viscous stress tensor: T r!

Size: px
Start display at page:

Download "viscous stress tensor: T r!"

Transcription

1 Accretion in a rotating system is only possible if matter looses its angular momentum! viscous stress tensor: T r! mass ang. mom. Viscosity could do this, but molecular viscosity is far too low. Thus one invokes turbulent viscosity! 11/15/2011 Hubert Klahr - Planet Formation - MPIA 23

2 Possibilities for Turbulence and angular momentum transport: 1. Non-Linear Shear Instability: Richard et al. 2003? 2. Self Gravity: Toomre 1964 (+) 3. Thermal Convection: Ryu & Goodman Magneto (Rotational) Instability: Balbus & Hawley 1992 (+) 5. Baroclinic Instabilities: Klahr & Bodenheimer 2003 (+) Dependent on time and location within the disk, i.e. ionization state and temperature structure, one has most likely a mix of 2,4 and 5! 11/15/2011 Hubert Klahr - Planet Formation - MPIA 24

3 Ionized accretion disk around a black hole! 11/15/2011 Hubert Klahr - Planet Formation - MPIA 25

4 11/15/2011 Hubert Klahr - Planet Formation - MPIA 26

5 11/15/2011 Hubert Klahr - Planet Formation - MPIA 27

6 11/15/2011 Hubert Klahr - Planet Formation - MPIA 28

7 11/15/2011 Hubert Klahr - Planet Formation - MPIA 29

8 11/15/2011 Hubert Klahr - Planet Formation - MPIA 30

9 MRI: a.k.a - Rockets in an earth orbit accelerate when they break! B 11/15/2011 Hubert Klahr - Planet Formation - MPIA 31

10 MRI: a.k.a - Rockets in an earth orbit accelerate when they break! B 11/15/2011 Hubert Klahr - Planet Formation - MPIA 32

11 Magneto Rotational Instability (MRI) drives turbulence in accretion disks 12/13/2009 Hubert Klahr - Planet Formation - MPIA 33 Simulation by Mario Flock using the Pluto code.

12 11/15/2011 Hubert Klahr - Planet Formation - MPIA 34

13 11/15/2011 Hubert Klahr - Planet Formation - MPIA 35

14 11/15/2011 Hubert Klahr - Planet Formation - MPIA 36

15 because it is a reliable source for turbulence. Box: Disk: 12/13/2009 Hubert Klahr - Planet Formation - MPIA 37

16 Development of MHD Turbulence From initial perturbation to saturation of the turbulence Colors: gas density yellow = high blue! = low Standard magneto rotational instability simulation ala Balbus and Hawley 12/13/2009 Hubert Klahr - Planet Formation - MPIA 38

17 11/15/2011 Hubert Klahr - Planet Formation - MPIA 39

18 At least part of a proto planetary disk may not be ionized enough for MRI to work! MHD Dead Zone Sano, Miyama,"Umebayashi &Nakano 2000 Fromang, Terquem, & Balbus 2002 Semenov, Wiebe, & Henning /15/2011 Hubert Klahr - Planet Formation - MPIA 40

19 Transition from MRI-active to dead zones: 2D axissymmetric simulation of active/dead zone interaction. Dzyurkevich, Turner, Flock & Klahr, submitted. Wünsch, Gawryszczak, Klahr & Rozyczka, /15/2011 Hubert Klahr - Planet Formation - MPIA 41

20 Transition from MRI-active to dead zones: Dzyurkevich, Turner, Flock & Klahr, Fully active disk Threshold at 6.5 AU DEAD Threshold at 4.5 AU DEAD Contour plots of Elsasser number: (less then unity means vertical field is stable to MRI) Our resolution: (Hawley et al. 1995)

21 Natalia Dziurkevich (in prep.): Active (Blue) and Dead (Yellow/Orange) Zones 12/13/2009 => Planetesimals Hubert are Klahr - needed Planet Formation in - MPIA the Dead Zone. 43

22 Baroclinic Effects on Earth: Formation of Hurricanes 12/13/2009 Hubert Klahr - Planet Formation - MPIA 44

23 Geophysical Baroclinic Instability 12/13/2009 Hubert Klahr - Planet Formation - MPIA 45

24

25 Stable: low rotation small radial temperature gradient

26 Unstable:high rotation stronger radial temperature gradient

27 Geophysical Baroclinic Instability: Astrophysical Baroclinic Instability in disks:! WARM COLD gz =! 2 z g z 12/13/2009 Hubert Klahr - Planet Formation - MPIA!"R -3/2-1.0<<Ri 49 2 <0

28 Thermal disk wind: Vertically stable Brunt-Vaissala Freq.: 12/13/2009 Hubert Klahr - Planet Formation - MPIA 50 compare: Klahr 2004

29 Thermal disk wind: Vertically stable: compare: Klahr /13/2009 Hubert Klahr - Planet Formation - MPIA 51

30 Baroclinic Instability in disks...is a local instability picking up on the global radial entropy gradient in the disk. Usually closer to the star it is warmer. T ~ R^ without rotation there would simply be convection. Shear and rotation prevent a linear convective instability (Solberg-Hoiland criterium). => Baroclinic Disk ground state = Heat (Entropy) gradient plus coriolis forces create thermal wind, e.g. vertical shear. Unfortunately growth time of classical B.I. is longer then shear time. 12/13/2009 Hubert Klahr - Planet Formation - MPIA 52

