Nucleosynthesis in classical nova explosions and Type I X-ray bursts

Size: px
Start display at page:

Download "Nucleosynthesis in classical nova explosions and Type I X-ray bursts"

Transcription

1 Important and significant: lies the experimentalist told me Nucleosynthesis in classical nova explosions and Type I X-ray bursts Anuj Parikh Universitat Politècnica de Catalunya Institut d'estudis Espacials de Catalunya Barcelona, Spain Anuj Parikh Grup d Astronomia i Astrofísica Universitat Politècnica de Catalunya Institut d'estudis Espacials de Catalunya

2 Important and significant: lies the experimentalist told me Nucleosynthesis in classical nova explosions and Type I X-ray bursts Anuj Parikh Universitat Politècnica de Catalunya Institut d'estudis Espacials de Catalunya Barcelona, Spain

3 Important and significant: lies the experimentalist told me Nucleosynthesis in classical nova explosions and Type I X-ray bursts Anuj Parikh Universitat Politècnica de Catalunya Institut d'estudis Espacials de Catalunya Barcelona, Spain

4 Important and significant: lies the experimentalist told me Nucleosynthesis in classical nova explosions and Type I X-ray bursts Anuj Parikh Universitat Politècnica de Catalunya Institut d'estudis Espacials de Catalunya Barcelona, Spain

5 NUCLEAR ASTROPHYSICS Understand HOW the chemical elements were (and still are!) created Elemental composition of the Solar System Reviews: B2FH 1957, Cameron 1957, Rolfs and Rodney 1988, Iliadis 2007, José and Iliadis 2011

6 Understand the NUCLEOSYNTHESIS and ENERGY generation in different astrophysical phenomena CLASSICAL NOVA EXPLOSIONS: Explosive thermonuclear burning of accreted matter on the surface of a white dwarf star AU Nova Cygni 1992 (d ~ ly) Vanlandingham et al. (1997) Nova V693 CrA 1981 HST (1994) Reviews: Gehrz+ 1998, José and Hernanz 2007; Bode and Evans 2012

7 Understand the NUCLEOSYNTHESIS and ENERGY generation in different astrophysical phenomena TYPE I X-RAY BURSTS: Explosive thermonuclear burning of accreted matter on the surface of a neutron star Galloway et al. (2008) / RXTE 1 arcmin Reviews: Lewin+ 1993, Strohmayer and Bildsten 2006, AP, José, Sala and Iliadis 2013

8 Understand the NUCLEOSYNTHESIS and ENERGY generation in different astrophysical phenomena TYPE Ia SUPERNOVA EXPLOSIONS: White dwarf accretes matter until M Ch, white dwarf mergers,... SN1604 (Kepler) d = 5' SN2014J Chandra + Spitzer + HST X-ray + infrared + visible Ashell et al. (2014) Reviews: Livio 2000; Hillebrandt & Niemeyer 2000; Isern+ 2011; Howell 2011; Hillebrandt+ 2013

9 What nuclear reactions are involved in these phenomena? Classicalnova nucleosynthesis 150 isotopes (H Ca) 1000 nuclear processes José Z N MODELS: Schatzmann 1950, 1951; Starrfield 1971; Hillebrandt and Thielemann 1982; Wiescher et al. 1986; Weiss and Truran 1990; Prialnik and Kovetz 1995; Starrfield et al. 1998; Jose and Hernanz 1998; Paxton et al. 2011, Denissenkov et al. 2013,

10 What nuclear reactions are involved in these phenomena? Z TypeI X-rayburst nucleosynthesis 600 isotopes (H Xe) 4000 nuclear processes Schatz et al., nova N MODELS: Woosley and Taam 1976; Maraschi and Cavaliere 1977; Fujimoto et al 1981; Wallace and Woosley 1981; Hanawa et al. 1983; Schatz et al. 1999, 2001; Iliadis et al. 2002; Koike et al. 1999, 2004; AP et al. 2008; Wallace et al. 1982; Woosley and Weaver 1985; Taam et al. 1993; 1996; Woosley et al. 2004; Fisker et al. 2008; José et al. 2010; Paxton et al

11 What nuclear reactions are involved in these phenomena? Classicalnova nucleosynthesis 150 isotopes (H Ca) 1000 nuclear processes TypeI X-rayburst nucleosynthesis 600 isotopes (H Xe) 4000 nuclear processes TypeIasupernova nucleosynthesis 400 isotopes (H Zn) 2000 nuclear processes

12 What nuclear reactions are involved in these phenomena? Classicalnova nucleosynthesis 150 isotopes (H Ca) 1000 nuclear processes TypeI X-rayburst nucleosynthesis 600 isotopes (H Xe) 4000 nuclear processes TypeIasupernova nucleosynthesis 400 isotopes (H Zn) 2000 nuclear processes Are they all "important and significant"?

13 What nuclear reactions are involved in these phenomena? Classicalnova nucleosynthesis 150 isotopes (H Ca) 1000 nuclear processes TypeI X-rayburst nucleosynthesis 600 isotopes (H Xe) 4000 nuclear processes TypeIasupernova nucleosynthesis 400 isotopes (H Zn) 2000 nuclear processes Are they all "important and significant"? EQUALLY Just because a reaction CAN be measured does not mean it needs to be measured (for nuclear astrophysics)

14 What nuclear reactions are involved in these phenomena? Classicalnova nucleosynthesis 150 isotopes (H Ca) 1000 nuclear processes TypeI X-rayburst nucleosynthesis 600 isotopes (H Xe) 4000 nuclear processes TypeIasupernova nucleosynthesis 400 isotopes (H Zn) 2000 nuclear processes Are they all "important and significant"? EQUALLY Just because a reaction CAN be measured does not mean it needs to be measured (for nuclear astrophysics) Sensitivity study: Vary nuclear reaction rates in a model by uncertainties Identify those rates that significantly affect model predictions of observables from astrophysical phenomena Improve these rates first!

