PURPOSE(OF(THE(STSM:(

Size: px
Start display at page:

Download "PURPOSE(OF(THE(STSM:("

Transcription

1 TOSCASTSMUniversidaddeExtremadura:LaureLefèvreFebruary2015) ABSTRACT: The International Sunspot Number forms the longest solar time series currently available. It provides an essential reference for understanding and quantifying how the solar output has varied over decades and centuries and thus for assessing the variations of the main natural forcing on the Earth climate. However, the recent "proxy breakdown" between supposedly well-known solar indices has proven that a 1D source of information might not always be sufficient when trying to understand the Sun's behavior over time. In this context, and thanks to the TOSCA COST action, L. Lefèvre is working with J. Vaquero, A. Aparicio, V. Carrasco and M. Gallego to go beyond the SSN series. These are the first steps towards the construction of a multi-parametric time series of multiple sunspot and sunspot group properties over more than a century, allowing to reconstruct and extend the current 1-D SSN series. By bringing new spatial, morphological and evolutionary information, such a data set should bring major advances for the modeling of the solar dynamo and solar irradiance. PURPOSEOFTHESTSM: The purpose of this scientific mission is to increase the collaboration between the Royal Observatory of Belgium and the Universidad de Extremadura in the use of historical sunspot catalogues. Although there are a large number of these sunspot catalogs, a global evaluation Lefèvre Clette, 2014) showed that they suffer from multiple limitations: finite or fragmented time coverage, limited temporal overlap between catalogs and even more importantly, a mismatch in contents and conventions. Aparicio et al. 2014) have recently published data about the sunspot number and the area of the Madrid Observatory 110 year approximately), but have not yet exploited the sunspot catalogues that were made by the Madrid Observatory. We are here referring to two catalogues: the Aguilar Catalogue ) and the Modern Catalogue ). At the time of the start of the mission, the Aguilar Catalogue is digitized and the Modern catalogue is only partially digitized. This STSM thus enables an initial analysis of these recovered catalogues and try a first comparison of these catalogues with other available catalogues on the same period. DESCRIPTION OF THE WORK CARRIED OUT DURING THE STSM A. Aparicio, and J. Vaquero explained the contents and conventions of the Aguilar catalogue and the Modern catalogue. 1/Analysis of the data in the Aguilar catalogue: Madrid Observatory I developed algorithms to automatically detect remaining problems in the catalogue. This catalogue presents observations by spots, and they are grouped in groups of spots. Each of these groups has a Cortie classification Cortie, 1901, Carrasco et al., 2015).

2 Table 1 shows the contents of the Aguilar catalogue: Fecha Nºdel cliché Nº#del# grupo## Año# Mes# Hora Día# h# m# Latitude Aust Boreal# ral# º)# º)# almeridiano centralº) Absoluta# E# W# Absoluta# Pasoporel meridianocentral al#1º# Año# meridiano# º)# Mes# Día# Superficie manchada Cortie# Clase# Distancia#al#en#mm2# centro#en# mm# Considering we have the areas in square mm and the areas in msh as well as the distance from the disk center in mm, it is possible to recomputed both types of areas from each other if we know the size of the Sun on the drawing in mm over time. The catalog only hints at a mean diameter of 150 mm over the set of observations, but does not give more information. We first tried with a fixed radius of 75mm but realized very rapidly that the distance from disk center was too often above this measurement. So we realized a fit with the mean radius value, and used an approximate formula 1) computing the correction for each day of the year to compute the observed variations of this radius with time over the period. correction= x sin2πdayofyear-93))/365)) 1) We chose the value that minimizes the residuals of the areas in msh from the catalog to the recomputed areas. We obtain a mean radius of : 77.2 mm. Once the areas have been recomputed in msh and in mm, we can run the first diagnostics on the catalog. To complement that, we also grouped the spots observations are very similar to single spots, even if they are not always equivalent) into groups and thus could access to typical group parameters like the extent of the group in degrees for example. This is also another tool for diagnostics. Diagnostics of pb in Aguilar catalog: Existing area mm2 / recomputed area mm2 Existing area msh / recomputed area msh Group extent: detect large values Groups extending on 2 days Figure1: Image of a page of the 1917 Madrid catalogue. The groups wrongly extend from one day to the next. After running the diagnostics, we were able to compare this catalog with other sources. This is explained in the next sections. 2/Analysis of the data in the Modern catalogue : Madrid Observatory The data from this part of the catalogue does not show individual spot information, it is only group data. Table 2 shows the content of this catalog. Table 2 shows the content of the Modern catalogue : Año# Mes Día date Nºobservación Nºdel grupo Longitud Latitud Medida Reducida Total día Nº Día millonª#de# hemisferio#

3 We compared the data here with the data form the Uccle Solar Equatorial table USET). It helps assess the overall quality of the Madrid data versus the data from USET that has been digitized and analyzed with a dedicated software DIGISUN) with operators over a few years. We can see that overall, the USET catalogue shows more entries. However, as the USET data does not include sizes of groups yet work in progress) we cannot compare the identified sizes. We plan on comparing with the partially available RGO data to show that the missed groups are the smallest. This comparison enables to point out defects in the Madrid catalogue, but also in the USET catalogue. In the example below, we see that USET shows a deficit of groups. But if we check on the drawing for that day, on the right, we can see that it says incomplete, which explains this unusual difference :03:00.00/ :15:00.00/ Figure'2:left) synoptic map of the Sun for Jan. 11 th 1980 with Madrid in black and USET in red crosses. right) Drawing from USET. With this comparison we also produced a new catalogue with the Zurich/McIntosh types of the groups in this catalogue. 3/ Comparison with other sources Different sources are available to compare the catalogues concerned by this mission, they are described in Fig. 3 and the most prominent ones were used during the mission. We will extend the comparisons/ quality assessment to other catalogues in the future. Figure' 3: Diagram of other sources of data available for comparison with the Aguilar and modern catalogue data from Madrid.

