Michele Punturo INFN Perugia and EGO On behalf of the ET design team.

Size: px
Start display at page:

Download "Michele Punturo INFN Perugia and EGO On behalf of the ET design team."

Transcription

1 Michele Punturo INFN Perugia and EGO On behalf of the ET design team 58th Fujihara Seminar, May

2 ET is a design study of a 3 rd generation GW detector supported by the European Commission under the Framework Programme 7 (FP7) Capacities Research Infrastructures Design studies Identification of the future European research infrastructures It is a ~3 years project supported by EC with about 3 M It started in the middle of 2008 and will end in th Fujihara Seminar, May

3 ET design study team is composed by all the major groups leading the experimental Gravitational wave search in Europe: Virgo & GEO Participant no. Participant organization name Country 1 European Gravitational Observatory Italy-France 2 Istituto Nazionale di Fisica Nucleare Italy 3 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.v., acting through Max- Planck-Institut für Gravitationsphysik Germany 4 Centre National de la Recherche Scientifique France 5 University of Birmingham United Kingdom 6 University of Glasgow United Kingdom 7 NIKHEF The Netherlands 8 Cardiff University United Kingdom 58th Fujihara Seminar, May

4 The ET design study aim is to deliver, at the end of the 3 years, a conceptual design study of a 3 rd generation gravitational wave (GW) observatory: Science potentialities New infrastructures New site New detection and analysis technologies Feasibility study Identification of the needed infrastructures Identification of the crucial technologies Identification of the fundamental elements of the design Science case development Technical details to be defined in a future phase 58th Fujihara Seminar, May

5 To understand the role and the interest about the ET physics, we should insert it in our evolution path of the GW detectors 58th Fujihara Seminar, May

6 Same Infrastructures, improvements of the current technologies, some prototyping of the 2 nd generation technologies Same Infrastructures, engineering of new technologies developed by currently advanced R&D Scientific Run / LIGO - Virgo Commis -sioning/ Upgrade eligo, Virgo+ Scientific run(s) Upgra des & Runs advligo, advvirgo Commissioning LCGT Commissioning Construction LCGT Scientific run(s) Commissioning Upgrades (High frequency oriented?) and runs ET Conceptual Design ET Preparatory Phase and Technical Design Preliminary site preparation 2017 ET Construction th Fujihara Seminar, May

7 Site and infrastructure Thermal noise of mirrors and suspensions / cryogenics Optical configuration Astrophysics issues Management J. v.d. Brand F. Ricci A. Freise B. S. Sathyaprakash J. Colas M. Punturo H. Lück 58th Fujihara Seminar, May

8 Since GW detection is expected to occur in the advanced detectors, the ET science targets are mainly addressed to observational aspects: Astrophysics: Measure in great detail the physical parameters of the stellar bodies composing the binary systems NS-NS, NS-BH, BH-BH Constrain the Equation of State of NS through the measurement of the merging phase of BNS of the NS stellar modes of the gravitational continuous wave emitted by a pulsar NS Contribute to solve the GRB enigma Relativity Compare the numerical relativity model describing the coalescence of intermediate mass black holes Cosmology Measure few cosmological parameters using the GW signal from BNS emitting also an e.m. signal (like GRB) Probe the first instant of the universe and its evolution through the measurement of the GW stochastic background Astro-particle: Contribute to the measure the neutrino mass 58th Fujihara Seminar, May

9 Advanced detectors will be able to determine BNS rates in the local Universe Routine detections at low to medium SNR But high precision fundamental physics, astrophysics and cosmology may not be possible would require good quality high-snr events ET sensitivity target aims to decrease the noise level of about one order of magnitude in the full Hz range It will permit to access a larger amount of information embedded in the BS (BNS, BH-NS, BH-BH) chirp signal Higher harmonics Merging phase 58th Fujihara Seminar, May

10 Credits: B. Sathyaprakash A coalescing binary emits most of its GW radiation at twice of the orbital frequency Current (an partially advanced) interferometers, basing the detection upon the matched filtering technique, far more sensitive to phasing than amplitude modulation, privilege the correct phase reconstruction of the signal (PN approximations) rather than the amplitude modulation PN approximation is currently known to 3.5 PN in phase and 3 PN in amplitude and up to eight harmonics of the orbital frequency Harmonics PN corrections The so-called restricted waveform uses only the dominant harmonic The full waveform includes radiation emitted at other frequencies These higher harmonics are due to higher multipole moments associated with the source 58th Fujihara Seminar, May

11 The first consequence of the higher harmonics is a richer spectrum of the signal detected by the ITF Dominant harmonic 5 harmonics McKechan et al (2008) Plots normalized to LIGO I Higher harmonics do not greatly increase overall power, but move power toward higher frequencies, which can make higher-mass systems detectable even if quadrupole signal is outside the observing band BBH improved identification 58th Fujihara Seminar, May

12 Harmonics do increase structure, greatly enhance parameter determination, by breaking degeneracy between parameters Antenna response is a linear combination of the two polarizations: h ( t) = A A H + H + + H + and H contain the physics of the source (masses and spins) and time and phase at coalescence A + (α, δ,ψ,d L,i) and A (α, δ,ψ,d L,i) contain the geometry of the sourcedetector system Right ascension Declination Polarization angle Luminosity distance Orientation of the binary wrt the line of sight 58th Fujihara Seminar, May Credits: B.Sathyaprakash

13 To fully reconstruct the wave one would need to make five measurements: (α, δ,ψ,d L,i) Restricted PN approximation can only measure the random phase of the signal at the coalescing time To fully determine a source are needed either 5 co-located detectors ( a la sphere ) or 3 distant detectors (3 amplitudes, 2 time delays) Detecting the harmonics one can measure the random phase of the signal with one harmonic, orientation of the binary with another and the ratio A + /A with the third Two detectors at the same site in principle allow the measurement of two amplitudes, the polarization, inclination angle and the ratio A + /A the source can be fully resolved In practice, because of the limited accuracy, two ET observatories could fully resolve source: 4 amplitudes from two sites, one time delay 58th Fujihara Seminar, May 2009 Credits: B.Sathyaprakash 13