31 Pluto Code: 1024^2; WENO3-RK3; HLLE; FARGO 12/13/2009 Hubert Klahr - Planet Formation - MPIA 53

32 Pluto Code: 1024^2; WENO3-RK3; HLLE; FARGO 12/13/2009 Hubert Klahr - Planet Formation - MPIA 54

33 Pluto Code: 1024^2; WENO3-RK3; HLLE; FARGO 12/13/2009 Hubert Klahr - Planet Formation - MPIA 55

34 Pluto Code: 1024^2; WENO3-RK3; HLLE; FARGO 12/13/2009 Hubert Klahr - Planet Formation - MPIA 56

35 Literature overview 2003 Klahr and Bodenheimer: A radial entropy gradient drives turbulence in 2D and 3D (Radiation) Hydro Simulations of Protoplanetary disks Klahr: The radial Entropy gradient does not drive a LINEAR instability. Maybe NONLINEAR? 2005a,b;2006 Johnson and Gammie: find NO instability in their 2D shearing sheet simulations... But it was WITHOUT radiative cooling. 2007a,b Petersen, Stewart and Julien: find that radiative cooling or thermal diffusion is essential for the non-linear evolution of the instability. 2D Anelastic High Reynolds number simulations = no angular momentum transport. Re = Lesur & Papaloizou: Independent Confirmation of non-linear instability + elliptic instability does not destroy vortices in 3D 2010 Paardekooper,!Lesur,!Papaloizou Vortex Migration in Protoplanetary Disks 2011 Lyra & Klahr: Baroclinic and MHD interplay. 12/13/2009 Hubert Klahr - Planet Formation - MPIA 57

36 Waves in B.I. vs. MRI!"#$!%&'())*'( It will be difficult to distinguish via observations....,0.,+ 1 B.I. (left) MRI (right) Heinemann and Papaloizou ,0 12/13/2009 ï+,- ï+,. +,+ / +,. Hubert Klahr - Planet Formation - MPIA 58

Vortices in accretion discs: formation process and dynamical evolution

Vortices in accretion discs: formation process and dynamical evolution Vortices in accretion discs: formation process and dynamical evolution Geoffroy Lesur DAMTP (Cambridge UK) LAOG (Grenoble) John Papaloizou Sijme-Jan Paardekooper Giant vortex in Naruto straight (Japan)

More information

Solving ODEs Euler Method & RK2/4

Solving ODEs Euler Method & RK2/4 Solving ODEs Euler Method & RK2/4 www.mpia.de/homes/mordasini/uknum/ueb_ode.pdf Major: All Engineering Majors Authors: Autar Kaw, Charlie Barker Transforming Numerical Methods Education for STEM 02/11/10

More information

Stability of Vertically and Radially Stratified Protoplanetary Disks

Stability of Vertically and Radially Stratified Protoplanetary Disks Stability of Vertically and Radially Stratified Protoplanetary Disks Figure from Stoll & Kley (2014) Glen Stewart Laboratory for Atmospheric and Space Physics University of Colorado Vertical Shear instability

More information

Dead zones in protoplanetary discs

Dead zones in protoplanetary discs Dead zones in protoplanetary discs Mark Wardle Macquarie University Raquel Salmeron (ANU) BP Pandey (Macquarie) Protoplanetary discs Magnetic fields Dead zones MRI and diffusion Modification to dead zones

More information

Nonlinear MRI. Jeremy Goodman. CMPD/CMSO Winter School 7-12 January 2008, UCLA

Nonlinear MRI. Jeremy Goodman. CMPD/CMSO Winter School 7-12 January 2008, UCLA Nonlinear MRI Jeremy Goodman CMPD/CMSO Winter School 7-12 January 2008, UCLA Questions for the nonlinear regime How does the linear instability saturate? i.e., What nonlinear mode-mode interactions brake

More information

The role of magnetic fields for planetary formation

The role of magnetic fields for planetary formation fields for esimal Leiden Observatory, Leiden University IAU Symposium 259: Cosmic Magnetic Fields: from s, to Stars and Galaxies Puerto Santiago, Tenerife, November 2008 Star and The four stages of low

More information

Dynamics of Astrophysical Discs

Dynamics of Astrophysical Discs Dynamics of Astrophysical Discs 16 lectures, 3 example classes http://www.damtp.cam.ac.uk/user/hl278/dad.html Henrik Latter e-mail: hl278@cam.ac.uk 16 lectures Tu. Th. 10 Course Outline Office: F1.19 hl278@cam.

More information

The Physics of Collisionless Accretion Flows. Eliot Quataert (UC Berkeley)

The Physics of Collisionless Accretion Flows. Eliot Quataert (UC Berkeley) The Physics of Collisionless Accretion Flows Eliot Quataert (UC Berkeley) Accretion Disks: Physical Picture Simple Consequences of Mass, Momentum, & Energy Conservation Matter Inspirals on Approximately

More information

Radiative MHD. in Massive Star Formation and Accretion Disks. Rolf Kuiper, Hubert Klahr, Mario Flock, Henrik Beuther, Thomas Henning

Radiative MHD. in Massive Star Formation and Accretion Disks. Rolf Kuiper, Hubert Klahr, Mario Flock, Henrik Beuther, Thomas Henning Radiative MHD in Massive Star Formation and Accretion Disks, Hubert Klahr, Mario Flock, Henrik Beuther, Thomas Henning, Radiative MHD with Makemake and Pluto : We developed a fast 3D frequency-dependent

More information

Protoplanetary Disks: Gas Dynamics

Protoplanetary Disks: Gas Dynamics Spring School on Planet Formation, IASTU, Beijing, 05/2014 Protoplanetary Disks: Gas Dynamics Xuening Bai Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics Topics to be

More information

The large-scale magnetic field in protoplanetary disks

The large-scale magnetic field in protoplanetary disks The large-scale magnetic field in protoplanetary disks Jérôme Guilet MPA, Garching Max-Planck-Princeton center for plasma physics In collaboration with Gordon Ogilvie (Cambridge) 1/24 Talk outline 1) Impacts

More information

Global Simulations of Black Hole Accretion. John F. Hawley Department of Astronomy, University of Virginia