4 4/ Plans for future articles: In the context of this mission we also made advanced plans for the publication of 2 to 3 articles in the very near future. The first possible one is on new data for the butterfly diagram around the Maunder minimum, the second one is on the creation and analysis of the Aguilar Catalogue, and a third one would be realized on the creation and subsequent analysis of the more recent Madrid catalogue. 5/ Paper on Cortie classification We also were correcting a previous manuscript submitted to Solar Physics minor revisions) about the conversion of Cortie morphological classification of sunspot groups to Zurich classification Carrasco et al., 2015). We hope that it will be accepted soon. DESCRIPTIONOFTHEMAINRESULTSOBTAINED: Diagnosticsofcatalogues This STSM enabled us first to assess the quality of the data that was digitized. The first step was to detect errors, see if they are digitization errors, or errors that exist in the original files. We thus improved the quality of the catalogues before realizing any additional work. Diagnostics are described in previous sections 1/ and 2/. Comparisonwithothersources 1) Aguilar: RGO comparison: grouping spots in groups a. Diagnostics b. Create group file c. Compare with RGO d. Diagnostics of problems in the Aguilar catalog / RGO catalog Figure 4: left) Corrected areas from the RGO catalogue compared to the Aguilar areas for groups) in the data from Madrid. right) Distribution of the distance between matched groups. It is very interesting to note that the difference in areas between the Aguilar catalogue and the RGO catalogue is of about 40% Fig 4, left), which is very similar to what is found between RGO and USAF/SOON by D. Hathaway and Balmaceda et al. 2009). The distance between matched groups is relatively correct with a peak value around 1 degree. Considering I group the spots with a simple mean value of their latitudes and longitudes, this is very good.

5 This comparison will enable us to compare the Cortie classification to the local RGO classification. Indeed, comparing to the Zurich classification directly is very complicated as the RGO classes are very simple. However, the additional step represented by the Cortie classification might be just the link that we were missing before. Add to that the recent association scheme developed in Carrasco et al. 2015), and we might have a way to link the RGO classification to the more modern types. In addition, we now have a group catalogue, for which we have the spots included. This is thus a very detailed catalogue for such an early period. In addition, as can be seen from Fig. 2, we will use the Kodaikanal and Mount Wilson data for groups and spots and will be able to assess the quality of the data from RGO, Kodaikanal and Mount Wilson on this period. 2) Modern: USET comparison a. Diagnostics b. Comparison with USET catalogue c. Creation of new catalog: new file with Zurich classes and flags for errors) Figure 5: Distribution of the distance between matched groups between the Madrid catalogue and the USET catalogue. The distance between matched groups is relatively correct with a peak value slightly below 2 degrees. I d say this is mostly due to a problem of precision of the measurements in the Madrid Modern catalogue, but I d have to realize a deeper analysis to confirm this statement. For this particular catalogue, we have the possibility to add information to this very dataset. We can also use the Modern Catalogue data to assess the quality of existing datasets during the overlapping period. As mentioned earlier, although the USET dataset is the only one completely overlapping this dataset, it does not enable the comparison of the areas of the groups. However, several catalogues partially overlap this data. And, another very interesting possibility is to use this catalogue as a reference backbone to link the data from the earlier catalogues RGO, Kodaikanal, Mount Wilson) to the more recent catalogues DPD, USAF, USET), in the sense used in Balmaceda et al. 2009) to make a uniform area database. FUTURECOLLABORATIONSWITHHOSTINSTITUTION We have a collaboration for the composition of a Poster based on Carrasco et al., 2015) at the final TOSCA meeting in KIEL, and we plan on publishing articles based

6 on our collaboration from the STSM and in the future. Furthermore, it is important to note that we have started this collaboration on catalogs of sunspots and we believe that our collaboration will last a long time since we have detected a large number of catalogs that must be retrieved and analyzed Ebro observatory in Spain, Coimbra observatory in Portugal, San Miguel Observatory in Argentina, etc.) FORESEENPUBLICATIONS Four foreseen publications: 1) V.M.S. Carrasco, L. Lefèvre, J.M. Vaquero and M.C. Gallego, Equivalence relations between the Cortie and Zurich sunspot group morphological classifications, Solar Physics, in revision. 2) Improving Sunspot Records: Towards a Butterfly Diagram for the 17th Century. 3) Sunspot Catalogue of Miguel Aguilar , Madrid Observatory) 4) Sunspot Catalogue of Madrid Observatory ) REFERENCES: Aparicio, A.J.P., Vaquero, J.M., Carrasco, V.M.S., Gallego, M.C.: 2014, Solar Phys.289,4335.DOI: /s11207H014H0567Hx. Balmacedaetal.,2009,JournalofGeophysicalResearchSpacePhysics), 114,A07104 Carrasco et al., Equivalence relations between the Cortie and Zurich sunspotgroupmorphologicalclassifications,solarphysics,inrevision. Cortie,A.L.:1901,Astrophys.J.13,260.DOI: / Lefèvre, L. and Clette, F.: 2014, Solar Phys. 289, 545. DOI: /s11207H012H0184H5.

Date of delivery: 29 June 2011 Journal and vol/article ref: IAU Number of pages (not including this page): 5

Date of delivery: 29 June 2011 Journal and vol/article ref: IAU Number of pages (not including this page): 5 Date of delivery: 29 June 2011 Journal and vol/article ref: IAU 1101528 Number of pages (not including this page): 5 Author queries: Q1: Please check figure quality. Typesetter queries: Non-printed material:

More information

A Sunspot Catalog for the Period from Observations Made at the Madrid Astronomical Observatory

A Sunspot Catalog for the Period from Observations Made at the Madrid Astronomical Observatory A Sunspot Catalog for the Period 1952-1986 from Observations Made at the Madrid Astronomical Observatory A.J.P. Aparicio 1,3 L. Lefèvre 2 M.C. Gallego 1,3 J.M. Vaquero 3,4 F. Clette 2 N. Bravo-Paredes

More information

COST-STSM-ES1005-TOSCA

COST-STSM-ES1005-TOSCA Report on the Short term Scientific Mission COST-STSM-ES1005-TOSCA By: Theodosios Chatzistergos, Max-Planck-Institut für Sonnensystemforschung, Göttingen, Germany Period: 19 February 2014 to 21 March 2014

More information

New re-calibrated sunspot numbers and the past solar output

New re-calibrated sunspot numbers and the past solar output ORB New re-calibrated sunspot numbers and the past solar output Frédéric Clette, Laure Lefèvre World Data Center SILSO Observatoire Royal de Belgique, Brussels Sunspot Number: a composite series Historical

