INTEGRAL & Magnetars: a high energy approach to extreme neutron stars

Size: px
Start display at page:

Download "INTEGRAL & Magnetars: a high energy approach to extreme neutron stars"

Transcription

1 INTEGRAL & Magnetars: a high energy approach to extreme neutron stars Diego Götz CEA - Saclay - Irfu/Service d Astrophysique N. Rea (UvA), S. Zane (MSSL), R. Turolla (Uni Padova), M. Lyutikov (Purdue Univ.) P. Esposito, S. Mereghetti, A. Tiengo, G.L. Israel (INAF), K. Hurley (UCB), E.V. Gotthelf (Columbia Univ.)

2 Main manifestations of Neutron Stars: (Radio) Pulsars - Rotational energy >1500 pulsars observed in radio (+ several Pulsar Wind Nebulae) the youngest seen also at higher energies mostly isolated typical rotation periods: 1.5 ms 5 s Accreting X-ray binaries - Gravitational energy several hundreds in High Mass and Low Mass X-ray binaries many are transients typical rotation periods s Magnetars do not fit in these two categories! 2

3 AXPs Originally identified as a class based on: Periods in a narrow range and other properties that distinguished them from the classical X-ray pulsars in High Mass X-ray Binaries 3

4 Summary of AXP properties No evidence for companion stars (very faint IR counterparts, no Doppler delays in pulses) Rotational period of a few seconds (2-12 s) Secular spin-down (0.05-4)x10-11 s/s L x erg s -1 >> Rotational Energy Loss Very soft X-ray spectrum below 10 kev (kt~0.5 kev) 3 (or 4?) are in Supernova Remnants 3 (or 4?) are transients 4

5 AXP Census - 10 confirmed 2 candidates P (s) dp/dt (10-11 s/s) 4U E CTB 109 1E E Kes 73 AX J G Tr. RXS CXO J in SMC XTE J Tr./R CXO J in Wes 1 Tr. 1E Tr./R PSR J1846 (Kes 75) PWN 5

6 SGRs: Initially considered a peculiar class of Gamma-Ray Bursts short, soft, repeating, L peak >>> L Eddington Durations 836 GAMMA-RAY BURSTS Spectra GAMMA-RAY BURST NUMBER OF EVENTS SOFT GAMMA REPEATERS NUMBER OF EVENTS FLUX, photons/cm 2 s kev SOFT GAMMA REPEATER kt~30 kev DURATION, SECONDS ENERGY, kev 6

7 SGRs bursting activity is not continuous 7

8 Bursts from SGR observed with INTEGRAL kev kev Götz, et al. (2004), A&A 417, L45 8

9 3 Giant Flares from 3 SGRs 1979 March 5 - SGR August 27 - SGR December 27 SGR

10 5 confirmed SGRs Soft Gamma Repeaters 4 are in the Galactic plane typical distance ~several kpc one is in the N49 supernova remnant in the Large Magellanic Cloud (d=55 kpc) ? 10

11 SGR-like bursts seen from six AXPs 1E E 2259 XTE J1810 4U 0142 CXO J1647 PSR J bursts in 8 yrs >80 bursts in few hours 4 bursts in 3 yrs 5 burst in 8 yrs 1 burst 5 bursts in 10 years Gavriil et al E E Kaspi et al

12 Transient Phenomena in AXPs Gotthelf & Helfand (2007) XTE 1810 Gavriil at al. (2008) PSR J1846 Israel et al. (2007) CXO in Wes 1 Swift/BAT 12

13 SGR cooling Γ ~1.5 The persistent spectrum is much brighter and harder 2 components flux decay Γ ~3.3 Burst active phase Esposito et al. 2008, MNRAS, in press, arxiv:

14 Magnetar model Duncan & Thompson 1992, ApJ 392, L9 Thompson & Duncan 1995, MNRAS 275, 255 Thompson et al. 2000, ApJ 543, 340 Thompson, Lyutikov & Kulkarni 2002, ApJ 574, 332. If the proto-ns is initially spinning at ~few ms an efficient dynamo can produce B~10 15 G Magnetars spin-down quickly to P>10 s in 10 4 /B 2 15 yrs 14

15 15

16 MAGNETIC ENERGY ROTATIONAL ENERGY E B ~ (1/12) B 2 R 3 E R = ½ I Ω 2. B = 3.2 x (PP) 1/2. E B ~ (P/5 s) P -11 E R = (P/5 s) -2 Magnetic energy dominates over rotational energy after the NS has slowed down to periods of a few seconds 16

17 Known manifestations of Neutron Stars: (Radio) Pulsars - Rotational energy >1500 pulsars observed in radio (+ several Pulsar Wind Nebulae) the youngest seen also at higher energies mostly isolated - typical periods s Accreting X-ray binaries - Gravitational energy several hundreds in High Mass and Low Mass X-ray binaries many are transients - typical periods s Magnetars Magnetic energy - B~10 15 Gauss 4 Soft Gamma-ray Repeaters + ~10 Anomalous X-ray Pulsars middle aged isolated NS - Thermal energy a few nearby NS T~ K Type I X-ray bursts - Nuclear energy a subclass of Low Mass X-ray binaries 17

18 Magnetars hard tails discovered by INTEGRAL Clear evidence for non-thermal persistent emission. Energetically important contribution: L(>10 kev) ~10 36 erg/s Spectrum above 10 kev hardens for AXPs, while for SGRs it softens SGRs No clear physical model has yet been developed for the broad-band spectra of Magnetars. Persistent hard X-ray emission can be due to: Bremsstrahlung photons produced in a thin layer close to the neutron star (Thompson & Belobodorov 2005). Cutoff at ~100 kev. at 100 km altitude in the magnetosphere through multiple resonant cyclotron scattering (Thompson et al. 2002). Cutoff at ~1 MeV A third scenario involving resonant magnetic Compton up-scattering of soft X- ray photons by a non-thermal population of highly relativistic electrons has been proposed by Baring et al. (2007) Götz et al. (2006) AXPs 18

19 Modelling Magnetars High Energy Emission Our immediate goal: kev emission well represented by a blackbody plus a power law: WHY?? Correlation in spectral hardening, luminosity, spin down rate - as in SGR 1806, during the pre (and post)-giant flare (24 Dec 2005) evolution Evolution of transient AXPs Model the hard tails 19

20 Twisted Magnetospheres Thompson, Lyutikov and Kulkarni (2002): Magnetars (AXPs and SGRs) differ from radiopulsars since their internal magnetic field is twisted up to 10 times the external dipole. At intervals, it can twist up the external field A key feature of twisted MSs is that they support current flows (in excess of the Goldreich-Julian current). Thermal seed photons (i.e. emitted from the star surface) travelling through the magnetosphere experience efficient resonant cyclotron scattering onto charged magnetospheric particles (e - and ions) the thermal surface spectrum get distorted! 20

