Progenitor signatures in Supernova Remnant Morphology. Jacco Vink Utrecht University

Size: px
Start display at page:

Download "Progenitor signatures in Supernova Remnant Morphology. Jacco Vink Utrecht University"

Transcription

1 Progenitor signatures in Supernova Remnant Morphology Jacco Vink Utrecht University

2 The evolution of SNRs Heating by two shocks: 1. forward shocks heating ISM/CSM 2. reverse shock heating ejecta radius Truelove & McKee (2000) forward shock Evolution forw./rev. shock determined by velocity/density structure ejecta structure of the CSM progenitor wind/no wind if wind: shell(s) may be present Reverse shock heat ejecta: -copious X-ray line emission from metals velocity reverse shock ejecta shock velocity 2

3 The evolution of SNRs Heating by two shocks: 1. forward shocks heating ISM/CSM 2. reverse shock heating ejecta radius Truelove & McKee (2000) forward shock Evolution forw./rev. shock determined by velocity/density structure ejecta structure of the CSM progenitor wind/no wind if wind: shell(s) may be present Reverse shock heat ejecta: -copious X-ray line emission from metals SNRs allow us to study both the supernova explosion properties and the progenitor wind properties velocity reverse shock ejecta shock velocity 2

4 Type Ia SNRs For young SNRs: typing through X-ray (or optical) line emission (e.g. Hughes ʼ95) Type Ia: often Fe-L dominated spectra (exception: SN1006) All identified Type Ia SNRs have Hα emission from the forward shock (Balmer dominated shock) Type Ia SNRs have a more spherical morphology then core collapse SNRs 3

5 Spectral identification N103B N Vink+ in preparation Dem L LMC SN Ia remnants green is Fe emission (Chandra) 4

6 Morphological dichotomy Lopez: Statistics based on the moments of the surface brightness distribution (Si XIII X-ray lines) Type Ia SNRs more spherical May be due to inherent asphericity of core collapse SNe Lopez+ ʼ09 5

7 SN 1006 & SNR SN1006 SNR (LMC) Both SNRs flattened on one side Best visible in outer (oxygen emitting) layer CSM effect Kosenko+ ʼ10 (Chandra) 6

8 SN 1006 & SNR SN1006 SNR (LMC) Both SNRs flattened on one side Best visible in outer (oxygen emitting) layer CSM effect Kosenko+ ʼ10 (Chandra) 6

9 SN 1006 & SNR SN1006 SNR (LMC) Oxygen band only Both SNRs flattened on one side Best visible in outer (oxygen emitting) layer CSM effect Kosenko+ ʼ10 (Chandra) 6

10 Balmer dominated shocks SN1604 SN1006 NE (LMC) Sankrit, Blair+ (HST) Raymond+ ʼ07 (HST) Hughes+, Helder+ (HST) Ghavamian+ (Clay Telescope) 7

11 The importance of Balmer lines Balmer dominated shocks require a (partially) neutral medium Core collapse SNRs: CSM ionized by progenitor or flash ionized Type Ia: presence of Balmer lines indicate small UV flux progenitor! (Ghavamian+ ʼ03) 4π 3 R3 n 2 H α B = L R ion = kT 1/3 L ergs 1 kt 50eV 1/3 Rappaport+ʼ94: HII regions of 30 pc expected Most SNRs discussed here: R~2-8 pc n H 1cm 3 2/3 pc 8

12 The importance of Balmer lines Balmer dominated shocks require a (partially) neutral medium Core collapse SNRs: CSM ionized by progenitor or flash ionized Type Ia: presence of Balmer lines indicate small UV flux progenitor! (Ghavamian+ ʼ03) 4π 3 R3 n 2 H α B = L R ion = kT 1/3 L ergs 1 kt 50eV 1/3 Rappaport+ʼ94: HII regions of 30 pc expected Most SNRs discussed here: R~2-8 pc Type Ia SNRs are inconsistent with SSS scenario! n H 1cm 3 2/3 pc 8

13 Wind blown cavities? In the SD scenario accretion needs to be finely balanced: dm/dt < 10-7 Msun/yr: unstable accretion -> NOVA explosions dm/dt > 10-6 Msun/yr: collapse into NS Remedy: stabilize accretion for > 10-6 Msun/yr with accretion wind (Hachisu+ ʼ96) Wind from WD will be fast (> 1000 km/s) Fast winds excavate large cavities (Badenes+ ʼ07) Han&Podsiadlowski ʼ04 Nomoto+ ʼ03 9

14 No evidence for cavities Badenes+ ʻ07 studied hydrodynamic effects of wind blown cavities on SNR morphology and X-ray spectroscopic properties: -shock velocity/radius vs age -ionization structure vs age HP3=Han&Podsiadlowski ʼ04;L2=Langer 10

15 No evidence for cavities Badenes+ ʻ07 studied hydrodynamic effects of wind blown cavities on SNR morphology and X-ray spectroscopic properties: -shock velocity/radius vs age -ionization structure vs age HP3=Han&Podsiadlowski ʼ04;L2=Langer 10

16 The curious case of Keplerʼs SNR Historical SNR of SN1604 High above Gal. plane: 590d 5 pc Distance 3-7 kpc (!) High velocity progenitor: V prog~250 km/s NW: interaction with dense, N-rich, shell Typing SN1604: Before ~1980ies: SN1604 was a Type I 1985-~1995: SN1604 was a Type Ib (runaway star, Bandiera ʼ88) after1999: X-rays: Type Ia (Kinugasa&Tsunemi ʻ99, Reynolds+ ʼ07) Reynolds+ ʼ07 11

17 Interaction with CSM Radio and X-ray expansion measurements (Dickel+ ʼ88, Vink ʼ08, Katsuda+ ʼ08): -Expansion parameter m: -Expected: Sedov m=0.4 n=7 Chevalier model m=0.7 -Kepler: SW-SE m= N-NE m=0.35 Implication: in N/NE SNR collides with a shell of about 1 Msun (Vink ʼ08) If E kin>1 foe: distance >~6 kpc R t m 12