More information

Sunspot Catalogue of the Valencia Observatory ( )

Sunspot Catalogue of the Valencia Observatory ( ) Sunspot Catalogue of the Valencia Observatory (192 1928) V.M.S. Carrasco a,b, J.M. Vaquero b, A.J.P. Aparicio b, and M.C. Gallego b a Centro de Geofísica de Évora, Universidade de Évora, Portugal b Departamento

More information

The new Sunspot and Group Numbers A full recalibration

The new Sunspot and Group Numbers A full recalibration ROB STCE The new Sunspot and Group Numbers A full recalibration Frédéric Clette, Laure Lefèvre World Data Center SILSO, Royal Observatory of Belgium L. Svalgaard Stanford University E.W. Cliver National

More information

A Note on the Relationship between Sunspot Numbers and Active Days

A Note on the Relationship between Sunspot Numbers and Active Days A Note on the Relationship between Sunspot Numbers and Active Days J.M. Vaquero 1*, S. Gutiérrez-López 1, and A. Szelecka 1,2 1 Departamento de Física, Universidad de Extremadura, Mérida (Badajoz), Spain

More information

The Effect of Weighting and Group Over-counting on the Sunspot Number

The Effect of Weighting and Group Over-counting on the Sunspot Number The Effect of Weighting and Group Over-counting on the Sunspot Number Leif Svalgaard Stanford University, California, USA http://www.leif.org/research 6 th Space Climate Symposium, Levi, April 2016 1 Where

More information

Solar Cycle Propagation, Memory, and Prediction Insights from a Century of Magnetic Proxies

Solar Cycle Propagation, Memory, and Prediction Insights from a Century of Magnetic Proxies Solar Cycle Propagation, Memory, and Prediction Insights from a Century of Magnetic Proxies Neil R. Sheeley Jr. Jie Zhang Andrés Muñoz-Jaramillo Edward E. DeLuca Work performed in collaboration with: Maria

More information

Numerical processing of sunspot images using the digitized Royal Greenwich Observatory Archive

Numerical processing of sunspot images using the digitized Royal Greenwich Observatory Archive Numerical processing of sunspot images using the digitized Royal Greenwich Observatory Archive Andrey Tlatov 1 and Vladimir Ershov 2 1 Kislovodsk Mountain Solar Station,Pulkovo observatory 2 Mullard Space

More information

A New Record of Total Solar Irradiance from 1610 to Present

A New Record of Total Solar Irradiance from 1610 to Present A New Record of Total Solar Irradiance from 1610 to Present Odele Coddington, Judith Lean, Peter Pilewskie, Martin Snow, Doug Lindholm, and Greg Kopp 1600 1700 1800 1900 2000 Year Outline NOAA NCEI Climate

More information

Assessment of the Failure of Active Days Fraction Method of Sunspot Group Number Reconstructions

Assessment of the Failure of Active Days Fraction Method of Sunspot Group Number Reconstructions Assessment of the Failure of Active Days Fraction Method of Sunspot Group Number Reconstructions Leif Svalgaard 1, and Kenneth H. Schatten 2 Submitted June 2017 Abstract We identify several pairs of equivalent

More information

Sunspot Index and Long-term Solar Observations World Data Center supported by the ICSU - WDS

Sunspot Index and Long-term Solar Observations World Data Center supported by the ICSU - WDS Sunspot Index and Long-term Solar Observations World Data Center supported by the ICSU - WDS 2016 n 6 WARNING OF MAJOR DATA CHANGE Over the past 4 years a community effort has been carried out to revise

More information

Sunspot Index and Long-term Solar Observations World Data Center supported by the ICSU - WDS

Sunspot Index and Long-term Solar Observations World Data Center supported by the ICSU - WDS Sunspot Index and Long-term Solar Observations World Data Center supported by the ICSU - WDS 2016 n 7 WARNING OF MAJOR DATA CHANGE Over the past 4 years a community effort has been carried out to revise

More information

The new Sunspot Number 400 years of solar activity revisited

The new Sunspot Number 400 years of solar activity revisited ROB STCE The new Sunspot Number 400 years of solar activity revisited Frédéric Clette World Data Center SILSO Observatoire Royal de Belgique, Brussels The pre-history of the Sunspot Number 1610: Galilée,

More information

Redefining the limit dates for the Maunder Minimum

Redefining the limit dates for the Maunder Minimum Redefining the limit dates for the Maunder Minimum J. M. Vaquero 1,2 and R. M. Trigo 2,3 1 Departamento de Física, Universidad de Extremadura, Avda. Santa Teresa de Jornet, 38, 06800 Mérida (Badajoz),

More information

The Brussels period ( ) Towards a full recalculation

The Brussels period ( ) Towards a full recalculation The Brussels period (1981 2014) Towards a full recalculation Frédéric Clette World Data Center SILSO Sunspot Index and Long-term Solar Observations Royal Observatory of Belgium Outline The SILSO data archive

More information

arxiv: v1 [astro-ph.sr] 26 Mar 2015

arxiv: v1 [astro-ph.sr] 26 Mar 2015 Astronomy & Astrophysics manuscript no. SCL MM REV 1c c ESO 218 September 24, 218 Level and length of cyclic solar activity during the Maunder minimum as deduced from the active day statistics J.M. Vaquero

More information

The Waldmeier Discontinuity

The Waldmeier Discontinuity The Waldmeier Discontinuity Recalibration of the Zürich Sunspot Number Leif Svalgaard (Stanford), Luca Bertello (UCLA), & Edward W. Cliver (AFRL) When Max Waldmeier took over the production of the Sunspot

More information

I am fairly skeptical about a new Maunder Minimum

I am fairly skeptical about a new Maunder Minimum I am fairly skeptical about a new Maunder Minimum The influence of the Sun on the Earth's climate is a fascinating subject. Everyone understands that the sun is the main energy source for the climate system.