21 Twisted Magnetospheres While the twist grows, charged particles (e - and ions) produces both : an extra heating of the star surface (by returning currents) -> X-ray luminosity increases and a large resonant cyclotron scattering depth -> spectral hardening increases The B-field flares out slightly -> open field flux > then in a dipole -> spin down torque increases a) Crustal cracks occur when the crust cannot bear the stress anymore or b) a global rearrangement of the field lines. -> a forced opening of the field outwards -> launch of an hot fireball And everything is reversed during the aftermath (simplification of the external B-field and by a partial magnetospheric untwisting -> rapid drop in the flux, spectral softening, period derivative decrease, etc..) Qualitatively ok, and quantitatively? 21

22 SGR PULSE PERIOD POWER LAW INDEX (2-10 kev) 2-10 kev FLUX XMM kev FLUX INTEGRAL IPN BURST RATE 22

23 Resonant Cyclotron Scattering in Magnetars Main point: closed field lines in NS magnetospheres are not dead. Populated by hot, highly over-dense plasma, n >> ngj (e.g. Thompson, Lyutikov & Kulkarni 2002; Liutykov & Gavriil 2006) Twisted magnetospheres are filled with plasma which may modify radiation properties. # " RCS ~ R & L % (" T ~ 10 5 " T $ ' at 1 kev with " B R L ~ 8R NS NS $ # r e B crit 1/ 3 % " 1keV ' $ & # h( B % ' & 1/ 3 23

24 Preliminary investigations (1D) Lyutikov & Gravriil, 2006: A simplified, 1D semi-analytical treatment of resonant cyclotron up-scattering of soft thermal photons Resonant Thomson scattering occurs in a thin, plane parallel slab. Photons can only propagate along the slab normal, i.e. either towards or away from the star. Static, non-relativistic, warm medium; n e constant. No electron recoil (hν << m e c 2 ) The NS surface emits seed photons (blackbody spectrum) Magnetospheric charges have a top-hat velocity distribution centered at zero and extending up to ±β T -> mimics a thermal, 1D, motion (β T» mean e- energy» temperature of the 1D electron plasma). No bulk motion. The e - velocity distribution averages to zero: -> a photon has the same probability to undergo up or down scattering -> no frequency shift due to the thermal motion of e- Photon boosting by particle thermal motion in Thomson limit occurs only due to the spatial variation of the magnetic field. For a photon propagating from high to low magnetic fields, multiple resonant cyclotron scattering will, on average, up-scatter the transmitted radiation -> hard tail. 24

25 Resonant Cyclotron Scattering in Magnetars Same number of free parameters, same as for the empirical as the blackbody+power law model; same statistical significance Optical depth " RCS = $ # RCS n dz e (1-10) Electron thermal velocity " T ( ) Surface Temperature (kev) kt ( ) Distorsion of a seed blackbody spectrum through resonant cyclotron scattering onto magnetospheric electrons, for two values of the blackbody temperature, 0.2 kev and 0.8 kev. Black lines: the RCS model for β T = 0.2 and τ res = 2, 4, 8 (from bottom to top). Grey lines: β T = 0.4 and τ res = 2, 4, 8 (from bottom to top). The normalizations of the various curves are arbitrary. From Rea et al Flux 1 - Energy (kev) - 10 Rea, Zane, Turolla, Lyutikov & Götz (2008) 25

26 RCS: AXPs with hard X-ray emission 4U U Flux BB+PL+PL 1 - Energy (kev) RCS+PL RXS J RXS J BB+PL+PL RCS+PL 1E E BB+PL RCS+PL KT consistent for all sources (0.33 kev) while β (1-2) and τ ( ) 25/11/2008 CEA DSM Irfu Diego Götz - Pulsars Workshop - IAP Paris 26

27 RCS: Transient AXPs Much softer spectra; β increases as flux decreases 1E CXO Flux BB+PL RCS BB+PL RCS 1 - Energy (kev) E XTE BB+PL BB+PL RCS RCS 27

28 RCS: SGRs with hard X-ray emission Harder spectra below 10 kev. Additional PL needed at low energies, which extends up to 200 kev Flux SGR SGR BB+PL BB+PL 1 - Energy (kev) SGR BB+PL SGR RCS+PL Flux Rea, Zane, Turolla, Lyutikov & Götz (2008)) RCS+PL 1 - Energy (kev) /11/2008 CEA DSM Irfu Diego Götz - Pulsars Workshop - IAP Paris 28

29 τ res L 1-10keV (10 34 erg/s) Magnetospheric e- density of n~1.5x10 13 cm -3 = 10 3 n GJ 29

30 Conclusions & Future Developments Twisted magnetosphere model, within magnetar scenario, in general agreement with observations below 10 kev Resonant scattering of thermal, surface photons produces spectra with right properties ESA press release XMM-Newton and INTEGRAL clues on magnetic powerhouses 14/10/2008 More accurate treatment of cross section including QED effects and electron recoil (Nobili, Turolla & SZ MNRAS in press) Many issues need to be investigated further Use the model archive to fit model spectra to observations, investigate what causes the long term variability in AXPS and TAXPS Phase resolved spectroscopy kev tails: up-scattering by (ultra)relativistic (e±) particles? Necessity of more sensitive broad band observations (Simbol-X, NuStar) Detailed models for magnetospheric currents 30

Nanda Rea. XMM-Newton reveals magnetars magnetospheric densities. University of Amsterdam Astronomical Institute Anton Pannekoek NWO Veni Fellow

Nanda Rea. XMM-Newton reveals magnetars magnetospheric densities. University of Amsterdam Astronomical Institute Anton Pannekoek NWO Veni Fellow XMM-Newton reveals magnetars magnetospheric densities Nanda Rea University of Amsterdam Astronomical Institute Anton Pannekoek NWO Veni Fellow In collaboration with : Silvia Zane Roberto Turolla Maxim

More information

X-ray Spectra from Magnetar Candidates

X-ray Spectra from Magnetar Candidates X-ray Spectra from Magnetar Candidates A Twist in the Field R Turolla Department of Physics University of Padova, Italy With L Nobili, S Zane, N. Sartore GL Israel, N Rea SGRs and AXPs X-ray Spectra SGR

More information

A resonant cyclotron scattering model for the X-ray spectra of Magnetar Candidates

A resonant cyclotron scattering model for the X-ray spectra of Magnetar Candidates A resonant cyclotron scattering model for the X-ray spectra of Magnetar Candidates The X-ray Universe 2008 Granada, 27-390 May 2008 Silvia Zane, MSSL, UCL With: Luciano Nobili, Roberto Turolla, Nanda Rea,

