images may not align well. For this reason ripple migrations have only been calculated over two

Size: px
Start display at page:

Download "images may not align well. For this reason ripple migrations have only been calculated over two"

Transcription

1 GSA DATA REPOSITORY S. Silvestro et al. SUPPLEMENTARY INFORMATION: PERVASIVE AEOLIAN ACTIVITY ALONG ROVER CURIOSITY S TRAVERSE IN GALE CRATER, MARS S.Silvestro, D.A. Vaz, R.C. Ewing, A.P. Rossi, L.K. Fenton, T.M. Michaels, J. Flahaut and P.E. Geissler Aeolian change detection Changes in the dune and ripple pattern were measured over three HiRISE images (0.25 meters per pixel). The images were processed in a cylindrical projection on the Mars IAU spheroid using the United States Geological Survey-ISIS (Integrated Software for Imagers and Spectrometers) software. Tracking changes in the ripple pattern and measuring the crestline displacement is challenging due to the difference in the acquisition parameters between the overlapping images. When images are taken off-nadir (i.e. with an emission angle different than 0 ), geometric distortions (parallax) arise and the images may not align well. For this reason ripple migrations have only been calculated over two orthorectified images (the T1-T2 pair). The process of orthorectification over a digital terrain model (DTM) remove the parallax distortion for topographic features resolved by the DTM (> 1 m/pixel) and the image co-registration could been performed in ArcGIS with minimal error (RMS = and for the pairs T1-T2 and T1-T3 respectively). The orthorectified images are freely available from the HiRISE web site ( However, because the study ripple are barely resolved by the DTM, the parallax is not completely removed and our measurements suffer from an error that we are not able to quantify. Radiometric distortions arise from difference in lighting geometry. Big offsets in the sub solar azimuth (the direction of the sun) will change the direction of the shadow. In the pair T1-T2 this change is minimal (less than 8 ), and for both images the light comes from the NW (top right). Differences in the season (solar longitude, Ls) cause a divergence in the solar incidence angle (the angle the sun makes with the surface relative to zenith). This causes albedo and contrast variations between the two images. This issue can be minimized in ArcGIS (brightness and contrast of one image has been adjusted to make it as similar as possible to the other).

2 The Mars Regional Atmospheric Modeling System (MRAMS) The Mars Regional Atmospheric Modeling System (MRAMS first described in Rafkin et al. 2001, with further updates in Michaels and Rafkin, 2008) is a non hydrostatic, fully compressible, limited domain (i.e., not global) atmospheric model that uses nested grids to estimate/predict atmospheric conditions on Mars at high resolution. MRAMS includes cloud microphysics options, topographic shadowing and slope effects, dust entrainment/sedimentation capabilities, a state-of-the-art radiative transfer scheme for Mars, boundary layer turbulence parameterizations, surface characteristics and topography from gridded spacecraft datasets, and a multi-level subsurface thermal model. Further relevant model details and explanations are provided in the following paragraphs. The model permits the simulation of atmospheric flows with large vertical accelerations, believed to be a relatively common occurrence on Mars. In addition it is easily configured over a wide range of user-specified regions and horizontal grid spacings (can range from meters to hundreds of kilometers). The vertical grid consists of 60 layers that use an altitude-based terrain-influenced coordinate system, ranging in thickness from 15 m near the surface to 2.5 km at the top (at a height of ~70km). A nearly unlimited number of multiple-nested, two-way interactive grids may be used in a simulation, allowing the model to resolve small-scale phenomena embedded in larger-scale systems. For example, a three-grid simulation with grid spacings of 80, 40, and 10 kilometers could be used to investigate the large-scale evolution of a baroclinic disturbance (e.g., a low pressure system), while simultaneously allowing the examination of the smaller-scale structure and effects of a frontal zone (e.g., cold front). MRAMS is not a Mars global climate model (MGCM). It has regional, not global coverage, and it is designed to run over relatively short time periods (e.g., five Mars-days). MRAMS therefore requires the user to supply initial conditions and time-dependent boundary conditions, which are routinely obtained from a MGCM solution we utilize recent NASA Ames Research Center MGCM (Haberle et al., 1993) simulations for these purposes. The time-dependent boundary conditions are needed in order to capture important large-scale atmospheric phenomena (e.g., atmospheric tides

3 induced by solar heating) that may propagate into and out of the MRAMS domain. Prior related work using MRAMS includes a series of recent simulations targeting Endeavour Crater (where the Mars Exploration Rover Opportunity currently is located), which revealed a topographically-enhanced evening flow regime (~1 Mars-hour in duration, in the southern spring and summer seasons) that correlates with the orientation and movement of the intracrater dunes (Chojnacki et al. 2011). Other flow regimes (at other seasons and times-of-day) were also noted in these simulations, and appear to correlate with other aeolian surface features (Chojnacki et al. 2011). The set of Gale crater MRAMS simulations analyzed in this work is comprised of four runs at representative seasons (L s ~ 30, 120, 210, and 300 degrees; each several simulated Mars-days in duration). The surface aerodynamic roughness length (z 0 ) was set to a constant value (0.03 m) over the MRAMS domain, due to the lack of z 0 spatial distribution data for Mars. The terrain and surface characteristics for these MRAMS simulations were based on 1/128º (~ 460x460 m at the equator) gridded MGS Mars Orbiter Laser Altimeter (MOLA) topography (Smith et al. 2001) and 1/20º (~3x3 km at the equator) gridded MGS TES albedo and nighttime thermal inertia (Putzig and Mellon 2007). A total of seven nested grids were used in each of the simulations, with grids 6 and 7 (having grid spacings of ~1.8 km and ~600 m, respectively) being used for the analysis reported here. MRAMS output from the first Mars-day of each run was not analyzed, as model spin-up is still occurring then. CRISM measurement Hyperspectral observations from CRISM (Murchie et al., 2007) were used to determine the mineralogy of the dark dunes. Data from the CRISM L (IR, from nm) detector were collected and used under their most current publicly released calibration version (TRR3). Atmospheric and photometric corrections were implemented using the CRISM Analysis Tool (CAT v7.0) for ENVI (Murchie et al., 2009). Spectra from the dark dunes were ratioed to a spectrally neutral region in the same detector column. This technique suppresses residual artifacts after calibration. CRISM spectra obtained were finally compared with reference spectra present in the CAT spectral library.

