Vlad Kondratiev (ASTRON) Science at Low Frequencies III Caltech, Pasadena, CA Dec 9, 2016

Size: px
Start display at page:

Download "Vlad Kondratiev (ASTRON) Science at Low Frequencies III Caltech, Pasadena, CA Dec 9, 2016"

Transcription

1 Pulsars at low radio frequencies Vlad Kondratiev (ASTRON) Science at Low Frequencies III Caltech, Pasadena, CA Dec 9, 2016

2 Renaissance of low radio frequencies DE601 IPS array LOFAR Ooty RT SKA Low LWA DKR1000 UTR-2 NenuFAR MWA VLA GURT ugmrt URAN-3 BSA

3 Renaissance of low radio frequencies Before: Now: mostly transit instruments limited BW and/or Pol full tracking (rise set) large BW huge Δf/f dual pols

4 Pulsar science at low freqs pulsar population studies emission mechanism intervening medium (ISM, IPM, ionosphere)

5 Pulsar science at low freqs pulsar population studies Surveys Complete PSR samples stellar evolution studies Compact systems GR tests Many more MSPs GW detection Many other interesting and exotic systems formation/evolution studies emission mechanism intervening medium (ISM, IPM, ionosphere)

6 Low frequency pulsar surveys Pros: large FoV faster good for steep spectra sources easy localization of the promising candidates with multiple TABs in single follow up observation precursors for SKA Low pulsar survey(s) Cons: dispersion and scattering are more pronounced low freq Tsys is higher, but can do larger dwell times FRBs, RRATs much larger data volume much more processing (more DM trials) more RFI?

7 Low frequency pulsar surveys Pros: large FoV faster good for steep spectra sources easy localization of the promising candidates with multiple TABs in single follow up observation precursors for SKA Low pulsar survey(s) Cons: dispersion and scattering are more pronounced low freq Tsys is higher, but can do larger dwell times FRBs, RRATs much larger data volume much more processing (more DM trials) more RFI? LOTAAS (survey for pulsars and fast transients with LOFAR) LNCC (LWA Northern Celestial Cap, irregular observations) MWA (planned in the near future)

8 LOTAAS vs. others GBNCC frequency (MHz) LOTAAS (coherent beams) SKA1 Low ~ number of beams dwell time (min) sensitivity (x GBNCC): instantaneous cumulative data rate (x GBNCC) field of view (sq. deg.) 200

9 LOFAR Tied Array All sky Survey (LOTAAS) LOFAR ''Superterp'' (12 innermost HBA sub stations) Currently for DEC > 0 deg Find MSPs out to DM ~50 pc/cc Smin ~ MHz The SKA Low precursor survey LOTAAS team: Jason Hessels, Ben Stappers, Vlad Kondratiev, Sotiris Sanidas, Sally Cooper, Daniele Michilli, Chia Min Tan, Cees Bassa, Ziggy Pleunis, Joeri van Leeuwen +LOFAR PWG

10 LOTAAS 1 SAP 1 survey pointing in red 4 survey pointings are shown in total 3 sub array pointings (SAPs, incoherent beams), ~ 30 sq. deg. total per pointing + 4 rings (61 tied array beams, TABs) for each SAP, ~9 sq. deg. total per pointing + 12 additional TABs pointed towards known pulsars => total of 222 TABs MHz BW = 32 MHz frequency channel =12 khz dt = 492 μs dwell time = 1 hour TABs (4 rings)

11 LOTAAS 1 pass (sparse) to cover Northern hemisphere with incoherent beams (651 pointings needed) 3 passes to cover Northern hemisphere with TABs

12 LOTAAS: Observing/Processing status 1045 pointings observed so far (as of Nov 11, 2016; Pass A complete; Pass B 61%) 977 processed (searched) Processing on Cartesius: 3 hrs/beam on 24 core node 2+ PB of data collected and archived Periodicity & single pulse searches (20M+ cands, 50M+ SP cands) Machine learning classifier 200 cands/pointing (periodicity classifier, Lyon cands/pointing (SP classifier) 100+ known pulsars redetections Cartesius Dutch national supercomputer 55M core hours allocated

13 LOTAAS: Observing/Processing status 1045 pointings observed so far (as of Nov 11, 2016; Pass A complete; Pass B 61%) 977 processed (searched) Processing on Cartesius: 3 hrs/beam on 24 core node 2+ PB of data collected and archived Periodicity & single pulse searches (20M+ cands, 50M+ SP cands) Machine learning classifier 200 cands/pointing (periodicity classifier, Lyon cands/pointing (SP classifier) 100+ known pulsars redetections Cartesius Dutch national supercomputer 55M hours allocated

14 LOTAAS: Discovery status

15 LOTAAS: Discovery status 53 pulsars discovered so far! (as of Dec 7, 2016) 1 confirmed MSP! (2 more not yet confirmed) 5 RRATs Currently 1 new pulsar per 20 hrs of observing Pass B Currently at ~1 discovery per 150 sq. deg. at the moment somewhat lower than predicted Timing with LOFAR and Lovell telescope at 1.4 GHz

16 First LOFAR millisecond pulsar J Fermi Unid targeted searches First MSP discovered at < 300 MHz Steep spectrum as Pleunis many other MSPs (α < 2.6)

17 Low lum nearby source J Cooper DM = 6.5 pc/cc d = 0.5 kpc

18 RRAT Michilli J

19 Pulsar science at low freqs pulsar population studies emission mechanism Spectra (turnover, GHz peaked spectra) Polarization Profile evolution Moding, drifting subpulses, giant pulses, etc. (see also posters by Bradley Meyers & Franz Kirsten) intervening medium (ISM, IPM, ionosphere)

20 Pulsar science at low freqs Hassall et al pulsar population studies emission mechanism Spectra (turnover, GHz peaked spectra) Polarization Profile evolution Moding, drifting subpulses, giant pulses, etc. (see also posters by Bradley Meyers & Franz Kirsten)? IPM, ionosphere) Also next talks in this session Carousel model (Rankin et al. 2006) Log (Flux density) intervening medium (ISM, ~ να Log (frequency)