More information

Modelling magnetars high energy emission through Resonant Cyclotron Scattering

Modelling magnetars high energy emission through Resonant Cyclotron Scattering Modelling magnetars high energy emission through Resonant Cyclotron Scattering CEA Saclay - DSM/Irfu/Service d Astrophysique UMR AIM - Orme des Merisiers, Bat. 709, F-91191 Gif-sur-Yvette, France E-mail:

More information

(Anomalous) X-Ray Pulsars. Vicky Kaspi. Montreal, Canada. Stanford December 16, 2004

(Anomalous) X-Ray Pulsars. Vicky Kaspi. Montreal, Canada. Stanford December 16, 2004 (Anomalous) X-Ray Pulsars Vicky Kaspi Montreal, Canada Texas @ Stanford December 16, 2004 Summary Introduction to AXPs Evidence that AXPs are magnetars Open Issues and Recent Results: IR emission Transient

More information

Systematic study of magnetar outbursts

Systematic study of magnetar outbursts Systematic study of magnetar outbursts Francesco Coti Zelati Institute for Space Sciences, CSIC-IEEC, Barcelona In collaboration with N. Rea (CSIC-IEEC, U. Amsterdam), J. A. Pons (U. Alicante), S. Campana

More information

SGRs Long term variability

SGRs Long term variability SGRs Long term variability Silvia Zane, MSSL, UCL INT-07-2a The Neutron Star Crust and Surface 27 June 2007, Seattle o SGRs (and AXPs): long term spectral variability o A magnetar at work? Interpretation

More information

Magnetars, the most extreme Neutron Stars. Multiwavelenght emission

Magnetars, the most extreme Neutron Stars. Multiwavelenght emission Magnetars, the most extreme Neutron Stars. Multiwavelenght emission Silvia Zane, MSSL, UCL Black Holes, jets and outflows Kathmandu, Nepal 14-18 Oct 2013 o SGRs/AXPs as magnetars, the most extreme compact

More information

Anomalous X-ray Pulsars

Anomalous X-ray Pulsars Anomalous X-ray Pulsars GRBs: The Brightest Explosions in the Universe Harvard University, May 23, 2002 Vicky Kaspi Montreal, Canada What are Anomalous X-ray Pulsars? exotic class of objects 1st discovered

More information

Hard X-ray emission from magnetars

Hard X-ray emission from magnetars Mem. S.A.It. Vol. 79, 97 c SAIt 2008 Memorie della Hard X-ray emission from magnetars A case study for Simbol-X Diego Götz CEA Saclay, DSM/Dapnia/Service d Astrophysique, F-91191, Gif sur Yvette, France

More information

Probing the physics of magnetars

Probing the physics of magnetars Probing the physics of magnetars GianLuca Israel (INAF - RomA ASTRONOMICAL OBSERVATORY)...and many many many others Why Magnetars? Loss of rotational energy is orders of magnitudes too small (1030erg/s)

More information

Emission Model(s) of Magnetars

Emission Model(s) of Magnetars Emission Model(s) of Magnetars Silvia Zane, MSSL, UCL on behalf of a large team of co-authors Current Understanding and Future Studies of Magnetars: Research Strategy in the Astro-H era. A celebration

More information

The Giant Flare of 2004 Dec 27 from SGR and Fundamental Physics from Magnetars

The Giant Flare of 2004 Dec 27 from SGR and Fundamental Physics from Magnetars The Giant Flare of 2004 Dec 27 from SGR1806-20 and Fundamental Physics from Magnetars L. Stella, S. Dall Osso, G.L Israel INAF Osservatorio Astronomico di Roma - Italy M. Vietri SNS Pisa - Italy And also

More information

X-ray Properties of Rotation Powered Pulsars and Thermally Emitting Neutron Stars

X-ray Properties of Rotation Powered Pulsars and Thermally Emitting Neutron Stars X-ray Properties of Rotation Powered Pulsars and Thermally Emitting Neutron Stars George Pavlov (Penn State; Polytech.Univ SPb) Collaborators: Oleg Kargaltsev (George Washington Univ.) Bettina Posselt

More information

The Secret Life of Neutron Stars. Jeremy Heyl Harvard-Smithsonian CfA

The Secret Life of Neutron Stars. Jeremy Heyl Harvard-Smithsonian CfA The Secret Life of Neutron Stars Jeremy Heyl Harvard-Smithsonian CfA The Life of a 10 M Star PNS 10 5 yr 10 6 yr 10 7 yr 10 8 yr 10 9 yr 10 10 yr PMS MS Radio Pulsars Thermal Accretion-, Nuclear-, GWpowered

More information

A FIRST LOOK WITH Chandra AT SGR AFTER THE GIANT FLARE: SIGNIFICANT SPECTRAL SOFTENING AND RAPID FLUX DECAY

A FIRST LOOK WITH Chandra AT SGR AFTER THE GIANT FLARE: SIGNIFICANT SPECTRAL SOFTENING AND RAPID FLUX DECAY DRAFT VERSION MAY 12, 2008 Preprint typeset using L A TEX style emulateapj v. 21/08/00 A FIRST LOOK WITH Chandra AT SGR 1806 20 AFTER THE GIANT FLARE: SIGNIFICANT SPECTRAL SOFTENING AND RAPID FLUX DECAY

More information

EXTREME NEUTRON STARS

EXTREME NEUTRON STARS EXTREME NEUTRON STARS Christopher Thompson Canadian Institute for Theoretical Astrophysics University of Toronto SLAC Summer Institute 2005 Extreme Magnetism: B ~ 10 8-9 G (Low-mass X-ray binaries, millisecond

More information

arxiv: v1 [astro-ph] 1 Apr 2008

arxiv: v1 [astro-ph] 1 Apr 2008 Astronomy and Astrophysics Review manuscript No. (will be inserted by the editor) arxiv:0804.0250v1 [astro-ph] 1 Apr 2008 Sandro Mereghetti The strongest cosmic magnets: Soft Gamma-ray Repeaters and Anomalous

More information

Isolated And Accreting Magnetars Viewed In Hard X-rays

Isolated And Accreting Magnetars Viewed In Hard X-rays The XXVII Texas Symposium on Relativistic Astrophysics Isolated And Accreting Magnetars Viewed In Hard X-rays Wei Wang National Astronomical Observatories, Beijing China Dec 8 13 2013, Dallas TX, USA Contents