4 References Chojnacki, M., D. M. Burr, J. E. Moersch, and T. I. Michaels (2011), Orbital observations of contemporary dune activity in Endeavor crater, Meridiani Planum, Mars, J. Geophys. Res., 116, E00F19, doi: /2010je Haberle, R. M., J. B. Pollack, J. R. Barnes, R. W. Zurek, C. B. Leovy, J. R. Murphy, J. Schaeffer, and H. Lee (1993), Mars atmospheric dynamics as simulated by the NASA Ames general circulation model, I. The zonal-mean circulation, J. Geophys. Res., 98, Michaels, T.I., and Rafkin, S.C.R., 2008, Meteorological predictions for candidate 2007 Phoenix Mars Lander sites using the Mars Regional Atmospheric Modeling System (MRAMS): Journal of Geophsyical Research, 113, E00A07, doi: /2007je Murchie, S.L., Arvidson, R., Bedini, P., et al., 2007, Compact reconnaissance imaging spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO): Journal of Geophysical Research, v. 112, E5, E05S03. doi: /2006je Murchie, S.L., Seelos, F., Hash, C., et al., The compact reconnaissance imaging spectrometer for Mars investigation and data set from the Mars Reconnaissance Orbiter s primary science phase: Journal of Geophysical Research, v. 114, E00D07, doi: / 2009JE Putzig, N. E., and M. T. Mellon (2007), Apparent thermal inertia and the surface heterogeneity of Mars, Icarus, 191, Rafkin, S.C.R., Haberle, R.M., and Michaels, T.I., 2001, The Mars regional atmospheric modeling system: Model description and selected simulations, Icarus 151: DOI: /icar Smith, D. E., et al. (2001), Mars Orbiter Laser Altimeter: Experiment summary after the first year of global mapping of Mars, J. Geophys. Res., 106, , doi: /2000je

5 Supplemental Figures: Fig. DR1: List and location of the HIRISE orthoimages and DTMs used in this study. The three stereoplots representing the slipface surface vectors (see main text) have been computed along the dune field in the three sectors highlighted (NE CENTRAL SW). Fig. DR2: Example of the slope vectors computed for the slipface sufaces. The vectors were computed from the DTM and are overlaid on the correspondent HIRISE orthoimage. Those vectors were used to generate the stereonet plots shown in Fig. 1C, which portray the regional trends and dip angles of the splifaces.

6 Fig. DR3: Locations where ripple patterns were automatically mapped using two orthorectified HIRISE images with similar illumination conditions (see Table DR1). See Fig. 2 for discussion. Fig. DR4: Example of the ripples crest lines automatically mapped. In this case, the color code used emphasizes the co-occurrence of two sets of ripples trending 45º and 330º. Note the existence of two distinct slipfaces, with the secondary slipface being reworked by ripples.

7 Fig. DR5: List and location of the three orthorectified images used for spatial-temporal change analysis. Fig. DR6: Example of the technique used to measured dune migration. We have mapped the dune toe lines at different times and we modeled a bi-orthogonal displacement between the two time-lapse lines. Dune migration was measured over the eight dunes highlighted by the yellow triangles.

8 Fig. DR7: ratioed spectra obtained with CRISM for the dark dunes (red spectrum) compared with the best library spectral matches (orange=forsterite, purple=augite). Fig. DR8: ripple migration was computed for 180 ripples over the four dunes highlighted by the yellow triangles.

9 Fig. DR9: Mean stress ratio vectors computed from the MRAMS data (~1.8 km grid spacing). Note the influence of Gale rim and central mound topography. Supplemental Tables: Table DR1: Image acquisition parameters of the HiRISE used for mapping the ripple pattern. Table DR2: T1-T2-T3 HiRISE image acquisition parameters.

10 Supplemental Animations: Animation DR1: 330 ripple pattern migration. Animation DR2: Different migration rates for the 330 and 45 ripple pattern. Animation DR3: Dune migration in the SW sector of the field between (MY 28-31). Animation DR4: Dune migration in the SW sector of the field between (MY 28-31). Animation DR5: Detail of a the migrating dune s toe (MY 28-31).

providing 100-m per pixel resolution in nine ~1.0 µm wide infrared bands centered from

providing 100-m per pixel resolution in nine ~1.0 µm wide infrared bands centered from Supporting Text The THEMS instrument consists of separate infrared and visible imagers providing 100-m per pixel resolution in nine ~1.0 µm wide infrared bands centered from 6.78 to 14.88 µm, and 18-m

More information

MARS CLIMATE DATABASE VERSION 4.3 VALIDATION DOCUMENT - DRAFT -

MARS CLIMATE DATABASE VERSION 4.3 VALIDATION DOCUMENT - DRAFT - MARS CLIMATE DATABASE VERSION 4.3 VALIDATION DOCUMENT - DRAFT - E. Millour, F. Forget (LMD, Paris) May 2008 1. Introduction This document presents comparisons between available data and outputs of the

More information

Remote Sensing of Mars Focus on Relevance to Terramechanics

Remote Sensing of Mars Focus on Relevance to Terramechanics Remote Sensing of Mars Focus on Relevance to Terramechanics Ray Arvidson Washington University in Saint Louis KISS xterramechanics Workshop 6/20/11 Input from Scott Murchie, Frank Seelos, Dave Humm, Andy

More information

Uncertainties: Limitations of Martian Granular Material Remote Sensing

Uncertainties: Limitations of Martian Granular Material Remote Sensing Uncertainties: Limitations of Martian Granular Material Remote Sensing Albert F. C. Haldemann Jet Propulsion Laboratory, California Institute of Technology. albert.f.haldemann@jpl.nasa.gov More Data, Better

More information

Mars W cloud: Evidence of nighttime ice depositions

Mars W cloud: Evidence of nighttime ice depositions GEOPHYSICAL RESEARCH LETTERS, VOL. 36, L14204, doi:10.1029/2009gl039061, 2009 Mars W cloud: Evidence of nighttime ice depositions Y. Moudden 1 and J. M. Forbes 1 Received 5 May 2009; revised 10 June 2009;