21

22 normal PSRs LOFAR Censuses Bilous et al Northern sources, δ > 8 outside Galactic plane, b > 3 not in Globular clusters good coordinates, position errors < 130 Observations LC1_003 Feb May 2014 Full core HBA, MHz 400 subs split in chan IQUV Δt = μs 1.31 ms 20 min, or at least 1000 periods (1 observation) MSPs Kondratiev et al Exploratory observations and preparation for pulsar timing Cycle 0 (most), Cycle 1 2 (some) Full Core HBA, MHz LBA, MHz 400 subs Complex voltage data Δt = 5.12 μs Typically 20 min (LBA 1 hour) Spectra work Not a single observation, but many more data (!): total number of HBA obs = 1508; (LBA obs = 18) Mainly timing data (Cycles 0 6)

23 Census' profiles of slow pulsars Bilous et al. 2016

24 MSP profiles (best single observation) Kondratiev et al. 2016

25 Census' spectra of slow pulsars Bilous et al. 2016

26 Preliminary MSP Spectra Kondratiev et al., in prep.

27 Average profile polarization 20 bright pulsars combining HBA polarization data with higher frequencies magnetospheric birefringence cannot be a sole explanation of observed evolution of polarized fraction with frequency scattering can mimic Faraday rotation leading to phasedependent RMs (but much smaller variation than at 1400 MHz) Noutsos et al. 2015

28 The «chameleon» pulsar B B mode X rays weak and unpulsed Radio pulses bright and orderly Hermsen et al. 2013, Science

29 The «chameleon» pulsar B Q mode X rays bright and pulsed Radio pulses weak and disorderly Hermsen et al. 2013, Science

30 The «chameleon» pulsar B with LBAs Bilous et al Discovery of a systematic B mode profile delay

31 The «chameleon» pulsar B Mereghetti et al LOFAR+Arecibo+LWA

32 Pulsar science at low freqs pulsar population studies emission mechanism intervening medium (ISM, IPM, ionosphere) DM / RM / scattering (see also poster by Veronica Dike) Scintillation studies Solar wind, CMEs (talk by Greg Taylor) Space weather input to high freq timing (DM chromaticity?)

33 Howard et al LWA Verbiest et al., in prep. Geyer et al., to be submitted Sobey et al., in prep.

34 Summary: Renaissance of low-frequency pulsar astronomy Low-frequency pulsar surveys are challenging but ideal to search for steep- spectrum sources and transients. Will pave the road for the SKA-Low Low frequencies are excellent to study pulsars and provide a complementary view to study pulsar emission mechanism and ISM Synergy/complementation with high-freq observations, space weather monitoring

LOFAR for Pulsar. Ben Stappers ASTRON/UvA

LOFAR for Pulsar. Ben Stappers ASTRON/UvA LOFAR for Pulsar Ben Stappers ASTRON/UvA Outline: LOFAR a short introduction Pros and cons of low-frequency observation How to find new pulsars with LOFAR Studying individual Pulsars average pulse profiles

More information

Pulsars with LOFAR The Low-Frequency Array

Pulsars with LOFAR The Low-Frequency Array Pulsars with LOFAR The Low-Frequency Array Ben Stappers ASTRON, Dwingeloo With assistance from Jason Hessels,, Michael Kramer, Joeri van Leeuwen and Dan Stinebring. Next generation radio telescope Telescope

More information

Pulsar Overview. Kevin Stovall NRAO

Pulsar Overview. Kevin Stovall NRAO Pulsar Overview Kevin Stovall NRAO IPTA 2018 Student Workshop, 11 June, 2018 Pulsars Pulsars ~2,700 pulsars known Act as clocks, therefore provide a means for studying a variety of physical phenomena Strongly

More information

Joeri van Leeuwen An X-raydio switcheroo!

Joeri van Leeuwen An X-raydio switcheroo! Joeri van Leeuwen Joeri van Leeuwen Joeri van Leeuwen Joeri van Leeuwen Joeri van Leeuwen Joeri van Leeuwen Team Wim Hermsen Lucien Kuiper Dipanjan Mitra Jason Hessels Jelle de Plaa Joanna Rankin Ben Stappers

More information

The Hunt for New Pulsars with the Green Bank Telescope

The Hunt for New Pulsars with the Green Bank Telescope The Hunt for New Pulsars with the Green Bank Telescope Ryan Lynch Postdoctoral Fellow McGill University What we'll talk about... Two most recent large-area GBT pulsar surveys the 350 MHz Drift Scan Survey

More information

PoS(ISKAF2010)025. Early Pulsar Observations with LOFAR

PoS(ISKAF2010)025. Early Pulsar Observations with LOFAR Netherlands Institute for Radio Astronomy (ASTRON), Dwingeloo, the Netherlands University of Amsterdam (UvA), Amsterdam, the Netherlands E-mail: hessels@astron.nl Ben Stappers, Tom Hassall, Patrick Weltevrede

More information

Radio Aspects of the Transient Universe

Radio Aspects of the Transient Universe Radio Aspects of the Transient Universe Time domain science: the transient sky = frontier for all λλ Less so at high energies BATSE, RXTE/ASM, Beppo/Sax, SWIFT, etc. More so for optical, radio LSST = Large

More information

MILLISECOND PULSAR POPULATION

MILLISECOND PULSAR POPULATION MILLISECOND PULSAR POPULATION on Formation and Evolution Of Neutron Stars 11/12/2017 COMPANY NAME Outline 1. Millisecond Pulsars 2.Current Population 3.Applications 4.Future Prospects 4.1.Potential Science

More information

A SEARCH FOR FAST RADIO BURSTS WITH THE GBNCC SURVEY. PRAGYA CHAWLA McGill University (On Behalf of the GBNCC Collaboration)

A SEARCH FOR FAST RADIO BURSTS WITH THE GBNCC SURVEY. PRAGYA CHAWLA McGill University (On Behalf of the GBNCC Collaboration) A SEARCH FOR FAST RADIO BURSTS WITH THE GBNCC SURVEY PRAGYA CHAWLA McGill University (On Behalf of the GBNCC Collaboration) P. Chawla 1, V. M. Kaspi 1, A. Josephy 1, K. M. Rajwade 2, D. R. Lorimer 2,3,