15 How robust is nucleosynthesis in classical novae to variations in the nuclear physics input? Reaction rates with demonstrated impact on nova nucleosynthesis in at least two independent studies << 1000 reactions! Review: AP, José, Sala (2014)

16 How robust is nucleosynthesis in classical novae to variations in the nuclear physics input? Reaction rates with demonstrated impact on nova nucleosynthesis in at least two independent studies << 1000 reactions! Review: AP, José, Sala (2014)

17 How robust is nucleosynthesis in classical novae to variations in the nuclear physics input? MOST nuclear reaction rates involved in standard models now "seem to be" sufficiently well-constrained. Effect of an updated reaction network on nucleosynthesis predictions With data from Starrfield+ (2009) José and Iliadis (2011)

18 18 F(p,α) 15 O in CN Experiments: Chae+ 2006, de Sereville+ 2009, Murphy+ 2009, Beer+ 2011, Dalouzy+ 2009, Adekola+ 2011a, 2011b, 2012, Laird Laird, AP++ (2013) experimental rate varied within uncertainties 1D hydro nova model γ-ray emission from novae may initially be dominated by contributions from e+-e- following 18 F(β+) (t 1/2 = 110 m)

19 30 P(p,γ) 31 S in CN Experiments: Jenkins+ 2006, Ma+ 2007, Wrede+ 2007, 2009, AP+ 2011, Doherty+ 2012, Irvine AP++ (2011) experimental rate varied within uncertainties 1D hydro nova model

20 33 S(p,γ) 34 Cl in CN Experiments: Waanders+ 1983, AP+ 2009, Freeman+2011, Fallis+ 2013, AP AP++ (2014) experimental rate varied within uncertainties 1D hydro nova model

21 How robust is nucleosynthesis in type I XRBs to variations in the nuclear physics input? MOST nuclear reaction rates involved in XRBs are NOT based on experimental information. need to rely on estimates from nuclear theory... theoryvs experiment factor of 2 theory1 vs theory2 AP, José, Sala and Iliadis(2013)

22 How robust is nucleosynthesis in type I XRBs to variations in the nuclear physics input? ReactionrateswithdemonstratedimpactonXRB propertiesin at least two independent studies << 4000 reactions! + 57 Cu(p,γ), 59 Cu(p,γ), 61 Ga(p,γ), 65 As(p,γ) + masses: 62 Ge, 66 Se... Review: AP, José, Sala (2014)

23 How robust is nucleosynthesis in type I XRBs to variations in the nuclear physics input? ReactionrateswithdemonstratedimpactonXRB propertiesin at least two independent studies << 4000 reactions! + 57 Cu(p,γ), 59 Cu(p,γ), 61 Ga(p,γ), 65 As(p,γ) + masses: 62 Ge, 66 Se... Review: AP, José, Sala (2014)

24 14 O(α,p) 17 F in XRBs Experiments: Hahn+1996, Park+1999, Harss+ 1999, 2002, Blackmon+ 2001, 2003, Gomez del Campo+ 2001, Notani+ 2004, He+ 2009, 2011, Bardayan+ 2010, 2012, Almaraz-Calderon Blackmon XRB postprocessing model Hu, He, AP++ (2014)

25 18 Ne(α,p) 21 Na in XRBs Experiments: Chen+2001, Caggiano+2002, Berg+2003, Matic+2009, Chae+2009, He+2008, 2009, Bradfield-Smith+1999, Groombridge+2002, Salter XRB postprocessing model Matic et al D hydro model He, Zhang, AP++ (2013)

26 18 Ne(α,p) 21 Na in XRBs Experiments: Chen+2001, Caggiano+2002, Berg+2003, Matic+2009, Chae+2009, He+2008, 2009, Bradfield-Smith+1999, Groombridge+2002, Salter XRB model discrepancies? XRB postprocessing model lower rate higher rate Matic et al D hydro model He, Zhang, AP++ (2013)

27 15 O(α,γ) 19 Ne in XRBs Experiments: Magnus+1990, Laird+2002, Davids+2003ab, Rehm+2003, Visser+2004, Tan+2005, 2007, 2009, Kanungo+2006, Mythili+2008 Fisker et al. 2007, 1D hydro model Davids et al. 2011, 1D hydro model lower rate higher rate XRB model discrepancies?

28 Weak interaction rates in XRBs? AP+ 2008

29 Decay rate (s -1 ) Nacher+, CERN proposal Weak interaction rates in XRBs? Sarriguren 2011 AP+ 2008

30 Type Ia supernova explosions Chandra + XMM, X-ray Chandra, VLA, CTIO X-ray + radio + visible Chandra + Spitzer X-ray + infrared Chandra + Spitzer + HST X-ray + infrared + visible SN185 (1st SN recorded) D 9000 ly d = 45' SN1006 D 7000 ly d = 55' SN1572 (Tycho) D 9000 ly d = 11' SN1604 (Kepler) D ly d = 5' Responsible for 50% of Fe-group element production in the Galaxy

31 Type Ia supernova explosions MODELS The increasing number of supernovae discovered has revealed some diversity among SNe Ia, raising doubts upon the uniqueness of the progenitor system [Branch+93, Li+11...] Promising progenitor scenarios include... Single degenerate: CO WD accretes H/He-rich matter until M Ch [Whelan+Iben73] Double degenerate: two merging CO WDs, M tot > M Ch [Iben+Tutukov84, Webbink84] R. Pakmor+ (MPA)

32 Type Ia supernova explosions MODELS The increasing number of supernovae discovered has revealed some diversity among SNe Ia, raising doubts upon the uniqueness of the progenitor system [Branch+93, Li+11...] Promising progenitor scenarios include... Single degenerate: CO WD accretes H/He-rich matter until M Ch [Whelan+Iben73] Double degenerate: two merging CO WDs, M tot > M Ch [Iben+Tutukov84, Webbink84] Detailed predictions of nucleosynthesis exist only for a very limited set of single degenerate scenario models Thielemann+ 1986; Nomoto+ 1997; Woosley 1997; Iwamoto+ 1999;Travaglio+ 2004; Röpke García-Senz+ 2007; Meakin+ 2009; Maeda+ 2010; Seitenzahl R. Pakmor+ (MPA)

33 How robust is nucleosynthesis in Type Ia SNe to variations in the nuclear physics input? Two M Ch explosion models (single degenerate) several million individual calculations Novae (Iliadis+02) 7000 calc XRBs (AP+08) calc standard yields Search for common processes that significantly affect nucleosynthesis AP, José, Seitenzahl, Röpke (2013)

34 How robust is nucleosynthesis in Type Ia SNe to variations in the nuclear physics input? << 2000 reactions! yields of Fe group species (Z > 23) are relatively robust to rate changes for these models Bravo, Martínez-Pinedo 2012; AP, José, Seitenzahl, Röpke 2013

35 Just because a reaction CAN be measured does not mean it needs to be measured (for nuclear astrophysics) SOME FUTURE WORK: modelers: extended multid model calculations of novae and XRBs + with larger nuclear reaction networks modelers: nuclear physics sensitivity studies using 1D hydrodynamic models for novae and XRBs + different models for SNIa modelers: evaluate the importance of the 14 O(α,p), 15 O(α,γ), 18 Ne(α,p) rates in XRBs modelers: evaluate if mass may be ejected in XRB models through radiation-driven winds experimentalists: measure/confirm "important and significant" reaction rates (+ nuclear masses) observers: prospects for more spectra from XRBs? (+improved models of NS atmospheres) development of improved, consistent treatments for calculating stellar weak interaction rates for all isotopes in typical SNIa and XRB networks