More information

The Waldmeier Effect and the Calibration of Sunspot Numbers

The Waldmeier Effect and the Calibration of Sunspot Numbers The Waldmeier Effect and the Calibration of Sunspot Numbers Leif Svalgaard Stanford University, California, USA http://www.leif.org/research David H. Hathaway NASA Ames Research Center, California, USA

More information

Phillip Chamberlin. Frank Eparvier, Tom Woods. NASA Goddard Space Flight Center, Solar Physics Laboratory, Greenbelt, MD

Phillip Chamberlin. Frank Eparvier, Tom Woods. NASA Goddard Space Flight Center, Solar Physics Laboratory, Greenbelt, MD Phillip Chamberlin Phillip.C.Chamberlin@nasa.gov NASA Goddard Space Flight Center, Solar Physics Laboratory, Greenbelt, MD Frank Eparvier, Tom Woods University of Colorado, LASP, Boulder, CO LPW/EUV channels

More information

arxiv: v2 [astro-ph.sr] 20 Dec 2016

arxiv: v2 [astro-ph.sr] 20 Dec 2016 ACCEPTED FOR PUBLICATIONS IN APJ Preprint typeset using L A TEX style emulateapj v. 1/23/15 ASSOCIATION OF PLAGES WITH SUNSPOTS: A MULTI WAVELENGTH STUDY USING KODAIKANAL Ca II K AND GREENWICH SUNSPOT

More information

arxiv: v1 [astro-ph.sr] 8 Oct 2016

arxiv: v1 [astro-ph.sr] 8 Oct 2016 DRAFT VERSION OCTOBER 11, 216 Preprint typeset using L A TEX style emulateapj v. 1/23/15 SUNSPOT SIZES AND THE SOLAR CYCLE: ANALYSIS USING KODAIKANAL WHITE-LIGHT DIGITIZED DATA SUDIP MANDAL 1, DIPANKAR

More information

Unusual Migration of Prominence Activities in the Southern Hemisphere during Cycles 23 24

Unusual Migration of Prominence Activities in the Southern Hemisphere during Cycles 23 24 PASJ: Publ. Astron. Soc. Japan 65, S16, 213 December 5 c 213. Astronomical Society of Japan. Unusual Migration of Prominence Activities in the Southern Hemisphere during Cycles 23 24 Masumi SHIMOJO National

More information

The solar butterfly diagram: a low-dimensional model

The solar butterfly diagram: a low-dimensional model The solar butterfly diagram: a low-dimensional model Thierry Dudok de Wit OSUC, University of Orléans With special thanks to the instrument teams (SIDC, USAF, Royal Greenwich Observatory) Butterfly basics

More information

Solar Cycle Prediction and Reconstruction. Dr. David H. Hathaway NASA/Ames Research Center

Solar Cycle Prediction and Reconstruction. Dr. David H. Hathaway NASA/Ames Research Center Solar Cycle Prediction and Reconstruction Dr. David H. Hathaway NASA/Ames Research Center Outline Solar cycle characteristics Producing the solar cycle the solar dynamo Polar magnetic fields producing

More information

The Ratio Between the Number of Sunspot and the Number of Sunspot Groups 1

The Ratio Between the Number of Sunspot and the Number of Sunspot Groups 1 ISSN 16-7932, Geomagnetism and Aeronomy, 217, Vol. 57, No. 7, pp. 1 7. Pleiades Publishing, Ltd., 217. The Ratio Between the Number of Sunspot and the Number of Sunspot Groups 1 K. Georgieva a, A. Kilçik

More information

How well do the Ca II K index time series correlate with the ISN?

How well do the Ca II K index time series correlate with the ISN? How well do the Ca II K index time series correlate with the ISN? National Solar Observatory 2nd Sunspot Number Workshop May 21-25, 2012 - Brussels, Belgium Outline Importance of Ca II K observations.

More information

Sunspot Number essentials: A tortuous way from Galileo to Locarno

Sunspot Number essentials: A tortuous way from Galileo to Locarno Sunspot Number essentials: A tortuous way from Galileo to Locarno Frédéric Clette World Data Center SILSO Sunspot Index and Long-term Solar Observations Royal Observatory of Belgium Outline Chronology

More information

arxiv: v1 [astro-ph.sr] 15 May 2017

arxiv: v1 [astro-ph.sr] 15 May 2017 Astronomy & Astrophysics manuscript no. Willamo AA final 2c c ESO 218 July 25, 218 Updated sunspot group number reconstruction for 1749 1996 using the active day fraction method arxiv:175.519v1 [astro-ph.sr]

More information

Does Building a Relative Sunspot Number Make Sense? A Qualified Yes

Does Building a Relative Sunspot Number Make Sense? A Qualified Yes Does Building a Relative Sunspot Number Make Sense? A Qualified Yes Leif Svalgaard 1 (leif@leif.org) 1 Stanford University, Cypress Hall C13, W.W. Hansen Experimental Physics Laboratory, Stanford University,

More information

arxiv: v1 [astro-ph.sr] 7 Jul 2014

arxiv: v1 [astro-ph.sr] 7 Jul 2014 Noname manuscript No. (will be inserted by the editor) Computer-aided measurement of the heliographic coordinates of sunspot groups H. Çakmak Received: date / Accepted: date arxiv:1407.1626v1 [astro-ph.sr]

More information

arxiv: v1 [astro-ph.sr] 10 Mar 2016

arxiv: v1 [astro-ph.sr] 10 Mar 2016 arxiv:163.3297v1 [astro-ph.sr] 1 Mar 216 Characteristics of latitude distribution of sunspots and their links to solar activity in pre-greenwich data V.G. Ivanov and E.V. Miletsky Central Astronomical

More information

Predicting amplitude of solar cycle 24 based on a new precursor method

Predicting amplitude of solar cycle 24 based on a new precursor method Author(s) 21. This work is distributed under the Creative Commons Attribution 3. License. Annales Geophysicae Predicting amplitude of solar cycle 24 based on a new precursor method A. Yoshida and H. Yamagishi

More information

SOTERIA. Giovanni Lapenta for the Soteria Consortium. Centrum voor Plasma-Astrofysica Katholieke Universiteit Leuven BELGIUM

SOTERIA. Giovanni Lapenta for the Soteria Consortium. Centrum voor Plasma-Astrofysica Katholieke Universiteit Leuven BELGIUM SOTERIA Giovanni Lapenta for the Soteria Consortium Centrum voor Plasma-Astrofysica Katholieke Universiteit Leuven BELGIUM This research has received funding from the European Commission's Seventh Framework