Global Simulations of Black Hole Accretion. John F. Hawley Department of Astronomy, University of Virginia Global Simulations of Black Hole Accretion John F. Hawley Department of Astronomy, University of Virginia Collaborators and Acknowledgements Julian Krolik, Johns Hopkins University Scott Noble, JHU Jeremy

More information

The Magnetorotational Instability

The Magnetorotational Instability The Magnetorotational Instability Nick Murphy Harvard-Smithsonian Center for Astrophysics Astronomy 253: Plasma Astrophysics March 10, 2014 These slides are based off of Balbus & Hawley (1991), Hawley

More information

School and Conference on Analytical and Computational Astrophysics November, Angular momentum transport in accretion disks

School and Conference on Analytical and Computational Astrophysics November, Angular momentum transport in accretion disks 2292-13 School and Conference on Analytical and Computational Astrophysics 14-25 November, 2011 Angular momentum transport in accretion disks Gianluigi Bodo Osservatorio Astronomico, Torino Italy Angular

More information

Initial Stages of Planet Formation in Protoplanetary Disks: Origin of Vortices

Initial Stages of Planet Formation in Protoplanetary Disks: Origin of Vortices Collaboration Initial Stages of Planet Formation in Protoplanetary Disks: Origin of Vortices A. G. Tevzadze Abastumani Astrophysical Observatory, Georgia Tbilisi State University, Georgia Abastumani Astrophysical

More information

The Streaming Instability in the Dead Zone of a Protoplanetary Disk

The Streaming Instability in the Dead Zone of a Protoplanetary Disk The Streaming Instability in the Dead Zone of a Protoplanetary Disk Chao-Chin Yang ( ) Department of Physics and Astronomy University of Nevada, Las Vegas Mordecai-Mark Mac Low (AMNH), Anders Johansen

More information

arxiv: v1 [astro-ph.ep] 8 Jan 2016

arxiv: v1 [astro-ph.ep] 8 Jan 2016 Mon. Not. R. Astron. Soc. 000, 1?? () Printed 28 August 2018 (MN LATEX style file v2.2) arxiv:1601.01921v1 [astro-ph.ep] 8 Jan 2016 Vortex formation in protoplanetary discs induced by the vertical shear

More information

On the accumulation of solid bodies in global turbulent protoplanetary disc models

On the accumulation of solid bodies in global turbulent protoplanetary disc models Mon. Not. R. Astron. Soc. 364, L81 L85 (2005) doi:10.1111/j.1745-3933.2005.00109.x On the accumulation of solid bodies in global turbulent protoplanetary disc models Sébastien Fromang and Richard P. Nelson

More information

INDUCED TURBULENCE AND THE DENSITY STRUCTURE OF THE DUST LAYER IN A PROTOPLANETARY DISK

INDUCED TURBULENCE AND THE DENSITY STRUCTURE OF THE DUST LAYER IN A PROTOPLANETARY DISK Submitted to Astrophysical Journal Preprint typeset using L A TEX style emulateapj v. 5/2/ INDUCED TURBULENCE AND THE DENSITY STRUCTURE OF THE DUST LAYER IN A PROTOPLANETARY DISK Taku Takeuchi, Takayuki

More information

Global magnetorotational instability with inflow The non-linear regime

Global magnetorotational instability with inflow The non-linear regime Global magnetorotational instability with inflow The non-linear regime Evy Kersalé PPARC Postdoctoral Research Associate Dept. of Appl. Math. University of Leeds Collaboration: D. Hughes & S. Tobias (Dept.

More information

Hydrodynamic Turbulence in Accretion Disks

Hydrodynamic Turbulence in Accretion Disks Hydrodynamic Turbulence in Accretion Disks Banibrata Mukhopadhyay, Niayesh Afshordi, Ramesh Narayan Harvard-Smithsonian Center for Astrophysics, 6 Garden Street, MA 38, USA Turbulent viscosity in cold

More information

Lecture 20: Planet formation II. Clues from Exoplanets

Lecture 20: Planet formation II. Clues from Exoplanets Lecture 20: Planet formation II. Clues from Exoplanets 1 Outline Definition of a planet Properties of exoplanets Formation models for exoplanets gravitational instability model core accretion scenario

More information

The MRI in a Collisionless Plasma

The MRI in a Collisionless Plasma The MRI in a Collisionless Plasma Eliot Quataert (UC Berkeley) Collaborators: Prateek Sharma, Greg Hammett, Jim Stone Modes of Accretion thin disk: energy radiated away (relevant to star & planet formation,

More information

Lecture 14: Viscous Accretion Disks. HST: μm image of the A0e star AB Aurigae

Lecture 14: Viscous Accretion Disks. HST: μm image of the A0e star AB Aurigae Lecture 14: Viscous Accretion Disks HST: 0.2-1 μm image of the A0e star AB Aurigae OB1a (10 Myr) Subgroups in the Orion OB1 Associations OB1b (5 Myr) OB1c (2.5 Myr) OB1d (1 Myr) The Orion OB1 association

More information

The Effects of Anisotropic Transport on Dilute Astrophysical Plasmas Eliot Quataert (UC Berkeley)

The Effects of Anisotropic Transport on Dilute Astrophysical Plasmas Eliot Quataert (UC Berkeley) The Effects of Anisotropic Transport on Dilute Astrophysical Plasmas Eliot Quataert (UC Berkeley) in collaboration with Ian Parrish, Prateek Sharma, Jim Stone, Greg Hammett Hydra A w/ Chandra Galactic

More information

arxiv: v2 [astro-ph.ep] 16 Jun 2017

arxiv: v2 [astro-ph.ep] 16 Jun 2017 Title : will be set by the publisher Editors : will be set by the publisher EAS Publications Series, Vol.?, 2017 arxiv:1705.03319v2 [astro-ph.ep] 16 Jun 2017 ANGULAR MOMENTUM TRANSPORT IN ACCRETION DISKS:

More information

Attilio Ferrari. CIFS, Università di Torino. 12th Agile Workshop, May 8, 2014

Attilio Ferrari. CIFS, Università di Torino. 12th Agile Workshop, May 8, 2014 Attilio Ferrari CIFS, Università di Torino 12th Agile Workshop, May 8, 2014 Plasma processes of astrophysical relevance Highly nonlinear (relativistic) physics Huge extension of physical parameters Scalability?