More information

Surface Observations Including from the 2012 Mars Curiosity Rover. Martian Atmosphere

Surface Observations Including from the 2012 Mars Curiosity Rover. Martian Atmosphere Aspects Dynamical of Martian Meteorology Meteorology of From the Surface Observations Including from the 2012 Mars Curiosity Rover Martian Atmosphere Mars Science Laboratory Curiosity The Curiosity rover

More information

Atmospheric hazards for entry, descent and landing of future missions to Mars: numerical simulations of fine-scale meteorological phenomena

Atmospheric hazards for entry, descent and landing of future missions to Mars: numerical simulations of fine-scale meteorological phenomena Atmospheric hazards for entry, descent and landing of future missions to Mars: numerical simulations of fine-scale meteorological phenomena Spiga A., Bourrier V., Forget F., Millour E., Montabone L., Madeleine

More information

Meteorological predictions for the Beagle 2 mission to Mars

Meteorological predictions for the Beagle 2 mission to Mars GEOPHYSICAL RESEARCH LETTERS, VOL. 31,, doi:10.1029/2003gl018966, 2004 Meteorological predictions for the Beagle 2 mission to Mars Scot C. Randell Rafkin, 1 Timothy I. Michaels, 1 and Robert M. Haberle

More information

REVISED COORDINATES FOR APOLLO HARDWARE

REVISED COORDINATES FOR APOLLO HARDWARE REVISED COORDINATES FOR APOLLO HARDWARE R. V. Wagner *, E. J. Speyerer, K. N. Burns, J. Danton, M.S. Robinson Lunar Reconnaissance Orbiter Camera, School of Earth and Space Exploration, Arizona State University,

More information

Analysis of Mars Color Camera (MCC) of Mars Orbiter Mission (MOM)

Analysis of Mars Color Camera (MCC) of Mars Orbiter Mission (MOM) Analysis of Mars Color Camera (MCC) of Mars Orbiter Mission (MOM) Introduction: STRUCTURE About Mars Color Camera Part:1 Browsing of Mars Color Camera (MCC) data in Long Term Data Archive (LTA) Downloading

More information

David Baxter. GK-12 Summer Research Program Brown University Oliver Hazard Perry Middle School NASA Explorer School

David Baxter. GK-12 Summer Research Program Brown University Oliver Hazard Perry Middle School NASA Explorer School David Baxter GK-12 Summer Research Program Brown University Oliver Hazard Perry Middle School NASA Explorer School Department of Geological Sciences Planetary Geology Group Dr. Michael Wyatt Dr. James

More information

CONTROLLED TOPOGRAPHIC IMAGE MOSAICS FROM COMBINATION OF VIKING ORBITER IMAGES AND MARS ORBITER LASER ALTIMETER DATA. Working Group IV/5

CONTROLLED TOPOGRAPHIC IMAGE MOSAICS FROM COMBINATION OF VIKING ORBITER IMAGES AND MARS ORBITER LASER ALTIMETER DATA. Working Group IV/5 CONTROLLED TOPOGRAPHIC IMAGE MOSAICS FROM COMBINATION OF VIKING ORBITER IMAGES AND MARS ORBITER LASER ALTIMETER DATA Ernst HAUBER, Jürgen OBERST, Wolfgang ZEITLER, Monika KUSCHEL, Marita WÄHLISCH, Ralf

More information

LETTERS. High-resolution subsurface water-ice distributions on Mars. Joshua L. Bandfield 1

LETTERS. High-resolution subsurface water-ice distributions on Mars. Joshua L. Bandfield 1 Vol 447 3 May 7 doi:10.1038/nature05781 LETTERS High-resolution subsurface water-ice distributions on Mars Joshua L. Bandfield 1 Theoretical models indicate that water ice is stable in the shallow subsurface

More information

GEOLOGIC MAPPING AS A GUIDE TO ROVER MISSION PLANNING ON MARS

GEOLOGIC MAPPING AS A GUIDE TO ROVER MISSION PLANNING ON MARS GEOLOGIC MAPPING AS A GUIDE TO ROVER MISSION PLANNING ON MARS Irwin and Grant, 2013 John A. Grant Center for Earth and Planetary Studies, National Air and Space Museum Smithsonian Institution Washington,

More information

Automated Orbital Mapping

Automated Orbital Mapping Automated Orbital Mapping Statistical Data Mining of Orbital Imagery to Analyze Terrain, Summarize its Characteristics and Draft Geologic Maps David Wettergreen Carnegie Mellon University Motivation Geologic

More information

Mars photometry with OMEGA observations

Mars photometry with OMEGA observations Mars photometry with OMEGA observations S. Erard, P. Pinet, Y. Daydou, P. Drossart, R. Melchiorri, Th. Fouchet, O. Forni, G. Bellucci, F. Altieri, J.-P. Bibring, Y. Langevin and the OMEGA team Spectral

More information

Figure S1. CRISM maps of modeled mineralogy projected over CTX imagery (same

Figure S1. CRISM maps of modeled mineralogy projected over CTX imagery (same GSA DATA REPOSITORY 2015222 Cannon and Mustard Additional examples Figure S1. CRISM maps of modeled mineralogy projected over CTX imagery (same parameters as Figure 1). A: Taytay Crater (CRISM ID: HRL00005B77).