14 EOS of the NS is still unknown Why it pulses? Is it really a NS or the core is made by strange matter? Like in the ordinary stars, the study of the stellar internal modes (asteroseismology) could help to understand the composition of the NS Credits: B.Schutz 58th Fujihara Seminar, May

15 Measuring the frequency and the decay time of the stellar mode it is possible to reconstruct the Mass and the Radius of the NS Knowing the Mass and the Radius it is possible to constrain the equation of state (EOS) Credits: B.Schutz 58th Fujihara Seminar, May

16 A fraction of the NS emits e.m. waves: Pulsars These stars could emit also GW (at twice of the spinning rotation) if a quadrupolar moment is present in the star: ellipticity The amount of ellipticity that a NS could support is related to the EOS through the composition of the star: i.e. high ellipticity solid quark star? Crust could sustain only ε 10-7 Solid cores sustains ε~10-3 Role of the magnetic field? Imagine.gsfc.nasa.gov 58th Fujihara Seminar, May

17 LIGO limited the fraction of energy emitted by the Crab pulsar through GW to ~6% (ε< ) Virgo, at the start of the next science run could in few weeks set the upper limit for the Vela. Spin down limits (1 year of integration) Credit: B. Krishnan 58th Fujihara Seminar, May

18 Credits: B.Schutz Upper limits placed on the ellipticity of known galactic pulsars on the basis of 1 year of AdVirgo observation time. Credit: C.Palomba 58th Fujihara Seminar, May

19 The aim of ET is to design a GW detector with roughly a factor 10 lower noise (broadband) respect to advanced detectors What are the ideas under evaluations? 58th Fujihara Seminar, May

20 10-16 Seismic h(f) [1/sqrt(Hz)] Hz Frequency [Hz] 10 khz 58th Fujihara Seminar, May

21 Actions: Drawbacks/Difficulties Step 1: increase of the arm length: New site, new costs h=δl/l 0 : 10 km arm, reduction factor 3.3 respect to Virgo New infrastructure!! Angular noises Step 2: reduction and optimization of the quantum noise: Increase of the laser power from 125W to 500W Optimization of the optical parameters (signal recycling, ) Laser R&D difficulties Thermal lensing effects Introduction of a 10dB squeezing Optical losses crucial 58th Fujihara Seminar, May

22 2 nd generation 10km+High Frequency Credits: S.Hild 58th Fujihara Seminar, May

23 To improve the sensitivity in the medium-low frequency range the mirror and suspension thermal noise must be decreased. Minimization of the mirror thermal noise Reduction of the mechanical dissipations and of the thermo-elastic and thermo-refractive couplings New materials Cryogenics New materials Larger beams Larger test masses sizes or new beam geometries 58th Fujihara Seminar, May

24 Source Symbol Spectral density Crucial Parameters Coating brownian Bulk brownian Coating Thermoelastic Bulk Thermoelastic Coating Thermorefractive S coat Brown S bulk Brown S coat α T S bulk α T S coat β T.( f.( f, ( f, ( f, ( f ) ) ) ) ) S coat α, T S S coat brown bulk brown ( f ) = ( f ) = 2k b T Φ 2k T Φ b coat 3 2 s π Y wf sub 3 2 s π Y wf ( 1+ σ ) 2 ( 1 σ ) sub 2 ( 1 σ ) 2 2 8kbT αc sub d ( f ) = π κ C ρ f w S bulk α, T S 2 4kbT α ( f ) = 5 2 π coat β, T ( f ) = π s s 2 s s 2 2 N 2 ( 1+ σ ) sub ( C ρ ) w f s 2k 3 2 w b 2 s T 2 β s 2 eff G 2 κ κ ρ C s 2 λ s s f ( ) ω T, 1/w, Φ coat T, 1/w, Φ sub T 2, 1/w 2, α coat T 2, 1/w 3, α sub T 2, 1/w 2, β Bulk thermorefractive S bulk β T, ( f ) S s TR β s L = 8ζ 2 π 3 2 w 2 k b T κ ρ C s 2 s s f T 2, 1/w 2, β Credits: J.Franc et al. 58th Fujihara Seminar, May

25 SiO2 Silicon Sapphire 300K CRYO 300 K CRYO 300 K CRYO Φ assumed κ - W/(m.K) 1.38 C - J/(K.Kg) ~ K @10K K α -1/K K β -1/K Credits: J.Franc et al. 58th Fujihara Seminar, May

26 Friedrich-Schiller-University Jena Institute of Solid State Physics Low Temperature Physics Dissipation peaks due to impurities in silicon bulk materials impurities/ defects Φ min = 2.2 x 5.8 K Silicon, Ø 3 x 12 mm Christian Schwarz th Fujihara Seminar, May

27 Credits: J.Franc et al. 58th Fujihara Seminar, May

28 SiO 2 Al 2 O 3 Ta 2 O 5 TiO 2 HfO 2 Φ Density κ - W/(m.K) 5@10K C - J/(K.Kg) 0.1@10K 3.17@50K α -1/K β -1/K 1.01 A lot of missing parameters Y σ same 0.2 values taken 0.21 at cryo and K n Credits: J.Franc et al. 58th Fujihara Seminar, May

29 SiO 2 -Ta 2 O 5 coatings : 17 doublets Some parameters of Ta2O5 are at 300K (unkown at low temperature) Credits: J.Franc et al. 58th Fujihara Seminar, May

30 58th Fujihara Seminar, May

31 Sapphire Silicon Transparent at the standard wavelenght (1064nm) New wavelenght nm New laser Upgrade of the 2 nd generation lasers Upgrade of the 2 nd generation coatings Adv LIGO and LCGT studies available Bonding technique to be evaluated New coatings? Minimization of the thermal lensing issues High thermal conductivity Very low optical absorption Standard bonding technology 58th Fujihara Seminar, May

32 Silicon is a favorable material to realize the suspension fibres of a 3 rd generation GW detector: High thermal conductivity High mechanical strength (>7GPa) Linear expansion coefficient vanishes at low temperature Thermo-elastic noise reduction Possibility to realize a monolithic suspension through silicate bonding Spoiling of the thermal conductivity? thermal noise [m/sqrt(hz)] Brownian Thermoelastic total temperature [K] 58th Fujihara Seminar, May