18 Hydrosimulations 1 M sun shell implies non-conservative accretion Nitrogen rich shell: possibly implies 4-5 M sun AGB progenitor (dredge up of hot-bottom-burning process) Hydrosimulations: Chiotellis, Schure, Vink (cf. Borkowski+ʼ94): Assume Myr mass loss phase dm/dt ~ 10-5 Msun/yr Mlost~ 4 Msun code: AMRVAC (Keppens et al.) Size of shell depends on equilibrium P wind=pism - vism=250 km/s - nism=10-3 cm -3 - allow for variation to accommodate 4-6 kpc distance 13

19 Hydrosimulations Shell development Expansion parameter m reproduces expansion confirm long distance (~6 kpc) if E>1foe 4 kpc: 0.2 foe mass loss rates Msun/yr Mass loss must haven taken place for ~0.1-1Myr (flow time) fine tuning: has shock broken through shell? 14

20 Hydrosimulations Shell development Expansion parameter m reproduces expansion confirm long distance (~6 kpc) if E>1foe 4 kpc: 0.2 foe mass loss rates Msun/yr Mass loss must haven taken place for ~0.1-1Myr (flow time) fine tuning: has shock broken through shell? 14

21 Hydrosimulations Shell development Expansion parameter m reproduces expansion confirm long distance (~6 kpc) if E>1foe 4 kpc: 0.2 foe mass loss rates Msun/yr Mass loss must haven taken place for ~0.1-1Myr (flow time) fine tuning: has shock broken through shell? Mass loss required: favors SD scenario (?) 14

22 Do more Type Ia SNRs have shells? DEM L238/DEM L239: dense Fe cores (XMM/Chandra, Borkowski+06) Requires early development of reverse shock Perhaps facilitated by wind shells Overall local ISM density low 15

23 Tychoʼs SNR (SN1572) Issue: ejecta close too close to shock Conventional explanation (Warren+ 05): cosmic ray acceleration-> higher compression ratios Possible alternative: recent encounter with shell (c.f. Kosenko+ ʻ10) Caveat: difficult to distinguish shell from random cloud encounters 16

24 Tychoʼs SNR (SN1572) Issue: ejecta close too close to shock Conventional explanation (Warren+ 05): cosmic ray acceleration-> higher compression ratios Possible alternative: recent encounter with shell (c.f. Kosenko+ ʻ10) Caveat: difficult to distinguish shell from random cloud encounters 16

25 Wrapping up No evidence for fast, energetic winds (WD accretion winds) Evidence for shells from slow winds: secondary evolved star? (Kepler: 4-5 Msun AGB star-> nitrogen richness) (Partial) neutral medium: No supersoft sources (or low duty cycle-> di Stefano) Could slow winds absorb most of the UV/X-ray radiation? 17

26 Conclusions Type Ia SNRs are excellent objects to study Ia explosions + CSM No evidence for ionized bubbles (no naked SSSs) No evidence for fast accretion winds (lack of cavities) Ia SNRs are well behaved (spherical explosions/csm) At least one object (Kepler/SN1604) shows evidence for slow wind/ non-conservative mass accretion Carlesʼ talk: X-ray spectra of Type Ia SNRs are well reproduced by M Ch 1D DDT models (except maybe the spatial distribution of Ca). This can be used to determine the SN Ia subtype (dim/bright 56 Ni Fe). The key advantage of SNRs is the ability to study the environment: CSM + Resolved stellar populations. 18

27 Historical lightcurve Colors: initially like Mars day eight like Jupiter (Baade 1943) 19

(High Resolution) (X-ray) Spectroscopy of Supernova Remnants. Jacco Vink Utrecht University

(High Resolution) (X-ray) Spectroscopy of Supernova Remnants. Jacco Vink Utrecht University (High Resolution) (X-ray) Spectroscopy of Supernova Remnants Jacco Vink Utrecht University X-ray Spectropy of SNRs Goals: Study of fresh nucleosynthesis products (probe the progenitor star and its explosion)

More information

WHAT DO X-RAY OBSERVATIONS

WHAT DO X-RAY OBSERVATIONS WHAT DO X-RAY OBSERVATIONS OF SNRS TELL US ABOUT THE SN AND ITS PROGENITOR DAN PATNAUDE (SAO) ANATOMY OF A SUPERNOVA REMNANT Forward Shock Cas A viewed in X-rays (Patnaude & Fesen 2009). Red corresponds

More information

Multi-wavelength Properties of Supernova Remnants

Multi-wavelength Properties of Supernova Remnants Multi-wavelength Properties of Supernova Remnants Jacco Vink University of Amsterdam Anton Pannekoek Institute/GRAPPA Supernova classification Simple CSM (?) But see Kepler (Chiotellis+ 12) Complex CSM:

More information

Remnants of Type Ia Supernovae

Remnants of Type Ia Supernovae Remnants of Type Ia Supernovae Brian J. Williams NPP Fellow NASA GSFC Collaborators: Steve Reynolds, Kazik Borkowski, John Blondin (NCSU), Rob Petre, Jack Hewitt (GSFC), Frank Winkler (Middlebury), Knox

More information

Supernovae. Supernova basics Supernova types Light Curves SN Spectra after explosion Supernova Remnants (SNRs) Collisional Ionization

Supernovae. Supernova basics Supernova types Light Curves SN Spectra after explosion Supernova Remnants (SNRs) Collisional Ionization Supernovae Supernova basics Supernova types Light Curves SN Spectra after explosion Supernova Remnants (SNRs) Collisional Ionization 1 Supernova Basics Supernova (SN) explosions in our Galaxy and others

More information

Supernovae. Supernova basics Supernova types Light Curves SN Spectra after explosion Supernova Remnants (SNRs) Collisional Ionization

Supernovae. Supernova basics Supernova types Light Curves SN Spectra after explosion Supernova Remnants (SNRs) Collisional Ionization Supernovae Supernova basics Supernova types Light Curves SN Spectra after explosion Supernova Remnants (SNRs) Collisional Ionization 1 Supernova Basics Supernova (SN) explosions in our Galaxy and others

More information

Expanding molecular bubble surrounding Tycho's SNR evidence for a single-degenerate progenitor

Expanding molecular bubble surrounding Tycho's SNR evidence for a single-degenerate progenitor Expanding molecular bubble surrounding Tycho's SNR evidence for a single-degenerate progenitor Ping Zhou (Nanjing University) Collaborators: Yang Chen, Zhi-Yu Zhang, Xiang-Dong Li, Samar Safi-Harb, Xin