Explosive Events in the Universe and H-Burning

Explosive Events in the Universe and H-Burning Explosive Events in the Universe and H-Burning Jordi José Dept. Física i Enginyeria Nuclear, Univ. Politècnica de Catalunya (UPC), & Institut d Estudis Espacials de Catalunya (IEEC), Barcelona Nuclear

More information

Observable constraints on nucleosynthesis conditions in Type Ia supernovae

Observable constraints on nucleosynthesis conditions in Type Ia supernovae Observable constraints on nucleosynthesis conditions in Type Ia supernovae MPE Eurogenesis Garching, March 26, 2013 Ivo Rolf Seitenzahl Institut für Theoretische Physik und Astrophysik Julius-Maximilians-Universität

More information

Type Ia supernovae observable nuclear astrophysics

Type Ia supernovae observable nuclear astrophysics Astrophysics and Nuclear Structure Hirschegg, January 27, 2013 Type Ia supernovae observable nuclear astrophysics Julius-Maximilians-Universität Würzburg, Germany W. Hillebrandt, S. Woosley, S. Sim, I.

More information

Classical vs. primordial nova explosions

Classical vs. primordial nova explosions * Dept. Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya (UPC), Sor Eulàlia d Anzizu s/n, Campus Nord UPC, Mòdul B4-B5, 2ª planta, E-08034 Barcelona, Spain, and Institut d Estudis Espacials

More information

Experimental Nuclear Astrophysics: Lecture 3. Chris Wrede National Nuclear Physics Summer School June 20 th, 2018

Experimental Nuclear Astrophysics: Lecture 3. Chris Wrede National Nuclear Physics Summer School June 20 th, 2018 : Lecture 3 Chris Wrede National Nuclear Physics Summer School June 20 th, 2018 Outline Lecture 1: Introduction & charged-particle reactions Lecture 2: Neutron-induced reactions Lecture 3: What I do (indirect

More information

Nucleosynthesis in classical novae

Nucleosynthesis in classical novae Nucleosynthesis in classical novae Margarita Hernanz Institut d Estudis Espacials de Catalunya, IEEC-CSIC Barcelona (Spain) OUTLINE Scenario of nova explosions: thermonuclear runaway Mixing between core

More information

Isotopic yields from supernova light curves

Isotopic yields from supernova light curves Isotopic yields from supernova light curves Astrophysics and Nuclear Structure Hirschegg, January 29, 2013 Ivo Rolf Seitenzahl Institut für Theoretische Physik und Astrophysik Julius-Maximilians-Universität

More information

Nuclear Waiting Points and Double Peaked X-Ray Bursts

Nuclear Waiting Points and Double Peaked X-Ray Bursts Nuclear Waiting Points and Double Peaked X-Ray Bursts WITH TODAY'S HONORARY CO-AUTHORSHIP: David Miles Kahl Department of Physics & Astronomy, McMaster University, 1280 Main Street West, ABB 248, Hamilton,

More information

Hydrogen and Helium Burning in Type I X-ray Bursts: Experimental Results and Future Prospects. Catherine M. Deibel Louisiana State University

Hydrogen and Helium Burning in Type I X-ray Bursts: Experimental Results and Future Prospects. Catherine M. Deibel Louisiana State University Hydrogen and Helium Burning in Type I X-ray Bursts: Experimental Results and Future Prospects Catherine M. Deibel Louisiana State University 8/29/14 CGS15 August 25 29, 2014 1 Click Type to I X-Ray edit

More information

Models of Type Ia supernova explosions

Models of Type Ia supernova explosions Fifty-one erg workshop Raleigh, May 14, 2013 Models of Type Ia supernova explosions Julius-Maximilians-Universität Würzburg, Germany I. Seitenzahl, M. Fink, R. Pakmor, S. Sim, M. Kromer, A. Summa, F. CiaraldiSchoolmann,

More information

arxiv:astro-ph/ v1 23 Feb 2001

arxiv:astro-ph/ v1 23 Feb 2001 The endpoint of the rp process on accreting neutron stars H. Schatz 1, A. Aprahamian 2, V. Barnard 2, L. Bildsten 3, A. Cumming 3, M. Ouellette 1, T. Rauscher 4, F.-K. Thielemann 4, M. Wiescher 2 1 Dept.

More information

Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA

Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA Spin assignments of 22 Mg states through a 24 Mg(p,t) 22 Mg measurement, K. L. Jones, B. H. Moazen, S. T. Pittman Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996,

More information

High-precision (p,t) reactions to determine reaction rates of explosive stellar processes Matić, Andrija

High-precision (p,t) reactions to determine reaction rates of explosive stellar processes Matić, Andrija University of Groningen High-precision (p,t) reactions to determine reaction rates of explosive stellar processes Matić, Andrija IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's

More information

Wolfgang Hillebrandt. Garching. DEISA PRACE Symposium Barcelona May 10 12, 2010

Wolfgang Hillebrandt. Garching. DEISA PRACE Symposium Barcelona May 10 12, 2010 Modelling Cosmic Explosions Wolfgang Hillebrandt MPI für Astrophysik Garching DEISA PRACE Symposium Barcelona May 10 12, 2010 Outline of the talk Supernova types and phenomenology (in brief) Models of

More information

Constraining Astrophysical Reaction Rates with Transfer Reactions at Low and Intermediate Energies

Constraining Astrophysical Reaction Rates with Transfer Reactions at Low and Intermediate Energies Constraining Astrophysical Reaction Rates with Transfer Reactions at Low and Intermediate Energies Christoph Langer (JINA/NSCL) INT Workshop: Reactions and Structure of Exotic Nuclei March 2015 1 Understanding

More information

Secondary Fe-peak nuclei in the Tycho Supernova Remnant: A Promising Tracer of Type Ia Progenitor Metallicity

Secondary Fe-peak nuclei in the Tycho Supernova Remnant: A Promising Tracer of Type Ia Progenitor Metallicity Secondary Fe-peak nuclei in the Tycho Supernova Remnant: A Promising Tracer of Type Ia Progenitor Metallicity Princeton University E-mail: badenes@astro.princeton.edu Eduardo Bravo Universitat Politècnica

More information

View From the West Coast

View From the West Coast View From the West Coast Lars Bildsten Kavli Institute for Theoretical Physics Department of Physics University of California, Santa Barbara QuickTime and a TIFF (Uncompressed) decompressor are needed

More information

Alan Calder Department of Physics and Astronomy, Stony Brook University, New York, USA