33 Reduction of the thermal noise Reduction of the thermal lensing problems Increase of the anthropogenic seismic noise Increase of the complexity of the infrastructures P.Puppo et al. Prototype cooled down to 24K: 58th Fujihara Seminar, May

34 Adopting all the solutions listed in the previous slides it is possible to approach the ideal 3 rd generation sensitivity Many unresolved technical questions th Fujihara Seminar, May 2009 Credits: S.Hild 34

35 Reduction of the seismic excitation: Learning from the LISM lesson in Kamioka (Japan) New underground facility ~1 Hz seismic filtering system? Reduction of the gravity gradient noise (NN) New underground facility Suppression of the NN through correlation measurements? Clever design of the cave doesn t help (G. Cella studies) Reduction of the radiation pressure noise Heavier mirrors Limitation to 400mm of the substrate diameter if in Silicon 58th Fujihara Seminar, May

36 Under discussion the location In Europe? Verification with geologists The deepness Measurement of seismic noise in the undeground laboratories in Europe and USA Analytical and finite element modeling of the seismic and newtonian noise underground The Geometry Triangular, L-shaped? Costs? 58th Fujihara Seminar, May

37 Going underground we could gain 2-3 orders in seismic excitation, but we still need to filter A 50 m tall Virgo-like Super- Attenuator? Credit: K.Kuroda Horizontal LISM Courtesy G. Cella Optimized at 1Hz Moscow June 2008 Violin modes to be considered 58th Fujihara Seminar, May

38 Integrate the requirements to improve the high frequency regime (high power, high finesse, heavy test masses, squeezing, ) with the requirements to reduce the low frequency noises (cryogenics, long suspension system, underground installation, ) in a single detector is probably too difficult. But we could integrate them in a single observatory if we use the Xylophone principle (R.De Salvo 2003) Integrate more than one detector in a single observatory Each detector is devoted to a reduced frequency range 58th Fujihara Seminar, May

39 HF detector: high power (3MW), room temperature, normal suspensions, LG33 mode, no gravity gradient noise subtraction LF detector: low power (18kW), cryogenic, underground location, 50m suspensions, TEM00 mode, gravity gradient subtraction Credits: S.Hild 58th Fujihara Seminar, May

40 The ET design study aim is to verify the feasibility of a new 3 rd generation GW observatory, having a factor 10 improved sensitivity respect to the advanced detectors The science potentiality of this observatory are under evaluation, but ET could permit to realize precision astronomy and cosmology measurements A new underground facility is needed to improve the sensitivity at low frequency, but technical difficulties are suggesting to evaluate a Xylophone option A worldwide effort and collaboration is required to elaborate the new design concepts of such as detector Networking is still a necessity with the 3 rd generation GW detectors 58th Fujihara Seminar, May

41 58th Fujihara Seminar, May

42 58th Fujihara Seminar, May

43 Higher harmonics could have an important role depending on the masses, mass asymmetry and the inclination angle McKechan et al (2008) 58th Fujihara Seminar, May

44 In principle, the correct way to model the merging of a black holes binary is to fully use the General Relativity (GR) Unable to analytically solve the Einstein Field Equation: Use of the Numerical Relativity (NR) There is no fundamental obstacle to long-term (i.e. covering ~10+ orbits) NR calculations of the three stages of the binary evolution: inspiral, merger and ringdown But NR simulations are computationally expensive and building a template bank out of them is prohibitive Far from the merging phase it is still possible to use post-newtonian approximation Hybrid templates could be realized and carefully tested with ET overlapping in the phenomenological template the PN and NR waveforms Credits: Bruno Giacomazzo (ILIAS meeting) Red NR waveform Black PN 3.5 waveform Green phenomenological template 58th Fujihara Seminar, May

45 The late coalescence and the merging phase contain information about the GR models Test it through ET will permit to verify the NR modeling This is true also for the NS-NS coalescence where the merging phase contains tidal deformation modeling and could constrain, through numerical simulations, of the Equation Of State (EOS) 58th Fujihara Seminar, May

46 The beam size could be used to reduce the thermal noise (and lensing) both of the substrate and of the coating More clever ideas needed for the coatings New material? New design? High order modes? strain noise [1/ Hz] ET addet Credits: R. Nawrodt et al. assuming advdet. aspect ratio w [mm] m [kg] frequency [Hz] ROC m~ w 3 58th Fujihara Seminar, May

Michele Punturo INFN Perugia and EGO On behalf of the ET design team.

Michele Punturo INFN Perugia and EGO On behalf of the ET design team. Michele Punturo INFN Perugia and EGO On behalf of the ET design team http://www.et-gw.eu/ 58th Fujihara Seminar, May 2009 1 http://www.et-gw.eu/ ET is a design study of a 3 rd generation GW detector supported

More information

Fulvio Ricci Università di Roma La Sapienza INFN Roma on behalf of the design study team

Fulvio Ricci Università di Roma La Sapienza INFN Roma on behalf of the design study team Fulvio Ricci Università di Roma La Sapienza INFN Roma on behalf of the design study team TAUP 2009 - Roma 1 !The ET project: organization and the road map! The ET scientific targets!conclusion TAUP 2009

More information

Michele Punturo INFN Perugia and EGO

Michele Punturo INFN Perugia and EGO Michele Punturo INFN Perugia and EGO CSNII workshop - April, 06-07, 2009 1 ET is a design study supported by the European Commission under the Framework Programme 7 (FP7) It is a ~3 years project supported

More information

ET: Einstein Telescope

ET: Einstein Telescope ET: Einstein Telescope Michele Punturo INFN Perugia On behalf of the ET design study team ILIAS General meeting, Jaca Feb 2008 1 Evolution of the current GW detectors Current Gravitational Wave interferometric

More information

Overview of future interferometric GW detectors

Overview of future interferometric GW detectors Overview of future interferometric GW detectors Giovanni Andrea Prodi, University of Trento and INFN, many credits to Michele Punturo, INFN Perugia New perspectives on Neutron Star Interiors Oct.9-13 2017,