More information

Radio Observations of TeV and GeV emitting Supernova Remnants

Radio Observations of TeV and GeV emitting Supernova Remnants Radio Observations of TeV and GeV emitting Supernova Remnants Denis Leahy University of Calgary, Calgary, Alberta, Canada (collaborator Wenwu Tian, National Astronomical Observatories of China) outline

More information

Balmer-Dominated Supernova Remnants and the Physics of Collisionless Shocks

Balmer-Dominated Supernova Remnants and the Physics of Collisionless Shocks Balmer-Dominated Supernova Remnants and the Physics of Collisionless Shocks Parviz Ghavamian SNR 0509-67.5 HST ACS Hα (F657N) Supernova Remnants Heat and Enrich the ISM and Accelerate Cosmic Rays reverse-shocked

More information

Supernova events and neutron stars

Supernova events and neutron stars Supernova events and neutron stars So far, we have followed stellar evolution up to the formation of a C-rich core. For massive stars ( M initial > 8 M Sun ), the contracting He core proceeds smoothly

More information

Estimating the Oxygen Ejecta Mass in E

Estimating the Oxygen Ejecta Mass in E Estimating the Oxygen Ejecta Mass in E0102-72 K.A. Flanagan, C.R. Canizares, D. Dewey, A. Fredericks, J.C. Houck Abstract The Chandra HETGS observation of SNR E0102-72 in the SMC provided flux measurements

More information

Supernova remnants: X-ray observations with XMM-Newton

Supernova remnants: X-ray observations with XMM-Newton Supernova remnants: X-ray observations with XMM-Newton Anne DECOURCHELLE, Service d Astrophysique, IRFU, DSM, CEA Supernova remnants: key ingredients to understand our Universe Chemical enrichment, heating

More information

NASA telescopes help solve ancient supernova mystery

NASA telescopes help solve ancient supernova mystery NASA telescopes help solve ancient supernova mystery RCW 86: A Type Ia Supernova in a Wind-Blown Bubble Williams, Brian J., el. al. ApJ 741, 96 (2011) Jeng-Lun (Alan) Chiu Institute of Astronomy, NTHU

More information

Mass loss from stars

Mass loss from stars Mass loss from stars Can significantly affect a star s evolution, since the mass is such a critical parameter (e.g., L ~ M 4 ) Material ejected into interstellar medium (ISM) may be nuclear-processed:

More information

Gas 1: Molecular clouds

Gas 1: Molecular clouds Gas 1: Molecular clouds > 4000 known with masses ~ 10 3 to 10 5 M T ~ 10 to 25 K (cold!); number density n > 10 9 gas particles m 3 Emission bands in IR, mm, radio regions from molecules comprising H,

More information

Observations of supernova remnants

Observations of supernova remnants Observations of supernova remnants Anne Decourchelle Service d Astrophysique, CEA Saclay I- Ejecta dominated SNRs: Cas A, Tycho and Kepler II- Synchrotron-dominated SNRs: SN 1006, G347.3-0.5 Young supernova

More information

The 2006 Outburst of RS Oph: What are the questions that need to be discussed --and answered?

The 2006 Outburst of RS Oph: What are the questions that need to be discussed --and answered? The 2006 Outburst of RS Oph: What are the questions that need to be discussed --and answered? Sumner Starrfield School of Earth and Space Exploration Arizona State University WHY DO WE CARE? RS Oph may

More information

CLASSIFYING SUPERNOVA REMNANT SPECTRA WITH MACHINE LEARNING

CLASSIFYING SUPERNOVA REMNANT SPECTRA WITH MACHINE LEARNING CLASSIFYING SUPERNOVA REMNANT SPECTRA WITH MACHINE LEARNING DAN PATNAUDE (SAO) AND HERMAN LEE (KYOTO UNIVERSITY) Chandra Theory: TM6-17003X NASA ATP: 80NSSC18K0566 SI Hydra Cluster Compute Facility SNR

More information

Particle acceleration in Supernova Remnants

Particle acceleration in Supernova Remnants Particle acceleration in Supernova Remnants Anne Decourchelle Service d Astrophysique, CEA Saclay Collaborators: J. Ballet, G. Cassam-Chenai, D. Ellison I- Efficiency of particle acceleration at the forward

More information

Introductory Astrophysics A113. Death of Stars. Relation between the mass of a star and its death White dwarfs and supernovae Enrichment of the ISM

Introductory Astrophysics A113. Death of Stars. Relation between the mass of a star and its death White dwarfs and supernovae Enrichment of the ISM Goals: Death of Stars Relation between the mass of a star and its death White dwarfs and supernovae Enrichment of the ISM Low Mass Stars (M

More information

Science Olympiad Astronomy C Division Event Golden Gate Invitational February 11, 2017

Science Olympiad Astronomy C Division Event Golden Gate Invitational February 11, 2017 Science Olympiad Astronomy C Division Event Golden Gate Invitational February 11, 2017 Team Name: Team Number: Directions: ~Answer all questions on the answer sheet provided. ~Please do NOT access the

More information

This class: Life cycle of high mass stars Supernovae Neutron stars, pulsars, pulsar wind nebulae, magnetars Quark-nova stars Gamma-ray bursts (GRBs)

This class: Life cycle of high mass stars Supernovae Neutron stars, pulsars, pulsar wind nebulae, magnetars Quark-nova stars Gamma-ray bursts (GRBs) This class: Life cycle of high mass stars Supernovae Neutron stars, pulsars, pulsar wind nebulae, magnetars Quark-nova stars Gamma-ray bursts (GRBs)!1 Cas$A$ All$Image$&$video$credits:$Chandra$X7ray$ Observatory$

More information

Three Major Components

Three Major Components The Milky Way Three Major Components Bulge young and old stars Disk young stars located in spiral arms Halo oldest stars and globular clusters Components are chemically, kinematically, and spatially distinct

More information

Einführung in die Astronomie II

Einführung in die Astronomie II Einführung in die Astronomie II Teil 10 Peter Hauschildt yeti@hs.uni-hamburg.de Hamburger Sternwarte Gojenbergsweg 112 21029 Hamburg 15. Juni 2017 1 / 47 Overview part 10 Death of stars AGB stars PNe SNe

