RADIATIVE ENERGY BALANCE USING SATELLITE DATA, REANALYSES AND MODELS MONITORING PRESENT DAY CHANGES IN WATER VAPOUR AND THE RADIATIVE ENERGY BALANCE USING SATELLITE DATA, REANALYSES AND MODELS Richard P. Allan Environmental Systems Science Centre, University of Reading,

More information

Comparison of Short-Term and Long-Term Radiative Feedbacks and Variability in Twentieth-Century Global Climate Model Simulations

Comparison of Short-Term and Long-Term Radiative Feedbacks and Variability in Twentieth-Century Global Climate Model Simulations 15 DECEMBER 2013 D A L T O N A N D S H E L L 10051 Comparison of Short-Term and Long-Term Radiative Feedbacks and Variability in Twentieth-Century Global Climate Model Simulations MEGHAN M. DALTON Oregon

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION DOI:.8/NCLIMATE76 Supplementary information for Changes in South Pacific rainfall bands in a warming climate Matthew J. Widlansky, Axel Timmermann,, Karl Stein, Shayne McGregor,

More information

Fewer large waves projected for eastern Australia due to decreasing storminess

Fewer large waves projected for eastern Australia due to decreasing storminess SUPPLEMENTARY INFORMATION DOI: 0.08/NCLIMATE Fewer large waves projected for eastern Australia due to decreasing storminess 6 7 8 9 0 6 7 8 9 0 Details of the wave observations The locations of the five

More information

Decreased monsoon precipitation in the Northern Hemisphere due to anthropogenic aerosols

Decreased monsoon precipitation in the Northern Hemisphere due to anthropogenic aerosols Decreased monsoon precipitation in the Northern Hemisphere due to anthropogenic aerosols Article Supplemental Material Polson, D., Bollasina, M., Hegerl, G. C. and Wilcox, L. J. (214) Decreased monsoon

More information

Externally forced and internal variability in multi-decadal climate evolution

Externally forced and internal variability in multi-decadal climate evolution Externally forced and internal variability in multi-decadal climate evolution During the last 150 years, the increasing atmospheric concentration of anthropogenic greenhouse gases has been the main driver

More information

NOAA MSU/AMSU Radiance FCDR. Methodology, Production, Validation, Application, and Operational Distribution. Cheng-Zhi Zou

NOAA MSU/AMSU Radiance FCDR. Methodology, Production, Validation, Application, and Operational Distribution. Cheng-Zhi Zou NOAA MSU/AMSU Radiance FCDR Methodology, Production, Validation, Application, and Operational Distribution Cheng-Zhi Zou NOAA/NESDIS/Center for Satellite Applications and Research GSICS Microwave Sub-Group

More information

CMIP5 Projection of Significant Reduction in Extratropical Cyclone Activity over North America

CMIP5 Projection of Significant Reduction in Extratropical Cyclone Activity over North America 15 DECEMBER 2013 C H A N G 9903 CMIP5 Projection of Significant Reduction in Extratropical Cyclone Activity over North America EDMUND K. M. CHANG School of Marine and Atmospheric Sciences, Stony Brook

More information

Attribution of observed historical near-surface temperature variations to anthropogenic and natural causes using CMIP5 simulations

Attribution of observed historical near-surface temperature variations to anthropogenic and natural causes using CMIP5 simulations JOURNAL OF GEOPHYSICAL RESEARCH: ATMOSPHERES, VOL. 118, 1, doi:1.1/jgrd.539, 13 Attribution of observed historical near-surface temperature variations to anthropogenic and natural causes using CMIP5 simulations

More information

Thermal characteristics of the cold-point tropopause region in CMIP5 models

Thermal characteristics of the cold-point tropopause region in CMIP5 models JOURNAL OF GEOPHYSICAL RESEARCH: ATMOSPHERES, VOL. 118, 8827 8841, doi:10.1002/jgrd.50649, 2013 Thermal characteristics of the cold-point tropopause region in CMIP5 models Joowan Kim, 1 Kevin M. Grise,