More information

Future underground gravitational wave observatories. Michele Punturo INFN Perugia

Future underground gravitational wave observatories. Michele Punturo INFN Perugia Future underground gravitational wave observatories Michele Punturo INFN Perugia Terrestrial Detectors Advanced detectors 2015-2025 GEO, Hannover, 600 m aligo Hanford, 4 km 2015 2016 AdV, Cascina, 3 km

More information

Gravitational Wave Detection from the Ground Up

Gravitational Wave Detection from the Ground Up Gravitational Wave Detection from the Ground Up Peter Shawhan (University of Maryland) for the LIGO Scientific Collaboration LIGO-G080393-00-Z From Simple Beginnings Joe Weber circa 1969 AIP Emilio Segre

More information

Michele Punturo. INFN Perugia and EGO On behalf of the Einstein Telescope Design Study Team

Michele Punturo. INFN Perugia and EGO On behalf of the Einstein Telescope Design Study Team Michele Punturo INFN Perugia and EGO On behalf of the Einstein Telescope Design Study Team http://www.et-gw.eu/ SIF - Bologna 2010 1 3 rd generation: Why? Evolution of the GW detectors (Virgo example):

More information

Gravitational Wave Astronomy

Gravitational Wave Astronomy Gravitational Wave Astronomy Giles Hammond SUPA, University of Glasgow, UK on behalf of the LIGO Scientific Collaboration and the Virgo Collaboration 14 th Lomonosov conference on Elementary Particle Physics

More information

LIGO Status and Advanced LIGO Plans. Barry C Barish OSTP 1-Dec-04

LIGO Status and Advanced LIGO Plans. Barry C Barish OSTP 1-Dec-04 LIGO Status and Advanced LIGO Plans Barry C Barish OSTP 1-Dec-04 Science Goals Physics» Direct verification of the most relativistic prediction of general relativity» Detailed tests of properties of gravitational

More information

The Advanced LIGO detectors at the beginning of the new gravitational wave era

The Advanced LIGO detectors at the beginning of the new gravitational wave era The Advanced LIGO detectors at the beginning of the new gravitational wave era Lisa Barsotti MIT Kavli Institute LIGO Laboratory on behalf of the LIGO Scientific Collaboration LIGO Document G1600324 LIGO

More information

Status and Plans for Future Generations of Ground-based Interferometric Gravitational-Wave Antennas

Status and Plans for Future Generations of Ground-based Interferometric Gravitational-Wave Antennas Status and Plans for Future Generations of Ground-based Interferometric Gravitational-Wave Antennas 4 th international LISA Symposium July 22, 2002 @ Penn State University Seiji Kawamura National Astronomical

More information

Development of ground based laser interferometers for the detection of gravitational waves

Development of ground based laser interferometers for the detection of gravitational waves Development of ground based laser interferometers for the detection of gravitational waves Rahul Kumar ICRR, The University of Tokyo, 7 th March 2014 1 Outline 1. Gravitational waves, nature & their sources

More information

GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral

GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral Lazzaro Claudia for the LIGO Scientific Collaboration and the Virgo Collaboration 25 October 2017 GW170817 PhysRevLett.119.161101

More information

Advanced Virgo: Status and Perspectives. A.Chiummo on behalf of the VIRGO collaboration

Advanced Virgo: Status and Perspectives. A.Chiummo on behalf of the VIRGO collaboration Advanced Virgo: Status and Perspectives A.Chiummo on behalf of the VIRGO collaboration Advanced Virgo 2 Advanced Virgo What s that? 3 Advanced Virgo Advanced Virgo (AdV): upgrade of the Virgo interferometric

More information

Status of LIGO. David Shoemaker LISA Symposium 13 July 2004 LIGO-G M

Status of LIGO. David Shoemaker LISA Symposium 13 July 2004 LIGO-G M Status of LIGO David Shoemaker LISA Symposium 13 July 2004 Ground-based interferometric gravitational-wave detectors Search for GWs above lower frequency limit imposed by gravity gradients» Might go as

More information

LIGOʼs first detection of gravitational waves and the development of KAGRA

LIGOʼs first detection of gravitational waves and the development of KAGRA LIGOʼs first detection of gravitational waves and the development of KAGRA KMI2017 Jan. 2017 Tokyo Institute of Technology Kentaro Somiya Self Introduction Applied Physics (U Tokyo) NAOJ 2000-04 Albert-Einstein

More information

Gravitational Wave Detectors: Back to the Future

Gravitational Wave Detectors: Back to the Future Gravitational Wave Detectors: Back to the Future Raffaele Flaminio National Astronomical Observatory of Japan University of Tokyo, March 12th, 2017 1 Summary Short introduction to gravitational waves (GW)

More information

Large-scale Cryogenic Gravitational wave Telescope (LCGT) TAMA/CLIO/LCGT Collaboration Kazuaki KURODA

Large-scale Cryogenic Gravitational wave Telescope (LCGT) TAMA/CLIO/LCGT Collaboration Kazuaki KURODA 29-March, 2009 JPS Meeting@Rikkyo Univ Large-scale Cryogenic Gravitational wave Telescope (LCGT) TAMA/CLIO/LCGT Collaboration Kazuaki KURODA Overview of This talk Science goal of LCGT First detection of

More information

Takaaki Kajita, JGRG 22(2012) Status of KAGRA RESCEU SYMPOSIUM ON GENERAL RELATIVITY AND GRAVITATION JGRG 22. November

Takaaki Kajita, JGRG 22(2012) Status of KAGRA RESCEU SYMPOSIUM ON GENERAL RELATIVITY AND GRAVITATION JGRG 22. November Takaaki Kajita, JGRG 22(2012)111402 Status of KAGRA RESCEU SYMPOSIUM ON GENERAL RELATIVITY AND GRAVITATION JGRG 22 November 12-16 2012 Koshiba Hall, The University of Tokyo, Hongo, Tokyo, Japan RESCEU