More information

High Redshift Universe

High Redshift Universe High Redshift Universe Finding high z galaxies Lyman break galaxies (LBGs) Photometric redshifts Deep fields Starburst galaxies Extremely red objects (EROs) Sub-mm galaxies Lyman α systems Finding high

More information

1.1 Introduction. 1.2 Evolution of massive stars

1.1 Introduction. 1.2 Evolution of massive stars 1 Introduction 2 CHAPTER 1 1.1 Introduction Massive stars are rare. For every thousand solar type stars, the universe forms only one star with a mass ten times as large (Rana [58]). Increasingly rare moreover,

More information

Particle acceleration in SN 1006

Particle acceleration in SN 1006 Particle acceleration in SN 1006 Anne DECOURCHELLE, Service d Astrophysique/AIM, IRFU CEA, France First results from an XMM-Newton LP on SN 1006 Co-Is: G. Maurin (post-doc), M. Miceli, F. Bocchino, G.

More information

The Origin of Type Ia Supernovae

The Origin of Type Ia Supernovae The Origin of Type Ia Supernovae Gijs Nelemans Radboud University Nijmegen with Rasmus Voss, Mikkel Nielsel, Silvia Toonen, Madelon Bours, Carsten Dominik Outline Introduction: supernovae Relevance Type

More information

Stars with Mⵙ go through two Red Giant Stages

Stars with Mⵙ go through two Red Giant Stages Astronomy A. Dayle Hancock adhancock@wm.edu Small 239 Office hours: MTWR 10-11am Death of Stars Nuclear reactions in small stars How stars disperse carbon How low mass stars die The nature of white dwarfs

More information

Recent discoveries from TeV and X- ray non-thermal emission from SNRs

Recent discoveries from TeV and X- ray non-thermal emission from SNRs Recent discoveries from TeV and X- ray non-thermal emission from SNRs «From Neutrino to multimessenger astronomy» Marseille Fabio Acero LUPM (LPTA), Montpellier Fabio Acero 1 Outline Evidence of acceleration

More information

Stellar Explosions (ch. 21)

Stellar Explosions (ch. 21) Stellar Explosions (ch. 21) First, a review of low-mass stellar evolution by means of an illustration I showed in class. You should be able to talk your way through this diagram and it should take at least

More information

Supernovae and Their Consequences: Studies with the Generation-X Mission. Science Working Paper for the 2010 Decadal Survey

Supernovae and Their Consequences: Studies with the Generation-X Mission. Science Working Paper for the 2010 Decadal Survey Supernovae and Their Consequences: Studies with the Generation-X Mission Science Working Paper for the 2010 Decadal Survey Patrick Slane 1, Stephen P. Reynolds 2, Alicia Soderberg 1, John P. Hughes 3,

More information

Sound Waves Sound Waves:

Sound Waves Sound Waves: Sound Waves Sound Waves: 1 Sound Waves Sound Waves Linear Waves compression rarefaction 2 H H L L L Gravity Waves 3 Gravity Waves Gravity Waves 4 Gravity Waves Kayak Surfing on ocean gravity waves Oregon

More information

Supernova Remnant Science with AXIS. Brian Williams & Hiroya Yamaguchi

Supernova Remnant Science with AXIS. Brian Williams & Hiroya Yamaguchi Supernova Remnant Science with AXIS Brian Williams & Hiroya Yamaguchi Big Picture Questions - How do supernovae dictate the life cycle of elements in the ISM? - What are the progenitors of the various

More information

Type II Supernovae Overwhelming observational evidence that Type II supernovae are associated with the endpoints of massive stars: Association with

Type II Supernovae Overwhelming observational evidence that Type II supernovae are associated with the endpoints of massive stars: Association with Type II Supernovae Overwhelming observational evidence that Type II supernovae are associated with the endpoints of massive stars: Association with spiral arms in spiral galaxies Supernova in M75 Type

More information

The Physics of the Interstellar Medium

The Physics of the Interstellar Medium The Physics of the Interstellar Medium Ulrike Heiter Contact: 471 5970 ulrike@astro.uu.se www.astro.uu.se Matter between stars Average distance between stars in solar neighbourhood: 1 pc = 3 x 1013 km,

More information

V2487 Oph 1998: a puzzling recurrent nova observed with XMM-Newton

V2487 Oph 1998: a puzzling recurrent nova observed with XMM-Newton V2487 Oph 1998: a puzzling recurrent nova observed with XMM-Newton Margarita Hernanz Institute of Space Sciences (CSIC-IEEC) - Barcelona (Spain) Gloria Sala (UPC-IEEC), Nataly Ospina (CSIC-IEEC) V2487

More information

Dust production by various types of supernovae

Dust production by various types of supernovae Dust production by various types of supernovae Takaya Nozawa ( 野沢貴也 ) IPMU, University of Tokyo, Kashiwa, Japan Collaborators: T. Kozasa (Hokkaido Univ.), N. Tominaga (Konan Univ.) K. Maeda, M. Tanaka,

More information

Propagation of Supernova Blast Waves through the ISM

Propagation of Supernova Blast Waves through the ISM Propagation of Supernova Blast Waves through the ISM Nora Elisa Chisari Department of Astrophysical Sciences Princeton University 18 November 2009 E. Chisari (Princeton University) SN Blast Waves Fall

More information

Basics, types Evolution. Novae. Spectra (days after eruption) Nova shells (months to years after eruption) Abundances

Basics, types Evolution. Novae. Spectra (days after eruption) Nova shells (months to years after eruption) Abundances Basics, types Evolution Novae Spectra (days after eruption) Nova shells (months to years after eruption) Abundances 1 Cataclysmic Variables (CVs) M.S. dwarf or subgiant overflows Roche lobe and transfers

More information

High Energy Astrophysics: A View on Chemical Enrichment, Outflows & Particle Acceleration. (Feedback at work)

High Energy Astrophysics: A View on Chemical Enrichment, Outflows & Particle Acceleration. (Feedback at work) High Energy Astrophysics: A View on Chemical Enrichment, Outflows & Particle Acceleration (Feedback at work) Jacco Vink Utrecht University High Energy Astrophysics HEA aims at understanding the extreme