More information

!"#$%&' A Study of Upper Air Temperature Change ==== N==!"#$%&'() !"#$% ADVANCES IN CLIMATE CHANGE RESEARCH

!#$%&' A Study of Upper Air Temperature Change ==== N==!#$%&'() !#$% ADVANCES IN CLIMATE CHANGE RESEARCH ==== www.climatechange.cn O = R OMMS V!"#$% ADVANCES IN CLIMATE CHANGE RESEARCH Vol.2, No.5 September, 2006!"1673-1719 (2006) 05-0228-05!"#$%&' A Study of Upper Air Temperature Change!!"#$ %!&'( NMMMUN

More information

A Review of Soden et al: Global Cooling After the Eruption of Mount Pinatubo: A Test of Climate Feedback by Water Vapor.

A Review of Soden et al: Global Cooling After the Eruption of Mount Pinatubo: A Test of Climate Feedback by Water Vapor. Suvi Flagan ESE/Ge 148a A Review of Soden et al: Global Cooling After the Eruption of Mount Pinatubo: A Test of Climate Feedback by Water Vapor. By: BJ Soden, RT Wetherald, GL Stenchikov, and A Robock.

More information

Climate Change Scenario, Climate Model and Future Climate Projection

Climate Change Scenario, Climate Model and Future Climate Projection Training on Concept of Climate Change: Impacts, Vulnerability, Adaptation and Mitigation 6 th December 2016, CEGIS, Dhaka Climate Change Scenario, Climate Model and Future Climate Projection A.K.M. Saiful

More information

Contents of this file

Contents of this file Geophysical Research Letters Supporting Information for Future changes in tropical cyclone activity in high-resolution large-ensemble simulations Kohei Yoshida 1, Masato Sugi 1, Ryo Mizuta 1, Hiroyuki

More information

Effects of Black Carbon on Temperature Lapse Rates

Effects of Black Carbon on Temperature Lapse Rates Effects of Black Carbon on Temperature Lapse Rates Joyce E. Penner 1 Minghuai Wang 1, Akshay Kumar 1, Leon Rotstayn 2, Ben Santer 1 University of Michigan, 2 CSIRO, 3 LLNL Thanks to Warren Washington and

More information

Why the hiatus in global mean surface temperature trends in the last decade?

Why the hiatus in global mean surface temperature trends in the last decade? Why the hiatus in global mean surface temperature trends in the last decade? G. Bala Divecha Center for Climate Change Indian Institute of Science, Bangalore (Email: gbala@caos.iisc.ernet.in) On 27 September

More information

How Will Low Clouds Respond to Global Warming?

How Will Low Clouds Respond to Global Warming? How Will Low Clouds Respond to Global Warming? By Axel Lauer & Kevin Hamilton CCSM3 UKMO HadCM3 UKMO HadGEM1 iram 2 ECHAM5/MPI OM 3 MIROC3.2(hires) 25 IPSL CM4 5 INM CM3. 4 FGOALS g1. 7 GISS ER 6 GISS

More information

Understanding Global Environmental Trends and Projections. Ants Leetmaa Geophysical Fluid Dynamics Laboratory Princeton, NJ 08542

Understanding Global Environmental Trends and Projections. Ants Leetmaa Geophysical Fluid Dynamics Laboratory Princeton, NJ 08542 Understanding Global Environmental Trends and Projections Ants Leetmaa Geophysical Fluid Dynamics Laboratory Princeton, NJ 08542 Climate Scenarios Used for Attribution Studies of Climate Variability and

More information

Monitoring Climate Change using Satellites: Lessons from MSU

Monitoring Climate Change using Satellites: Lessons from MSU Monitoring Climate Change using Satellites: Lessons from MSU Peter Thorne, Simon Tett Hadley Centre, Met Office, Exeter, UK UAH data from John Christy Residual uncertainty work in collaboration with John