More information

arxiv: v1 [astro-ph.ep] 30 Aug 2018

arxiv: v1 [astro-ph.ep] 30 Aug 2018 Draft version August 31, 218 Typeset using LATEX twocolumn style in AASTeX61 MAPPING THE CONDITIONS FOR HYDRODYNAMIC INSTABILITY ON VISCOUS MODELS OF PROTOPLANETARY DISKS Thomas Pfeil 1 and Hubert Klahr

More information

Exciting Waves/Modes in Black-Hole Accretion Disks and other Rotating Astrophysical Flows. Dong Lai Cornell University

Exciting Waves/Modes in Black-Hole Accretion Disks and other Rotating Astrophysical Flows. Dong Lai Cornell University Exciting Waves/Modes in Black-Hole Accretion Disks and other Rotating Astrophysical Flows Dong Lai Cornell University MPA/ESO Joint Colloquium, Garching, June 24, 2010 High-Frequency QPOs in BH X-Ray

More information

Global models of planetary system formation. Richard Nelson Queen Mary, University of London

Global models of planetary system formation. Richard Nelson Queen Mary, University of London Global models of planetary system formation Richard Nelson Queen Mary, University of London Hot Jupiters Cold Jupiters Super-Earths/ Neptunes 2 Sumi et al (2016) Occurence rates 30-50% of FGK stars host

More information

Disc-Planet Interactions during Planet Formation

Disc-Planet Interactions during Planet Formation Disc-Planet Interactions during Planet Formation Richard Nelson Queen Mary, University of London Collaborators: Paul Cresswell (QMUL), Martin Ilgner (QMUL), Sebastien Fromang (DAMTP), John Papaloizou (DAMTP),

More information

Kuiper Belt Dynamics and Interactions

Kuiper Belt Dynamics and Interactions Kuiper Belt Dynamics and Interactions Minor Planet Center Ruth Murray-Clay Harvard-Smithsonian Center for Astrophysics Kuiper belt µm ejected by radiation pressure larger grains migrate in via PR drag

More information

Planet disk interaction

Planet disk interaction Planet disk interaction Wilhelm Kley Institut für Astronomie & Astrophysik & Kepler Center for Astro and Particle Physics Tübingen March 2015 4. Planet-Disk: Organisation Lecture overview: 4.1 Introduction

More information

How migrating geese and falling pens inspire planet formation

How migrating geese and falling pens inspire planet formation How migrating geese and falling pens inspire planet Common Seminar, Department of Astronomy and Theoretical Physics Lund University, November 2010 About me Biträdande universitetslektor (associate senior

More information

arxiv: v1 [astro-ph.ep] 30 Sep 2014

arxiv: v1 [astro-ph.ep] 30 Sep 2014 Astronomy & Astrophysics manuscript no. vsi-paper c ESO 18 November 5, 18 Vertical shear instability in accretion disc models with radiation transport Moritz H. R. Stoll and Wilhelm Kley Institut für Astronomie

More information

Selected Topics in Plasma Astrophysics

Selected Topics in Plasma Astrophysics Selected Topics in Plasma Astrophysics Range of Astrophysical Plasmas and Relevant Techniques Stellar Winds (Lecture I) Thermal, Radiation, and Magneto-Rotational Driven Winds Connections to Other Areas

More information

The Origins of Solar Systems. Colin M c Nally

The Origins of Solar Systems. Colin M c Nally The Origins of Solar Systems Colin M c Nally Introduction 1 In the Beginning Galaxy ISM Composition Molecular Clouds Star Formation Angular Momentum Electromagnetism 2 Protoplanetary Disks History Observations

More information

F. Marzari, Dept. Physics, Padova Univ. Planetary migration

F. Marzari, Dept. Physics, Padova Univ. Planetary migration F. Marzari, Dept. Physics, Padova Univ. Planetary migration Standard model of planet formation based on Solar system exploration Small semimajor axes Large eccentricities The standard model Protostar +Disk

More information

Turbulent transport and its effect on the dead zone in protoplanetary discs

Turbulent transport and its effect on the dead zone in protoplanetary discs Astronomy & Astrophysics manuscript no. ilgner nelson4-final c ESO 2008 March 3, 2008 Turbulent transport and its effect on the dead zone in protoplanetary discs Martin Ilgner & Richard P. Nelson Astronomy

More information

Interfacial Dynamics in Protoplanetary Accretion Disks BERN 2017

Interfacial Dynamics in Protoplanetary Accretion Disks BERN 2017 DEPARTMENT OF EARTH SCIENCES, RAYMOND AND BEVERLY SACKLER FACULTY OF EXACT SCIENCES Interfacial Dynamics in Protoplanetary Accretion Disks BERN 2017 Author: Ron Yellin-Bergovoy Supervisors: Prof. Eyal

More information

Heat and Dust in Active Layers. of Protostellar Disks

Heat and Dust in Active Layers. of Protostellar Disks of Protostellar Disks Jeremy Goodman Xuening Bai Princeton University Observatory Acknowledgments Bruce Draine For much help with dust, CR ionization, etc. Martin Ilgner For help with understanding Ilgner