More information

Lecture 2 Supernovae and Supernova Remnants

Lecture 2 Supernovae and Supernova Remnants Lecture 2 Supernovae and Supernova Remnants! The destiny of the stars! Explosive nucleosynthesis! Facts about SNe! Supernova remnants * Morphological classification * Evolutive stages! Emission of SNRs

More information

Stellar Evolution. Stars are chemical factories The Earth and all life on the Earth are made of elements forged in stars

Stellar Evolution. Stars are chemical factories The Earth and all life on the Earth are made of elements forged in stars Lecture 11 Stellar Evolution Stars are chemical factories The Earth and all life on the Earth are made of elements forged in stars A Spiral Galaxy (Milky Way Type) 120,000 ly A few hundred billion stars

More information

A Detailed Look at Cas A: Progenitor, Explosion & Nucleosynthesis

A Detailed Look at Cas A: Progenitor, Explosion & Nucleosynthesis A Detailed Look at Cas A: Progenitor, Explosion & Nucleosynthesis X-ray Optical Infrared Radio Aimee Hungerford INT - July 28, 2011 Circle of Scientific Life Cas A Properties Fast moving Nitrogen knots

More information

Astrophysics of Gaseous Nebulae

Astrophysics of Gaseous Nebulae Astrophysics of Gaseous Nebulae Astrophysics of Gaseous Nebulae Bright Nebulae of M33 Ken Crawford (Rancho Del Sol Observatory) Potsdam University Dr. Lidia Oskinova lida@astro.physik.uni-potsdam.de HST

More information

The many sides of RCW 86: a Type Ia supernova remnant evolving in its progenitor's wind bubble Broersen, S.; Chiotellis, A.; Vink, J.; Bamba, A.

The many sides of RCW 86: a Type Ia supernova remnant evolving in its progenitor's wind bubble Broersen, S.; Chiotellis, A.; Vink, J.; Bamba, A. UvA-DARE (Digital Academic Repository) The many sides of RCW 86: a Type Ia supernova remnant evolving in its progenitor's wind bubble Broersen, S.; Chiotellis, A.; Vink, J.; Bamba, A. Published in: Monthly

More information

The Interstellar Medium

The Interstellar Medium http://www.strw.leidenuniv.nl/~pvdwerf/teaching/ The Interstellar Medium Lecturer: Dr. Paul van der Werf Fall 2014 Oortgebouw 565, ext 5883 pvdwerf@strw.leidenuniv.nl Assistant: Kirstin Doney Huygenslaboratorium

More information

Supernova Remnants and Cosmic. Rays

Supernova Remnants and Cosmic. Rays Stars: Their Life and Afterlife Supernova Remnants and Cosmic 68 th Rays Brian Humensky Series, Compton Lecture #5 November 8, 2008 th Series, Compton Lecture #5 Outline Evolution of Supernova Remnants

More information

Dust production in a variety of types of supernovae

Dust production in a variety of types of supernovae 2014/08/07 Dust production in a variety of types of supernovae Takaya Nozawa (NAOJ, Division of theoretical astronomy) Main collaborators: Keiichi Maeda (Kyoto University) Masaomi Tanaka (NAOJ) Takashi

More information

II. Observations. PoS(NIC-IX)257. Observatoire de Genève INTEGRAL Science Data Center

II. Observations. PoS(NIC-IX)257. Observatoire de Genève INTEGRAL Science Data Center II. Observations 17 From 1912 to 1950: * 1913: High-altitude radiation (Hess 1914, Kolhoerster 1914) * 1920s: Term cosmic rays (Millikan) * 1929: corpuscular nature of the radiation (with Geiger-Müller

More information

Some HI is in reasonably well defined clouds. Motions inside the cloud, and motion of the cloud will broaden and shift the observed lines!

Some HI is in reasonably well defined clouds. Motions inside the cloud, and motion of the cloud will broaden and shift the observed lines! Some HI is in reasonably well defined clouds. Motions inside the cloud, and motion of the cloud will broaden and shift the observed lines Idealized 21cm spectra Example observed 21cm spectra HI densities

More information

20. Stellar Death. Interior of Old Low-Mass AGB Stars

20. Stellar Death. Interior of Old Low-Mass AGB Stars 20. Stellar Death Low-mass stars undergo three red-giant stages Dredge-ups bring material to the surface Low -mass stars die gently as planetary nebulae Low -mass stars end up as white dwarfs High-mass

More information

The structure and evolution of stars. Learning Outcomes

The structure and evolution of stars. Learning Outcomes The structure and evolution of stars Lecture14: Type Ia Supernovae The Extravagant Universe By R. Kirshner 1 Learning Outcomes In these final two lectures the student will learn about the following issues:

More information

The Death of Stars. Today s Lecture: Post main-sequence (Chapter 13, pages ) How stars explode: supernovae! White dwarfs Neutron stars

The Death of Stars. Today s Lecture: Post main-sequence (Chapter 13, pages ) How stars explode: supernovae! White dwarfs Neutron stars The Death of Stars Today s Lecture: Post main-sequence (Chapter 13, pages 296-323) How stars explode: supernovae! White dwarfs Neutron stars White dwarfs Roughly the size of the Earth with the mass of

More information

Orianne ROOS CEA-Saclay Collaborators : F. Bournaud, J. Gabor, S. Juneau

Orianne ROOS CEA-Saclay Collaborators : F. Bournaud, J. Gabor, S. Juneau Orianne ROOS CEA-Saclay Collaborators : F. Bournaud, J. Gabor, S. Juneau Bachelor of Physics, Master of Astrophysics Université de Strasbourg PhD, Université Paris-Diderot Observatoire de Strasbourg Les

More information

AG Draconis. A high density plasma laboratory. Dr Peter Young Collaborators A.K. Dupree S.J. Kenyon B. Espey T.B.