More information

Observation of atmospheric tides in the Martian exosphere using Mars Reconnaissance Orbiter radio tracking data

Observation of atmospheric tides in the Martian exosphere using Mars Reconnaissance Orbiter radio tracking data Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L09202, doi:10.1029/2008gl033388, 2008 Observation of atmospheric tides in the Martian exosphere using Mars Reconnaissance Orbiter radio

More information

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111, E06014, doi: /2004je002363, 2006

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111, E06014, doi: /2004je002363, 2006 JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111,, doi:10.1029/2004je002363, 2006 Thermal properties of sand from Thermal Emission Spectrometer (TES) and Thermal Emission Imaging System (THEMIS): Spatial variations

More information

MCD General Description

MCD General Description Mars Climate Database Training day May 26 th 2016 MCD General Description E. Millour, F. Forget and the MCD team What is the Mars Climate Database? The Mars Climate Database (MCD) is a database derived

More information

The climates of planet Mars controlled by a chaotic obliquity

The climates of planet Mars controlled by a chaotic obliquity The climates of planet Mars controlled by a chaotic obliquity François Forget (and many others including Jacques Laskar) CNRS, Institut Pierre Simon Laplace, Laboratoire de Météorologie Dynamique, Paris

More information

Construction of a Self Consistent. Meridiani Planum using CRISM, CTX, HiRISE, and Opportunity Data

Construction of a Self Consistent. Meridiani Planum using CRISM, CTX, HiRISE, and Opportunity Data Construction of a Self Consistent Model lfor Surface Materials in Meridiani Planum using CRISM, CTX, HiRISE, and Opportunity Data Ray Arvidson and Sandra Wiseman CRISM Workshop LPSC With input from Wendy

More information

THE EXOMARS CLIMATE SOUNDER (EMCS) INVESTIGATION.

THE EXOMARS CLIMATE SOUNDER (EMCS) INVESTIGATION. THE EXOMARS CLIMATE SOUNDER (EMCS) INVESTIGATION. J. T. Schofield, D. M. Kass, A. Kleinböhl, D. J. McCleese, M. A. Allen, M. C. Foote, M. Jeganathan, Jet Propulsion Laboratory, California Institute of

More information

Dust in the Atmosphere of Mars 2017 (LPI Contrib. No. 1966)

Dust in the Atmosphere of Mars 2017 (LPI Contrib. No. 1966) Dust in the Atmosphere of Mars 2017 (LPI Contrib. No. 1966) MARS CLIMATE SOUNDER (MCS) OBSERVATIONS OF MARTIAN DUST A DECADE-LONG RECORD. D. M. Kass1, D. J. McCleese1, A. Kleinböhl1, J. T. Schofield1 and

More information

Analysis of high altitude clouds in the martian atmosphere based on Mars Climate Sounder observations

Analysis of high altitude clouds in the martian atmosphere based on Mars Climate Sounder observations Journal of Physics: Conference Series PAPER OPEN ACCESS Analysis of high altitude clouds in the martian atmosphere based on Mars Climate Sounder observations Recent citations - Comprehensive thematic T-matrix

More information

Aeolian dunes as ground truth for atmospheric modeling on Mars

Aeolian dunes as ground truth for atmospheric modeling on Mars JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 114,, doi:10.1029/2009je003428, 2009 Aeolian dunes as ground truth for atmospheric modeling on Mars Rosalyn K. Hayward, 1 Timothy N. Titus, 1 Timothy I. Michaels,

More information

Wind-driven Modification of Small Bedforms in Gusev Crater, Mars. Mary Pendleton-Hoffer

Wind-driven Modification of Small Bedforms in Gusev Crater, Mars. Mary Pendleton-Hoffer Wind-driven Modification of Small Bedforms in Gusev Crater, Mars by Mary Pendleton-Hoffer A Thesis Presented in Partial Fulfillment of the Requirements for the Degree Master of Science Approved July 2016

More information

Gale Crater Observations of Relevance to Planetary Protection

Gale Crater Observations of Relevance to Planetary Protection Gale Crater Observations of Relevance to Planetary Protection Ashwin Vasavada MSL Project Scientist 12/8/15 This document has been reviewed and determined not to contain export controlled technical data.

More information

Water Ice Clouds over the Martian Tropics during Northern Summer

Water Ice Clouds over the Martian Tropics during Northern Summer 227 Chapter 6 Water Ice Clouds over the Martian Tropics during Northern Summer 6.1 Introduction On Mars, water ice clouds both reflect incoming solar radiation and also absorb and reemit thermal infrared

More information

Open Research Online The Open University s repository of research publications and other research outputs

Open Research Online The Open University s repository of research publications and other research outputs Open Research Online The Open University s repository of research publications and other research outputs Results on dust storms and stationary waves in three Mars years of data assimilation Conference

More information

The Martian Climate Revisited

The Martian Climate Revisited Peter L. Read and Stephen R. Lewis The Martian Climate Revisited Atmosphere and Environment of a Desert Planet Springer Published in association with Praxis Publishing Chichester, UK Contents Preface Abbreviations

More information

LRO-LOLA: Measurements of Lunar Altimetry and Surface Conditions

LRO-LOLA: Measurements of Lunar Altimetry and Surface Conditions LRO-LOLA: Measurements of Lunar Altimetry and Surface Conditions David E. Smith, MIT Maria T. Zuber, MIT Gregory A. Neumann, GSFC Erwan Mazarico, GSFC and the LOLA Science Team Lunar-Glob Mission International

More information

Determining olivine composition of basaltic dunes in Gale Crater, Mars, from orbit: Awaiting ground truth from Curiosity

Determining olivine composition of basaltic dunes in Gale Crater, Mars, from orbit: Awaiting ground truth from Curiosity GEOPHYSICAL RESEARCH LETTERS, VOL. 40, 3517 3521, doi:10.1002/grl.50621, 2013 Determining olivine composition of basaltic dunes in Gale Crater, Mars, from orbit: Awaiting ground truth from Curiosity Melissa

More information

Winds in the martian upper atmosphere from MGS aerobraking density profiles

Winds in the martian upper atmosphere from MGS aerobraking density profiles Winds in the martian upper atmosphere from MGS aerobraking density profiles Paul Withers*, Steve Bougher, and Gerry Keating AGU Fall Meeting 2002 #P61C-0353 (* = Postdoc job wanted) The Importance of Winds

More information

ExoMars 2016 Mission

ExoMars 2016 Mission POCKOCMOC POCKOCMOC ExoMars 2016 Mission O. Witasse, J. L. Vago, D. Rodionov, and the ExoMars Team 1 The 8 th International Conference on Mars 18 July 2014, Pasadena (USA) Cooperation ExoMars Programme

More information

The Main Point. Basic Properties of Mars. Observations. Lecture #19: Mars

The Main Point. Basic Properties of Mars. Observations. Lecture #19: Mars Mars: Overview General properties Telescopic observations Space missions Atmospheric Characteristics Reading: Chapters 7.1 (Mars), 9.4, 10.4 Lecture #19: Mars The Main Point Changes in the Martian surface

More information

4.2 Valles Marineris 99

4.2 Valles Marineris 99 4.2 Valles Marineris 99 Ganges 2: The ILD (7.4 S/313.1 E) is located in the eastern Valles Marineris (Fig. 2, 10), in Ganges Chasma (Fig. 28), east of Ganges 1 (Fig. 52). Ganges 2 shows a N-S strike, measures

More information

Minéralogie de Valles Marineris (Mars) par télédetection hyperspectrale: Histoire magmatique et sédimentaire de la région.