More information

Getting our Heads out of the Clouds: The Role of Subsident Teleconnections in Climate Sensitivity

Getting our Heads out of the Clouds: The Role of Subsident Teleconnections in Climate Sensitivity Getting our Heads out of the Clouds: The Role of Subsident Teleconnections in Climate Sensitivity John Fasullo Climate Analysis Section, NCAR Getting our Heads out of the Clouds: The Role of Subsident

More information

Climate Feedbacks from ERBE Data

Climate Feedbacks from ERBE Data Climate Feedbacks from ERBE Data Why Is Lindzen and Choi (2009) Criticized? Zhiyu Wang Department of Atmospheric Sciences University of Utah March 9, 2010 / Earth Climate System Outline 1 Introduction

More information

Link between land-ocean warming contrast and surface relative humidities in simulations with coupled climate models

Link between land-ocean warming contrast and surface relative humidities in simulations with coupled climate models Link between land-ocean warming contrast and surface relative humidities in simulations with coupled climate models The MIT Faculty has made this article openly available. Please share how this access

More information

Planetary boundary layer depth in Global climate. models induced biases in surface climatology

Planetary boundary layer depth in Global climate. models induced biases in surface climatology Planetary boundary layer depth in Global climate models induced biases in surface climatology Richard Davy 1 & Igor Esau 1 The Earth has warmed in the last century with the most rapid warming occurring

More information

The Response of ENSO Events to Higher CO 2 Forcing: Role of Nonlinearity De-Zheng Sun, Jiabing Shuai, and Shao Sun

The Response of ENSO Events to Higher CO 2 Forcing: Role of Nonlinearity De-Zheng Sun, Jiabing Shuai, and Shao Sun The Response of ENSO Events to Higher CO 2 Forcing: Role of Nonlinearity De-Zheng Sun, Jiabing Shuai, and Shao Sun CIRES, University of Colorado & Earth System Research Laboratory, NOAA http://www.esrl.noaa.gov/psd/people/dezheng.sun/

More information

A Bias in the Midtropospheric Channel Warm Target Factor on the NOAA-9 Microwave Sounding Unit

A Bias in the Midtropospheric Channel Warm Target Factor on the NOAA-9 Microwave Sounding Unit 646 J O U R N A L O F A T M O S P H E R I C A N D O C E A N I C T E C H N O L O G Y VOLUME 29 A Bias in the Midtropospheric Channel Warm Target Factor on the NOAA-9 Microwave Sounding Unit STEPHEN PO-CHEDLEY

More information

On the determination of climate feedbacks from ERBE data

On the determination of climate feedbacks from ERBE data On the determination of climate feedbacks from ERBE data Richard S. Lindzen and Yong-Sang Choi Program in Atmospheres, Oceans, and Climate Massachusetts Institute of Technology Accepted on July 1, for

More information

Correction notice. Nature Climate Change 2, (2012)

Correction notice. Nature Climate Change 2, (2012) Correction notice Nature Climate Change 2, 524 549 (2012) Human-induced global ocean warming on multidecadal timescales P. J. Gleckler, B. D. Santer, C. M. Domingues, D.W. Pierce, T. P. Barnett, J. A.

More information

The final push to extreme El Ninõ

The final push to extreme El Ninõ The final push to extreme El Ninõ Why is ENSO asymmetry underestimated in climate model simulations? WonMoo Kim* and Wenju Cai CSIRO Marine and Atmospheric Research *Current Affiliation: CCCPR, Ewha Womans

More information

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Title Amplification of surface temperature trends and variability in the tropical atmosphere Permalink https://escholarship.org/uc/item/050980tk

More information

How closely do changes in surface and column water vapor follow Clausius-Clapeyron scaling in climate change simulations?

How closely do changes in surface and column water vapor follow Clausius-Clapeyron scaling in climate change simulations? How closely do changes in surface and column water vapor follow Clausius-Clapeyron scaling in climate change simulations? The MIT Faculty has made this article openly available. Please share how this access

More information