More information

arxiv: v1 [astro-ph.he] 17 Nov 2011

arxiv: v1 [astro-ph.he] 17 Nov 2011 arxiv:1111.4158v1 [astro-ph.he] 17 Nov 2011 The influence of magnetic field geometry on magnetars X-ray spectra D Viganò 1, N Parkins 2,3, S Zane 3, R Turolla 4,3, J A Pons 1 and J A Miralles 1 1 Departament

More information

Rotating RAdio Transients (RRATs) ApJ, 2006, 646, L139 Nature, 2006, 439, 817 Astro-ph/

Rotating RAdio Transients (RRATs) ApJ, 2006, 646, L139 Nature, 2006, 439, 817 Astro-ph/ Rotating RAdio Transients (RRATs) ApJ, 2006, 646, L139 Nature, 2006, 439, 817 Astro-ph/0608311 Introduction 11 Rotating RAdio Transients (RRATs) (Mclaughlin et al 2006) Repeated, irregular radio bursts

More information

The Magnificent Seven: Nearby, Thermally Emitting, Isolated Neutron Stars

The Magnificent Seven: Nearby, Thermally Emitting, Isolated Neutron Stars The Magnificent Seven: Nearby, Thermally Emitting, Isolated Neutron Stars Frank Haberl Max-Planck-Institut für extraterrestrische Physik (MPE), Garching A legacy of ROSAT Proper motions and distances Observations

More information

X-ray Observations of Rotation Powered Pulsars

X-ray Observations of Rotation Powered Pulsars X-ray Observations of Rotation Powered Pulsars George Pavlov (Penn State) Oleg Kargaltsev (George Washington Univ.) Martin Durant (Univ. of Toronto) Bettina Posselt (Penn State) Isolated neutron stars

More information

H. Tong, W. Wang

H. Tong, W. Wang Central compact objects, superslow X-ray pulsars, gamma-ray bursts: do they have anything to do with magnetars? arxiv:1406.6458v1 [astro-ph.he] 25 Jun 2014 H. Tong, W. Wang 2014.6 Abstract Magnetars and

More information

Neutron Stars: Observations

Neutron Stars: Observations Neutron Stars: Observations Ian Jones School of Mathematics, University of Southampton, UK Neutron star observations: overview From the observational point of view, neutron stars come in many different

More information

Victoria Kaspi (McGill University, Montreal, Canada)

Victoria Kaspi (McGill University, Montreal, Canada) Victoria Kaspi (McGill University, Montreal, Canada) C. Espinoza M. Gonzalez M. Kramer M. Livingstone A. Lyne M. McLaughlin S. Olausen C.Y. Ng G. Pavlov W. Zhu Victoria Kaspi (McGill University, Montreal,

More information

Bursts and flares from magnetic Pulsars

Bursts and flares from magnetic Pulsars Bursts and flares from magnetic Pulsars GianLuca Israel (INAF - RomA ASTRONOMICAL OBSERVATORY)...and many many many others Why Magnetars? Loss of rotational energy is orders of magnitudes too small (1030erg/s)

More information

Hard X-ray/soft γ-ray Characteristics of the Persistent Emission from Magnetars

Hard X-ray/soft γ-ray Characteristics of the Persistent Emission from Magnetars Hard X-ray/soft γ-ray Characteristics of the Persistent Emission from Magnetars Results based on multi-year INTEGRAL, RXTE and XMM Newton observations L. Kuiper, 1 P.R. den Hartog 1 and W. Hermsen 1,2

More information

The Magnificent Seven Similarities and Differences

The Magnificent Seven Similarities and Differences The Magnificent Seven Similarities and Differences Frank Haberl Max-Planck-Institut für extraterrestrische Physik (MPE), Garching The discovery of thermal, radio quiet isolated neutron stars New XMM-Newton

More information

The Neutron Star Zoo. Stephen C.-Y. Ng ( 吳志勇 ) HKU

The Neutron Star Zoo. Stephen C.-Y. Ng ( 吳志勇 ) HKU The Neutron Star Zoo Stephen C.-Y. Ng ( 吳志勇 ) HKU Overview Introduction to neutron stars Different classes of neutron stars: Radio Pulsars MSPs Magnetars DINS CCOs Unification 6/12/2017 NAOC Stephen Ng

More information

Lecture 3 Pulsars and pulsar wind nebulae

Lecture 3 Pulsars and pulsar wind nebulae Lecture 3 Pulsars and pulsar wind nebulae Pulsars Characteristic parameters Pulsar wind nebulae Properties Evolution Exotic central compact objects - Magnetars The Crab Pulsar http://www.jb.man.ac.uk/~pulsar/education/sounds/sounds.html

More information

Monday, October 21, 2013 Third exam this Friday, October 25. Third Sky Watch watch the weather! Review sheet posted today. Review Thursday, 5 6 PM,

Monday, October 21, 2013 Third exam this Friday, October 25. Third Sky Watch watch the weather! Review sheet posted today. Review Thursday, 5 6 PM, Monday, October 21, 2013 Third exam this Friday, October 25. Third Sky Watch watch the weather! Review sheet posted today. Review Thursday, 5 6 PM, Room WEL 2.256 Lecture 19 posted today Reading: Chapter

More information

arxiv:astro-ph/ v1 17 Dec 2003

arxiv:astro-ph/ v1 17 Dec 2003 Electromagnetic Signals from Planetary Collisions Bing Zhang and Steinn Sigurdsson arxiv:astro-ph/0312439 v1 17 Dec 2003 Department of Astronomy & Astrophysics, Penn State University, University Park,

More information

Editorial comment: research and teaching at UT

Editorial comment: research and teaching at UT Wednesday, March 23, 2017 Reading for Exam 3: Chapter 6, end of Section 6 (binary evolution), Section 6.7 (radioactive decay), Chapter 7 (SN 1987A), Background: Sections 3.1, 3.2, 3.3, 3.4, 3.5, 3.8, 3.10,

More information

Cooling Neutron Stars. What we actually see.

Cooling Neutron Stars. What we actually see. Cooling Neutron Stars What we actually see. The Equilibrium We discussed the equilibrium in neutron star cores through this reaction (direct Urca). nëp + e à + ö e ö n = ö p + ö e + ö öe Does the reaction

More information

arxiv: v1 [astro-ph] 7 Aug 2007

arxiv: v1 [astro-ph] 7 Aug 2007 Neutron star magnetospheres: the binary pulsar, Crab and magnetars M. Lyutikov Department of Physics, Purdue University, 525 Northwestern Avenue West Lafayette, IN 47907 arxiv:0708.1024v1 [astro-ph] 7

More information

Young Neutron Stars and the Role of Magnetic Fields in their Evolution

Young Neutron Stars and the Role of Magnetic Fields in their Evolution Young Neutron Stars and the Role of Magnetic Fields in their Evolution Eric Gotthelf (Columbia University) The X-ray Universe 2011 28 June 2011, Berlin Germany Talk Outline Recent Highlights of Young Isolated

More information

New optical/uv counterparts and SEDs of Isolated NS ATISH KAMBLE, D. KAPLAN (UW-MILWAUKEE), M. VAN KERKWIJK (TORONTO) AND W.