More information

Solar observations carried out at the INAF - Catania Astrophysical Observatory

Solar observations carried out at the INAF - Catania Astrophysical Observatory Contrib. Astron. Obs. Skalnaté Pleso 41, 85 91, (2011) Solar observations carried out at the INAF - Catania Astrophysical Observatory F. Zuccarello 1,2, L. Contarino 1 and P. Romano 2 1 Department of Physics

More information

Spain: Climate records of interest for MEDARE database. Yolanda Luna Spanish Meteorological Agency

Spain: Climate records of interest for MEDARE database. Yolanda Luna Spanish Meteorological Agency Spain: Climate records of interest for MEDARE database Yolanda Luna Spanish Meteorological Agency INTRODUCTION Official meteorological observations in Spain started in 1869, although prior to this date

More information

Faculae Area as Predictor of Maximum Sunspot Number. Chris Bianchi. Elmhurst College

Faculae Area as Predictor of Maximum Sunspot Number. Chris Bianchi. Elmhurst College Faculae Area as Predictor of Maximum Sunspot Number Chris Bianchi Elmhurst College Abstract. We measured facular area from digitized images obtained from the Mt. Wilson Observatory for 41 days from selected

More information

Invisible sunspots and implications for the monitoring of Solar Active Regions

Invisible sunspots and implications for the monitoring of Solar Active Regions Invisible sunspots and implications for the monitoring of Solar Active Regions Silvia Dalla (1), Lyndsay Fletcher (2) and Nicholas Walton (3) (1) Centre for Astrophysics, University of Central Lancashire,

More information

Sunspot Numbers and Areas from the Madrid Astronomical Observatory ( )

Sunspot Numbers and Areas from the Madrid Astronomical Observatory ( ) Sunspot Numbers and Areas from the Madrid Astronomical Observatory (1876-1986) A.J.P. Aparicio 1 J.M. Vaquero 1 V.M.S. Carrasco 1,2 M.C. Gallego 1 1 Departamento de Física, Universidad de Extremadura,

More information

Astron 104 Laboratory #7 Sunspots and the Solar Cycle

Astron 104 Laboratory #7 Sunspots and the Solar Cycle Name: Section: Astron 104 Laboratory #7 Sunspots and the Solar Cycle Section 9.4 In this exercise, you will observe how the physical appearance of the Sun changes from day to day over the period of one

More information

Updating the Historical Sunspot Record

Updating the Historical Sunspot Record **FULL TITLE** ASP Conference Series, Vol. **VOLUME**, c **YEAR OF PUBLICATION** **NAMES OF EDITORS** Updating the Historical Sunspot Record Leif Svalgaard HEPL, Via Ortega, Stanford University, Stanford,

More information

Polar Fields, Large-Scale Fields, 'Magnetic Memory', and Solar Cycle Prediction

Polar Fields, Large-Scale Fields, 'Magnetic Memory', and Solar Cycle Prediction Polar Fields, Large-Scale Fields, 'Magnetic Memory', and Solar Cycle Prediction Leif Svalgaard SHINE 2006 We consider precursor methods using the following features: A1: Latitudinal poloidal fields at

More information

How Low is Low? Tom Woods. Latest News on this Current Solar Cycle Minimum. LASP / University of Colorado.

How Low is Low? Tom Woods. Latest News on this Current Solar Cycle Minimum. LASP / University of Colorado. How Low is Low? Latest News on this Current Solar Cycle Minimum Tom Woods LASP / University of Colorado Many Contributions: Phil Chamberlin, Giulianna detoma, Leonid tom.woods@lasp.colorado.edu Didkovsky,

More information

The Solar Wind over the Last Five Sunspot Cycles and The Sunspot Cycle over the Last Three Centuries

The Solar Wind over the Last Five Sunspot Cycles and The Sunspot Cycle over the Last Three Centuries The Solar Wind over the Last Five Sunspot Cycles and The Sunspot Cycle over the Last Three Centuries C.T. Russell, J.G. Luhmann, L.K. Jian, and B.J.I. Bromage IAU Division E: Sun and Heliosphere Mini Symposium:

More information

arxiv: v1 [astro-ph.sr] 19 Oct 2018

arxiv: v1 [astro-ph.sr] 19 Oct 2018 Astronomy & Astrophysics manuscript no. 33924corr_JT_KM c ESO 2018 October 22, 2018 Principal component analysis of sunspot cycle shape Jouni Takalo and Kalevi Mursula ReSoLVE Centre of Excellence, Space

More information

The Extreme Solar Activity during October November 2003

The Extreme Solar Activity during October November 2003 J. Astrophys. Astr. (2006) 27, 333 338 The Extreme Solar Activity during October November 2003 K. M. Hiremath 1,,M.R.Lovely 1,2 & R. Kariyappa 1 1 Indian Institute of Astrophysics, Bangalore 560 034, India.

More information

Sunspots with Ancient Telescopes

Sunspots with Ancient Telescopes Sunspots with Ancient Telescopes Leif Svalgaard Stanford University, California, USA http://www.leif.org/research John W. Briggs Magdalena, New Mexico, USA Ken Spencer Sea Cliff, New York, USA Walter Stephani

More information

A method for the prediction of relative sunspot number for the remainder of a progressing cycle with application to cycle 23

A method for the prediction of relative sunspot number for the remainder of a progressing cycle with application to cycle 23 A&A 392, 301 307 (2002) DOI: 10.1051/0004-6361:20020616 c ESO 2002 Astronomy & Astrophysics A method for the prediction of relative sunspot number for the remainder of a progressing cycle with application

More information

Reconstruction of the past total solar irradiance on short timescales

Reconstruction of the past total solar irradiance on short timescales JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 109,, doi:10.1029/2003ja010222, 2004 Reconstruction of the past total solar irradiance on short timescales Kiran Jain and S. S. Hasan Indian Institute of Astrophysics,

More information

arxiv: v1 [astro-ph.sr] 25 Feb 2016

arxiv: v1 [astro-ph.sr] 25 Feb 2016 Solar Physics DOI: 10.1007/ - - - - Sunspot Observations and Counting at Specola Solare Ticinese in Locarno since 1957 Sergio Cortesi 1 Marco Cagnotti 1 Michele Bianda 2 Renzo Ramelli 2 Andrea Manna 1