AG Draconis. A high density plasma laboratory. Dr Peter Young Collaborators A.K. Dupree S.J. Kenyon B. Espey T.B. AG Draconis A high density plasma laboratory Collaborators A.K. Dupree S.J. Kenyon B. Espey T.B. Ake p.r.young@rl.ac.uk Overview CHIANTI database Symbiotic Stars AG Draconis FUSE FUSE observations of AG

More information

Evolution and Final Fates of Accreting White Dwarfs. Ken Nomoto (Kavli IPMU / U. Tokyo)

Evolution and Final Fates of Accreting White Dwarfs. Ken Nomoto (Kavli IPMU / U. Tokyo) Evolution and Final Fates of Accreting White Dwarfs Ken Nomoto (Kavli IPMU / U. Tokyo) AD 1572 Korean & Chinese Record Guest Star as bright as Venus (Sonjo Sujong Sillok: Korea) AD 1572 Tycho Brahe s Supernova

More information

Today in Milky Way. Clicker on deductions about Milky Way s s stars. Why spiral arms? ASTR 1040 Accel Astro: Stars & Galaxies

Today in Milky Way. Clicker on deductions about Milky Way s s stars. Why spiral arms? ASTR 1040 Accel Astro: Stars & Galaxies ASTR 1040 Accel Astro: Stars & Galaxies Prof. Juri Toomre TA: Nick Featherstone Lecture 21 Tues 3 Apr 07 zeus.colorado.edu/astr1040-toomre toomre Superbubble NGC 3079 Today in Milky Way Look at why spiral

More information

Number of Stars: 100 billion (10 11 ) Mass : 5 x Solar masses. Size of Disk: 100,000 Light Years (30 kpc)

Number of Stars: 100 billion (10 11 ) Mass : 5 x Solar masses. Size of Disk: 100,000 Light Years (30 kpc) THE MILKY WAY GALAXY Type: Spiral galaxy composed of a highly flattened disk and a central elliptical bulge. The disk is about 100,000 light years (30kpc) in diameter. The term spiral arises from the external

More information

Lecture 26. High Mass Post Main Sequence Stages

Lecture 26. High Mass Post Main Sequence Stages Lecture 26 Fate of Massive Stars Heavy Element Fusion Core Collapse Supernova Neutrinoes Gaseous Remnants Neutron Stars Mar 27, 2006 Astro 100 Lecture 26 1 High Mass Post Main Sequence Stages For M(main

More information

Bimodal regime in young massive clusters leading to formation of subsequent stellar generations

Bimodal regime in young massive clusters leading to formation of subsequent stellar generations Bimodal regime in young massive clusters leading to formation of subsequent stellar generations Richard Wünsch J. Palouš, G. Tenorio-Tagle, C. Muñoz-Tuñón, S. Ehlerová Astronomical institute, Czech Academy

More information

Compton Lecture #4: Massive Stars and. Supernovae. Welcome! On the back table:

Compton Lecture #4: Massive Stars and. Supernovae. Welcome! On the back table: Compton Lecture #4: Massive Stars and Welcome! On the back table: Supernovae Lecture notes for today s s lecture Extra copies of last week s s are on the back table Sign-up sheets please fill one out only

More information

THE 82ND ARTHUR H. COMPTON LECTURE SERIES

THE 82ND ARTHUR H. COMPTON LECTURE SERIES THE 82ND ARTHUR H. COMPTON LECTURE SERIES by Dr. Manos Chatzopoulos Enrico Fermi Postdoctoral Fellow FLASH Center for Computational Science Department of Astronomy & Astrophysics University of Chicago

More information

Astrophysical Quantities

Astrophysical Quantities Astr 8300 Resources Web page: http://www.astro.gsu.edu/~crenshaw/astr8300.html Electronic papers: http://adsabs.harvard.edu/abstract_service.html (ApJ, AJ, MNRAS, A&A, PASP, ARAA, etc.) General astronomy-type

More information

PACIFIC 2014, Moorea, French Polynesia, Sep Efficient CR Acceleration and High-energy Emission at Supernova Remnants

PACIFIC 2014, Moorea, French Polynesia, Sep Efficient CR Acceleration and High-energy Emission at Supernova Remnants PACIFIC 2014, Moorea, French Polynesia, 15-20 Sep 2014 Efficient CR Acceleration and High-energy Emission at Supernova Remnants Anatomy of an SNR Emission from an SNR High-energy non-thermal emission =

More information

Gamma-ray nucleosynthesis. Predictions - Gamma-ray nuclei - Production sites Observations - Point sources - Diffuse emission

Gamma-ray nucleosynthesis. Predictions - Gamma-ray nuclei - Production sites Observations - Point sources - Diffuse emission Gamma-ray nucleosynthesis N. Mowlavi Geneva Observatory Predictions - Gamma-ray nuclei - Production sites Observations - Point sources - Diffuse emission 1 I. Predictions 2 300 250 200 150 100 50 10 6

More information

Chapter 6: Stellar Evolution (part 2): Stellar end-products

Chapter 6: Stellar Evolution (part 2): Stellar end-products Chapter 6: Stellar Evolution (part 2): Stellar end-products Final evolution stages of high-mass stars Stellar end-products White dwarfs Neutron stars and black holes Supernovae Core-collapsed SNe Pair-Instability

More information

Lecture 3 Pulsars and pulsar wind nebulae

Lecture 3 Pulsars and pulsar wind nebulae Lecture 3 Pulsars and pulsar wind nebulae Pulsars Characteristic parameters Pulsar wind nebulae Properties Evolution Exotic central compact objects - Magnetars The Crab Pulsar http://www.jb.man.ac.uk/~pulsar/education/sounds/sounds.html

More information

The physics of stars. A star begins simply as a roughly spherical ball of (mostly) hydrogen gas, responding only to gravity and it s own pressure.

The physics of stars. A star begins simply as a roughly spherical ball of (mostly) hydrogen gas, responding only to gravity and it s own pressure. Lecture 4 Stars The physics of stars A star begins simply as a roughly spherical ball of (mostly) hydrogen gas, responding only to gravity and it s own pressure. X-ray ultraviolet infrared radio To understand

More information

Gravity Waves Gravity Waves

Gravity Waves Gravity Waves Gravity Waves Gravity Waves 1 Gravity Waves Gravity Waves Kayak Surfing on ocean gravity waves Oregon Coast Waves: sea & ocean waves 3 Sound Waves Sound Waves: 4 Sound Waves Sound Waves Linear Waves compression

More information

A Detailed Study of. the Pulsar Wind Nebula 3C 58

A Detailed Study of. the Pulsar Wind Nebula 3C 58 A Detailed Study of Collaborators: D. J. Helfand S. S. Murray S. Ransom F. D. Seward B. M. Gaensler E. V. Gotthelf E. van der Swaluw the Pulsar Wind Nebula 3C 58 Pulsar Wind Nebulae Young NS powers a particle/magnetic

More information

Supernovae. Type II, Ib, and Ic supernova are core-collapse supernova. Type Ia supernovae are themonuclear explosions.