Alan Calder Department of Physics and Astronomy, Stony Brook University, New York, USA Mixing in classical nova outbursts Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, and Institut d Estudis Espacials de Catalunya (IEEC) E-mail: jordi.casanova@upc.edu

More information

Classical Novae at the Crossroads of Astrophysics, Nuclear Physics and Cosmochemistry

Classical Novae at the Crossroads of Astrophysics, Nuclear Physics and Cosmochemistry at the Crossroads of Astrophysics, Nuclear Physics and Cosmochemistry Jordi José Dept. Física i Enginyeria Nuclear, Univ. Politècnica de Catalunya (UPC) & Institut d Estudis Espacials de Catalunya (IEEC),

More information

Gamma-ray nucleosynthesis. Predictions - Gamma-ray nuclei - Production sites Observations - Point sources - Diffuse emission

Gamma-ray nucleosynthesis. Predictions - Gamma-ray nuclei - Production sites Observations - Point sources - Diffuse emission Gamma-ray nucleosynthesis N. Mowlavi Geneva Observatory Predictions - Gamma-ray nuclei - Production sites Observations - Point sources - Diffuse emission 1 I. Predictions 2 300 250 200 150 100 50 10 6

More information

Abundance Constraints on Early Chemical Evolution. Jim Truran

Abundance Constraints on Early Chemical Evolution. Jim Truran Abundance Constraints on Early Chemical Evolution Jim Truran Astronomy and Astrophysics Enrico Fermi Institute University of Chicago Argonne National Laboratory MLC Workshop Probing Early Structure with

More information

What Are Type Ia Supernovae?

What Are Type Ia Supernovae? What Are Type Ia Supernovae? Max-Planck-Institut für Astrophysik Based on collaborations with: W. Hillebrandt (MPA Garching) S.E. Woosley (UC Santa Cruz) M. Reinecke (MPA Garching) B. Leibundgut (ESO Garching)

More information

STELLAR HEAVY ELEMENT ABUNDANCES AND THE NATURE OF THE R-PROCESSR. JOHN COWAN University of Oklahoma

STELLAR HEAVY ELEMENT ABUNDANCES AND THE NATURE OF THE R-PROCESSR. JOHN COWAN University of Oklahoma STELLAR HEAVY ELEMENT ABUNDANCES AND THE NATURE OF THE R-PROCESSR JOHN COWAN University of Oklahoma First Stars & Evolution of the Early Universe (INT) - June 19, 2006 Top 11 Greatest Unanswered Questions

More information

Nuclear Astrophysics

Nuclear Astrophysics Nuclear Astrophysics IV: Novae, x-ray bursts and thermonuclear supernovae Karlheinz Langanke GSI & TU Darmstadt Aarhus, October 6-10, 2008 Karlheinz Langanke ( GSI & TU Darmstadt) Nuclear Astrophysics

More information

Jordi José Dept. Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya & Institut d Estudis Espacials de Catalunya, Barcelona

Jordi José Dept. Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya & Institut d Estudis Espacials de Catalunya, Barcelona Nucleosynthesis in Classical Novae Jordi José Dept. Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya & Institut d Estudis Espacials de Catalunya, Barcelona Stellar Explosions: Classical

More information

Evolution and Final Fates of Accreting White Dwarfs. Ken Nomoto (Kavli IPMU / U. Tokyo)

Evolution and Final Fates of Accreting White Dwarfs. Ken Nomoto (Kavli IPMU / U. Tokyo) Evolution and Final Fates of Accreting White Dwarfs Ken Nomoto (Kavli IPMU / U. Tokyo) AD 1572 Korean & Chinese Record Guest Star as bright as Venus (Sonjo Sujong Sillok: Korea) AD 1572 Tycho Brahe s Supernova

More information

The 2006 Outburst of RS Oph: What are the questions that need to be discussed --and answered?

The 2006 Outburst of RS Oph: What are the questions that need to be discussed --and answered? The 2006 Outburst of RS Oph: What are the questions that need to be discussed --and answered? Sumner Starrfield School of Earth and Space Exploration Arizona State University WHY DO WE CARE? RS Oph may

More information

The structure and evolution of stars. Learning Outcomes

The structure and evolution of stars. Learning Outcomes The structure and evolution of stars Lecture14: Type Ia Supernovae The Extravagant Universe By R. Kirshner 1 Learning Outcomes In these final two lectures the student will learn about the following issues:

More information

This class: Life cycle of high mass stars Supernovae Neutron stars, pulsars, pulsar wind nebulae, magnetars Quark-nova stars Gamma-ray bursts (GRBs)

This class: Life cycle of high mass stars Supernovae Neutron stars, pulsars, pulsar wind nebulae, magnetars Quark-nova stars Gamma-ray bursts (GRBs) This class: Life cycle of high mass stars Supernovae Neutron stars, pulsars, pulsar wind nebulae, magnetars Quark-nova stars Gamma-ray bursts (GRBs)!1 Cas$A$ All$Image$&$video$credits:$Chandra$X7ray$ Observatory$

More information

Type Ia Supernova Models and Galactic Chemical Evolution

Type Ia Supernova Models and Galactic Chemical Evolution Type Ia Supernova Models and Galactic Chemical Evolution Spencer Henning Western Michigan University Lee Honors College Thesis Defense Presentation April 28, 2017 1 White Dwarf Formation Source: [1] 2

More information

H/He burning reactions on unstable nuclei for Nuclear Astrophysics

H/He burning reactions on unstable nuclei for Nuclear Astrophysics H/He burning reactions on unstable nuclei for Nuclear Astrophysics PJ Woods University of Edinburgh H T O F E E U D N I I N V E B R U S I R T Y H G Explosive H/He burning in Binary Stars Isaac Newton,

More information

X-RAY BURSTS AND PROTON CAPTURES CLOSE TO THE DRIPLINE. The hydrogen-rich accreted envelopes of neutron stars in binary systems are

X-RAY BURSTS AND PROTON CAPTURES CLOSE TO THE DRIPLINE. The hydrogen-rich accreted envelopes of neutron stars in binary systems are 1 X-RAY BURSTS AND ROTON CATURES CLOSE TO THE DRILINE T. Rauscher 1, F. Rembges 1, H. Schatz 2, M. Wiescher 3, F.-K. Thielemann 1 The hydrogen-rich accreted envelopes of neutron stars in binary systems

More information

The electrons then interact with the surrounding medium, heat it up, and power the light curve. 56 Ni 56 Co + e (1.72 MeV) half life 6.