More information

Displacement Noises in Laser Interferometric Gravitational Wave Detectors

Displacement Noises in Laser Interferometric Gravitational Wave Detectors Gravitational Wave Physics @ University of Tokyo Dec 12, 2017 Displacement Noises in Laser Interferometric Gravitational Wave Detectors Yuta Michimura Department of Physics, University of Tokyo Slides

More information

Status and Prospects for LIGO

Status and Prospects for LIGO Status and Prospects for LIGO Crab Pulsar St Thomas, Virgin Islands Barry C. Barish Caltech 17-March-06 LIGO Livingston, Louisiana 4 km 17-March-06 Confronting Gravity - St Thomas 2 LIGO Hanford Washington

More information

LIGO: On the Threshold of Gravitational-wave Astronomy

LIGO: On the Threshold of Gravitational-wave Astronomy LIGO: On the Threshold of Gravitational-wave Astronomy Stan Whitcomb LIGO/Caltech IIT, Kanpur 18 December 2011 Outline of Talk Quick Review of GW Physics and Astrophysics LIGO Overview» Initial Detectors»

More information

Overview of Gravitational Wave Observations by LIGO and Virgo

Overview of Gravitational Wave Observations by LIGO and Virgo Overview of Gravitational Wave Observations by LIGO and Virgo Giovanni Andrea Prodi Virgo Group at Padova-Trento, LIGO Scientific Collaboration and Virgo Collaboration Vulcano Workshop 2016, May 23 Published

More information

Gravitational Waves and LIGO

Gravitational Waves and LIGO Gravitational Waves and LIGO Ray Frey, University of Oregon 1. GW Physics and Astrophysics 2. How to detect GWs The experimental challenge 3. Prospects June 16, 2004 R. Frey QNet 1 General Relativity Some

More information

Review of LIGO Upgrade Plans

Review of LIGO Upgrade Plans Ando Lab Seminar April 13, 2017 Review of LIGO Upgrade Plans Yuta Michimura Department of Physics, University of Tokyo Contents Introduction A+ Voyager Cosmic Explorer Other issues on ISC Summary KAGRA+

More information

Ground-based GW detectors: status of experiments and collaborations

Ground-based GW detectors: status of experiments and collaborations Ground-based GW detectors: status of experiments and collaborations C.N.Man Univ. Nice-Sophia-Antipolis, CNRS, Observatoire de Cote d Azur A short history GW & how to detect them with interferometry What

More information

Gravitational wave detection. K.A. Strain

Gravitational wave detection. K.A. Strain Gravitational wave detection K.A. Strain Contents gravitational waves: introduction sources of waves, amplitudes and rates basics of GW detection current projects future plans and hopes Gravitational Waves:

More information

Innovative Technologies for the Gravitational-Wave Detectors LIGO and Virgo

Innovative Technologies for the Gravitational-Wave Detectors LIGO and Virgo Innovative Technologies for the Gravitational-Wave Detectors LIGO and Virgo Jan Harms INFN, Sezione di Firenze On behalf of LIGO and Virgo 1 Global Network of Detectors LIGO GEO VIRGO KAGRA LIGO 2 Commissioning

More information

LISA: Probing the Universe with Gravitational Waves. Tom Prince Caltech/JPL. Laser Interferometer Space Antenna LISA

LISA: Probing the Universe with Gravitational Waves. Tom Prince Caltech/JPL.  Laser Interferometer Space Antenna LISA : Probing the Universe with Gravitational Waves Tom Caltech/JPL Laser Interferometer Space Antenna http://lisa.nasa.gov Gravitational Wave Astronomy is Being Born LIGO, VIRGO, GEO, TAMA 4000m, 3000m, 2000m,

More information

Requirements for a 3G GW observatory

Requirements for a 3G GW observatory Requirements for a 3G GW observatory SOME THOUGHTS FOR DISCUSSION HARALD LÜCK 3G Observatory & 3G Network Requirements = f(science, funding, politics, ) requirements for an individual observatory and the

More information

The Status of KAGRA Underground Cryogenic Gravitational Wave Telescope

The Status of KAGRA Underground Cryogenic Gravitational Wave Telescope TAUP2017 @ Laurentian University Jul 26, 2017 The Status of KAGRA Underground Cryogenic Gravitational Wave Telescope Yuta Michimura Department of Physics, University of Tokyo on behalf of the KAGRA Collaboration

More information

Gravitational Waves & Intermediate Mass Black Holes. Lee Samuel Finn Center for Gravitational Wave Physics

Gravitational Waves & Intermediate Mass Black Holes. Lee Samuel Finn Center for Gravitational Wave Physics Gravitational Waves & Intermediate Mass Black Holes Lee Samuel Finn Center for Gravitational Wave Physics Outline What are gravitational waves? How are they produced? How are they detected? Gravitational

More information

Gravitational wave cosmology Lecture 2. Daniel Holz The University of Chicago

Gravitational wave cosmology Lecture 2. Daniel Holz The University of Chicago Gravitational wave cosmology Lecture 2 Daniel Holz The University of Chicago Thunder and lightning Thus far we ve only seen the Universe (and 95% of it is dark: dark matter and dark energy). In the the

More information

Present and Future. Nergis Mavalvala October 09, 2002

Present and Future. Nergis Mavalvala October 09, 2002 Gravitational-wave Detection with Interferometers Present and Future Nergis Mavalvala October 09, 2002 1 Interferometric Detectors Worldwide LIGO TAMA LISA LIGO VIRGO GEO 2 Global network of detectors

More information

GW Observation of Gravitational Waves from a Binary Black Hole Merger

GW Observation of Gravitational Waves from a Binary Black Hole Merger GW150914 Observation of Gravitational Waves from a Binary Black Hole Merger F. Marion for the LIGO Scientific Collaboration and the Virgo Collaboration Seminar at CPPM, 2016 March 3 Introduction Sources

More information

How the detection happened

How the detection happened For the first time, scientists have observed ripples in the fabric of spacetime called gravitational waves, arriving at the earth from a cataclysmic event in the distant universe. This confirms a major