More information

LOFAR Pulsar Flux Calibration

LOFAR Pulsar Flux Calibration LOFAR Pulsar Flux Calibration Vlad Kondratiev (ASTRON), Anya Bilous (RU Nijmegen/UvA) and LOFAR Pulsar Working Group LOFAR Status Meeting Oct 14, 2015 Flux calibration LOFAR In general (see e.g. Lorimer

More information

Recent Radio Observations of Pulsars

Recent Radio Observations of Pulsars Recent Radio Observations of Pulsars R. N. Manchester Australia Telescope National Facility, CSIRO Sydney Australia Summary A pulsar census Recent pulsar surveys Pulse modulation and drifting subpulses

More information

Thoughts on LWA/FASR Synergy

Thoughts on LWA/FASR Synergy Thoughts on LWA/FASR Synergy Namir Kassim Naval Research Laboratory 5/27/2003 LWA-FASR 1 Ionospheric Waves 74 MHz phase 74 MHz model Ionosphere unwound (Kassim et al. 1993) Ionospheric

More information

In Search of New MSPs for Pulsar Timing Arrays. Kevin Stovall, NRAO Socorro NANOGrav Collaboration

In Search of New MSPs for Pulsar Timing Arrays. Kevin Stovall, NRAO Socorro NANOGrav Collaboration In Search of New MSPs for Pulsar Timing Arrays Kevin Stovall, NRAO Socorro NANOGrav Collaboration NRAO Postdoc Symposium, March 27, 2017 NANOGrav = US/Canada-based collaboration working to detect nhz GW

More information

Pulsar Surveys Present and Future: The Arecibo-PALFA Survey and Projected SKA Survey

Pulsar Surveys Present and Future: The Arecibo-PALFA Survey and Projected SKA Survey Pulsar Surveys Present and Future: The Arecibo-PALFA Survey and Projected SKA Survey Arecibo Telescope SKA concept design Julia Deneva,, Cornell University, USA 15 May 2006 363 rd Heraeus Seminar, Bad

More information

Pulsars and Radio Transients. Scott Ransom National Radio Astronomy Observatory / University of Virginia

Pulsars and Radio Transients. Scott Ransom National Radio Astronomy Observatory / University of Virginia Pulsars and Radio Transients Scott Ransom National Radio Astronomy Observatory / University of Virginia TIARA Summer School on Radio Astronomy 2016 Radio Transients Non-thermal emission Emission types

More information

PROCESSING OF TAB DATA FROM UTR-2 IN THE PIPELINE MODE

PROCESSING OF TAB DATA FROM UTR-2 IN THE PIPELINE MODE PROCESSING OF TAB DATA FROM UTR-2 IN THE PIPELINE MODE I. VASYLIEVA, P. ZARKA, V. ZAKHARENKO et al. LESIA & Institute of Radio Astronomy of NAS of Ukraine Radio astronomy in Ukraine: covering the entire

More information

PoS(ISKAF2010)083. FRATs: a real-time search for Fast Radio Transients with LOFAR

PoS(ISKAF2010)083. FRATs: a real-time search for Fast Radio Transients with LOFAR FRATs: a real-time search for Fast Radio Transients with LOFAR Radboud University Nijmegen (Department of Astrophysics) E-mail: s.terveen@astro.ru.nl H. Falcke Radboud University Nijmegen (Department of

More information

The (obscene) Challenges of Next-Generation Pulsar Surveys

The (obscene) Challenges of Next-Generation Pulsar Surveys The (obscene) Challenges of Next-Generation Pulsar Surveys Scott Ransom NRAO / Univ. of Virginia Charlottesville, VA Haslam 408MHz Survey Summary: The Pulsar Search Problem Pulsars are faint we are sensitivity

More information

From LOFAR to SKA, challenges in distributed computing. Soobash Daiboo Paris Observatory -LESIA

From LOFAR to SKA, challenges in distributed computing. Soobash Daiboo Paris Observatory -LESIA From LOFAR to SKA, challenges in distributed computing Soobash Daiboo Paris Observatory -LESIA Overview LOFAR telescope Data processing with LOFAR NenuFar SKA Summary LOFAR science drivers Key science

More information

Paul Demorest (NRAO) for NANOGrav collaboration, CHIME pulsar team John Galt Symposium, DRAO, Sept 23, 2014

Paul Demorest (NRAO) for NANOGrav collaboration, CHIME pulsar team John Galt Symposium, DRAO, Sept 23, 2014 Pulsars and CHIME: Gravitational Waves, the ISM and More! Paul Demorest (NRAO) for NANOGrav collaboration, CHIME pulsar team John Galt Symposium, DRAO, Sept 23, 2014 Outline Pulsar stuff: Pulsar timing

More information

Discovery of fast radio transients at very low frequencies

Discovery of fast radio transients at very low frequencies Discovery of fast radio transients at very low frequencies Yogesh Maan National Centre for Radio Astrophysics (NCRA), Pune, INDIA June 02, 2015 Yogesh Maan (NCRA) June 02, 2015 1 / 22 Overview 1 Motivations

More information

Fast Radio Transients and Next- Generation Instruments In Search of the Rare and Elusive. Jean-Pierre Macquart

Fast Radio Transients and Next- Generation Instruments In Search of the Rare and Elusive. Jean-Pierre Macquart Fast Radio Transients and Next- Generation Instruments In Search of the Rare and Elusive Jean-Pierre Macquart Scientific Motivation Fast timescale transients probe high brightness temperature emission

More information

The Dynamic Radio Sky

The Dynamic Radio Sky The Dynamic Radio Sky Exoplanet Bursts, Lunar Neutrinos, and other Exotica Joseph Lazio (Naval Research Laboratory SKA Program Development Office) Who Cares? Radio transients are like butterfly collecting.