The electrons then interact with the surrounding medium, heat it up, and power the light curve. 56 Ni 56 Co + e (1.72 MeV) half life 6. Supernovae The spectra of supernovae fall into many categories (see below), but beginning in about 1985, astronomers recognized that there were physically, only two basic types of supernovae: Type Ia and

More information

Nucleosynthesis in multi-dimensional SN Ia explosions

Nucleosynthesis in multi-dimensional SN Ia explosions A&A 425, 1029 1040 (2004) DOI: 10.1051/0004-6361:20041108 c ESO 2004 Astronomy & Astrophysics Nucleosynthesis in multi-dimensional SN Ia explosions C. Travaglio 1,2, W. Hillebrandt 3, M. Reinecke 4, and

More information

Classical nova explosions hydrodynamics and nucleosynthesis

Classical nova explosions hydrodynamics and nucleosynthesis Bull. Astr. Soc. India (2012) 40, 443 456 Classical nova explosions hydrodynamics and nucleosynthesis J. José 1,2 1 Dept. Física i Enginyeria Nuclear, EUETIB, Universitat Politècnica de Catalunya, E-08036

More information

Multidimensional Simulations of Type Ia Supernova Explosions:

Multidimensional Simulations of Type Ia Supernova Explosions: Multidimensional Simulations of Type Ia Supernova Explosions: Confronting Model Predictions with Observations Wolfgang Hillebrandt MPI für Astrophysik Garching Dark Energy Conference, Munich, October 7-11,

More information

arxiv: v1 [astro-ph.sr] 20 Nov 2012

arxiv: v1 [astro-ph.sr] 20 Nov 2012 Draft version September 27, 2018 Preprint typeset using L A TEX style emulateapj v. 12/16/11 NUCLEAR THERMOMETERS FOR CLASSICAL NOVAE Lori N. Downen and Christian Iliadis Department of Physics and Astronomy,

More information

Nucleosynthesis in white dwarf close encounters and collisions

Nucleosynthesis in white dwarf close encounters and collisions Nucleosynthesis in white dwarf close encounters and collisions Enrique García-Berro 1,2 Gabriela Aznar-Siguán 1,2 Pablo Lorén-Aguilar 1,2,3 Jordi José 1,2 Jordi Isern 2,4 1 Universitat Politècnica de Catalunya

More information

The Origin of Type Ia Supernovae

The Origin of Type Ia Supernovae The Origin of Type Ia Supernovae Gijs Nelemans Radboud University Nijmegen with Rasmus Voss, Mikkel Nielsel, Silvia Toonen, Madelon Bours, Carsten Dominik Outline Introduction: supernovae Relevance Type

More information

The Deflagration Phase of Type Ia SNe

The Deflagration Phase of Type Ia SNe The Center for Astrophysical Thermonuclear Flashes The Deflagration Phase of Type Ia SNe Alan Calder ASC FLASH Center Type Ia Supernova Team Type Ia Supernovae and Cosmology August 5, 2004 An Advanced

More information

FORMATION AND EVOLUTION OF COMPACT BINARY SYSTEMS

FORMATION AND EVOLUTION OF COMPACT BINARY SYSTEMS FORMATION AND EVOLUTION OF COMPACT BINARY SYSTEMS Main Categories of Compact Systems Formation of Compact Objects Mass and Angular Momentum Loss Evolutionary Links to Classes of Binary Systems Future Work

More information

Rare Isotopes: The DNA of Stellar Explosions

Rare Isotopes: The DNA of Stellar Explosions Rare Isotopes: The DNA of Stellar Explosions Chris Wrede Michigan State University National Superconducting Cyclotron Laboratory PHY492/802 substitute lecture April 21 st, 2017 Outline Introduction: How

More information

Oxygen-rich Stardust Grains from Novae

Oxygen-rich Stardust Grains from Novae Oxygen-rich Stardust Grains from Novae Frank Gyngard 1 Department of Terrestrial Magnetism, Carnegie Institution of Washington 5241 Broad Branch Road NW, Washington, DC 20015, USA E-mail: fgyngard@dtm.ciw.edu

More information

Using Numerical Simulations to explore a Mixing Mechanisms for Nova Enrichment Jonathan Dursi

Using Numerical Simulations to explore a Mixing Mechanisms for Nova Enrichment Jonathan Dursi The Center for Astrophysical Thermonuclear Flashes Using Numerical Simulations to explore a Mixing Mechanisms for Nova Enrichment Jonathan Dursi May 21, 2001 Alan Calder, Alexandros Alexakis, James Truran,

More information

R-process in Low Entropy Neutrino Driven Winds

R-process in Low Entropy Neutrino Driven Winds R-process in Low Entropy Neutrino Driven Winds E. Baron John J. Cowan, Tamara Rogers, 1 and Kris Gutierrez 2 Dept. of Physics and Astronomy, University of Oklahoma, 440 W. Brooks, Rm 131, Norman, OK 73019-0225

More information

Boris Gänsicke. Type Ia supernovae and their progenitors

Boris Gänsicke. Type Ia supernovae and their progenitors Boris Gänsicke Type Ia supernovae and their progenitors November 1572, in Cassiopeia: a nova a new star V~-4 Tycho Brahe: De nova et nullius aevi memoria prius visa stella (1602) October 9, 1604, in Ophiuchus

More information

arxiv: v1 [astro-ph.sr] 19 Sep 2010

arxiv: v1 [astro-ph.sr] 19 Sep 2010 Type Ia Supernovae and Accretion Induced Collapse A. J. Ruiter, K. Belczynski,, S. A. Sim, W. Hillebrandt, M. Fink and M. Kromer arxiv:1009.3661v1 [astro-ph.sr] 19 Sep 2010 Max Planck Institute for Astrophysics,

More information

Nucleosynthesis in Type I X-ray Bursts

Nucleosynthesis in Type I X-ray Bursts Nucleosynthesis in Type I X-ray Bursts A. Parikh 1,2,, J. José 1,2, G. Sala 1,2, C. Iliadis 3,4 1 Departament de Física i Enginyeria Nuclear, arxiv:1211.5900v1 [astro-ph.sr] 26 Nov 2012 Universitat Politècnica

More information

ICRC Stellar sources of the interstellar medium. Invited, Rapporteur, and Highlight papers of ICRC 2001: 52. c Copernicus Gesellschaft 2002

ICRC Stellar sources of the interstellar medium. Invited, Rapporteur, and Highlight papers of ICRC 2001: 52. c Copernicus Gesellschaft 2002 Invited, Rapporteur, and Highlight papers of ICRC 2001: 52 ICRC 2001 c Copernicus Gesellschaft 2002 Stellar sources of the interstellar medium F.-K. Thielemann 1, D. Argast 1, F. Brachwitz 1, G. Martinez-Pinedo

More information

New Reaction Rates of 64 Ge(p,γ) 65 As and 65 As(p,γ) 66 Se and the Impact on Nucleosynthesis in Type-I X-ray Bursts

New Reaction Rates of 64 Ge(p,γ) 65 As and 65 As(p,γ) 66 Se and the Impact on Nucleosynthesis in Type-I X-ray Bursts New Reaction Rates of 64 Ge(p,γ) 65 As and 65 As(p,γ) 66 Se and the Impact on Nucleosynthesis in Type-I X-ray Bursts Yi Hua LAM ( 藍乙華 ) Collaborators: Jian Jun HE ( 何建軍 ), Anuj PARIKH, Hendrik SCHATZ,

More information

3/18/14. Today on Stellar Explosions. Second Mid-Term Exam. Things to do SECOND MID-TERM EXAM. Making a millisecond pulsars spin it up!