Minéralogie de Valles Marineris (Mars) par télédetection hyperspectrale: Histoire magmatique et sédimentaire de la région. Minéralogie de Valles Marineris (Mars) par télédetection hyperspectrale: Histoire magmatique et sédimentaire de la région. Dr. Jessica Flahaut Chercheur postdoctoral, Institut d Astrophysique Spatiale,

More information

International Workshop on Instrumentation for Planetary Missions (2012)

International Workshop on Instrumentation for Planetary Missions (2012) COMPACT IMAGERS BASED ON MESSENGER S MERCURY DUAL IMAGING SYSTEM. Nancy L. Chabot 1, Scott L. Murchie 1, S. Edward Hawkins III 1, John R. Hayes 1, John D. Boldt 1, Olivier S. Barnouin 1, Kevin Heffernan

More information

Nathan Franklin. Spring, ES6973 Remote Sensing Image Processing and Analysis

Nathan Franklin. Spring, ES6973 Remote Sensing Image Processing and Analysis Investigations of Geologic Units and Structural Features on the flanks of Elysium Mons, Mars, Using Visible Images and General Thermal Signatures from THEMIS Nathan Franklin Spring, 2005 ES6973 Remote

More information

IMPROVED LARGE-SCALE SLOPE ANALYSIS ON MARS BASED ON CORRELATION OF SLOPES DERIVED WITH DIFFERENT BASELINES

IMPROVED LARGE-SCALE SLOPE ANALYSIS ON MARS BASED ON CORRELATION OF SLOPES DERIVED WITH DIFFERENT BASELINES IMPROVED LARGE-SCALE SLOPE ANALYSIS ON MARS BASED ON CORRELATION OF SLOPES DERIVED WITH DIFFERENT BASELINES Yiran Wang, Bo Wu * Dept. of Land Surveying and Geo-Informatics, Hong Kong Polytechnic University,

More information

FADING OF SLOPE STREAKS ON MARS OVER THREE DECADES: A COMPARISON OF CTX AND VIKING IMAGES

FADING OF SLOPE STREAKS ON MARS OVER THREE DECADES: A COMPARISON OF CTX AND VIKING IMAGES FADING OF SLOPE STREAKS ON MARS OVER THREE DECADES: A COMPARISON OF CTX AND VIKING IMAGES Kimberly M. Rottas Department of Geology and Geophysics University of Hawai i at Mānoa Honolulu, HI 96822 ABSTRACT

More information

Difference in the wind speeds required for initiation versus continuation of sand transport on Mars: Implications for dunes and dust storms

Difference in the wind speeds required for initiation versus continuation of sand transport on Mars: Implications for dunes and dust storms Difference in the wind speeds required for initiation versus continuation of sand transport on Mars: Implications for dunes and dust storms Jasper F. Kok 1,2,* 1 Department of Atmospheric, Oceanic, and

More information

AERMOD Sensitivity to AERSURFACE Moisture Conditions and Temporal Resolution. Paper No Prepared By:

AERMOD Sensitivity to AERSURFACE Moisture Conditions and Temporal Resolution. Paper No Prepared By: AERMOD Sensitivity to AERSURFACE Moisture Conditions and Temporal Resolution Paper No. 33252 Prepared By: Anthony J Schroeder, CCM Managing Consultant TRINITY CONSULTANTS 7330 Woodland Drive Suite 225

More information

Lunar Reconnaissance Orbiter Camera Image Retrieval For the Big Moon Dig

Lunar Reconnaissance Orbiter Camera Image Retrieval For the Big Moon Dig Lunar Reconnaissance Orbiter Camera Image Retrieval For the Big Moon Dig Tom Riley TomRiley@WoodwareDesigns.com November 22, 2014 File: LROCameraRetrivalmmdddyy.docx Work in Progress LRO in orbit (artist

More information

XXXXXX 1 of 22. Full Article

XXXXXX 1 of 22. Full Article Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111,, doi:10.1029/2006je002735, 2006 2 High-resolution thermal inertia derived from Thermal Emission 3 Imaging System (THEMIS): Thermal

More information

CONSTRUCTION OF A 4D WATER ICE CLOUD DATABASE FROM MARS EXPRESS / OMEGA OBSERVATIONS DERIVATION OF THE DIURNAL MARTIAN CLOUD LIFE CYCLE

CONSTRUCTION OF A 4D WATER ICE CLOUD DATABASE FROM MARS EXPRESS / OMEGA OBSERVATIONS DERIVATION OF THE DIURNAL MARTIAN CLOUD LIFE CYCLE CONSTRUCTION OF A 4D WATER ICE CLOUD DATABASE FROM MARS EXPRESS / OMEGA OBSERVATIONS DERIVATION OF THE DIURNAL MARTIAN CLOUD LIFE CYCLE A. Szantai, Laboratoire de Météorologie Dynamique, (CNRS/UPMC/IPSL),

More information

Science planning and operations for Mars Express

Science planning and operations for Mars Express Science planning and operations for Mars Express René Pischel and Tanja Zegers ESA/ESTEC, Research and Scientific Support Department, Postbus 299, 2200 AG Noordwijk, The Netherlands I. Introduction The

More information

Wind-Related Modification of Some Small Impact Craters on Mars

Wind-Related Modification of Some Small Impact Craters on Mars Icarus 153, 61 70 (2001) doi:10.1006/icar.2001.6654, available online at http://www.idealibrary.com on Wind-Related Modification of Some Small Impact Craters on Mars Ruslan O. Kuzmin Vernadsky Institute,

More information

Change detection at the recently erupted Te Maari crater, Tongariro, from stereo aerial photographs

Change detection at the recently erupted Te Maari crater, Tongariro, from stereo aerial photographs Change detection at the recently erupted Te Maari crater, Tongariro, from stereo aerial photographs Strong, D.T., Jones, K.E., Ashraf, S. and Lee, J. Outline Geographic context Setting and eruption Science

More information

arxiv: v1 [astro-ph.ep] 19 Mar 2013

arxiv: v1 [astro-ph.ep] 19 Mar 2013 Surface reflectance of Mars observed by CRISM/MRO: 2. Estimation of surface photometric properties in Gusev Crater and Meridiani Planum J. Fernando 1,2, F. Schmidt 1,2, X. Ceamanos 3,4, P. Pinet 5,6, S.