Supernovae. Type II, Ib, and Ic supernova are core-collapse supernova. Type Ia supernovae are themonuclear explosions. Type Ia Supernovae Supernovae Gravitational collapse powers the explosion. Type Ia supernovae are themonuclear explosions. (Carroll and Ostlie) Type II, Ib, and Ic supernova are core-collapse supernova.

More information

physical and chemical inhomogeneities in the Vela SNR

physical and chemical inhomogeneities in the Vela SNR XMM-Newton: The Next Decade 2007 Science Workshop 4 th -6 th June 2007 Madrid, España A high-resolution survey of the physical and chemical inhomogeneities in the Vela SNR Collaborators Marco Miceli, INAF

More information

arxiv: v1 [astro-ph.he] 29 Aug 2011

arxiv: v1 [astro-ph.he] 29 Aug 2011 Mem. S.A.It. Vol. 75, 282 c SAIt 2008 Memorie della Overionization in X-ray spectra: a new paradigm for Mixed-Morphology SNRs arxiv:1108.5544v1 [astro-ph.he] 29 Aug 2011 M. Miceli 1,2 1 Dipartimento di

More information

Supernovae, Neutron Stars, Pulsars, and Black Holes

Supernovae, Neutron Stars, Pulsars, and Black Holes Supernovae, Neutron Stars, Pulsars, and Black Holes Massive stars and Type II supernovae Massive stars (greater than 8 solar masses) can create core temperatures high enough to burn carbon and heavier

More information

Thermonuclear shell flashes II: on WDs (or: classical novae)

Thermonuclear shell flashes II: on WDs (or: classical novae) : on WDs (or: classical novae) Observations Thermonuclear flash model Nova/X-ray burst comparison Effects of super-eddington fluxes To grow or not to grow = to go supernova Ia or not.. 1 Nova Cygni 1975

More information

Supernova Remnants and GLAST

Supernova Remnants and GLAST SLAC-PUB-14797 Supernova Remnants and GLAST Patrick Slane Harvard-Smithsonian Center for Astrophysics Abstract. It has long been speculated that supernova remnants represent a major source of cosmic rays

More information

On Today s s Radar. Reading and Events SECOND MID-TERM EXAM. ASTR 1040 Accel Astro: Stars & Galaxies. Another useful experience (we hope)

On Today s s Radar. Reading and Events SECOND MID-TERM EXAM. ASTR 1040 Accel Astro: Stars & Galaxies. Another useful experience (we hope) ASTR 1040 Accel Astro: Stars & Galaxies Prof. Juri Toomre TA: Nicholas Nelson Lecture 20 Thur 17 Mar 2011 zeus.colorado.edu/astr1040-toomre toomre Edge-on spiral galaxy NGG 4013 On Today s s Radar Look

More information

SUPERNOVA REMNANT 1987A: HIGH RESOLUTION IMAGES AND SPECTRUM FROM CHANDRA OBSERVATIONS

SUPERNOVA REMNANT 1987A: HIGH RESOLUTION IMAGES AND SPECTRUM FROM CHANDRA OBSERVATIONS 1 SUPERNOVA REMNANT 1987A: HIGH RESOLUTION IMAGES AND SPECTRUM FROM CHANDRA OBSERVATIONS S. Park 1, S. A. Zhekov 2,4, D. N. Burrows 1, J. L. Racusin 1, R. McCray 2, and K. J. Borkowski 3 1 Department of

More information

X-RAY AND ULTRAVIOLET LINE EMISSION FROM SNR 1987A

X-RAY AND ULTRAVIOLET LINE EMISSION FROM SNR 1987A THE ASTROPHYSICAL JOURNAL, 476 : L31 L34, 1997 February 10 1997. The American Astronomical Society. All rights reserved. Printed in U.S.A. X-RAY AND ULTRAVIOLET LINE EMISSION FROM SNR 1987A KAZIMIERZ J.

More information

Supernova remnants dynamics

Supernova remnants dynamics Supernova remnants dynamics Anne DECOURCHELLE UMR AIM /Department of Astrophysics, CEA Saclay Hydrodynamics of young supernova remnants Morphological and spectral properties of a sample of SNRs A close-up

More information

THE GALACTIC CORONA. In honor of. Jerry Ostriker. on his 80 th birthday. Chris McKee Princeton 5/13/2017. with Yakov Faerman Amiel Sternberg

THE GALACTIC CORONA. In honor of. Jerry Ostriker. on his 80 th birthday. Chris McKee Princeton 5/13/2017. with Yakov Faerman Amiel Sternberg THE GALACTIC CORONA In honor of Jerry Ostriker on his 80 th birthday Chris McKee Princeton 5/13/2017 with Yakov Faerman Amiel Sternberg A collaboration that began over 40 years ago and resulted in a lifelong

More information

ARE THE MODELS FOR TYPE Ia SUPERNOVA PROGENITORS CONSISTENT WITH THE PROPERTIES OF SUPERNOVA REMNANTS?

ARE THE MODELS FOR TYPE Ia SUPERNOVA PROGENITORS CONSISTENT WITH THE PROPERTIES OF SUPERNOVA REMNANTS? The Astrophysical Journal, 662:472Y486, 2007 June 10 # 2007. The American Astronomical Society. All rights reserved. Printed in U.S.A. ARE THE MODELS FOR TYPE Ia SUPERNOVA PROGENITORS CONSISTENT WITH THE

More information

3/18/14. Today on Stellar Explosions. Second Mid-Term Exam. Things to do SECOND MID-TERM EXAM. Making a millisecond pulsars spin it up!