More information

Pulsar Studies with the Shanghai TianMa Radio Telescope

Pulsar Studies with the Shanghai TianMa Radio Telescope Pulsar Studies with the Shanghai TianMa Radio Telescope Speaker:Zhen Yan * Shanghai Astronomical Observatory, CAS *On behalf of the Shanghai TianMa Radio Telescope Team 2017/7/12 1 Outline Introduction

More information

The pulsar population and PSR/FRB searches with MeerKAT Slow boring pulsars

The pulsar population and PSR/FRB searches with MeerKAT Slow boring pulsars The pulsar population and PSR/FRB searches with MeerKAT Slow boring pulsars Aris Karastergiou with contributions from Simon Johnston, Ben Stappers and the TRAPUM team P and Pdot are the observables. Lines

More information

Synergy with new radio facilities: from LOFAR to SKA

Synergy with new radio facilities: from LOFAR to SKA Netherlands Institute for Radio Astronomy Synergy with new radio facilities: from LOFAR to SKA Raffaella Morganti ASTRON (NL) and Kapteyn Institute (Groningen) ASTRON is part of the Netherlands Organisation

More information

Discovery of a transitional Redback millisecond pulsar J !

Discovery of a transitional Redback millisecond pulsar J ! Discovery of a transitional Redback millisecond pulsar J1227-4853! By Jayanta Roy!! JBCA, University of Manchester!! and!! National Centre for Radio Astrophysics (NCRA-TIFR) Neutron stars at the crossroads,

More information

ETA Observations of Crab Pulsar Giant Pulses

ETA Observations of Crab Pulsar Giant Pulses ETA Observations of Crab Pulsar Giant Pulses John Simonetti,, Dept of Physics, Virginia Tech October 7, 2005 Pulsars Crab Pulsar Crab Giant Pulses Observing Pulses --- Propagation Effects Summary Pulsars

More information

Transient Cosmic Phenomena and their Influence on the Design of the SKA Radio Telescope

Transient Cosmic Phenomena and their Influence on the Design of the SKA Radio Telescope Transient Cosmic Phenomena and their Influence on the Design of the SKA Radio Telescope Research Review Curtin Institute of Radio Astronomy 5 May 2009 ToC Parameter space Discovering phenomena ASKAP &

More information

THE HIGH TIME RESOLUTION UNIVERSE. A survey for pulsars & fast transients

THE HIGH TIME RESOLUTION UNIVERSE. A survey for pulsars & fast transients THE HIGH TIME RESOLUTION UNIVERSE A survey for pulsars & fast transients 1 REVIEW OF HTRU 2 SURVEY OVERVIEW The High Time Resolution Universe survey for pulsars and fast transients -- HTRU An ambitious

More information

Fast Radio Bursts. Laura Spitler Max-Planck-Institut für Radioastronomie 11. April 2015

Fast Radio Bursts. Laura Spitler Max-Planck-Institut für Radioastronomie 11. April 2015 Fast Radio Bursts Laura Spitler Max-Planck-Institut für Radioastronomie 11. April 2015 Lorimer Burst Bright burst discovered in the reprocessing of archival data from a pulsar survey A Bright Millisecond

More information

TeV Emission from Millisecond Pulsars in Compact Binaries? Mallory Roberts Eureka Scientific/NRL

TeV Emission from Millisecond Pulsars in Compact Binaries? Mallory Roberts Eureka Scientific/NRL TeV Emission from Millisecond Pulsars in Compact Binaries? Mallory Roberts Eureka Scientific/NRL Binary Period in Days Millisecond Pulsars Spun up by a low mass companion such that their spin period P

More information

NS masses from radio timing: Past, present and future. Paul Demorest (NRAO) Symposium on Neutron Stars, Ohio U., May 2016

NS masses from radio timing: Past, present and future. Paul Demorest (NRAO) Symposium on Neutron Stars, Ohio U., May 2016 NS masses from radio timing: Past, present and future Paul Demorest (NRAO) Symposium on Neutron Stars, Ohio U., May 2016 Overview Review of how to measure neutron star masses via radio pulsar timing. Summary

More information

Radio counterparts of gamma-ray pulsars

Radio counterparts of gamma-ray pulsars Radio counterparts of gamma-ray pulsars Lucas Guillemot, MPIfR Bonn guillemo@mpifr-bonn.mpg.de on behalf of the Fermi LAT Collaboration IAU Symposium 2012, Beijing 20/08/12 117 gamma-ray pulsars! 41 young

More information

Radio Transient Surveys with The Allen Telescope Array & the SKA. Geoffrey C Bower (UC Berkeley)

Radio Transient Surveys with The Allen Telescope Array & the SKA. Geoffrey C Bower (UC Berkeley) Radio Transient Surveys with The Allen Telescope Array & the SKA Geoffrey C Bower (UC Berkeley) Transient Science is Exploding New Phenomena An Obscured Radio Supernova in M82 Discovered serendipitously

More information

Future Radio Observatories for Pulsar Studies

Future Radio Observatories for Pulsar Studies Future Radio Observatories for Pulsar Studies Michael Kramer University of Manchester Jodrell Bank Observatory 17 th August 2006 Many new facilities Many new facilities LOFAR EMBRACE LFD LWA KAT xntd SKA

More information

arxiv: v1 [astro-ph.he] 13 Jun 2017

arxiv: v1 [astro-ph.he] 13 Jun 2017 Mon. Not. R. Astron. Soc. 000, 1?? (2016) Printed July 16, 2018 (MN LATEX style file v2.2) Scattering analysis of LOFAR pulsar observations arxiv:1706.04205v1 [astro-ph.he] 13 Jun 2017 M. Geyer 1, A. Karastergiou

More information

Radio Searches for Pulsars in the Galactic Center

Radio Searches for Pulsars in the Galactic Center Radio Searches for Pulsars in the Galactic Center J.Deneva (GMU, resident at NRL), P.Ray (NRL), S.Hyman (SBC), D.Frail (NRAO), N.Kassim (NRL), M. Kerr (NRL), J.Lazio (JPL) Outline Motivation. Types of

More information

SETI and Fast Radio Bursts

SETI and Fast Radio Bursts SETI and Fast Radio Bursts Dr. Emily Petroff ASTRON ASTRON SETI Meeting 15 March, 2016 SETI and Fast Radio Bursts Dr. Emily Petroff ASTRON ASTRON SETI Meeting 15 March, 2016 General Outline Introduction