More information

Tides in the Martian Upper Atmosphere - And Other Topics

Tides in the Martian Upper Atmosphere - And Other Topics Tides in the Martian Upper Atmosphere - And Other Topics Paul Withers Centre for Space Physics Boston University CSP Seminar 2003.10.02 The aim of this talk is to get YOU excited about having ME as a colleague

More information

Aeolus. A Mission to Map the Winds of Mars. Anthony Colaprete Amanda Cook NASA Ames Research Center

Aeolus. A Mission to Map the Winds of Mars. Anthony Colaprete Amanda Cook NASA Ames Research Center Aeolus A Mission to Map the Winds of Mars Anthony Colaprete Amanda Cook NASA Ames Research Center Low-Cost Planetary Missions Conference 12, 2017 What is Aeolus? Science Aeolus will provide the very first

More information

ESTIMATION OF AEOLIAN DUNE MIGRATION OVER MARTIAN SURFACE EMPLOYING HIGH PRECISION PHOTOGRAMMETRIC MEASUREMENTS

ESTIMATION OF AEOLIAN DUNE MIGRATION OVER MARTIAN SURFACE EMPLOYING HIGH PRECISION PHOTOGRAMMETRIC MEASUREMENTS The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/W1, 2017 ESTIMATION OF AEOLIAN DUNE MIGRATION OVER MARTIAN SURFACE EMPLOYING HIGH PRECISION

More information

Mini-RF: An Imaging Radar for the Moon. Ben Bussey The Johns Hopkins University Applied Physics Laboratory

Mini-RF: An Imaging Radar for the Moon. Ben Bussey The Johns Hopkins University Applied Physics Laboratory Mini-RF: An Imaging Radar for the Moon Ben Bussey The Johns Hopkins University Applied Physics Laboratory Paul D. Spudis President s Commission on Implementation of United States Space Exploration Policy

More information

First detection of wave interactions in the middle atmosphere of Mars

First detection of wave interactions in the middle atmosphere of Mars GEOPHYSICAL RESEARCH LETTERS, VOL. 38,, doi:10.1029/2010gl045592, 2011 First detection of wave interactions in the middle atmosphere of Mars Y. Moudden 1 and J. M. Forbes 1 Received 22 September 2010;

More information

NPP ATMS Instrument On-orbit Performance

NPP ATMS Instrument On-orbit Performance NPP ATMS Instrument On-orbit Performance K. Anderson, L. Asai, J. Fuentes, N. George Northrop Grumman Electronic Systems ABSTRACT The first Advanced Technology Microwave Sounder (ATMS) was launched on

More information

Geoscience Australia Report on Cal/Val Activities

Geoscience Australia Report on Cal/Val Activities Medhavy Thankappan Geoscience Australia Agency Report I Berlin May 6-8, 2015 Outline 1. Calibration / validation at Geoscience Australia Corner reflector infrastructure for SAR calibration (for information)

More information

Recurring slope lineae in equatorial regions of Mars

Recurring slope lineae in equatorial regions of Mars Alfred S. McEwen, Colin M. Dundas, Sarah S. Mattson, Anthony D. Toigo, Lujendra Ojha, James J. Wray, Matthew Chojnacki, Shane Byrne, Scott L. Murchie, Nicolas Thomas This supplementary material includes

More information

The PRECIS Regional Climate Model

The PRECIS Regional Climate Model The PRECIS Regional Climate Model General overview (1) The regional climate model (RCM) within PRECIS is a model of the atmosphere and land surface, of limited area and high resolution and locatable over

More information

Europa Lander Mission Study: Science Dave Senske (JPL) Deputy Europa Study Scientist OPAG March 29, 2012

Europa Lander Mission Study: Science Dave Senske (JPL) Deputy Europa Study Scientist OPAG March 29, 2012 Europa Lander Mission Study: Science Dave Senske (JPL) Deputy Europa Study Scientist OPAG March 29, 2012 3/29/12 23 Science from Europa s Surface For key habitability science, Europa surface materials

More information

Transient Processes and Environments on Present- Day Mars

Transient Processes and Environments on Present- Day Mars Transient Processes and Environments on Present- Day Mars Alfred McEwen University of Arizona 13 June 2011 Mars Habitability Conference, Lisbon HiRISE ESP_014339_0930 South Pole residual CO 2 ice cap in

More information

Orbital Identification of Carbonate-Bearing Rocks on Mars

Orbital Identification of Carbonate-Bearing Rocks on Mars www.sciencemag.org/cgi/content/full/322/5909/1828/dc1 Supporting Online Material for Orbital Identification of Carbonate-Bearing Rocks on Mars Bethany L. Ehlmann, John F. Mustard, Scott L. Murchie, Francois

More information

MSL Landing Site Analysis for Planetary Protection

MSL Landing Site Analysis for Planetary Protection MSL Landing Site Analysis for Planetary Protection Ashwin R. Vasavada MSL Deputy Project Scientist Jet Propulsion Laboratory, California Institute of Technology NASA Planetary Protection Subcommittee May

More information

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. E9, 5098, doi: /2003je002058, 2003

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. E9, 5098, doi: /2003je002058, 2003 JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. E9, 5098, doi:10.1029/2003je002058, 2003 Mars aerosol studies with the MGS TES emission phase function observations: Optical depths, particle sizes, and ice

More information

As you can see in the picture to the left, the dust devils on Mars are significantly larger than dust devils on Earth.