More information

EINSTEIN TELESCOPE rd. 3 generation GW detector

EINSTEIN TELESCOPE rd. 3 generation GW detector EINSTEIN TELESCOPE rd 3 generation GW detector http://www.et-gw.eu/ Dorota Gondek-Rosińska University of Zielona Góra w imieniu polskiego ET konsorcjum (UW, UZG, UwB, PW, CAMK, IMPAN ) Gravitational wave

More information

Long-term strategy on gravitational wave detection from European groups

Long-term strategy on gravitational wave detection from European groups Longterm strategy on gravitational wave detection from European groups Barry Barish APPEC Meeting London, UK 29Jan04 International Interferometer Network Simultaneously detect signal (within msec) LIGO

More information

Nonequilibrium issues in macroscopic experiments

Nonequilibrium issues in macroscopic experiments Nonequilibrium issues in macroscopic experiments L. Conti, M. Bonaldi, L. Rondoni www.rarenoise.lnl.infn.it European Research Council Gravitational Wave detector Motivation: GWs will provide new and unique

More information

LIGO Observational Results

LIGO Observational Results LIGO Observational Results Patrick Brady University of Wisconsin Milwaukee on behalf of LIGO Scientific Collaboration LIGO Science Goals Direct verification of two dramatic predictions of Einstein s general

More information

Synergy with Gravitational Waves

Synergy with Gravitational Waves Synergy with Gravitational Waves Alexandre Le Tiec and Jérôme Novak Laboratoire Univers et Théories Observatoire de Paris / CNRS LIGO, Virgo, ( elisa, ET,... ( What is a gravitational wave? A gravitational

More information

Gravity s Standard Sirens. B.S. Sathyaprakash School of Physics and Astronomy

Gravity s Standard Sirens. B.S. Sathyaprakash School of Physics and Astronomy Gravity s Standard Sirens B.S. Sathyaprakash School of Physics and Astronomy What this talk is about Introduction to Gravitational Waves What are gravitational waves Gravitational wave detectors: Current

More information

Prospects for joint transient searches with LOFAR and the LSC/Virgo gravitational wave interferometers

Prospects for joint transient searches with LOFAR and the LSC/Virgo gravitational wave interferometers Prospects for joint transient searches with LOFAR and the LSC/Virgo gravitational wave interferometers Ed Daw - University of Sheffield On behalf of the LIGO Scientific Collaboration and the Virgo collaboration

More information

The LIGO Project: a Status Report

The LIGO Project: a Status Report The LIGO Project: a Status Report LIGO Hanford Observatory LIGO Livingston Observatory Laura Cadonati LIGO Laboratory, MIT for the LIGO Scientific Collaboration Conference on Gravitational Wave Sources

More information

Dynamics of star clusters containing stellar mass black holes: 1. Introduction to Gravitational Waves

Dynamics of star clusters containing stellar mass black holes: 1. Introduction to Gravitational Waves Dynamics of star clusters containing stellar mass black holes: 1. Introduction to Gravitational Waves July 25, 2017 Bonn Seoul National University Outline What are the gravitational waves? Generation of

More information

What have we learned from coalescing Black Hole binary GW150914

What have we learned from coalescing Black Hole binary GW150914 Stas Babak ( for LIGO and VIRGO collaboration). Albert Einstein Institute (Potsdam-Golm) What have we learned from coalescing Black Hole binary GW150914 LIGO_DCC:G1600346 PRL 116, 061102 (2016) Principles

More information

Optical Techniques for Gravitational-Wave Detection

Optical Techniques for Gravitational-Wave Detection Optical Techniques for Gravitational-Wave Detection M. Tacca Nikhef - Amsterdam Nikhef- 2017 July 14th Born in Novara (Italy) Introducing Myself PostDoc Fellow @ Nikhef (since July 2017) Laurea & PhD @

More information

Gravitational waves from the merger of two black holes

Gravitational waves from the merger of two black holes Gravitational waves from the merger of two black holes Opening of the Academic Year by the Department of Physics and Astronomy (DPA) VU, Amsterdam, September 21 2016; Jo van den Brand; jo@nikhef.nl Event

More information

Searching for Stochastic Gravitational Wave Background with LIGO

Searching for Stochastic Gravitational Wave Background with LIGO Searching for Stochastic Gravitational Wave Background with LIGO Vuk Mandic University of Minnesota 09/21/07 Outline LIGO Experiment:» Overview» Status» Future upgrades Stochastic background of gravitational

More information

Discovery of Gravita/onal Waves

Discovery of Gravita/onal Waves Discovery of Gravita/onal Waves Avto Kharchilava QuarkNet Workshop, August 2016 https://www.ligo.caltech.edu/news/ligo20160211 Gravity Einstein s General theory of relativity: Gravity is a manifestation

More information

Searching for gravitational waves. with LIGO detectors

Searching for gravitational waves. with LIGO detectors Werner Berger, ZIB, AEI, CCT Searching for gravitational waves LIGO Hanford with LIGO detectors Gabriela González Louisiana State University On behalf of the LIGO Scientific Collaboration KITP Colloquium,

More information

LIGO Detection of Gravitational Waves. Dr. Stephen Ng

LIGO Detection of Gravitational Waves. Dr. Stephen Ng LIGO Detection of Gravitational Waves Dr. Stephen Ng Gravitational Waves Predicted by Einstein s general relativity in 1916 Indirect confirmation with binary pulsar PSR B1913+16 (1993 Nobel prize in physics)

More information

First Virgo Science Run. Press Conference - May 22, 2007 Cascina, Pisa, Italy PRESS INFORMATION

First Virgo Science Run. Press Conference - May 22, 2007 Cascina, Pisa, Italy PRESS INFORMATION First Virgo Science Run Press Conference - May 22, 2007 Cascina, Pisa, Italy PRESS INFORMATION Introduction On May 18 th, the Virgo interferometer started its first science run. This is a major milestone

More information

Gravitational Wave Astronomy the sound of spacetime. Marc Favata Kavli Institute for Theoretical Physics

Gravitational Wave Astronomy the sound of spacetime. Marc Favata Kavli Institute for Theoretical Physics Gravitational Wave Astronomy the sound of spacetime Marc Favata Kavli Institute for Theoretical Physics What are gravitational waves? Oscillations in the gravitational field ripples in the curvature of