More information

Exoplanet searches in Radio : Theory & Observations from UTR-2 to LOFAR/SKA

Exoplanet searches in Radio : Theory & Observations from UTR-2 to LOFAR/SKA Exoplanet searches in Radio : Theory & Observations from UTR-2 to LOFAR/SKA P. Zarka LESIA, Observatoire de Paris, CNRS, UPMC, Université Paris Diderot, 92190 Meudon, philippe.zarka@obspm.fr Jupiter LF

More information

HI Galaxy Science with SKA1. Erwin de Blok (ASTRON, NL) on behalf of The HI Science Working Group

HI Galaxy Science with SKA1. Erwin de Blok (ASTRON, NL) on behalf of The HI Science Working Group HI Galaxy Science with SKA1 Erwin de Blok (ASTRON, NL) on behalf of The HI Science Working Group SKA1 HI Science Priorities Resolved HI kinematics and morphology of ~10 10 M mass galaxies out to z~0.8

More information

A Pulsar Timing Array for Gravitational Wave Detection. Paul Demorest, NRAO

A Pulsar Timing Array for Gravitational Wave Detection. Paul Demorest, NRAO A Pulsar Timing Array for Gravitational Wave Detection Paul Demorest, NRAO About 10% of known radio pulsars are recycled millisecond pulsars (MSPs). These are spun up by accreting matter from a companion

More information

Study of Large-Scale Galactic Magnetic Fields at Low Frequencies. Jana Köhler - MPIfR -

Study of Large-Scale Galactic Magnetic Fields at Low Frequencies. Jana Köhler - MPIfR - Study of Large-Scale Galactic Magnetic Fields at Low Frequencies Jana Köhler - MPIfR - How to measure Magnetic Fields??? How to measure Galactic Magnetic Field? Linear Polarization of Starlight product

More information

Survey for Pulsars and Extra-galactic Radio Bursts

Survey for Pulsars and Extra-galactic Radio Bursts Survey for Pulsars and Extra-galactic Radio Bursts Ewan Barr SKA Senior Research Fellow, Credit & Shaun Amy Credit & Shaun Amy HTRU Discoveries Radio loud magnetar (Levin et al. 2010) Fast Radio Bursts

More information

Monitoring nearly 4000 nearby stellar systems with the OVRO-LWA in search of radio exoplanets

Monitoring nearly 4000 nearby stellar systems with the OVRO-LWA in search of radio exoplanets Monitoring nearly 4000 nearby stellar systems with the OVRO-LWA in search of radio exoplanets Marin M Anderson Caltech AASTCS 5: Radio Habitability May 11, 2017 OVRO-LWA 1 CME CME Mass Mass Understanding

More information

Relativistic jets from XRBs with LOFAR. Stéphane Corbel (University Paris 7 & CEA Saclay)

Relativistic jets from XRBs with LOFAR. Stéphane Corbel (University Paris 7 & CEA Saclay) Relativistic jets from XRBs with LOFAR. Stéphane Corbel (University Paris 7 & CEA Saclay) Outline Introduction: X-ray binaries and flavors of relativistic jets LOFAR Contributions Conclusions Introduction:

More information

E-MERLIN and EVN/e-VLBI Capabilities, Issues & Requirements

E-MERLIN and EVN/e-VLBI Capabilities, Issues & Requirements E-MERLIN and EVN/e-VLBI Capabilities, Issues & Requirements e-merlin: capabilities, expectations, issues EVN/e-VLBI: capabilities, development Requirements Achieving sensitivity Dealing with bandwidth,

More information

Simultaneous XMM-Newton Radio Observations of the Mode-switching Radio Pulsar PSR B Wim Hermsen 1,2

Simultaneous XMM-Newton Radio Observations of the Mode-switching Radio Pulsar PSR B Wim Hermsen 1,2 Simultaneous XMM-Newton Radio Observations of the Mode-switching Radio Pulsar PSR B1822-09 Wim Hermsen 1,2 Collaborators: J.W.T. Hessels 3,2, L. Kuiper 1, J. van Leeuwen 3,2, D. Mitra 4, J.M. Rankin 2,5,

More information

=> most distant, high redshift Universe!? Consortium of international partners

=> most distant, high redshift Universe!? Consortium of international partners LOFAR LOw Frequency Array => most distant, high redshift Universe!? Consortium of international partners Dutch ASTRON USA Haystack Observatory (MIT) USA Naval Research Lab `best site = WA Novel `technology

More information

New Radio Millisecond Pulsars in Fermi (formerly) Unassociated Sources

New Radio Millisecond Pulsars in Fermi (formerly) Unassociated Sources New Radio Millisecond Pulsars in Fermi (formerly) Unassociated Sources Scott Ransom (NRAO) For the Fermi Pulsar Search Consortium (PSC) Fermi Pulsars Currently 24 blind search pulsars (16 in Sci) Currently

More information

IPS and Solar Imaging

IPS and Solar Imaging IPS and Solar Imaging Divya Oberoi MIT Haystack Observatory 1 November, 2006 SHI Meeting Outline The low-frequency advantage Interplanetary Scintillation studies Solar Imaging An example from Early Deployment

More information

Pulsars are Cool. Seriously. Scott Ransom National Radio Astronomy Observatory / University of Virginia

Pulsars are Cool. Seriously. Scott Ransom National Radio Astronomy Observatory / University of Virginia Pulsars are Cool. Seriously. Scott Ransom National Radio Astronomy Observatory / University of Virginia Neutron Stars Spin rates up to 716 Hz 1.2-2 Solar masses 10-12 km radii Central densities several

More information

Jodrell Bank Pulsar Group

Jodrell Bank Pulsar Group Holloway/Weltevrede Jodrell Bank Pulsar Group Ben Stappers Who are we? PDRAs Academic Staff Ben Stappers (HOG/All) Patrick Weltevrede (Fermi/Emission) Michael Kramer (All) Emeritus Cees Bassa (LEAP) Cristobal

More information

Tracking CME s With LOFAR

Tracking CME s With LOFAR Tracking CME s With LOFAR Interplanetary Scintillation Studies With a Large, Multi-beaming, Phased Interferometric Array Michael Stevens What s A? WHat are All These Silly Acronyms? LOFAR- the LOw Frequency