More information

arxiv: v1 [astro-ph.sr] 8 Dec 2016

arxiv: v1 [astro-ph.sr] 8 Dec 2016 Research in Astron. Astrophys. Vol. No. XX, 000 000 http://www.raa-journal.org http://www.iop.org/journals/raa (L A TEX: BMRs.tex; printed on December 9, 2016; 1:17) Research in Astronomy and Astrophysics

More information

EFFECTIVE SCIENTIFIC PRESENTATIONS

EFFECTIVE SCIENTIFIC PRESENTATIONS EFFECTIVE SCIENTIFIC PRESENTATIONS Dan Seaton Royal Observatory of Belgium Space Science Training Week KULeuven 2013 September 16 Why does most scientific communication go wrong? Often, the problem is

More information

Answer to Referee #2. MAJOR COMMENTS: (1) What SORCE are we talking about?

Answer to Referee #2. MAJOR COMMENTS: (1) What SORCE are we talking about? Answer to Referee #2 We thank the Referee for raising a number of important points. We have addressed all the points raised by him/her and have marked blue the relevant corrections in the current version

More information

Long term SOLAR ACTIVITY. Laure Lefèvre Basic SIDC series of talks Nov. 16 th /11/2017 Basic SIDC seminar 1

Long term SOLAR ACTIVITY. Laure Lefèvre Basic SIDC series of talks Nov. 16 th /11/2017 Basic SIDC seminar 1 Long term SOLAR ACTIVITY Laure Lefèvre Basic SIDC series of talks Nov. 16 th 2017 16/11/2017 Basic SIDC seminar 1 SOLAR ACTIVITY INDICES? There are many indices that represent or are linked to solar activity

More information

Lecture 14: Solar Cycle. Observations of the Solar Cycle. Babcock-Leighton Model. Outline

Lecture 14: Solar Cycle. Observations of the Solar Cycle. Babcock-Leighton Model. Outline Lecture 14: Solar Cycle Outline 1 Observations of the Solar Cycle 2 Babcock-Leighton Model Observations of the Solar Cycle Sunspot Number 11-year (average) cycle period as short as 8 years as long as 15

More information

A Comparison of Sunspot Position Measurments from Different Data Sets

A Comparison of Sunspot Position Measurments from Different Data Sets Sun and Geosphere, 2010; 5(2): 52-57 ISSN 1819-0839 A Comparison of Sunspot Position Measurments from Different Data Sets I. Poljančić 1, R. Brajša 2, D. Ruždjak 2, D. Hržina 3, R. Jurdana Šepić 1, H.

More information

Geomagnetic Calibration of Sunspot Numbers

Geomagnetic Calibration of Sunspot Numbers Geomagnetic Calibration of Sunspot Numbers Leif Svalgaard Stanford University 2 nd SSN Workshop, Brussels, May 212 1 Wolf s Several Lists of SSNs During his life Wolf published several lists of his Relative

More information

A relationship between the solar rotation and activity in the period analyzed by tracing small bright coronal structures in SOHO-EIT images

A relationship between the solar rotation and activity in the period analyzed by tracing small bright coronal structures in SOHO-EIT images Astronomy & Astrophysics manuscript no. paper set2 rb c ESO 2011 June 20, 2011 A relationship between the solar rotation and activity in the period 1998-2006 analyzed by tracing small bright coronal structures

More information

Geomagnetic activity indicates large amplitude for sunspot cycle 24

Geomagnetic activity indicates large amplitude for sunspot cycle 24 Geomagnetic activity indicates large amplitude for sunspot cycle 24 David H. Hathaway and Robert M. Wilson NASA/National Space Science and Technology Center Huntsville, AL USA Abstract. The level of geomagnetic

More information

A Statistical Analysis of Solar Surface Indices Through the Solar Activity Cycles 21-23

A Statistical Analysis of Solar Surface Indices Through the Solar Activity Cycles 21-23 A Statistical Analysis of Solar Surface Indices Through the Solar Activity Cycles 21-23 Umit Deniz Göker 1, Jagdev Singh 2, Ferhat Nutku 3 and Mutku Priyal 2 1 Physics Department, Boğaziçi University,

More information

The Greenwich Photo-heliographic Results

The Greenwich Photo-heliographic Results The Greenwich Photo-heliographic Results 1874 1976 David M. Willis 1,2 1 Space Physics Division, RAL Space, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX, UK 2 Centre for Fusion,

More information

SCIENCE USING KODAIKANAL DIGITIZED DATA. V. MuthuPriyal IIA Kodaikanal

SCIENCE USING KODAIKANAL DIGITIZED DATA. V. MuthuPriyal IIA Kodaikanal SCIENCE USING KODAIKANAL DIGITIZED DATA By V. MuthuPriyal IIA Kodaikanal On going data digitization in kodaikanal observatory l Ca-K line spectroheliograms 1904-2007(41000) l Whitelight photoheliograms-1904-till

More information

Re-examination of the Daily Number of Sunspot Groups for the Royal Greenwich Observatory ( )

Re-examination of the Daily Number of Sunspot Groups for the Royal Greenwich Observatory ( ) Re-examination of the Daily Number of Sunspot Groups for the Royal Greenwich Observatory (1874 1885) David M. Willis 1, 2, Matthew N. Wild 3, and Jonathan S. Warburton 3 1 Space Physics Division, RAL Space,

More information

Modern Image Processing Techniques in Astronomical Sky Surveys

Modern Image Processing Techniques in Astronomical Sky Surveys Modern Image Processing Techniques in Astronomical Sky Surveys Items of the PhD thesis József Varga Astronomy MSc Eötvös Loránd University, Faculty of Science PhD School of Physics, Programme of Particle

More information

Dimming of the Mid- 20 th Century Sun

Dimming of the Mid- 20 th Century Sun Dimming of the Mid- 2 th Century Sun Peter Foukal 1 Advances in understanding of the bright white light (WL) faculae measured at the Royal Greenwich Observatory (RGO) from 1874-1976 suggest that they offer

More information

Forty two years counting spots: solar observations by D. E. Hadden during revisited