More information

Amplification of magnetic fields in core collapse

Amplification of magnetic fields in core collapse Amplification of magnetic fields in core collapse Miguel Àngel Aloy Torás, Pablo Cerdá-Durán, Thomas Janka, Ewald Müller, Martin Obergaulinger, Tomasz Rembiasz Universitat de València; Max-Planck-Institut

More information

Origins of Gas Giant Planets

Origins of Gas Giant Planets Origins of Gas Giant Planets Ruth Murray-Clay Harvard-Smithsonian Center for Astrophysics Image Credit: NASA Graduate Students Piso Tripathi Dawson Undergraduates Wolff Lau Alpert Mukherjee Wolansky Jackson

More information

PLANET FORMATION BY GRAVITATIONAL INSTABILITY? Kaitlin Kratter University of Arizona. Sagan Summer Workshop, July 2015

PLANET FORMATION BY GRAVITATIONAL INSTABILITY? Kaitlin Kratter University of Arizona. Sagan Summer Workshop, July 2015 PLANET FORMATION BY GRAVITATIONAL INSTABILITY? Kaitlin Kratter University of Arizona Sagan Summer Workshop, July 2015 PLANET FORMATION BY in GAS! GRAVITATIONAL INSTABILITY? Kaitlin Kratter University of

More information

Nonmodal Growth and the Unstratified MRI Dynamo

Nonmodal Growth and the Unstratified MRI Dynamo MPPC general meeting, Berlin, June 24 Nonmodal Growth and the Unstratified MRI Dynamo Jonathan Squire!! and!! Amitava Bhattacharjee MRI turbulence Observed accretion rate in disks in astrophysical disks

More information

Outflow from hot accretion flows Nature, origin and properties

Outflow from hot accretion flows Nature, origin and properties Outflow from hot accretion flows ------Nature, origin and properties (arxiv:1206.4173) Feng Yuan Shanghai Astronomical Observatory Chinese Academy of Sciences Accretion physics Motivation Outflow: important

More information

Non-ideal hydrodynamics in protoplanetary discs

Non-ideal hydrodynamics in protoplanetary discs Non-ideal hydrodynamics in protoplanetary discs Min-Kai Lin Steward Theory Fellow University of Arizona March 15 2016 Example: disc asymmetries Vortices at planetary gap edges (HD142527, Casassus et al.,

More information

Anders Johansen (Max-Planck-Institut für Astronomie) From Stars to Planets Gainesville, April 2007

Anders Johansen (Max-Planck-Institut für Astronomie) From Stars to Planets Gainesville, April 2007 in in (Max-Planck-Institut für Astronomie) From Stars to Planets Gainesville, April 2007 Collaborators: Hubert Klahr, Thomas Henning, Andrew Youdin, Jeff Oishi, Mordecai-Mark Mac Low in 1. Problems with

More information

Protoplanetary Disks. Ernst Dorfi WS 2012

Protoplanetary Disks. Ernst Dorfi WS 2012 Protoplanetary Disks Ernst Dorfi WS 2012 Disks and star formation Disks of gas and dust are observed around young stars for about 107 years Disks form because of angular momentum (conservation), collapse

More information

Introduction. Convergence of the fragmentation boundary in self-gravitating discs

Introduction. Convergence of the fragmentation boundary in self-gravitating discs Convergence of the fragmentation boundary in self-gravitating discs Collaborators : Phil Armitage - University of Colorado Duncan Forgan- University of St Andrews Sijme-Jan Paardekooper Queen Mary, University

More information

Meridional Flow, Differential Rotation, and the Solar Dynamo

Meridional Flow, Differential Rotation, and the Solar Dynamo Meridional Flow, Differential Rotation, and the Solar Dynamo Manfred Küker 1 1 Leibniz Institut für Astrophysik Potsdam, An der Sternwarte 16, 14482 Potsdam, Germany Abstract. Mean field models of rotating

More information

Planet formation in protoplanetary disks. Dmitry Semenov Max Planck Institute for Astronomy Heidelberg, Germany

Planet formation in protoplanetary disks. Dmitry Semenov Max Planck Institute for Astronomy Heidelberg, Germany Planet formation in protoplanetary disks Dmitry Semenov Max Planck Institute for Astronomy Heidelberg, Germany Suggested literature "Protoplanetary Dust" (2010), eds. D. Apai & D. Lauretta, CUP "Protostars

More information

The Turbulent Magnetic Prandtl Number of MHD Turbulence in Disks

The Turbulent Magnetic Prandtl Number of MHD Turbulence in Disks The Turbulent Magnetic Prandtl Number of MHD Turbulence in Disks Xiaoyue Guan and Charles F. Gammie 1 Astronomy Department, University of Illinois, 1002 West Green St., Urbana, IL 61801, USA ABSTRACT The

More information

The Physics of Fluids and Plasmas

The Physics of Fluids and Plasmas The Physics of Fluids and Plasmas An Introduction for Astrophysicists ARNAB RAI CHOUDHURI CAMBRIDGE UNIVERSITY PRESS Preface Acknowledgements xiii xvii Introduction 1 1. 3 1.1 Fluids and plasmas in the

More information

Exciting Waves/Modes in Black-Hole Accretion Disks

Exciting Waves/Modes in Black-Hole Accretion Disks Exciting Waves/Modes in Black-Hole Accretion Disks Dong Lai Cornell University L Observatoire de Paris Meudon, Dec.1, 2008 Edwin E. Salpeter 1924-2008.11 Autobiography: Annual Review Astro & Astrophys.