More information

discovers a radio-quiet gamma-ray millisecond Journal Group

discovers a radio-quiet gamma-ray millisecond Journal Group Einstein@Home discovers a radio-quiet gamma-ray millisecond pulsar @CHEA Journal Group Contribution of the paper Contribution of the paper Millisecond Pulsars (MSPs) Ver y rapid rotating neutron star

More information

Gravity with the SKA

Gravity with the SKA Gravity with the SKA Strong-field tests of gravity using Pulsars and Black Holes Michael Kramer Jodrell Bank Observatory University of Manchester With Don Backer, Jim Cordes, Simon Johnston, Joe Lazio

More information

Surveying the magnetic field of the Milky Way with SKA1

Surveying the magnetic field of the Milky Way with SKA1 Surveying the magnetic field of the Milky Way with SKA1 Image: JPL PlanetQuest Dominic Schnitzeler (MPIfR), 23/1/2014 schnitzeler@mpifr-bonn.mpg.de Overview What are the hot topics? Which tools do we have

More information

LOFAR Polarization Commissioning by the MKSP

LOFAR Polarization Commissioning by the MKSP LOFAR Polarization Commissioning by the MKSP James M Anderson anderson@mpifr-bonn.mpg.de On behalf of the LOFAR collaboration Surveys KSP Meeting, Leiden, 2010 March 11 James M Anderson 1/15 Timeline 2010

More information

Astronomy. Astrophysics. Observing pulsars and fast transients with LOFAR

Astronomy. Astrophysics. Observing pulsars and fast transients with LOFAR DOI: 10.1051/0004-6361/201116681 c ESO 2011 Astronomy & Astrophysics Observing pulsars and fast transients with LOFAR B. W. Stappers 1, J. W. T. Hessels 2,3,A.Alexov 3, K. Anderson 3, T. Coenen 3, T. Hassall

More information

LOFAR Key Science Projects and Science Network in Germany

LOFAR Key Science Projects and Science Network in Germany LOFAR Key Science Projects and Science Network in Germany Rainer Beck MPIfR Bonn LOFAR A revolution in radio telescope design: Software telescope: no moving parts, no mirrors, simultaneous multi-beaming,

More information

Multi-frequency imaging of Cygnus A with LOFAR

Multi-frequency imaging of Cygnus A with LOFAR Netherlands Institute for Radio Astronomy Multi-frequency imaging of Cygnus A with LOFAR John McKean (ASTRON) and all the imaging busy week team! ASTRON is part of the Netherlands Organisation for Scientific

More information

Future Radio Interferometers

Future Radio Interferometers Future Radio Interferometers Jim Ulvestad National Radio Astronomy Observatory Radio Interferometer Status in 2012 ALMA Covers much of 80 GHz-1 THz band, with collecting area of about 50% of VLA, for a

More information

Long Baselines I. Olaf Wucknitz.

Long Baselines I. Olaf Wucknitz. Long Baselines I Olaf Wucknitz wucknitz@astro.uni-bonn.de GLOW Annual Meeting, Bielefeld, 18 19 June 2012 Long Baselines I status one year ago current array Crab nebula/pulsar 3C123 Jupiter O. Wucknitz

More information

What we (don t) know about UHECRs

What we (don t) know about UHECRs What we (don t) know about UHECRs We know: their energies (up to 10 20 ev). their overall energy spectrum We don t know: where they are produced how they are produced what they are made off exact shape

More information

Detecting Gravitational Waves. (and doing other cool physics) with Millisecond Pulsars. NANOGrav. Scott Ransom

Detecting Gravitational Waves. (and doing other cool physics) with Millisecond Pulsars. NANOGrav. Scott Ransom Detecting Gravitational Waves (and doing other cool physics) with Millisecond Pulsars NANOGrav Scott Ransom What s a Pulsar? Rotating Neutron Star! Size of city: R ~ 10-20 km Mass greater than Sun: M ~

More information

imin...

imin... Pulsar Timing For a detailed look at pulsar timing and other pulsar observing techniques, see the Handbook of Pulsar Astronomy by Duncan Lorimer and Michael Kramer. Pulsars are intrinsically interesting

More information

Gamma-ray observations of millisecond pulsars with the Fermi LAT. Lucas Guillemot, MPIfR Bonn. NS2012 in Bonn 27/02/12.

Gamma-ray observations of millisecond pulsars with the Fermi LAT. Lucas Guillemot, MPIfR Bonn. NS2012 in Bonn 27/02/12. Gamma-ray observations of millisecond pulsars with the Fermi LAT Lucas Guillemot, MPIfR Bonn guillemo@mpifr-bonn.mpg.de NS2012 in Bonn 27/02/12 The Fermi Gamma-ray Space Telescope Fermi = Large Area Telescope

More information

SKADS Virtual Telescope: Pulsar Survey IV: Globular Cluster Pulsars

SKADS Virtual Telescope: Pulsar Survey IV: Globular Cluster Pulsars SKADS Virtual Telescope: Pulsar Survey IV: Globular Cluster Pulsars PI: S. Ransom Co-I: M. Kramer We propose to use the SKADS Virtual Telescope (SVT) to search Globular clusters for fast rotating pulsars

More information

Detecting High Energy Cosmic Rays with LOFAR

Detecting High Energy Cosmic Rays with LOFAR Detecting High Energy Cosmic Rays with LOFAR Andreas Horneffer for the LOFAR-CR Team LOFAR CR-KSP: Main Motivation Exploring the sub-second transient radio sky: Extensive Air showers as guaranteed signal

More information

The LOFAR observatory: status, issues and recent results

The LOFAR observatory: status, issues and recent results The LOFAR observatory: status, issues and recent results Ger de Bruyn + LOFAR Calibration Project Scientist + with lots of input/results from the LOFAR offline-pipeline and commissioning teams 14 Sep 2010

More information

Pulsars. in this talk. Pulsar timing. Pulsar timing. Pulsar timing. Pulsar timing. How to listen to what exotic. are telling us! Paulo César C.