More information

Gravitational-wave Detectability of Equal-Mass Black-hole Binaries With Aligned Spins

Gravitational-wave Detectability of Equal-Mass Black-hole Binaries With Aligned Spins Intro Simulations Results Gravitational-wave Detectability of Equal-Mass Black-hole Binaries With Aligned Spins Jennifer Seiler Christian Reisswig, Sascha Husa, Luciano Rezzolla, Nils Dorband, Denis Pollney

More information

Next Generation Interferometers

Next Generation Interferometers Next Generation Interferometers TeV 06 Madison Rana Adhikari Caltech 1 Advanced LIGO LIGO mission: detect gravitational waves and initiate GW astronomy Next detector» Should have assured detectability

More information

Probing the Universe for Gravitational Waves

Probing the Universe for Gravitational Waves Probing the Universe for Gravitational Waves "Colliding Black Holes" Credit: National Center for Supercomputing Applications (NCSA) Barry C. Barish Caltech Argonne National Laboratory 16-Jan-04 LIGO-G030523-00-M

More information

How to listen to the Universe?

How to listen to the Universe? How to listen to the Universe? Optimising future GW observatories for astrophysical sources Stefan Hild NIKHEF, May 2009 Overview Microphones to detect gravitational waves Why haven t we heard GW so far?

More information

The direct detection of gravitational waves: The first discovery, and what the future might bring

The direct detection of gravitational waves: The first discovery, and what the future might bring The direct detection of gravitational waves: The first discovery, and what the future might bring Chris Van Den Broeck Nikhef - National Institute for Subatomic Physics Amsterdam, The Netherlands Physics

More information

The LIGO Experiment Present and Future

The LIGO Experiment Present and Future The LIGO Experiment Present and Future Keith Riles University of Michigan For the LIGO Scientific Collaboration APS Meeting Denver May 1 4, 2004 LIGO-G040239-00-Z What are Gravitational Waves? Gravitational

More information

Searching for Gravitational Waves from Coalescing Binary Systems

Searching for Gravitational Waves from Coalescing Binary Systems Searching for Gravitational Waves from Coalescing Binary Systems Stephen Fairhurst Cardiff University and LIGO Scientific Collaboration 1 Outline Motivation Searching for Coalescing Binaries Latest Results

More information

Newtonian instantaneous action at a distance General Relativity information carried by gravitational radiation at the speed of light

Newtonian instantaneous action at a distance General Relativity information carried by gravitational radiation at the speed of light Modern View of Gravitation Newtonian instantaneous action at a distance G µ = 8 µ # General Relativity information carried by gravitational radiation at the speed of light Gravitational Waves GR predicts

More information

Advanced LIGO, LIGO-Australia and the International Network

Advanced LIGO, LIGO-Australia and the International Network Advanced LIGO, LIGO-Australia and the International Network Stan Whitcomb LIGO/Caltech IndIGO - ACIGA meeting on LIGO-Australia 8 February 2011 Gravitational Waves Einstein in 1916 and 1918 recognized

More information

Gravitational waves and fundamental physics

Gravitational waves and fundamental physics Gravitational waves and fundamental physics Michele Maggiore Département de physique théorique Avignon, April 2008 Experimental situation Timeframe: present (LIGO, Virgo) ~2011-2014 advanced LIGO/Virgo

More information

Finding Black Holes with Lasers

Finding Black Holes with Lasers Finding Black Holes with Lasers Andreas Freise Royal Institute of Great Brtitain 18.02.2013 [Image shows guide laser at Allgäu Public Observatory in Ottobeuren, Germany. Credit: Martin Kornmesser] LIGO-G1300827

More information

Advanced LIGO Status Report

Advanced LIGO Status Report Advanced LIGO Status Report Gregory Harry LIGO/MIT On behalf of the LIGO Science Collaboration 22 September 2005 ESF PESC Exploratory Workshop Perugia Italy LIGO-G050477 G050477-00-R Advanced LIGO Overview

More information

The gravitational waves detection: 20 years of research to deliver the LIGO/VIRGO mirrors. Christophe MICHEL on behalf of LMA Team

The gravitational waves detection: 20 years of research to deliver the LIGO/VIRGO mirrors. Christophe MICHEL on behalf of LMA Team Christophe MICHEL on behalf of LMA Team 1 The event February 11th 2016 LIGO and VIRGO announced the first direct detection of gravitational waves https://www.youtube.com/watch?v=vd1pak5f6gq http://journals.aps.org/prl/abstract/10.1103/physrevlett.1

More information

How to measure a distance of one thousandth of the proton diameter? The detection of gravitational waves

How to measure a distance of one thousandth of the proton diameter? The detection of gravitational waves How to measure a distance of one thousandth of the proton diameter? The detection of gravitational waves M. Tacca Laboratoire AstroParticule et Cosmologie (APC) - Paris Journée GPhys - 2016 July 6th General

More information

Gravity. Newtonian gravity: F = G M1 M2/r 2

Gravity. Newtonian gravity: F = G M1 M2/r 2 Gravity Einstein s General theory of relativity : Gravity is a manifestation of curvature of 4- dimensional (3 space + 1 time) space-time produced by matter (metric equation? g μν = η μν ) If the curvature

More information

Confronting Theory with Gravitational Wave Observations

Confronting Theory with Gravitational Wave Observations Gravitation: A Decennial Perspective Confronting Theory with Gravitational Wave Observations B F Schutz Max Planck Institute for Gravitational Physics () Golm/Potsdam Germany The AEI congratulates The

More information

Fundamental Physics, Astrophysics and Cosmology with ET

Fundamental Physics, Astrophysics and Cosmology with ET Fundamental Physics, Astrophysics and Cosmology with ET B.S. Sathyaprakash (CU) and Bernard Schutz (CU, AEI) based on a Living Review article with a similar title (in preparation) ET Science Summary Fundamental

More information

The gravitational wave detector VIRGO

The gravitational wave detector VIRGO The gravitational wave detector VIRGO for the VIRGO collaboration Raffaele Flaminio Laboratoire d Annecy-le-Vieux de Physique des Particules (LAPP) IN2P3 - CNRS Summary I. A bit of gravitational wave physics