New optical/uv counterparts and SEDs of Isolated NS ATISH KAMBLE, D. KAPLAN (UW-MILWAUKEE), M. VAN KERKWIJK (TORONTO) AND W. New optical/uv counterparts and SEDs of Isolated NS ATISH KAMBLE, D. KAPLAN (UW-MILWAUKEE), M. VAN KERKWIJK (TORONTO) AND W. HO (SOUTHAMPTON) RX J1856...a puzzle! Featureless BB spectrum instead of harder

More information

XMM-Newton Observations of the Isolated Neutron Star 1RXS J / RBS 1774

XMM-Newton Observations of the Isolated Neutron Star 1RXS J / RBS 1774 XMM-Newton Observations of the Isolated Neutron Star 1RXS J214303.7+065419 / RBS 1774 Mark Cropper, Silvia Zane Roberto Turolla Luca Zampieri Matteo Chieregato Jeremy Drake Aldo Treves MSSL/UCL Univ Padova

More information

Wide-Band Spectral Studies of Magnetar Burst and Persistent Emissions

Wide-Band Spectral Studies of Magnetar Burst and Persistent Emissions Wide-Band Spectral Studies of Magnetar Burst and Persistent Emissions Yujin E. Nakagawa Waseda University, Japan yujin@aoni.waseda.jp Collaborators Kazuo Makishima 1, Teruaki Enoto 2, Takanori Sakamoto

More information

Pulsars & Double Pulsars:! A Multiwavelength Approach!

Pulsars & Double Pulsars:! A Multiwavelength Approach! Pulsars & Double Pulsars:! A Multiwavelength Approach! Marta Burgay INAF, Cagliari Observatory! X-Ray Astronomy 2009 Bologna 08/09/2009! Spin-Powered Pulsars! Radio! High Energy! RRATs! Magnetars! XDINS!

More information

Powering Anomalous X-ray Pulsars by Neutron Star Cooling

Powering Anomalous X-ray Pulsars by Neutron Star Cooling Powering Anomalous X-ray Pulsars by Neutron Star Cooling Jeremy S. Heyl Lars Hernquist 1 Lick Observatory, University of California, Santa Cruz, California 95064, USA ABSTRACT Using recently calculated

More information

Thermal Radiation from Isolated Neutron Stars

Thermal Radiation from Isolated Neutron Stars Thermal Radiation from Isolated Neutron Stars George Pavlov Penn State Slava Zavlin MSFC (Huntsville) Divas Sanwal Penn State Oleg Kargaltsev Penn State Roger Romani Stanford Thermal emission: Why important?

More information

Progress in Pulsar detection

Progress in Pulsar detection Progress in Pulsar detection With EINSTEIN & EXOSAT: 7 radio pulsars detected in X-rays With ROSAT, ASCA & BSAX: 33 radio pulsars detected in X-rays After ~8 yrs with XMM & Chandra: 81 radio pulsars detected

More information

To understand the X-ray spectrum of anomalous X-ray pulsars and soft gamma-ray repeaters

To understand the X-ray spectrum of anomalous X-ray pulsars and soft gamma-ray repeaters Research in Astron. Astrophys. x Vol. X No. XX, http://www.raa-journal.org http://www.iop.org/journals/raa Research in Astronomy and Astrophysics To understand the X-ray spectrum of anomalous X-ray pulsars

More information

Cooling Limits for the

Cooling Limits for the Cooling Limits for the Page et al. 2004 Youngest Neutron Stars Cooling from the Youngest NSs SNR Zone NSs younger than ~50 kyr offer strong constraints on rapid cooling - the associated physical processes

More information

Distribution of X-ray binary stars in the Galaxy (RXTE) High-Energy Astrophysics Lecture 8: Accretion and jets in binary stars

Distribution of X-ray binary stars in the Galaxy (RXTE) High-Energy Astrophysics Lecture 8: Accretion and jets in binary stars High-Energy Astrophysics Lecture 8: Accretion and jets in binary stars Distribution of X-ray binary stars in the Galaxy (RXTE) Robert Laing Primary Compact accreting binary systems Compact star WD NS BH

More information

Hot-subdwarf stars: a new class of X-ray sources

Hot-subdwarf stars: a new class of X-ray sources Hot-subdwarf stars: a new class of X-ray sources Nicola La Palombara 1 S. Mereghetti 1, A. Tiengo 1,2,3, P. Esposito 1 1 INAF - IASF Milano, 2 IUSS Pavia, 3 INFN Pavia Dublin June 16-19, 2014 Hot subdwarf

More information

Compact Stars. Lecture 4

Compact Stars. Lecture 4 Compact Stars Lecture 4 X-ray binaries We have talked about the basic structure of accretion disks in X-ray binaries and evolutionary scenarios of low mass and high mass XRBs I will now present the observational

More information

The magnetic properties of Main Sequence Stars, White Dwarfs and Neutron Stars

The magnetic properties of Main Sequence Stars, White Dwarfs and Neutron Stars The magnetic properties of Main Sequence Stars, White Dwarfs and Neutron Stars Lilia Ferrario Mathematical Sciences Institute Australian National University Properties of MWDs High Field MWDs ~ 10 6-10

More information

Extreme optical outbursts from a magnetar-like transient source: SWIFT J

Extreme optical outbursts from a magnetar-like transient source: SWIFT J Extreme optical outbursts from a magnetar-like transient source: SWIFT J1955+26 Gottfried Kanbach 1 Alexander Stefanescu 1,2 Agnieszka Słowikowska 3 Jochen Greiner 1 Sheila McBreen 4 Glòria Sala 5 1 Max-Planck-Institut

More information

SUPERFLUID MAGNETARS AND QPO SPECTRUM

SUPERFLUID MAGNETARS AND QPO SPECTRUM SUPERFLUID MAGNETARS AND QPO SPECTRUM Andrea Passamonti Osservatorio Astronomico di Roma INAF. In collaboration with L. Stella, S. Lander SAIt Bologna 9/5/23 Magnetars Neutron stars with a strong magnetic

More information

Hard X-ray Emission by Resonant Compton Upscattering in Magnetars

Hard X-ray Emission by Resonant Compton Upscattering in Magnetars Hard X-ray Emission by Resonant Compton Upscattering in Magnetars!! Zorawar Wadiasingh & Matthew G. Baring Rice University Peter L. Gonthier Hope College Texas Symposium 2013! December 9, 2013! Magnetars:

More information

arxiv:astro-ph/ v2 16 Feb 2005

arxiv:astro-ph/ v2 16 Feb 2005 Astronomy & Astrophysics manuscript no. (will be inserted by hand later) INTEGRAL discovery of persistent hard X-ray emission from the Soft Gamma-ray Repeater SGR 1806 20 S. Mereghetti 1, D. Götz 1, I.F.