Pulsars. in this talk. Pulsar timing. Pulsar timing. Pulsar timing. Pulsar timing. How to listen to what exotic. are telling us! Paulo César C. How to listen to what exotic Pulsars are telling us! in this talk 1. 2. 3. Test of gravitational theories using binary pulsars 4. Probing the equation of state of super-dense matter Paulo César C. Freire

More information

Roberto Ricci, INAF-IRA. Spectral properties of a sample of 20-GHz selected radio sources

Roberto Ricci, INAF-IRA. Spectral properties of a sample of 20-GHz selected radio sources Sep 12 2012 AGN10 - Roma Roberto Ricci, INAF-IRA Spectral properties of a sample of 20-GHz selected radio sources Outline Description of KNoWS survey KNoWS follow-ups OCRA follow-ups KNoWS 20-GHz counts

More information

Search for 21cm Reionization

Search for 21cm Reionization Search for 21cm Reionization Ue-Li Pen Xiang-Ping Wu, Jeff Peterson Beacons of Darkness Reionizing sources create a network of billions of holes in the diffuse 21cm background with precise redshifts Can

More information

and the University of Wisconsin Milwaukee

and the University of Wisconsin Milwaukee and the University of Wisconsin Milwaukee David Kaplan (University of Wisconsin, Milwaukee) kaplan@uwm.edu Leonard E. Parker Center for Gravitation, Cosmology & Astrophysics The Milwaukee Perspective +

More information

The Search for Extraterrestrial Intelligence (SETI) What can SETI

The Search for Extraterrestrial Intelligence (SETI) What can SETI The Search for Extraterrestrial Intelligence (SETI) What can SETI Mike Garrett researchers learn Sir Bernard Lovell Chair, Prof. of Astrophysics. from FRBs Director Jodrell Bank Centre for Astrophysics

More information

WHAT ARE GALACTIC FIELD BLACK WIDOWS AND REDBACKS GOOD FOR? (EVERYTHING BUT GRAVITY WAVES) Mallory Roberts Eureka Scientific Jan. 22, 2013 Aspen, CO

WHAT ARE GALACTIC FIELD BLACK WIDOWS AND REDBACKS GOOD FOR? (EVERYTHING BUT GRAVITY WAVES) Mallory Roberts Eureka Scientific Jan. 22, 2013 Aspen, CO WHAT ARE GALACTIC FIELD BLACK WIDOWS AND REDBACKS GOOD FOR? (EVERYTHING BUT GRAVITY WAVES) Mallory Roberts Eureka Scientific Jan. 22, 2013 Aspen, CO THE Black Widow PSR B1957+20 1.6 ms pulsar discovered

More information

Design Reference Mission for SKA1 P. Dewdney System Delta CoDR

Design Reference Mission for SKA1 P. Dewdney System Delta CoDR Phasing of SKA science: Design Reference Mission for SKA1 P. Dewdney System Delta CoDR Feb. 23, 2011 21 st Century Astrophysics National Aeronautics and Space Administration Jet Propulsion Laboratory California

More information

Wanted: The best model for the distribution of electrons in the Milky Way. Dominic Schnitzeler (MPIfR), 12/7/2012

Wanted: The best model for the distribution of electrons in the Milky Way. Dominic Schnitzeler (MPIfR), 12/7/2012 Wanted: The best model for the distribution of electrons in the Milky Way Dominic Schnitzeler (MPIfR), 12/7/2012 schnitzeler@mpifr-bonn.mpg.de Abstract NE2001 is not the most accurate n_e model Most n_e

More information

The Dynamic Radio Sky: On the path to the SKA. A/Prof Tara Murphy ARC Future Fellow

The Dynamic Radio Sky: On the path to the SKA. A/Prof Tara Murphy ARC Future Fellow The Dynamic Radio Sky: On the path to the SKA A/Prof Tara Murphy ARC Future Fellow What causes radio variability? 1. Explosions - e.g. supernovae, gamma-ray bursts, orphan afterglows 2. Propagation - e.g.

More information

LASA and the WFBT: Two Concepts for All-Sky Transient Telescopes

LASA and the WFBT: Two Concepts for All-Sky Transient Telescopes LASA and the WFBT: Two Concepts for All-Sky Transient Telescopes Ryan Lynch Green Bank Observatory On Behalf of Duncan Lorimer, Maura McLaughlin, Kevin Bandura (WVU) and Steve Ellingson (Virginia Tech)

More information

Space mission BRАUDE-M. Radio telescope on the farside of the Moon

Space mission BRАUDE-M. Radio telescope on the farside of the Moon Bilateral Workshop on Astrophysics V.N. Karazin Kharkiv National University INAF Space mission BRАUDE-M. Radio telescope on the farside of the Moon Dr. Vyacheslav Zakharenko, Director of the Institute

More information

Continuum Surveys with LOFAR, SKA and its Pathfinders. Chiara Ferra!

Continuum Surveys with LOFAR, SKA and its Pathfinders. Chiara Ferra! Continuum Surveys with LOFAR, SKA and its Pathfinders Chiara Ferra! A Golden Age for Radioastronomy: SKA Precursors and pathifinders LOFAR Europe 30-80 MHz + 110-240 MHz MWA Australia 80-300 MHz APERTIF

More information

CHIME/FRB. Shriharsh Tendulkar. Photo credit: Andre Recnik

CHIME/FRB. Shriharsh Tendulkar. Photo credit: Andre Recnik CHIME/FRB Shriharsh Tendulkar Photo credit: Andre Recnik Fast Radio Bursts CHIME/FRB Capabilities Current Status Recent Results Synergies 2 WHAT ARE FRBS? Very short (~ms), very bright (~Jansky), radio

More information

Wide Field Astronomy with ASKAP. Wide Field Astronomy with ASKAP. ASKAP Specifications ASKAP & SKA

Wide Field Astronomy with ASKAP. Wide Field Astronomy with ASKAP. ASKAP Specifications ASKAP & SKA Wide Field Astronomy with ASKAP ASKAP specifications Survey science process & User policy Survey science ASKAP - what next Wide Field Astronomy with ASKAP Carole Jackson ASKAP Project Team 5 November 2009

More information

The Long Wavelength Array

The Long Wavelength Array The Long Wavelength Array Greg Taylor (UNM ) New Mexico Symposium November 5, 2010 http://lwa.unm.edu and see Poster by Joe Craig et al. Astrophysics LWA Science Ionospheric Physics Cosmology Observing