As you can see in the picture to the left, the dust devils on Mars are significantly larger than dust devils on Earth. A Study of Wind Streak and Dust Devil Track Direction in Syrtis Major to Establish Consistent Wind Direction and Determine if This Changes by Season. Mars Student Imaging Project March 2011 Rim Country

More information

A mesoscale model study of summertime atmospheric circulations in the north polar region of Mars

A mesoscale model study of summertime atmospheric circulations in the north polar region of Mars JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 110,, doi:10.1029/2004je002356, 2005 A mesoscale model study of summertime atmospheric circulations in the north polar region of Mars Daniel Tyler Jr. and Jeffrey

More information

Boundary condition controls on the high sand flux regions of Mars

Boundary condition controls on the high sand flux regions of Mars GSA Data Repository 2019150 https://doi.org/10.1130/g45793.1 Boundary condition controls on the high sand flux regions of Mars Matthew Chojnacki *1, Maria E. Banks 2, Lori K. Fenton 3, and Anna Urso 1.

More information

HICO Science Mission Overview

HICO Science Mission Overview HICO Science Mission Overview Michael R. Corson* and Curtiss O. Davis** * Naval Research Laboratory Washington, DC corson@nrl.navy.mil ** College of Oceanic and Atmospheric Sciences Oregon State University

More information

Presentation given to computer science undergraduate students at the University of Houston July 2007

Presentation given to computer science undergraduate students at the University of Houston July 2007 Presentation given to computer science undergraduate students at the University of Houston July 2007 Machine Learning and Data Mining in Mars Tomasz F. Stepinski Lunar and Planetary Institute MARS/EARTH

More information

Meter-scale slopes of candidate MER landing sites from point photoclinometry

Meter-scale slopes of candidate MER landing sites from point photoclinometry JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. E12, 2003JE002120, December 2003 Meter-scale slopes of candidate MER landing sites from point photoclinometry Ross A. Beyer and Alfred S. McEwen Department

More information

Cross-calibration of Geostationary Satellite Visible-channel Imagers Using the Moon as a Common Reference

Cross-calibration of Geostationary Satellite Visible-channel Imagers Using the Moon as a Common Reference Cross-calibration of Geostationary Satellite Visible-channel Imagers Using the Moon as a Common Reference Thomas C. Stone U.S. Geological Survey, Flagstaff AZ, USA 27 30 August, 2012 Motivation The archives

More information

Weather in the Solar System

Weather in the Solar System Weather in the Solar System Sanjay S. Limaye Space Science and Engineering Center University of Wisconsin-Madison 8 February 2002 What is Weather? Webster s New Collegiate Dictionary: state of the atmosphere

More information

Meter-scale slopes of candidate MER landing sites from point photoclinometry

Meter-scale slopes of candidate MER landing sites from point photoclinometry JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. E12, 8085, doi:10.1029/2003je002120, 2003 Meter-scale slopes of candidate MER landing sites from point photoclinometry Ross A. Beyer and Alfred S. McEwen

More information

OSIRIS-REX OVERVIEW PRESENTATION TO THE PLANETARY SCIENCE SUBCOMMITTEE

OSIRIS-REX OVERVIEW PRESENTATION TO THE PLANETARY SCIENCE SUBCOMMITTEE OSIRIS-REX OVERVIEW PRESENTATION TO THE PLANETARY SCIENCE SUBCOMMITTEE OCTOBER 3, 2012 GORDON JOHNSTON PROGRAM EXECUTIVE OSIRIS-REx Science Objectives 1. Return and analyze a sample of pristine carbonaceous

More information

Mars Reconnaissance Orbiter Observa3on Plan for Comet Siding Spring Encounter

Mars Reconnaissance Orbiter Observa3on Plan for Comet Siding Spring Encounter Mars Reconnaissance Orbiter Observa3on Plan for Comet Siding Spring Encounter Leslie Tamppari, MRO Deputy Project Scien3st Jet Propulsion Laboratory, California Ins3tute of Tehcnology 8/11/14 Mars Reconnaissance

More information

Ground and On-Orbit Characterization and Calibration of the Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS)

Ground and On-Orbit Characterization and Calibration of the Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) Ground and On-Orbit Characterization and Calibration of the Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) John D. Elwell 1, Deron K. Scott 1 Henry E. Revercomb 2, Fred A. Best 2, Robert

More information

Dust storms originating in the northern hemisphere during the third mapping year of Mars Global Surveyor

Dust storms originating in the northern hemisphere during the third mapping year of Mars Global Surveyor Icarus 189 (2007) 325 343 www.elsevier.com/locate/icarus Dust storms originating in the northern hemisphere during the third mapping year of Mars Global Surveyor Huiqun Wang Atomic and Molecular Physics

More information

Dust in the Atmosphere of Mars 2017 (LPI Contrib. No. 1966)

Dust in the Atmosphere of Mars 2017 (LPI Contrib. No. 1966) REGIONALITY OF DUST HAZE TRANSPORT IN THE MARS ATMOSPHERE REVEALED BY ENSEMBLE SIMULATIONS. K. Ogohara 1, 1 University of Shiga Prefecture (2500, Hassaka, Hikone, Shiga, Japan, ogohara.k@e.usp.ac.jp).

More information

SCIENCE WITH DIRECTED AERIAL DR. ALEXEY PANKINE GLOBAL AEROSPACE CORPORATION SAILING THE PLANETS

SCIENCE WITH DIRECTED AERIAL DR. ALEXEY PANKINE GLOBAL AEROSPACE CORPORATION SAILING THE PLANETS : SCIENCE WITH DIRECTED AERIAL ROBOT EXPLORERS (DARE) DR. ALEXEY PANKINE GLOBAL AEROSPACE CORPORATION 1 NEW ARCHITECTURE FOR PLANETARY EXPLORATION KEY ELEMENTS: Long-Duration Planetary Balloon Platforms

More information

Meteorology of proposed Mars Exploration Rover landing sites

Meteorology of proposed Mars Exploration Rover landing sites JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. E12, 8092, doi:10.1029/2003je002064, 2003 Meteorology of proposed Mars Exploration Rover landing sites Anthony D. Toigo Center for Radiophysics and Space