More information

Accretion Disks I. High Energy Astrophysics: Accretion Disks I 1/60

Accretion Disks I. High Energy Astrophysics: Accretion Disks I 1/60 Accretion Disks I References: Accretion Power in Astrophysics, J. Frank, A. King and D. Raine. High Energy Astrophysics, Vol. 2, M.S. Longair, Cambridge University Press Active Galactic Nuclei, J.H. Krolik,

More information

Planetary Atmospheres. Structure Composition Clouds Photochemistry Meteorology Atmospheric Escape

Planetary Atmospheres. Structure Composition Clouds Photochemistry Meteorology Atmospheric Escape Planetary Atmospheres Structure Composition Clouds Photochemistry Meteorology Atmospheric Escape Photochemistry We can characterize chemical reactions in the atmosphere in the following way: 1. Photolysis:

More information

Ruth Murray-Clay University of California, Santa Barbara

Ruth Murray-Clay University of California, Santa Barbara A Diversity of Worlds: Toward a Theoretical Framework for the Structures of Planetary Systems Ruth Murray-Clay University of California, Santa Barbara Strange New Worlds. Slide credit: Scott Gaudi ~1500

More information

Discs or Disks? A review of circumstellar discs. Ken Rice Institute for Astronomy University of Edinburgh. 6/18/12 Labyrinth of Star Formation

Discs or Disks? A review of circumstellar discs. Ken Rice Institute for Astronomy University of Edinburgh. 6/18/12 Labyrinth of Star Formation Discs or Disks? A review of circumstellar discs Ken Rice Institute for Astronomy University of Edinburgh Circumstellar accretion discs Formed during the gravitational collapse of a gaseous molecular cloud

More information

DEAD ZONES AND THE FORMATION OF JOVIAN PLANETS

DEAD ZONES AND THE FORMATION OF JOVIAN PLANETS RevMexAA (Serie de Conferencias), 22, 08 2 (2004) DEAD ZONES AND THE FORMATION OF JOVIAN PLANETS Ralph E. Pudritz and Soko Matsumura RESUMEN Los planetas terminan su fase de acrecentamiento cuando se vuelven

More information

X-ray irradiated protoplanetary discs

X-ray irradiated protoplanetary discs X-ray irradiated protoplanetary discs Barbara Ercolano University of Exeter Thanks to: James Owen, C. Clarke (IoA); A. Glassgold (Berkeley); S. Mohanty (Imperial); N. Turner (JPL); J. Drake, J. Raymond

More information

arxiv: v1 [astro-ph.ep] 18 Jun 2018

arxiv: v1 [astro-ph.ep] 18 Jun 2018 Low mass planet migration in Hall-affected disks arxiv:1806.06960v1 [astro-ph.ep] 18 Jun 2018 Colin P McNally, 1 Richard P Nelson, 1 Sijme-Jan Paardekooper, 1,3 Oliver Gressel 4 and Wladimir Lyra 5,6 1

More information

arxiv:astro-ph/ v2 1 May 2006

arxiv:astro-ph/ v2 1 May 2006 Outflow driven by a Giant Protoplanet Masahiro N. Machida 1 and Shu-ichiro Inutsuka 2 Department of Physics, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan arxiv:astro-ph/0604594v2

More information

Fluid Dynamics. Massimo Ricotti. University of Maryland. Fluid Dynamics p.1/14

Fluid Dynamics. Massimo Ricotti. University of Maryland. Fluid Dynamics p.1/14 Fluid Dynamics p.1/14 Fluid Dynamics Massimo Ricotti ricotti@astro.umd.edu University of Maryland Fluid Dynamics p.2/14 The equations of fluid dynamics are coupled PDEs that form an IVP (hyperbolic). Use

More information

The chemo-dynamical simulations of molecular cloud collapse: why dust properties define the size of circustellar disks.

The chemo-dynamical simulations of molecular cloud collapse: why dust properties define the size of circustellar disks. The chemo-dynamical simulations of molecular cloud collapse: why dust properties define the size of circustellar disks. Natalia Dzyurkevich (CSUN, ENS Paris) B. Commerçon (ENS Lyon) P. Lesaffre (ENS Paris)

More information

Numerical Cosmology & Galaxy Formation

Numerical Cosmology & Galaxy Formation Numerical Cosmology & Galaxy Formation Lecture 13: Example simulations Isolated galaxies, mergers & zooms Benjamin Moster 1 Outline of the lecture course Lecture 1: Motivation & Historical Overview Lecture

More information

Simulations of Binary Star System with Earth Mass Planet Craig Swenson

Simulations of Binary Star System with Earth Mass Planet Craig Swenson Simulations of Binary Star System with Earth Mass Planet Craig Swenson For this project I wanted to investigate that stability of planetary orbits in binary systems. Logic dictates that for systems where

More information

Diffusion and Concentration of Solids in the Dead Zone of a Protoplanetary Disk. Submitted to The Astrophysical Journal

Diffusion and Concentration of Solids in the Dead Zone of a Protoplanetary Disk. Submitted to The Astrophysical Journal Draft version October 15, 218 Typeset using LATEX twocolumn style in AASTeX62 Diffusion and Concentration of Solids in the Dead Zone of a Protoplanetary Disk Chao-Chin Yang ( 楊朝欽 ), 1, 2 Mordecai-Mark

More information

CHAPTER 4. Basics of Fluid Dynamics

CHAPTER 4. Basics of Fluid Dynamics CHAPTER 4 Basics of Fluid Dynamics What is a fluid? A fluid is a substance that can flow, has no fixed shape, and offers little resistance to an external stress In a fluid the constituent particles (atoms,

More information

Challenges of Predictive 3D Astrophysical Simulations of Accreting Systems. John F. Hawley Department of Astronomy, University of Virginia

Challenges of Predictive 3D Astrophysical Simulations of Accreting Systems. John F. Hawley Department of Astronomy, University of Virginia Challenges of Predictive 3D Astrophysical Simulations of Accreting Systems John F. Hawley Department of Astronomy, University of Virginia Stellar Evolution: Astro Computing s Early Triumph Observed Properties

More information

arxiv: v1 [astro-ph.ep] 11 Dec 2011

arxiv: v1 [astro-ph.ep] 11 Dec 2011 Astronomy & Astrophysics manuscript no. Pinilla c ESO December 3, arxiv:.349v [astro-ph.ep] Dec Trapping dust particles in the outer regions of protoplanetary disks Pinilla P., Birnstiel T. 3,4 Ricci L.