More information

Evolution with decaying and re-emerging magnetic field

Evolution with decaying and re-emerging magnetic field Evolution with decaying and re-emerging magnetic field Diversity of young neutron stars Young isolated neutron stars can appear in many flavors: o Radio pulsars o Compact central X-ray sources in supernova

More information

Astronomy. Chapter 15 Stellar Remnants: White Dwarfs, Neutron Stars, and Black Holes

Astronomy. Chapter 15 Stellar Remnants: White Dwarfs, Neutron Stars, and Black Holes Astronomy Chapter 15 Stellar Remnants: White Dwarfs, Neutron Stars, and Black Holes are hot, compact stars whose mass is comparable to the Sun's and size to the Earth's. A. White dwarfs B. Neutron stars

More information

Emission from Isolated Neutron Stars. Observations and model applications

Emission from Isolated Neutron Stars. Observations and model applications Thermal Emission from Isolated Neutron Stars Theoretical aspects Observations and model applications Slava Zavlin (MPE, Garching) A Short History Chi & Salpeter (1964) and Tsuruta (1964): thermal radiation

More information

The decaying magneticfield of magnetars

The decaying magneticfield of magnetars November 25th 2013 SFB/TR7 Video Seminar The decaying magneticfield of magnetars SIMONE DALL'OSSO Theoretical Astrophysics - University of Tübingen Motivations - X-ray emission of magnetars powered by

More information

arxiv: v2 [astro-ph.he] 18 Mar 2013

arxiv: v2 [astro-ph.he] 18 Mar 2013 2013.3 v5 Wind braking of magnetars arxiv:1205.1626v2 [astro-ph.he] 18 Mar 2013 H. Tong 1,3, R. X. Xu 2, L. M. Song 3 and G. J. Qiao 2 ABSTRACT Considering recent observations challenging the traditional

More information

Neutron star mass and radius constraints from millisecond X-ray pulsars and X-ray bursters

Neutron star mass and radius constraints from millisecond X-ray pulsars and X-ray bursters Neutron star mass and radius constraints from millisecond X-ray pulsars and X-ray bursters Juri Poutanen (University of Turku, Finland) Collaborators:! Valery Suleimanov (Univ. Tübingen, Germany), Joonas

More information

Topology of magnetars external field I. Axially symmetric fields

Topology of magnetars external field I. Axially symmetric fields Mon. Not. R. Astron. Soc. 395, 753 763 (2009) doi:10.1111/j.1365-2966.2009.14600.x Topology of magnetars external field I. Axially symmetric fields L. Pavan, 1 R. Turolla, 1,2,3 S. Zane 2 L. Nobili 1 1

More information

CTB 37A & CTB 37B - The fake twins SNRs

CTB 37A & CTB 37B - The fake twins SNRs Annecy le vieux CTB 37A & CTB 37B - The fake twins SNRs LAPP Annecy CTB 37: a complex complex 843 MHz MGPS map (Green et al. 1999) Bright region in radio emission Thought to be 2 SNRs plus a bridge and

More information

H.E.S.S. Unidentified Gamma-ray Sources in a Pulsar Wind Nebula Scenario And HESS J

H.E.S.S. Unidentified Gamma-ray Sources in a Pulsar Wind Nebula Scenario And HESS J H.E.S.S. Unidentified Gamma-ray Sources in a Pulsar Wind Nebula Scenario And HESS J1303-631 Matthew Dalton Humboldt University at Berlin For the H.E.S.S. Collaboration TeV Particle Astrophysics, Paris.

More information

arxiv:astro-ph/ v1 23 Nov 2003

arxiv:astro-ph/ v1 23 Nov 2003 Young Neutron Stars and Their Environments IAU Symposium, Vol. 218, 2004 F. Camilo and B. M. Gaensler, eds. Central Compact Objects in Supernova Remnants arxiv:astro-ph/0311526v1 23 Nov 2003 George G.

More information

Fermi: Highlights of GeV Gamma-ray Astronomy

Fermi: Highlights of GeV Gamma-ray Astronomy Fermi: Highlights of GeV Gamma-ray Astronomy Dave Thompson NASA GSFC On behalf of the Fermi Gamma-ray Space Telescope Large Area Telescope Collaboration Neutrino Oscillation Workshop Otranto, Lecce, Italy

More information

Sources of GeV Photons and the Fermi Results

Sources of GeV Photons and the Fermi Results Sources of GeV Photons and the Fermi Results 1. GeV instrumentation and the GeV sky with the Fermi Gamma-ray Space Telescope 2. First Fermi Catalog of Gamma Ray Sources and the Fermi Pulsar Catalog 3.

More information

arxiv:astro-ph/ v1 24 Nov 1998

arxiv:astro-ph/ v1 24 Nov 1998 ASCA Discovery of an X-ray Pulsar in the Error Box of SGR1900+14 K. Hurley, P. Li University of California, Berkeley, Space Sciences Laboratory, Berkeley, CA 94720-7450 arxiv:astro-ph/9811388v1 24 Nov

More information

A Major SGR-like Outburst and Rotation Glitch in the No-Longer-So-Anomalous X-ray Pulsar 1E

A Major SGR-like Outburst and Rotation Glitch in the No-Longer-So-Anomalous X-ray Pulsar 1E A Major SGR-like Outburst and Rotation Glitch in the No-Longer-So-Anomalous X-ray Pulsar 1E 2259+586 V. M. Kaspi, 1,2,3 F. P. Gavriil, 1 P. M. Woods, 4 J. B. Jensen 5 M. S. E. Roberts, 1,2 D. Chakrabarty

More information

Ultra Luminous X-ray sources ~one of the most curious objects in the universe~

Ultra Luminous X-ray sources ~one of the most curious objects in the universe~ Ultra Luminous X-ray sources ~one of the most curious objects in the universe~ Shogo B. Kobayashi the University of Tokyo ULX workshop@isas 1 The discovery of the enigmatic sources pfabbiano & Trincheri

More information

Gamma-ray binaries as pulsars spectral & variability behaviour Guillaume Dubus. Laboratoire d Astrophysique de Grenoble UMR 5571 UJF / CNRS