More information

Lunar Exploration Requirements and Data Acquisition Architectures

Lunar Exploration Requirements and Data Acquisition Architectures Lunar Exploration Requirements and Data Acquisition Architectures J. Plescia P. Spudis B. Bussey Johns Hopkins University / Applied Physics Laboratory 2005 International Lunar Conference The Vision and

More information

Apparent thermal inertia and the surface heterogeneity of Mars

Apparent thermal inertia and the surface heterogeneity of Mars Icarus 191 (2007) 68 94 www.elsevier.com/locate/icarus Apparent thermal inertia and the surface heterogeneity of Mars Nathaniel E. Putzig a,b,,1, Michael T. Mellon a a Laboratory for Atmospheric and Space

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:.38/nature149 1 Observation information This study examines 2 hours of data obtained between :33:42 and 12:46:28 Universal Time (UT) on April 17 11 using the -metre Keck telescope. This dataset was

More information

(WiFS) of IRS-1C, -1D and P6 using Near-

(WiFS) of IRS-1C, -1D and P6 using Near- Cross-calibration of Wide Field Sensors (WiFS) of IRS-1C, -1D and P6 using Near- synchronous Matching Scenes A. Senthil Kumar National Remote Sensing Center (ISRO) Hyderabad Contributions from: A.S. Kiran

More information

Mathieu Vincendon 1, Yves Langevin 1, François Poulet 1, Jean-Pierre Bibring 1, Brigitte Gondet 1

Mathieu Vincendon 1, Yves Langevin 1, François Poulet 1, Jean-Pierre Bibring 1, Brigitte Gondet 1 Recovery of surface reflectance spectra and evaluation of the optical depth of aerosols in the near-ir using a Monte-Carlo approach: Application to the OMEGA observations of high latitude regions of Mars.

More information

A mesoscale model for the Martian atmosphere

A mesoscale model for the Martian atmosphere JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. E7, 5049, 10.1029/2000JE001489, 2002 A mesoscale model for the Martian atmosphere Anthony D. Toigo Center for Radiophysics and Space Research, Cornell University,

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/321/5890/830/dc1 Supporting Online Material for Phyllosilicate Diversity and Past Aqueous Activity Revealed at Mawrth Vallis, Mars Janice L. Bishop,* Eldar Z. Noe Dobrea,

More information

THE NEW GEOLOGY OF MARS: TOP TEN RESULTS OF POST-VIKING GLOBAL MAPPING AND CRATER-DATING

THE NEW GEOLOGY OF MARS: TOP TEN RESULTS OF POST-VIKING GLOBAL MAPPING AND CRATER-DATING THE NEW GEOLOGY OF MARS: TOP TEN RESULTS OF POST-VIKING GLOBAL MAPPING AND CRATER-DATING K.L. Tanaka 1, J.A. Skinner, Jr. 1, C.M. Fortezzo 1, T.M. Hare 1, R.P. Irwin 2, T. Platz 3, G. Michael 3, J.M. Dohm

More information

New Opportunities in Urban Remote Sensing. Philip Christensen Arizona State University

New Opportunities in Urban Remote Sensing. Philip Christensen Arizona State University New Opportunities in Urban Remote Sensing Philip Christensen Arizona State University Advantages: Uniform, global data Role of Remote Sensing Repeatable at regular intervals over long periods of time Broad

More information

Gale Crater MSL Candidate Landing Site in Context

Gale Crater MSL Candidate Landing Site in Context Gale Crater MSL Candidate Landing Site in Context by K. Edgett April 2010 MSL Science Team Landing Sites Discussions Gale Crater Edgett, p. 1 What do I mean by Context? How will the things we can learn

More information

Mapping sub-pixel surface roughness using stereo imaging

Mapping sub-pixel surface roughness using stereo imaging Mapping sub-pixel surface roughness using stereo imaging Amit Mushkin, Univ. of Washington, Geological Survey of Israel - Why look at surface roughness - Mapping unresolved roughness from space (Earth,

More information

Louth Crater: Evolution of a layered water ice mound

Louth Crater: Evolution of a layered water ice mound Louth Crater: Evolution of a layered water ice mound Adrian J. Brown *1,2, Shane Byrne 3, Livio L. Tornabene 3, and Ted Roush 2 1 SETI Institute, 515 N. Whisman Rd, Mountain View, CA 94043, USA 2 NASA

More information

Exploring the ionosphere of Mars

Exploring the ionosphere of Mars Exploring the ionosphere of Mars This hazy region contains the atmosphere and ionosphere of Mars Paul Withers Boston University (withers@bu.edu) Department of Physics and Astronomy, University of Iowa,

More information

Mars. Professor Withers Boston University Guest lecture in AS105 Alien Worlds. Thursday :00 NASA

Mars. Professor Withers Boston University Guest lecture in AS105 Alien Worlds. Thursday :00 NASA Mars Professor Withers Boston University (withers@bu.edu) Guest lecture in AS105 Alien Worlds Thursday 2014.10.02 14:00 NASA This is Mars One scale Different scale 0.5 x R-Earth 1.5 AU from Sun Same rotation

More information

Simulation of UV-VIS observations

Simulation of UV-VIS observations Simulation of UV-VIS observations Hitoshi Irie (JAMSTEC) Here we perform radiative transfer calculations for the UV-VIS region. In addition to radiance spectra at a geostationary (GEO) orbit, air mass

More information

The PaTrop Experiment

The PaTrop Experiment Improved estimation of the tropospheric delay component in GNSS and InSAR measurements in the Western Corinth Gulf (Greece), by the use of a highresolution meteorological model: The PaTrop Experiment N.

More information

Unit 1: The Earth in the Universe

Unit 1: The Earth in the Universe Unit 1: The Earth in the Universe 1. The Universe 1.1. First ideas about the Universe 1.2. Components and origin 1.3. Sizes and distances 2. The Solar System 3. The planet Earth 3.1. Movements of the Earth

More information

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112, E04004, doi: /2006je002805, 2007

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112, E04004, doi: /2006je002805, 2007 JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112,, doi:10.1029/2006je002805, 2007 Mars equatorial mesospheric clouds: Global occurrence and physical properties from Mars Global Surveyor Thermal Emission Spectrometer

More information