More information

arxiv:astro-ph/ v2 19 Nov 2006

arxiv:astro-ph/ v2 19 Nov 2006 APJ IN PRESS Preprint typeset using LATEX style emulateapj v. 05/04/06 THREE DIMENSIONAL COMPRESSIBLE HYDRODYNAMIC SIMULATIONS OF VORTICES IN DISKS YUE SHEN, JAMES M. STONE AND THOMAS A. GARDINER Department

More information

planet migration driven by a planetesimal disk Solar System & extra solar planets: evidence for/against planet migration?

planet migration driven by a planetesimal disk Solar System & extra solar planets: evidence for/against planet migration? 2 planet migration driven by a gas disk: type I & type II planet migration driven by a planetesimal disk Solar System & extra solar planets: evidence for/against planet migration? 3 Type I migration: follow

More information

The Effects of Radiative Transfer on Low-Mass Star Formation

The Effects of Radiative Transfer on Low-Mass Star Formation The Effects of Radiative Transfer on Low-Mass Star Formation Stella Offner NSF Fellow, ITC Dense Cores in Dark Clouds Oct 23 2009 Collaborators: Chris McKee (UC Berkeley), Richard Klein (UC Berkeley; LLNL),

More information

What is it like? When did it form? How did it form. The Solar System. Fall, 2005 Astronomy 110 1

What is it like? When did it form? How did it form. The Solar System. Fall, 2005 Astronomy 110 1 What is it like? When did it form? How did it form The Solar System Fall, 2005 Astronomy 110 1 Fall, 2005 Astronomy 110 2 The planets all orbit the sun in the same direction. The Sun spins in the same

More information

BROWN DWARF FORMATION BY DISC FRAGMENTATION

BROWN DWARF FORMATION BY DISC FRAGMENTATION BROWN DWARF FORMATION BY DISC FRAGMENTATION Ant Whitworth, Cardiff Dimitri Stamatellos, Cardiff plus Steffi Walch, Cardiff Murat Kaplan, Cardiff Simon Goodwin, Sheffield David Hubber, Sheffield Richard

More information

Accretion disks. AGN-7:HR-2007 p. 1. AGN-7:HR-2007 p. 2

Accretion disks. AGN-7:HR-2007 p. 1. AGN-7:HR-2007 p. 2 Accretion disks AGN-7:HR-2007 p. 1 AGN-7:HR-2007 p. 2 1 Quantitative overview Gas orbits in nearly circular fashion Each gas element has a small inward motion due to viscous torques, resulting in an outward

More information

Electron-MHD Turbulence in Neutron Stars

Electron-MHD Turbulence in Neutron Stars Electron-MHD Turbulence in Neutron Stars Toby Wood Newcastle University (previously University of Leeds) Wood, Hollerbach & Lyutikov 2014, Physics of Plasmas 21, 052110 Outline What is a neutron star?

More information

Planet formation and (orbital) Evolution

Planet formation and (orbital) Evolution W. Kley Planet formation and (orbital) Evolution Wilhelm Kley Institut für Astronomie & Astrophysik & Kepler Center for Astro and Particle Physics Tübingen 31. July, 2013 W. Kley Plato 2.0, ESTEC: 31.

More information

Equilibrium Structure of Radiation-dominated Disk Segments

Equilibrium Structure of Radiation-dominated Disk Segments Equilibrium Structure of Radiation-dominated Disk Segments Shigenobu Hirose The Earth Simulator Center, JAMSTEC, Japan collaborators Julian Krolik (JHU) Omer Blaes (UCSB) Reconstruction of standard disk

More information

arxiv: v1 [astro-ph.sr] 9 Aug 2016

arxiv: v1 [astro-ph.sr] 9 Aug 2016 Mon. Not. R. Astron. Soc. 000, 1 13 (xxxx) Printed 1 January 2018 (MN LATEX style file v2.2) Global multifluid simulations of the magnetorotational instability in radially stratified protoplanetary disks

More information

arxiv: v2 [astro-ph.ep] 22 Oct 2016

arxiv: v2 [astro-ph.ep] 22 Oct 2016 Astronomy & Astrophysics manuscript no. pinilla_dead_zones c ESO 2018 September 11, 2018 Can dead zones create structures like a transition disk? Paola Pinilla 1, Mario Flock 2, Maria de Juan Ovelar 3,

More information

Planet Formation. XIII Ciclo de Cursos Especiais

Planet Formation. XIII Ciclo de Cursos Especiais Planet Formation Outline 1. Observations of planetary systems 2. Protoplanetary disks 3. Formation of planetesimals (km-scale bodies) 4. Formation of terrestrial and giant planets 5. Evolution and stability

More information

Non-ideal MHD, Stability, and Dissipation in Protoplanetary Disks

Non-ideal MHD, Stability, and Dissipation in Protoplanetary Disks August 4, 2014 Non-ideal MHD, Stability, and Dissipation in Protoplanetary Disks NBI in Copenhagen The Formation and Evolution of Protoplanetary Disks: The Critical Effects of Non-Ideal MHD Shu-ichiro

More information

arxiv:astro-ph/ v1 16 Nov 2006

arxiv:astro-ph/ v1 16 Nov 2006 Baroclinic Vorticity Production in Protoplanetary Disks Part I: Vortex Formation Mark R. Petersen arxiv:astro-ph/0611528v1 16 Nov 2006 Dept. of Applied Mathematics, University of Colorado at Boulder present