Forty two years counting spots: solar observations by D. E. Hadden during revisited Forty two years counting spots: solar observations by D. E. Hadden during 1890-1931 revisited V. M. S. Carrasco 1, J. M. Vaquero 1,2*, M. C. Gallego 1 and R. M. Trigo 2,3 1 Departamento de Física, Universidad

More information

The Magnetic Sun. CESAR s Booklet

The Magnetic Sun. CESAR s Booklet The Magnetic Sun CESAR s Booklet 1 Introduction to planetary magnetospheres and the interplanetary medium Most of the planets in our Solar system are enclosed by huge magnetic structures, named magnetospheres

More information

arxiv: v1 [astro-ph] 2 Oct 2007

arxiv: v1 [astro-ph] 2 Oct 2007 Speed of Meridional Flows and Magnetic Flux Transport on the Sun Michal Švanda, 1,2, Alexander G. Kosovichev 3, and Junwei Zhao 3 arxiv:0710.0590v1 [astro-ph] 2 Oct 2007 ABSTRACT We use the magnetic butterfly

More information

A Reconstruction of Regional and Global Temperature for the Past 11,300 Years Marcott et al STUDENT ACTIVITY

A Reconstruction of Regional and Global Temperature for the Past 11,300 Years Marcott et al STUDENT ACTIVITY A Reconstruction of Regional and Global Temperature for the Past 11,300 Years Marcott et al. 2013 STUDENT ACTIVITY How do we reconstruct global average temperatures? Learning Objective: This activity explores

More information

The Interior Structure of the Sun

The Interior Structure of the Sun The Interior Structure of the Sun Data for one of many model calculations of the Sun center Temperature 1.57 10 7 K Pressure 2.34 10 16 N m -2 Density 1.53 10 5 kg m -3 Hydrogen 0.3397 Helium 0.6405 The

More information

Sunshine duration climate maps of Belgium and Luxembourg based on Meteosat and in-situ observations

Sunshine duration climate maps of Belgium and Luxembourg based on Meteosat and in-situ observations Open Sciences doi:1.5194/asr-1-15-213 Author(s) 213. CC Attribution 3. License. Advances in Science & Research Open Access Proceedings Drinking Water Engineering and Science Sunshine duration climate maps

More information

Correct normalization of the Dst index

Correct normalization of the Dst index Astrophys. Space Sci. Trans., 4, 41 4, 8 www.astrophys-space-sci-trans.net/4/41/8/ Author(s) 8. This work is licensed under a Creative Commons License. Astrophysics and Space Sciences Transactions Correct

More information

New Digital Soil Survey Products to Quantify Soil Variability Over Multiple Scales

New Digital Soil Survey Products to Quantify Soil Variability Over Multiple Scales 2006-2011 Mission Kearney Foundation of Soil Science: Understanding and Managing Soil-Ecosystem Functions Across Spatial and Temporal Scales Progress Report: 2006021, 1/1/2007-12/31/2007 New Digital Soil

More information

Introduction. Name: Basic Features of Sunspots. The Solar Rotational Period. Sunspot Numbers

Introduction. Name: Basic Features of Sunspots. The Solar Rotational Period. Sunspot Numbers PHYS-1050 Tracking Sunspots Spring 2013 Name: 1 Introduction Sunspots are regions on the solar surface that appear dark because they are cooler than the surrounding photosphere, typically by about 1500

More information

Modeling Total Energy during Six-Month Intervals

Modeling Total Energy during Six-Month Intervals Sun-Climate Symposium: Session 4, Presentation 12 A Different View of Solar Cycle Spectral Variations Modeling Total Energy during Six-Month Intervals Tom Woods tom.woods@lasp.colorado.edu SORCE SOLSTICE

More information

First European Space Weather Week. Space weather - atmospheres, drag, global change future needs. 29 November-3 December 2004

First European Space Weather Week. Space weather - atmospheres, drag, global change future needs. 29 November-3 December 2004 First European Space Weather Week Space weather - atmospheres, drag, global change future needs 29 November-3 December 2004 Timescales of important phenomena Weather Climate No single statement of requirement

More information

Solar Activity The Solar Wind

Solar Activity The Solar Wind Solar Activity The Solar Wind The solar wind is a flow of particles away from the Sun. They pass Earth at speeds from 400 to 500 km/s. This wind sometimes gusts up to 1000 km/s. Leaves Sun at highest speeds

More information

Guidepost. Chapter 08 The Sun 10/12/2015. General Properties. The Photosphere. Granulation. Energy Transport in the Photosphere.

Guidepost. Chapter 08 The Sun 10/12/2015. General Properties. The Photosphere. Granulation. Energy Transport in the Photosphere. Guidepost The Sun is the source of light an warmth in our solar system, so it is a natural object to human curiosity. It is also the star most easily visible from Earth, and therefore the most studied.

More information

Statistical properties of the Bipolar Magnetic Regions

Statistical properties of the Bipolar Magnetic Regions Research in Astron. Astrophys. Vol. No. XX, 000 000 http://www.raa-journal.org http://www.iop.org/journals/raa Research in Astronomy and Astrophysics Statistical properties of the Bipolar Magnetic Regions

More information

Prelab 7: Sunspots and Solar Rotation

Prelab 7: Sunspots and Solar Rotation Name: Section: Date: Prelab 7: Sunspots and Solar Rotation The purpose of this lab is to determine the nature and rate of the sun s rotation by observing the movement of sunspots across the field of view

More information

Geomagnetic Calibration of Sunspot Numbers. Leif Svalgaard HEPL, Stanford University SSN-Workshop, Sunspot, NM, Sept. 2011

Geomagnetic Calibration of Sunspot Numbers. Leif Svalgaard HEPL, Stanford University SSN-Workshop, Sunspot, NM, Sept. 2011 Geomagnetic Calibration of Sunspot Numbers Leif Svalgaard HEPL, Stanford University SSN-Workshop, Sunspot, NM, Sept. 2011 1 Wolf s Several Lists of SSNs During his life Wolf published several lists of

More information

CHAPTER 2 DATA. 2.1 Data Used

CHAPTER 2 DATA. 2.1 Data Used CHAPTER DATA For the analysis, it is required to use geomagnetic indices, which are representatives of geomagnetic activity, and Interplanetary Magnetic Field (IMF) data in addition to f F,which is used