3/18/14. Today on Stellar Explosions. Second Mid-Term Exam. Things to do SECOND MID-TERM EXAM. Making a millisecond pulsars spin it up! 3/18/14 ASTR 1040: Stars & Galaxies Binary mass transfer: accretion disk Today on Stellar Explosions Spinning up pulsars through mass transfer from (surviving!) companions White dwarf supernovae from mass

More information

THE BERMUDA TRIANGLE

THE BERMUDA TRIANGLE THE BERMUDA TRIANGLE EVOLUTION AND FATE OF 8 12 SOLAR-MASS STARS SAMUEL JONES HEIDELBERG INSTITUTE FOR THEORETICAL STUDIES MON 14 MAR 2016 18th RINGBERG WORKSHOP WHY STUDY 8-12 M STARS? Statistical significance:

More information

Stellar Explosions (ch. 21)

Stellar Explosions (ch. 21) Stellar Explosions (ch. 21) First, a review of low-mass stellar evolution by means of an illustration I showed in class. You should be able to talk your way through this diagram and it should take at least

More information

ASTRONOMY 220C ADVANCED STAGES OF STELLAR EVOLUTION AND NUCLEOSYNTHESIS. Spring, This is a one quarter course dealing chiefly with:

ASTRONOMY 220C ADVANCED STAGES OF STELLAR EVOLUTION AND NUCLEOSYNTHESIS. Spring, This is a one quarter course dealing chiefly with: This is a one quarter course dealing chiefly with: ASTRONOMY 220C ADVANCED STAGES OF STELLAR EVOLUTION AND NUCLEOSYNTHESIS Spring, 2015 http://www.ucolick.org/~woosley a) Nuclear astrophysics and the relevant

More information

Nucleosynthesis of heavy elements. Almudena Arcones Helmholtz Young Investigator Group

Nucleosynthesis of heavy elements. Almudena Arcones Helmholtz Young Investigator Group Nucleosynthesis of heavy elements Almudena Arcones Helmholtz Young Investigator Group The nuclear chart uranium masses measured at the ESR 82 silver gold r-proce path 126 stable nuclei 50 82 will be measured

More information

Nucleosynthesis in core-collapse supernovae. Almudena Arcones

Nucleosynthesis in core-collapse supernovae. Almudena Arcones Nucleosynthesis in core-collapse supernovae Almudena Arcones Nucleosynthesis in core-collapse supernovae Explosive nucleosynthesis: O, Mg, Si, S, Ca, Ti, Fe, p-process shock wave heats falling matter shock

More information

arxiv: v1 [astro-ph.sr] 28 Jun 2016

arxiv: v1 [astro-ph.sr] 28 Jun 2016 Astronomy & Astrophysics manuscript no. Jcasa revp c ESO 2018 April 4, 2018 Three dimensional simulations of turbulent convective mixing in ONe and CO classical nova explosions Jordi Casanova 1, Jordi

More information

Searching for the Progenitors of Subluminous Type Ia Supernovae with SN 2013bc

Searching for the Progenitors of Subluminous Type Ia Supernovae with SN 2013bc Hubble Space Telescope Cycle 11 General Observer Proposal Searching for the Progenitors of Subluminous Type Ia Supernovae with SN 2013bc Principal Investigator: Institution: Electronic mail: Maximilian

More information

How Nature makes gold

How Nature makes gold How Nature makes gold The role of isotopes for the origin of the elements Karlheinz Langanke GSI Helmholtzzentrum Darmstadt AAAS Symposium, Vancouver, February 20, 2012 Signatures of Nucleosynthesis solar

More information

Zach Meisel Columbus ACS February 12 th Nuclear Chemistry in the Cosmos (Zach Meisel, Ohio University) 1

Zach Meisel Columbus ACS February 12 th Nuclear Chemistry in the Cosmos (Zach Meisel, Ohio University) 1 Nuclear Chemistry in the Cosmos: The Birth of Elements in Stellar Death Zach Meisel Columbus ACS February 12 th 2018 Nuclear Chemistry in the Cosmos (Zach Meisel, Ohio University) 1 Nuclear physics experiments

More information

Stellar Evolution. Stars are chemical factories The Earth and all life on the Earth are made of elements forged in stars

Stellar Evolution. Stars are chemical factories The Earth and all life on the Earth are made of elements forged in stars Lecture 11 Stellar Evolution Stars are chemical factories The Earth and all life on the Earth are made of elements forged in stars A Spiral Galaxy (Milky Way Type) 120,000 ly A few hundred billion stars

More information

SUB-CHANDRASEKHAR-MASS WHITE DWARF DETONATIONS REVISITED

SUB-CHANDRASEKHAR-MASS WHITE DWARF DETONATIONS REVISITED Submitted Preprint typeset using L A TEX style AASTeX6 v. 1.0 SUB-CHANDRASEKHAR-MASS WHITE DWARF DETONATIONS REVISITED Ken J. Shen 1,2, Daniel Kasen 1,2,3, Broxton J. Miles 4, and Dean M. Townsley 4 1

More information

The evolution of supernova progenitors

The evolution of supernova progenitors The evolution of supernova progenitors NuGrid (p,n) (γ,α) (n,α) (α,γ) (γ,p) (n,p) Samuel Jones University of Victoria In collaboration with: R. Hirschi (Keele U), K. Nomoto (Kavli IPMU), F. Herwig (UVic),

More information

Stellar Evolution: what do we know?