3/18/14. Today on Stellar Explosions. Second Mid-Term Exam. Things to do SECOND MID-TERM EXAM. Making a millisecond pulsars spin it up! 3/18/14 ASTR 1040: Stars & Galaxies Binary mass transfer: accretion disk Today on Stellar Explosions Spinning up pulsars through mass transfer from (surviving!) companions White dwarf supernovae from mass

More information

Galactic Accelerators : PWNe, SNRs and SBs

Galactic Accelerators : PWNe, SNRs and SBs TeV γ-ray Observations and Implications for Galactic Accelerators : PWNe, SNRs and SBs (co-chair, HESS working group on SNRs, pulsars and PWNe) LPTA, Montpellier, France Particle Acceleration in Astrophysical

More information

Lecture 8: Stellar evolution II: Massive stars

Lecture 8: Stellar evolution II: Massive stars Lecture 8: Stellar evolution II: Massive stars Senior Astrophysics 2018-03-27 Senior Astrophysics Lecture 8: Stellar evolution II: Massive stars 2018-03-27 1 / 29 Outline 1 Stellar models 2 Convection

More information

Cooling Limits for the

Cooling Limits for the Cooling Limits for the Page et al. 2004 Youngest Neutron Stars Cooling from the Youngest NSs SNR Zone NSs younger than ~50 kyr offer strong constraints on rapid cooling - the associated physical processes

More information

Near-Infrared Spectroscopic Study of Supernova Ejecta and Supernova Dust in Cassiopeia A

Near-Infrared Spectroscopic Study of Supernova Ejecta and Supernova Dust in Cassiopeia A Supernova Remnants: An Odyssey in Space after Stellar Death 2016 June Near-Infrared Spectroscopic Study of Supernova Ejecta and Supernova Dust in Cassiopeia A Yong Hyun Lee 1 Supervisor: Bon-Chul Koo 1

More information

Outline. Stellar Explosions. Novae. Death of a High-Mass Star. Binding Energy per nucleon. Nova V838Mon with Hubble, May Dec 2002

Outline. Stellar Explosions. Novae. Death of a High-Mass Star. Binding Energy per nucleon. Nova V838Mon with Hubble, May Dec 2002 Outline Novae (detonations on the surface of a star) Supernovae (detonations of a star) The Mystery of Gamma Ray Bursts (GRBs) Sifting through afterglows for clues! Stellar Explosions Novae Nova V838Mon

More information

Astr 2310 Thurs. March 23, 2017 Today s Topics

Astr 2310 Thurs. March 23, 2017 Today s Topics Astr 2310 Thurs. March 23, 2017 Today s Topics Chapter 16: The Interstellar Medium and Star Formation Interstellar Dust and Dark Nebulae Interstellar Dust Dark Nebulae Interstellar Reddening Interstellar

More information

Gamma ray emission from supernova remnant/molecular cloud associations

Gamma ray emission from supernova remnant/molecular cloud associations Gamma ray emission from supernova remnant/molecular cloud associations Stefano Gabici APC, Paris stefano.gabici@apc.univ-paris7.fr The Origin of galactic Cosmic Rays Facts: the spectrum is (ALMOST) a single

More information

Guiding Questions. The Deaths of Stars. Pathways of Stellar Evolution GOOD TO KNOW. Low-mass stars go through two distinct red-giant stages

Guiding Questions. The Deaths of Stars. Pathways of Stellar Evolution GOOD TO KNOW. Low-mass stars go through two distinct red-giant stages The Deaths of Stars 1 Guiding Questions 1. What kinds of nuclear reactions occur within a star like the Sun as it ages? 2. Where did the carbon atoms in our bodies come from? 3. What is a planetary nebula,

More information

The Deaths of Stars 1

The Deaths of Stars 1 The Deaths of Stars 1 Guiding Questions 1. What kinds of nuclear reactions occur within a star like the Sun as it ages? 2. Where did the carbon atoms in our bodies come from? 3. What is a planetary nebula,

More information

Stars and their properties: (Chapters 11 and 12)

Stars and their properties: (Chapters 11 and 12) Stars and their properties: (Chapters 11 and 12) To classify stars we determine the following properties for stars: 1. Distance : Needed to determine how much energy stars produce and radiate away by using

More information

Stellar Evolution: The Deaths of Stars. Guiding Questions. Pathways of Stellar Evolution. Chapter Twenty-Two

Stellar Evolution: The Deaths of Stars. Guiding Questions. Pathways of Stellar Evolution. Chapter Twenty-Two Stellar Evolution: The Deaths of Stars Chapter Twenty-Two Guiding Questions 1. What kinds of nuclear reactions occur within a star like the Sun as it ages? 2. Where did the carbon atoms in our bodies come

More information

Stars: Their Life and Afterlife

Stars: Their Life and Afterlife The 68 th Compton Lecture Series Stars: Their Life and Afterlife Lecture 3: The Life and Times of Low Mass Stars Brian Humensky, lecturer http://kicp.uchicago.edu/~humensky/comptonlectures.htm October

More information

The Evolution and Explosion of Mass-Accreting Pop III Stars. Ken Nomoto (IPMU / U.Tokyo)

The Evolution and Explosion of Mass-Accreting Pop III Stars. Ken Nomoto (IPMU / U.Tokyo) The Evolution and Explosion of Mass-Accreting Pop III Stars Ken Nomoto (IPMU / U.Tokyo) Pop III Stars Pop III GRBs Pop III SNe? M > 10 5 M :SMS (Super Massive Stars) GR instability Collapse M ~ 300-10

More information

Guiding Questions. The Deaths of Stars. Pathways of Stellar Evolution GOOD TO KNOW. Low-mass stars go through two distinct red-giant stages

Guiding Questions. The Deaths of Stars. Pathways of Stellar Evolution GOOD TO KNOW. Low-mass stars go through two distinct red-giant stages The Deaths of Stars Guiding Questions 1. What kinds of nuclear reactions occur within a star like the Sun as it ages? 2. Where did the carbon atoms in our bodies come from? 3. What is a planetary nebula,

More information

Universe Now. 9. Interstellar matter and star clusters

Universe Now. 9. Interstellar matter and star clusters Universe Now 9. Interstellar matter and star clusters About interstellar matter Interstellar space is not completely empty: gas (atoms + molecules) and small dust particles. Over 10% of the mass of the

More information

Stellar evolution Part I of III Star formation

Stellar evolution Part I of III Star formation Stellar evolution Part I of III Star formation The interstellar medium (ISM) The space between the stars is not completely empty, but filled with very dilute gas and dust, producing some of the most beautiful

More information