More information

Sunspot group classifications

Sunspot group classifications Sunspot group classifications F.Clette 30/8/2009 Purpose of a classification Sunspots as a measurement tool: Sunspot contrast and size proportional to magnetic field Sunspot group topology reflects the

More information

Recent Progress in Long-Term Variability of Solar Activity

Recent Progress in Long-Term Variability of Solar Activity Recent Progress in Long-Term Variability of Solar Activity Leif Svalgaard Stanford University, California, USA Keynote Talk, SCOSTEP-13, Xi an 西安, China 13 th October, 2014 WSO 1 Helsinki 1844-1912 Classic

More information

Document downloaded from: This paper must be cited as:

Document downloaded from:  This paper must be cited as: Document downloaded from: http://hdl.handle.net/10251/47496 This paper must be cited as: Querol Vives, A.; Gallardo Bermell, S.; Ródenas Diago, J.; Verdú Martín, GJ. (2011). Parametric study of the X-ray

More information

The Solar Cycle or El Niño Southern Oscillation (ENSO) as a Criterion for the Definition of Public Policies

The Solar Cycle or El Niño Southern Oscillation (ENSO) as a Criterion for the Definition of Public Policies The Solar Cycle or El Niño Southern Oscillation (ENSO) as a Criterion for the Definition of Public Policies Juan Manuel Rodríguez Torres* Gerardo Zavala Guzmán** * e-mail: rodrito@ugto.mx; Departamento

More information

THE PERIOD OF ROTATION OF THE SUN

THE PERIOD OF ROTATION OF THE SUN THE PERIOD OF ROTATION OF THE SUN Student Manual A Manual to Accompany Software for the Introductory Astronomy Lab Exercise Document SM 11: Circ.Version 1.0 Department of Physics Gettysburg College Gettysburg,

More information

Understanding Positional Astronomy Part 2 Celestial Co-ordinates Difficulty: Intermediate

Understanding Positional Astronomy Part 2 Celestial Co-ordinates Difficulty: Intermediate Exercise: Understanding Positional Astronomy Part 2 Celestial Co-ordinates Difficulty: Intermediate Objectives In Part 1 you learned about Celestial Sphere and how the stars appear to move across the night

More information

The solar photograph archive of the Mount Wilson Observatory

The solar photograph archive of the Mount Wilson Observatory Mem. S.A.It. Vol. 76, 862 c SAIt 2005 Memorie della The solar photograph archive of the Mount Wilson Observatory A resource for a century of digital data S. Lefebvre, R. K. Ulrich, L. S. Webster, F. Varadi,

More information

PERSISTENT 22-YEAR CYCLE IN SUNSPOT ACTIVITY: EVIDENCE FOR A RELIC SOLAR MAGNETIC FIELD. 1. Introduction

PERSISTENT 22-YEAR CYCLE IN SUNSPOT ACTIVITY: EVIDENCE FOR A RELIC SOLAR MAGNETIC FIELD. 1. Introduction PERSISTENT 22-YEAR CYCLE IN SUNSPOT ACTIVITY: EVIDENCE FOR A RELIC SOLAR MAGNETIC FIELD K. MURSULA 1, I. G. USOSKIN 2, and G. A. KOVALTSOV 3 1 Department of Physical Sciences, FIN-90014 University of Oulu,

More information

the Prominences Magnetic Field and

the Prominences Magnetic Field and Magnetic Field and the Prominences Authors: Bayryam Mustafa Bayramali, Georgi Kirilov Vasev Leader: Yoanna Stefanova Kokotanekova Astronomical observatory by Youth center Haskovo, Bulgaria 2015 Magnetic

More information

Religion and Economic Change over a Century: Linking Diverse Historical Data

Religion and Economic Change over a Century: Linking Diverse Historical Data Religion and Economic Change over a Century: Linking Diverse Historical Data New Technologies and Interdisciplinary Research on Religion Harvard, 2010 Robert D. Woodberry Juan Carlos Esparza University

More information

THE COLLECTION AND STANDARDIZATION OF GEOGRAPHICAL NAMES

THE COLLECTION AND STANDARDIZATION OF GEOGRAPHICAL NAMES Distr.: LIMITED ECA/NRD/CART.9/ETH.4 October 1996 Original: ENGLISH Ninth United Nations Regional Cartographic Conference for Africa Addis Ababa, Ethiopia 11-15 November 1996 THE COLLECTION AND STANDARDIZATION

More information

Historical Changes in Climate

Historical Changes in Climate Historical Changes in Climate Medieval Warm Period (MWP) Little Ice Age (LIA) Lamb, 1969 Hunters in the snow by Pieter Bruegel, 1565 Retreat of the Rhone Glacier shown by comparing the drawing from 1750

More information

Heritage of Konkoly's Solar Observations: the Debrecen Photoheliograph Programme and the Debrecen Sunspot Databases

Heritage of Konkoly's Solar Observations: the Debrecen Photoheliograph Programme and the Debrecen Sunspot Databases Heritage of Konkoly's Solar Observations: the Debrecen Photoheliograph Programme and the Debrecen Sunspot Databases Baranyi, T., Győri, L., Ludmány, A. Heliophysical Observatory, Konkoly Observatory, MTA

More information

Student s guide CESAR Science Case The differential rotation of the Sun and its Chromosphere

Student s guide CESAR Science Case The differential rotation of the Sun and its Chromosphere Student s guide CESAR Science Case The differential rotation of the Sun and its Chromosphere Name Date Introduction The Sun as you may already know, is not a solid body. It is a massive body of gas constantly

More information

Predicting the Solar Cycle

Predicting the Solar Cycle Predicting the Solar Cycle Leif Svalgaard Stanford University SORCE 21 Keystone, CO, May 2, 21 1 State of the Art: Predicting Cycle 24 What the Sun seems to be doing 2 3 25 2 15 1 5 Near Normal Distribution

More information

The Sunspot Number: Historical base, current recalibration and scientific impact

The Sunspot Number: Historical base, current recalibration and scientific impact The Sunspot Number: Historical base, current recalibration and scientific impact Frédéric Clette World Data Center SILSO, Royal Observatory of Belgium, Brussels Abstract: The sunspot number (SN), based

More information