More information

Differential Rotation and Emerging Flux in Solar Convective Dynamo Simulations

Differential Rotation and Emerging Flux in Solar Convective Dynamo Simulations Differential Rotation and Emerging Flux in Solar Convective Dynamo Simulations Yuhong Fan (HAO/NCAR), Fang Fang (LASP/CU) GTP workshop August 17, 2016 The High Altitude Observatory (HAO) at the National

More information

Forging the Vulcans: Forming Close-in Earths and Super-Earths around Low Mass Stars

Forging the Vulcans: Forming Close-in Earths and Super-Earths around Low Mass Stars Forging the Vulcans: Forming Close-in Earths and Super-Earths around Low Mass Stars Subhanjoy Mohanty (Imperial College London) Jonathan Tan (University of Florida, Gainesville) VIEW FROM KEPLER-62F: artist

More information

RADIATION FROM ACCRETION ONTO BLACK HOLES

RADIATION FROM ACCRETION ONTO BLACK HOLES RADIATION FROM ACCRETION ONTO BLACK HOLES Accretion via MHD Turbulence: Themes Replacing dimensional analysis with physics MRI stirs turbulence; correlated by orbital shear; dissipation heats gas; gas

More information

The Black Hole in the Galactic Center. Eliot Quataert (UC Berkeley)

The Black Hole in the Galactic Center. Eliot Quataert (UC Berkeley) The Black Hole in the Galactic Center Eliot Quataert (UC Berkeley) Why focus on the Galactic Center? The Best Evidence for a BH: M 3.6 10 6 M (M = mass of sun) It s s close! only ~ 10 55 Planck Lengths

More information

Accretion onto the Massive Black Hole in the Galactic Center. Eliot Quataert (UC Berkeley)

Accretion onto the Massive Black Hole in the Galactic Center. Eliot Quataert (UC Berkeley) Accretion onto the Massive Black Hole in the Galactic Center Eliot Quataert (UC Berkeley) Why focus on the Galactic Center? GR! Best evidence for a BH (stellar orbits) M 4x10 6 M Largest BH on the sky

More information

From pebbles to planetesimals and beyond

From pebbles to planetesimals and beyond From pebbles to planetesimals... and beyond (Lund University) Origins of stars and their planetary systems Hamilton, June 2012 1 / 16 Overview of topics Size and time Dust µ m Pebbles cm Planetesimals

More information

MHD Simulations of Star-disk Interactions in Young Stars & Related Systems

MHD Simulations of Star-disk Interactions in Young Stars & Related Systems MHD Simulations of Star-disk Interactions in Young Stars & Related Systems Marina Romanova, Cornell University R. Kurosawa, P. Lii, G. Ustyugova, A. Koldoba, R. Lovelace 5 March 2012 1 1. Young stars 2.

More information

Dynamics of Zonal Shear Collapse in Hydrodynamic Electron Limit. Transport Physics of the Density Limit

Dynamics of Zonal Shear Collapse in Hydrodynamic Electron Limit. Transport Physics of the Density Limit Dynamics of Zonal Shear Collapse in Hydrodynamic Electron Limit Transport Physics of the Density Limit R. Hajjar, P. H. Diamond, M. Malkov This research was supported by the U.S. Department of Energy,

More information

Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit

Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit Rough breakdown of MHD shocks Jump conditions: flux in = flux out mass flux: ρv n magnetic flux: B n Normal momentum flux: ρv n

More information

Generating Vortices with Slowly-growing Gas Giant Planets

Generating Vortices with Slowly-growing Gas Giant Planets Generating Vortices with Slowly-growing Gas Giant Planets van der Marel, N., et al. 2013 Michael Hammer Collaborators: Kaitlin Kratter, Paola Pinilla, Min-Kai Lin University of Arizona Generating Vortices

More information

Cataclysmic variables

Cataclysmic variables Cataclysmic variables Sander Bus Kapteyn Astronomical Institute Groningen October 6, 2011 Overview Types of cataclysmic stars How to form a cataclysmic variable X-ray production Variation in outburst lightcurve,

More information

Star formation. Protostellar accretion disks

Star formation. Protostellar accretion disks Star formation Protostellar accretion disks Summary of previous lectures and goal for today Collapse Protostars - main accretion phase - not visible in optical (dust envelope) Pre-main-sequence phase -

More information

DISK SURFACE DENSITY TRANSITIONS AS PROTOPLANET TRAPS

DISK SURFACE DENSITY TRANSITIONS AS PROTOPLANET TRAPS The Astrophysical Journal, 642:478 487, 2006 May 1 # 2006. The American Astronomical Society. All rights reserved. Printed in U.S.A. DISK SURFACE DENSITY TRANSITIONS AS PROTOPLANET TRAPS F. S. Masset 1,2

More information

Transport of magnetic flux and the vertical structure of accretion discs II. Vertical profile of the diffusion coefficients

Transport of magnetic flux and the vertical structure of accretion discs II. Vertical profile of the diffusion coefficients MNRAS 430, 822 835 (2013) doi:10.1093/mnras/sts551 Transport of magnetic flux and the vertical structure of accretion discs II. Vertical profile of the diffusion coefficients Jérôme Guilet and Gordon I.

More information

Dynamically Unstable Planetary Systems Emerging Out of Gas Disks

Dynamically Unstable Planetary Systems Emerging Out of Gas Disks EXTREME SOLAR SYSTEMS ASP Conference Series, Vol. 398, 2008 D. Fischer, F. A. Rasio, S. E. Thorsett, and A. Wolszczan Dynamically Unstable Planetary Systems Emerging Out of Gas Disks Soko Matsumura, Edward

More information