Gamma-ray binaries as pulsars spectral & variability behaviour Guillaume Dubus. Laboratoire d Astrophysique de Grenoble UMR 5571 UJF / CNRS Gamma-ray binaries as pulsars spectral & variability behaviour Guillaume Dubus Laboratoire d Astrophysique de Grenoble UMR 5571 UJF / CNRS Image: Mirabel 2006 1 Pulsars & massive stars Young pulsars, magnetic

More information

Polarized (Surface) X-Rays from Highly Magnetized Neutron Stars

Polarized (Surface) X-Rays from Highly Magnetized Neutron Stars Polarized (Surface) X-Rays from Highly Magnetized Neutron Stars Dong Lai Cornell University The Coming Age of X-Ray Polarimetry, April 29, 2009, Rome, Italy Thermal (Surface) Radiation from Neutron Stars

More information

arxiv:astro-ph/ v1 16 Oct 2003

arxiv:astro-ph/ v1 16 Oct 2003 Young Neutron Stars and Their Environments IAU Symposium, Vol. 218, 2004 F. Camilo and B. M. Gaensler, eds. Observational manifestations of young neutron stars: Spin-powered pulsars arxiv:astro-ph/0310451v1

More information

The Gamma-ray Sky with ASTROGAM GAMMA-RAY BINARIES. Second Astrogam Workshop Paris, March Josep M. Paredes

The Gamma-ray Sky with ASTROGAM GAMMA-RAY BINARIES. Second Astrogam Workshop Paris, March Josep M. Paredes The Gamma-ray Sky with ASTROGAM GAMMA-RAY BINARIES Second Astrogam Workshop Paris, 26-27 March 2015 Josep M. Paredes Binary systems with HE and/or VHE gamma-ray emission Microquasars: Accreting XRBs with

More information

NEW EVIDENCE OF PROTON-CYCLOTRON RESONANCE IN A MAGNETAR STRENGTH FIELD FROM SGR Alaa I. Ibrahim, 1,2 Jean H. Swank, 1 and William Parke 2

NEW EVIDENCE OF PROTON-CYCLOTRON RESONANCE IN A MAGNETAR STRENGTH FIELD FROM SGR Alaa I. Ibrahim, 1,2 Jean H. Swank, 1 and William Parke 2 The Astrophysical Journal, 584:L17 L1, 003 February 10 003. The American Astronomical Society. All rights reserved. Printed in U.S.A. NEW EVIDENCE OF PROTON-CYCLOTRON RESONANCE IN A MAGNETAR STRENGTH FIELD

More information

Accretion Disks. 1. Accretion Efficiency. 2. Eddington Luminosity. 3. Bondi-Hoyle Accretion. 4. Temperature profile and spectrum of accretion disk

Accretion Disks. 1. Accretion Efficiency. 2. Eddington Luminosity. 3. Bondi-Hoyle Accretion. 4. Temperature profile and spectrum of accretion disk Accretion Disks Accretion Disks 1. Accretion Efficiency 2. Eddington Luminosity 3. Bondi-Hoyle Accretion 4. Temperature profile and spectrum of accretion disk 5. Spectra of AGN 5.1 Continuum 5.2 Line Emission

More information

Pulsar Wind Nebulae as seen by Fermi-Large Area Telescope

Pulsar Wind Nebulae as seen by Fermi-Large Area Telescope Pulsar Wind Nebulae as seen by Fermi-Large Area Telescope Marie-Hélène Grondin Centre d'etudes Nucléaires de Bordeaux- Gradignan SNR/PWN Workshop Montpellier, 2010 June 1 th M.-H. Grondin, SNR/PWN Wokshop,

More information

Thomas Tauris Bonn Uni. / MPIfR

Thomas Tauris Bonn Uni. / MPIfR Thomas Tauris Bonn Uni. / MPIfR Heidelberg XXXI, Oct. 2013 1: Introduction Degenerate Fermi Gases Non-relativistic and extreme relativistic electron / (n,p,e - ) gases 2: White Dwarfs Structure, cooling

More information

Thermal Emission from Isolated Neutron Stars

Thermal Emission from Isolated Neutron Stars Thermal Emission from Isolated Neutron Stars R. Turolla Dept. of Physics, University of Padova, Italy IWARA09 - Maresias, October 4-8 2009 1 Outline Are INSs thermal emitters? Observations of INSs Importance

More information

Prospects in space-based Gamma-Ray Astronomy

Prospects in space-based Gamma-Ray Astronomy Prospects in space-based Gamma-Ray Astronomy On behalf of the European Gamma-Ray community Jürgen Knödlseder Centre d Etude Spatiale des Rayonnements, Toulouse, France Gamma-Ray Astronomy in Europe Europe

More information

Radio Observations of TeV and GeV emitting Supernova Remnants

Radio Observations of TeV and GeV emitting Supernova Remnants Radio Observations of TeV and GeV emitting Supernova Remnants Denis Leahy University of Calgary, Calgary, Alberta, Canada (collaborator Wenwu Tian, National Astronomical Observatories of China) outline

More information

The population of Galactic X-ray bursters as seen by JEMX onboard INTEGRAL

The population of Galactic X-ray bursters as seen by JEMX onboard INTEGRAL The population of Galactic X-ray bursters as seen by JEMX onboard INTEGRAL Celia Sánchez-Fernández ISOC ESAC, Madrid, Spain In collaboration with: E. Kuulkers, D. Galloway, J. Chenevez C. Sanchez-Fernandez

More information

FERMI. YOUNG PULSAR SPECTRA WITH THE LAT FERMI TELESCOPE Ateliers pulsars. 25 novembre 2008 Damien Parent. Gamma-ray Large Area Space Telescope

FERMI. YOUNG PULSAR SPECTRA WITH THE LAT FERMI TELESCOPE Ateliers pulsars. 25 novembre 2008 Damien Parent. Gamma-ray Large Area Space Telescope FERMI Gamma-ray Large Area Space Telescope YOUNG PULSAR SPECTRA WITH THE LAT FERMI TELESCOPE Ateliers pulsars 25 novembre 2008 1 Topics 1. Young pulsars, our best candidates 2 examples : J0205+6449 and

More information

(X-ray) binaries in γ-rays

(X-ray) binaries in γ-rays (X-ray) binaries in γ-rays Guillaume Dubus Understanding relativistic jets, Kraków 2011 Institut de Planétologie et d Astrophysique de Grenoble Variable galactic γ-ray sources gamma-ray binaries O/Be +

More information

Lecture 20 High-Energy Astronomy. HEA intro X-ray astrophysics a very brief run through. Swift & GRBs 6.4 kev Fe line and the Kerr metric

Lecture 20 High-Energy Astronomy. HEA intro X-ray astrophysics a very brief run through. Swift & GRBs 6.4 kev Fe line and the Kerr metric Lecture 20 High-Energy Astronomy HEA intro X-ray astrophysics a very brief run through. Swift & GRBs 6.4 kev Fe line and the Kerr metric Tut 5 remarks Generally much better. However: Beam area. T inst

More information

Neutron Stars. We now know that SN 1054 was a Type II supernova that ended the life of a massive star and left behind a neutron star.