Stellar Evolution: what do we know? Stellar Evolution: what do we know? New Tools - Astronomy satellite based observatories Hubble Space Telescope Compton Gamma-Ray Observatory Chandra X-Ray Observatory INTEGRAL ground based observatories

More information

THE ENERGY OF STARS NUCLEAR ASTROPHYSICS THE ORIGIN OF THE ELEMENTS

THE ENERGY OF STARS NUCLEAR ASTROPHYSICS THE ORIGIN OF THE ELEMENTS THE ENERGY OF STARS NUCLEAR ASTROPHYSICS THE ORIGIN OF THE ELEMENTS Stellar Energy Origin of the Elements Nuclear Astrophysics Astrophysics Nuclear Physics ROBERT D ESCOURT ATKINSON (1931) 1942 β MeV

More information

X-ray Studies of Classical Novae & Super Soft Sources (SSS) Jan-Uwe Ness Chandra Fellow at

X-ray Studies of Classical Novae & Super Soft Sources (SSS) Jan-Uwe Ness Chandra Fellow at X-ray Studies of Classical Novae & Super Soft Sources (SSS) Jan-Uwe Ness Chandra Fellow at outburst Nuclear burning ignites WD Accreted material: H-rich! Radiatively driven expansion Nuclear burning Pseudo

More information

The Deaths of Stars. The Southern Crab Nebula (He2-104), a planetary nebula (left), and the Crab Nebula (M1; right), a supernova remnant.

The Deaths of Stars. The Southern Crab Nebula (He2-104), a planetary nebula (left), and the Crab Nebula (M1; right), a supernova remnant. The Deaths of Stars The Southern Crab Nebula (He2-104), a planetary nebula (left), and the Crab Nebula (M1; right), a supernova remnant. Once the giant phase of a mediummass star ends, it exhales its outer

More information

CONVECTION AND DEFLAGRATIONS IN THE PROGENITOR STARS OF SUPERNOVAE

CONVECTION AND DEFLAGRATIONS IN THE PROGENITOR STARS OF SUPERNOVAE CONVECTION AND DEFLAGRATIONS IN THE PROGENITOR STARS OF SUPERNOVAE SAMUEL JONES HEIDELBERG INSTITUTE FOR THEORETICAL STUDIES THU 10 NOV 2016 Kavli IPMU, Tokyo STELLAR EVOLUTION AN OVERVIEW Image credit:

More information

Direct (α,p) Reaction Measurements with HELIOS and the study of 20 Ne(α,p) 23 Na

Direct (α,p) Reaction Measurements with HELIOS and the study of 20 Ne(α,p) 23 Na Direct (α,p) Reaction Measurements with HELIOS and the study of 20 Ne(α,p) 23 Na Jianping Lai, Daniel Santiago-Gonzalez Catherine M. Deibel Louisiana State University 9/13/16 INPC 2016 1 (α,p) Reactions

More information

Introduction to nucleosynthesis in asymptotic giant branch stars

Introduction to nucleosynthesis in asymptotic giant branch stars Introduction to nucleosynthesis in asymptotic giant branch stars Amanda Karakas 1 and John Lattanzio 2 1) Research School of Astronomy & Astrophysics Mt. Stromlo Observatory 2) School of Mathematical Sciences,

More information

Nuclear physics input for the r-process

Nuclear physics input for the r-process Nuclear physics input for the r-process Gabriel Martínez Pinedo INT Workshop The r-process: status and challenges July 28 - August 1, 2014 Nuclear Astrophysics Virtual Institute Outline 1 Introduction

More information

White dwarf dynamical interactions. Enrique García-Berro. Jornades de Recerca, Departament de Física

White dwarf dynamical interactions. Enrique García-Berro. Jornades de Recerca, Departament de Física White dwarf dynamical interactions Enrique García-Berro Jornades de Recerca, Departament de Física CONTENTS 1. Introduction 2. Smoothed Particle Hydrodynamics 3. White dwarf mergers 4. White dwarf collisions

More information

Nuclear Physics and Astrophysics of Exploding Stars

Nuclear Physics and Astrophysics of Exploding Stars Nuclear Physics and Astrophysics of Exploding Stars Lars Bildsten Kavli Institute for Theoretical Physics Department of Physics University of California, Santa Barbara Dan Kasen (UCSC), Kevin Moore (UCSB),

More information

Lecture 9. Hydrogen Burning Nucleosynthesis, Classical Novae, and X-Ray Bursts. red = slow

Lecture 9. Hydrogen Burning Nucleosynthesis, Classical Novae, and X-Ray Bursts. red = slow Lecture 9 Hydrogen Burning Nucleosynthesis, Classical Novae, and X-Ray Bursts red = slow Once the relevant nuclear physics is known in terms of the necessary rate factors, = N A < v> = f(t, ), the evolution

More information

Chemical Enrichment History Of Abell 3112 Galaxy Cluster Out To The Virial Radius

Chemical Enrichment History Of Abell 3112 Galaxy Cluster Out To The Virial Radius Chemical Enrichment History Of Abell 3112 Galaxy Cluster Out To The Virial Radius, Esra Bulbul, E. Nihal Ercan, Randall K. Smith, Mark W. Bautz, Mike Loewenstein, Mike McDonald & Eric D. Miller Rome, Italy

More information

SUB-CHANDRASEKHAR-MASS WHITE DWARF DETONATIONS REVISITED

SUB-CHANDRASEKHAR-MASS WHITE DWARF DETONATIONS REVISITED Accepted Preprint typeset using L A TEX style AASTeX6 v. 1.0 SUB-CHANDRASEKHAR-MASS WHITE DWARF DETONATIONS REVISITED Ken J. Shen 1,2, Daniel Kasen 1,2,3, Broxton J. Miles 4, and Dean M. Townsley 4 1 Department

More information

Thermonuclear shell flashes II: on WDs (or: classical novae)

Thermonuclear shell flashes II: on WDs (or: classical novae) : on WDs (or: classical novae) Observations Thermonuclear flash model Nova/X-ray burst comparison Effects of super-eddington fluxes To grow or not to grow = to go supernova Ia or not.. 1 Nova Cygni 1975

More information

arxiv: v1 [astro-ph.sr] 3 Apr 2017

arxiv: v1 [astro-ph.sr] 3 Apr 2017 Nucleosynthesis in thermonuclear supernovae Ivo Seitenzahl and Dean Townsley arxiv:1704.00415v1 [astro-ph.sr] 3 Apr 2017 Abstract The explosion energy of thermonuclear (Type Ia) supernovae is derived from

More information

Hydrogen burning under extreme conditions

Hydrogen burning under extreme conditions Hydrogen burning under extreme conditions Scenarios: Hot bottom burning in massive AGB stars (> 4 solar masses) (T 9 ~ 0.08) Nova explosions on accreting white dwarfs (T 9 ~ 0.4) X-ray bursts on accreting

More information

The r-process and the νp-process

The r-process and the νp-process The r-process and the νp-process Carla Fröhlich Enrico Fermi Fellow The Enrico Fermi Institute University of Chicago GCE April 30 / 2010 Solar System Abundances?? 2 s-process peak r-process peak s-process