More information

The Canadian Hydrogen Intensity Mapping Experiment (CHIME): Status and update. Juan Mena-Parra MIT Kavli Postdoctoral Fellow October 30, 2018

The Canadian Hydrogen Intensity Mapping Experiment (CHIME): Status and update. Juan Mena-Parra MIT Kavli Postdoctoral Fellow October 30, 2018 The Canadian Hydrogen Intensity Mapping Experiment (CHIME): Status and update Juan Mena-Parra MIT Kavli Postdoctoral Fellow October 30, 2018 The CHIME telescope CHIME is an interferometer radio telescope

More information

Astronomy 421. Lecture 23: End states of stars - Neutron stars

Astronomy 421. Lecture 23: End states of stars - Neutron stars Astronomy 421 Lecture 23: End states of stars - Neutron stars 1 Outline Neutron stars Pulsars properties distribution emission mechanism evolution 2 Neutron stars Typical values: M ~ 1.4M R ~ 10 km ρ ~

More information

Radio followup of ransient sources: Feasibility and practicality

Radio followup of ransient sources: Feasibility and practicality Radio followup of ransient sources: Feasibility and practicality C. H. Ishwara Chandra National Centre for Radio Astrophysics Tata Institute of Fundamental Research Pune University Campus, Pune - India

More information

arxiv: v1 [astro-ph.ga] 27 Oct 2009

arxiv: v1 [astro-ph.ga] 27 Oct 2009 Astronomy & Astrophysics manuscript no. AA.2009.13121 c ESO 2009 October 27, 2009 Finding pulsars with LOFAR Joeri van Leeuwen 1 and Ben Stappers 2 arxiv:0910.5118v1 [astro-ph.ga] 27 Oct 2009 1 Stichting

More information

Wide-Field Radio Astronomy and the Dynamic Universe

Wide-Field Radio Astronomy and the Dynamic Universe CSIRO / Swinburne ; NASA Wide-Field Radio Astronomy and the Dynamic Universe Bryan Gaensler / @SciBry! Dunlap Institute! University of Toronto! with Cleo Loi, Kitty Lo,! Martin Bell, Keith Bannister,!

More information

The Eight-meter-wavelength Transient Array

The Eight-meter-wavelength Transient Array The Eight-meter-wavelength Transient Array Steve Ellingson Cameron Patterson John Simonetti Dept. of Electrical & Computer Engineering Dept. of Electrical & Computer Engineering Dept. of Physics Virginia

More information

VLASS Project Memo 2 Requirements for a VLASS pilot survey and a proposal for the pilot survey definition

VLASS Project Memo 2 Requirements for a VLASS pilot survey and a proposal for the pilot survey definition VLASS Project Memo 2 Requirements for a VLASS pilot survey and a proposal for the pilot survey definition Claire Chandler, Steve Myers, Dale Frail (NRAO), Gregg Hallinan (Caltech), Joseph Lazio (JPL/Caltech)

More information

HOW TO GET LIGHT FROM THE DARK AGES

HOW TO GET LIGHT FROM THE DARK AGES HOW TO GET LIGHT FROM THE DARK AGES Anthony Smith Lunar Seminar Presentation 2/2/2010 OUTLINE Basics of Radio Astronomy Why go to the moon? What should we find there? BASICS OF RADIO ASTRONOMY Blackbody

More information

Constraining the CNM with LOFAR.

Constraining the CNM with LOFAR. Constraining the CNM with LOFAR. JBRO, R. van Weeren, F. Salgado, L. Morabito, C. Toribio, X. Tielens, H. Rottgering, A. Asgekar & G. White + assistance: J. McKean, R. Fallows, J. Hessels (1) Interstellar

More information

SKA Precursors and Pathfinders. Steve Torchinsky

SKA Precursors and Pathfinders. Steve Torchinsky SKA Precursors and Pathfinders Steve Torchinsky steve.torchinsky@obspm.fr A square kilometre of collecting area for each of three frequency bands SKA Low frequency 50MHz to 450MHz to be built in Western

More information

Rob Fender, Ben Stappers and Ralph Wijers on behalf of LOFAR and the Transients Key Science Project

Rob Fender, Ben Stappers and Ralph Wijers on behalf of LOFAR and the Transients Key Science Project Quiquid variat notandum Rob Fender, Ben Stappers and Ralph Wijers on behalf of LOFAR and the Transients Key Science Project RAMJW 1 LOFAR: surveyor and transient monitor (SCUBA-2, ALMA fields of view smaller

More information

Recent Results in Pulsars: A Pulsar Renaissance. Scott Ransom

Recent Results in Pulsars: A Pulsar Renaissance. Scott Ransom Recent Results in Pulsars: A Pulsar Renaissance Scott Ransom NRAO Charlottesville NAIC/NRAO Single-Dish Summer School 2005 What s a Pulsar? Discovered in 1967 by Jocelyn Bell and Antony Hewish at Cambridge

More information

NuMoon: Status of Ultra-High-Energy Cosmic-Ray detection with LOFAR and improved limits with the WSRT

NuMoon: Status of Ultra-High-Energy Cosmic-Ray detection with LOFAR and improved limits with the WSRT NuMoon: Status of Ultra-High-Energy Cosmic-Ray detection with LOFAR and improved limits with the WSRT Sander ter Veen for the LOFAR Cosmic Ray Key Science Project Supervisor: Prof. Heino Falcke Radboud

More information

Science with Radio Pulsar Astrometry

Science with Radio Pulsar Astrometry Science with Radio Pulsar Astrometry Shami Chatterjee Cornell University August 2012 Astrometry is a force multiplier Precise astrometry improves the science return from new discoveries. Astrometry is

More information

Review: Penn State Pulsar Timing and Gravitational Wave Detection Workshop

Review: Penn State Pulsar Timing and Gravitational Wave Detection Workshop Review: Penn State Pulsar Timing and Gravitational Wave Detection Workshop Fredrick A Jenet Center for Gravitational Wave Astronomy University of Texas at Brownsville http://cgwp.gravity.psu.edu/events/pulsartiming/program.shtml

More information