Neutron Stars. We now know that SN 1054 was a Type II supernova that ended the life of a massive star and left behind a neutron star. Neutron Stars Neutron Stars The emission from the supernova that produced the crab nebula was observed in 1054 AD by Chinese, Japanese, Native Americans, and Persian/Arab astronomers as being bright enough

More information

Observations of. Pulsar Wind Nebulae

Observations of. Pulsar Wind Nebulae Observations of Pulsar Wind Nebulae I. Injection Spectrum I. Late-Phase Evolution II. PWNe and Magnetars PWNe and Their SNRs PWN Shock Reverse Shock Forward Shock Pulsar Wind Pulsar Termination Shock PWN

More information

Extended X- ray emission from PSR B /LS 2883 and other gamma- ray binaries

Extended X- ray emission from PSR B /LS 2883 and other gamma- ray binaries Extended X- ray emission from PSR B1259-63/LS 2883 and other gamma- ray binaries George Pavlov (Pennsylvania State University) Oleg Kargaltsev (George Washington University) Martin Durant (University of

More information

Recent Observations of Supernova Remnants

Recent Observations of Supernova Remnants 1 Recent Observations of Supernova Remnants with VERITAS Tülün Ergin (U. of Massachusetts Amherst, MA) on behalf of the VERITAS Collaboration (http://veritas.sao.arizona.edu) 2 Contents Supernova Remnants

More information

GAMMA-RAY EMISSION FROM BINARY SYSTEMS

GAMMA-RAY EMISSION FROM BINARY SYSTEMS GAMMA-RAY EMISSION FROM BINARY SYSTEMS 13th AGILE Science Workshop "AGILE: 8 and counting May 25-26, 2015 ASI, Rome Josep M. Paredes Binary systems with HE and/or VHE gamma-ray emission Gamma-ray binaries:

More information

Pulsars ASTR2110 Sarazin. Crab Pulsar in X-rays

Pulsars ASTR2110 Sarazin. Crab Pulsar in X-rays Pulsars ASTR2110 Sarazin Crab Pulsar in X-rays Test #2 Monday, November 13, 11-11:50 am Ruffner G006 (classroom) Bring pencils, paper, calculator You may not consult the text, your notes, or any other

More information

Final States of a Star

Final States of a Star Pulsars Final States of a Star 1. White Dwarf If initial star mass < 8 MSun or so. (and remember: Maximum WD mass is 1.4 MSun, radius is about that of the Earth) 2. Neutron Star If initial mass > 8 MSun

More information

XMM observations of three middle-aged pulsars

XMM observations of three middle-aged pulsars Mem. S.A.It. Vol. 75, 458 c SAIt 2004 Memorie della MM observations of three middle-aged pulsars V. E. Zavlin 1 and G. G. Pavlov 2 1 Max-Planck Institut für extraterrestrische Physik, 85748 Garching, Germany

More information

Extended X-ray object ejected from the PSR B /LS 2883 binary

Extended X-ray object ejected from the PSR B /LS 2883 binary Extended X-ray object ejected from the PSR B1259-63/LS 2883 binary Oleg Kargaltsev (George Washington University) George Pavlov (Pennsylvania State University) Jeremy Hare (George Washington University)

More information

Particle acceleration and pulsars

Particle acceleration and pulsars Meudon, nov. 2013 p. 1/17 Particle acceleration and pulsars Fabrice Mottez LUTH - Obs. Paris-Meudon - CNRS - Univ. Paris Diderot Meudon, nov. 2013 p. 2/17 Pulsars (PSR) and pulsar wind nebulae (PWNe) Mostly

More information

This class: Life cycle of high mass stars Supernovae Neutron stars, pulsars, pulsar wind nebulae, magnetars Quark-nova stars Gamma-ray bursts (GRBs)

This class: Life cycle of high mass stars Supernovae Neutron stars, pulsars, pulsar wind nebulae, magnetars Quark-nova stars Gamma-ray bursts (GRBs) This class: Life cycle of high mass stars Supernovae Neutron stars, pulsars, pulsar wind nebulae, magnetars Quark-nova stars Gamma-ray bursts (GRBs)!1 Cas$A$ All$Image$&$video$credits:$Chandra$X7ray$ Observatory$

More information

Infrared-Optical observations of magnetars

Infrared-Optical observations of magnetars Infrared-Optical observations of magnetars Mikio Morii Tokyo Institute of Technology 2012.09.01 @ Rikkyo Univ. Contents Search for Near-Infrared Pulsation of the AXP 4U 0142+61 M. M., N. Kobayashi, N.

More information

Explosive reconnection of the double tearing mode in relativistic plasmas

Explosive reconnection of the double tearing mode in relativistic plasmas Explosive reconnection of the double tearing mode in relativistic plasmas Application to the Crab Jérôme Pétri 1 Hubert Baty 1 Makoto Takamoto 2, Seiji Zenitani 3 1 Observatoire astronomique de Strasbourg,

More information

Studies on Axions as the Energy source in Magnetar

Studies on Axions as the Energy source in Magnetar Studies on Axions as the Energy source in Magnetar Pranita Das 1,2, H.L.Duorah 2 and Kalpana Duorah 2 Department of Physics, Pandu College,Guwahati,Assam-781012 1 Department of Physics, Gauhati University,Guwahati,

More information

NEW EVIDENCE FOR PROTON CYCLOTRON RESONANCE IN A MAGNETAR STRENGTH FIELD FROM SGR

NEW EVIDENCE FOR PROTON CYCLOTRON RESONANCE IN A MAGNETAR STRENGTH FIELD FROM SGR NEW EVIDENCE FOR PROTON CYCLOTRON RESONANCE IN A MAGNETAR STRENGTH FIELD FROM SGR 1806-20 ALAA I. IBRAHIM, 1,2 JEAN H. SWANK 1 &WILLIAM PARKE 2 1 NASA Goddard Space Flight Center, Laboratory for High Energy

More information

The Same Physics Underlying SGRs, AXPs and Radio Pulsars

The Same Physics Underlying SGRs, AXPs and Radio Pulsars Chin. J. Astron. Astrophys. Vol. 6 (2006), Suppl. 2, 273 278 (http://www.chjaa.org) Chinese Journal of Astronomy and Astrophysics The Same Physics Underlying SGRs, AXPs and Radio Pulsars Biping Gong National

More information