More information

b delayed g decay measurements to probe thermonuclear astrophysical explosions

b delayed g decay measurements to probe thermonuclear astrophysical explosions b delayed g decay measurements to probe thermonuclear astrophysical explosions Chris Wrede Michigan State University and NSCL for the NSCL E10034, E12028 & E14066 collaborations NIC XIII, Debrecen, Hungary

More information

The 33 S(p,γ) 34 Cl reaction in classical nova explosions

The 33 S(p,γ) 34 Cl reaction in classical nova explosions The 33 S(p,γ) 34 Cl reaction in classical nova explosions Anuj Parikh Physik Department E12 TU-München Galactic 26g Al (t 1/2 = 717 000 y) Galactic 34m Cl (t 1/2 = 32 min) N. Machiavelli et al. (R. Diehl

More information

Einführung in die Astronomie II

Einführung in die Astronomie II Einführung in die Astronomie II Teil 10 Peter Hauschildt yeti@hs.uni-hamburg.de Hamburger Sternwarte Gojenbergsweg 112 21029 Hamburg 15. Juni 2017 1 / 47 Overview part 10 Death of stars AGB stars PNe SNe

More information

Experimental Approach to Explosive Hydrogen Burning with Low-Energy RI Beams

Experimental Approach to Explosive Hydrogen Burning with Low-Energy RI Beams Hirschegg 06-1 Experimental Approach to Explosive Hydrogen Burning with Low-Energy RI Beams S. Kubono Center for Nuclear Study (CNS) University of Tokyo 1. Low Energy RI Beam Production 2. Proton Resonance

More information

Introductory Astrophysics A113. Death of Stars. Relation between the mass of a star and its death White dwarfs and supernovae Enrichment of the ISM

Introductory Astrophysics A113. Death of Stars. Relation between the mass of a star and its death White dwarfs and supernovae Enrichment of the ISM Goals: Death of Stars Relation between the mass of a star and its death White dwarfs and supernovae Enrichment of the ISM Low Mass Stars (M

More information

Termination of Stars

Termination of Stars Termination of Stars Some Quantum Concepts Pauli Exclusion Principle: "Effectively limits the amount of certain kinds of stuff that can be crammed into a given space (particles with personal space ). When

More information

Classification of nova spectra

Classification of nova spectra International Workshop on Stellar Spectral Libraries ASI Conference Series, 2012, Vol. 6, pp 143 149 Edited by Ph. Prugniel & H. P. Singh Classification of nova spectra G. C. Anupama Indian Institute of

More information

Supernova Explosions. Novae

Supernova Explosions. Novae Supernova Explosions Novae Novae occur in close binary-star systems in which one member is a white dwarf. First, mass is transferred from the normal star to the surface of its white dwarf companion. 1

More information

Research Day of Universe Cluster: 44 Ti

Research Day of Universe Cluster: 44 Ti Research Day of Universe Cluster: 44 Ti 9:30 From whence doth ye cometh, 44 Ti? A. Parikh (TUM) 9:40 Cosmic sources of 44 Ti R. Diehl (MPE) 9:50 Gamma-ray lines from 44 Ti sources: COMPTEL A. Iyudin (MSU,

More information

Unravelling the Explosion Mechanisms

Unravelling the Explosion Mechanisms SFB-TR7 Lectures, INAF-Osservatorio Astronomico di Brera 19. & 20. November 2013 The Violent Deaths of Massive Stars Unravelling the Explosion Mechanisms Connecting Theory to Observations Hans-Thomas Janka

More information

The Evolution of Close Binaries

The Evolution of Close Binaries The Evolution of Close Binaries Philipp Podsiadlowski (Oxford) The case of RS Ophiuchi as a test of binary stellar evolution as a potential Type Ia supernova (SN Ia) progenitor I. Testing Binary Evolution:

More information

QRPA calculations of stellar weak-interaction rates

QRPA calculations of stellar weak-interaction rates QRPA calculations of stellar weak-interaction rates P. Sarriguren Instituto de Estructura de la Materia CSIC, Madrid, Spain Zakopane Conference on Nuclear Physics: Extremes of Nuclear Landscape. August

More information

Billions and billions of stars

Billions and billions of stars Billions and billions of stars The Trifid Nebula Distance ~5200 lyrs Star forming regions include the famous Orion nebula About 1500 light years away. The belt of Orion The Flame Nebula can you spot the

More information

Supernovae from massive stars

Supernovae from massive stars Supernovae from massive stars Events in which heavy elements are made that enrich the interstellar medium from which later stars form Alak K. Ray, TIFR, Mumbai A core collapse Supernova: Death of a massive

More information

Evolution, Death and Nucleosynthesis of the First Stars

Evolution, Death and Nucleosynthesis of the First Stars First Stars IV, Kyoto, Japan, May 24, 2012 Alexander Heger Stan Woosley Ken Chen Pamela Vo Bernhad Müller Thomas Janka Candace Joggerst http://cosmicexplosions.org Evolution, Death and Nucleosynthesis

More information

Astrophysical Explosions in Binary Stellar Systems. Dr. Maurizio Falanga

Astrophysical Explosions in Binary Stellar Systems. Dr. Maurizio Falanga Astrophysical Explosions in Binary Stellar Systems Dr. Maurizio Falanga The X-ray binary systems haracteristics Classification after the mass of the companion Kuulkers, in t Zand & Lasota 2009 Falanga

More information

The population of Galactic X-ray bursters as seen by JEMX onboard INTEGRAL

The population of Galactic X-ray bursters as seen by JEMX onboard INTEGRAL The population of Galactic X-ray bursters as seen by JEMX onboard INTEGRAL Celia Sánchez-Fernández ISOC ESAC, Madrid, Spain In collaboration with: E. Kuulkers, D. Galloway, J. Chenevez C. Sanchez-Fernandez

More information

Figure 2.11 from page 152 of Exploring the Heart of Ma2er

Figure 2.11 from page 152 of Exploring the Heart of Ma2er Nuclear Astrophysics The aim of nuclear astrophysics is to understand those nuclear reacbons that shape much of the nature of the visible universe. Nuclear fusion is the engine of stars; it produces the

More information

Supernova Explosions. Novae

Supernova Explosions. Novae Supernova Explosions Novae Novae occur in close binary-star systems in which one member is a white dwarf. First, mass is transferred from the normal star to the surface of its white dwarf companion. 1

More information

arxiv:astro-ph/ v1 27 Jul 2004

arxiv:astro-ph/ v1 27 Jul 2004 1 Prospects for obtaining an r process from Gamma Ray Burst Disk Winds arxiv:astro-ph/0407555v1 27 Jul 2004 G. C. McLaughlin a, and R. Surman b a Department of Physics, North Carolina State University,

More information