More information

Overview Ground-based Interferometers. Barry Barish Caltech Amaldi-6 20-June-05

Overview Ground-based Interferometers. Barry Barish Caltech Amaldi-6 20-June-05 Overview Ground-based Interferometers Barry Barish Caltech Amaldi-6 20-June-05 TAMA Japan 300m Interferometer Detectors LIGO Louisiana 4000m Virgo Italy 3000m AIGO Australia future GEO Germany 600m LIGO

More information

Testing relativity with gravitational waves

Testing relativity with gravitational waves Testing relativity with gravitational waves Michał Bejger (CAMK PAN) ECT* workshop New perspectives on Neutron Star Interiors Trento, 10.10.17 (DCC G1701956) Gravitation: Newton vs Einstein Absolute time

More information

Gravity -- Studying the Fabric of the Universe

Gravity -- Studying the Fabric of the Universe Gravity -- Studying the Fabric of the Universe Barry C. Barish Caltech "Colliding Black Holes" Credit: National Center for Supercomputing Applications (NCSA) AAAS Annual Meeting Denver, Colorado 17-Feb-03

More information

Squeezed Light for Gravitational Wave Interferometers

Squeezed Light for Gravitational Wave Interferometers Squeezed Light for Gravitational Wave Interferometers R. Schnabel, S. Chelkowski, H. Vahlbruch, B. Hage, A. Franzen, and K. Danzmann. Institut für Atom- und Molekülphysik, Universität Hannover Max-Planck-Institut

More information

Gravitational-Wave Astronomy - a Long Time Coming Livia Conti, for the Virgo Collaboration Fred Raab, for the LIGO Scientific Collaboration

Gravitational-Wave Astronomy - a Long Time Coming Livia Conti, for the Virgo Collaboration Fred Raab, for the LIGO Scientific Collaboration Gravitational-Wave Astronomy - a Long Time Coming Livia Conti, for the Virgo Collaboration Fred Raab, for the LIGO Scientific Collaboration LIGO Hanford, WA LIGO Livingston, LA Virgo (Cascina, Italy) What

More information

Overview of Gravitational Wave Physics [PHYS879]

Overview of Gravitational Wave Physics [PHYS879] Overview of Gravitational Wave Physics [PHYS879] Alessandra Buonanno Maryland Center for Fundamental Physics Joint Space-Science Institute Department of Physics University of Maryland Content: What are

More information

Greedy algorithm for building a reduced basis of gravitational wave templates

Greedy algorithm for building a reduced basis of gravitational wave templates Greedy algorithm for building a reduced basis of gravitational wave templates 1 Chad Galley 2 Frank Herrmann 3 Jan Hesthaven (Advisor) 4 Evan Ochsner 5 Manuel Tiglio 3 1 Brown University, Department of

More information

Advanced Virgo: status and gravitational waves detection. Flavio Travasso on behalf of Virgo Collaboration INFN Perugia - University of Perugia - EGO

Advanced Virgo: status and gravitational waves detection. Flavio Travasso on behalf of Virgo Collaboration INFN Perugia - University of Perugia - EGO Advanced Virgo: status and gravitational waves detection Flavio Travasso on behalf of Virgo Collaboration INFN Perugia - University of Perugia - EGO Minkowski vs general metric dx dx ds 2 1 1 1 1 Flat

More information

Gravitational waves from NS-NS/BH-NS binaries

Gravitational waves from NS-NS/BH-NS binaries Gravitational waves from NS-NS/BH-NS binaries Numerical-relativity simulation Masaru Shibata Yukawa Institute for Theoretical Physics, Kyoto University Y. Sekiguchi, K. Kiuchi, K. Kyutoku,,H. Okawa, K.

More information

Probing for Gravitational Waves

Probing for Gravitational Waves Probing for Gravitational Waves LIGO Reach with LIGO AdLIGO Initial LIGO Barry C. Barish Caltech YKIS2005 Kyoto University 1-July-05 Einstein s Theory of Gravitation a necessary consequence of Special

More information

Savvas Nesseris. IFT/UAM-CSIC, Madrid, Spain

Savvas Nesseris. IFT/UAM-CSIC, Madrid, Spain Savvas Nesseris IFT/UAM-CSIC, Madrid, Spain What are the GWs (history, description) Formalism in GR (linearization, gauges, emission) Detection techniques (interferometry, LIGO) Recent observations (BH-BH,

More information

Searching for gravitational waves

Searching for gravitational waves Searching for gravitational waves Matteo Barsuglia (barsuglia@apc.univ-paris7.fr) CNRS - Laboratoire Astroparticule et Cosmologie 1 The gravitational waves (GW) Perturbations of the space-time metrics

More information

Chirplets pour la détection des ondes gravitationnelles

Chirplets pour la détection des ondes gravitationnelles Chirplets pour la détection des ondes gravitationnelles Éric Chassande-Mottin AstroParticule et Cosmologie, Paris et collaborateurs : Satya Mohapatra, Miriam Miele, Laura Cadonati, Zacharya Nemtzow Outline

More information

GW150914: Observation of gravitational waves from a binary black hole merger

GW150914: Observation of gravitational waves from a binary black hole merger IL NUOVO CIMENTO 39 C (2016) 310 DOI 10.1393/ncc/i2016-16310-2 Colloquia: La Thuile 2016 GW150914: Observation of gravitational waves from a binary black hole merger F. Marion on behalf of the LIGO Scientific

More information

Cosmology with Gravitational Wave Detectors. Maya Fishbach

Cosmology with Gravitational Wave Detectors. Maya Fishbach Cosmology with Gravitational Wave Detectors Maya Fishbach Part I: Cosmography Compact Binary Coalescenses are Standard Sirens The amplitude* of a GW from a CBC is The timescale is Measuring amplitude,

More information

Advanced VIRGO EXPERIMENT

Advanced VIRGO EXPERIMENT Advanced VIRGO EXPERIMENT Advanced VIRGO Interferometer: a second generation detector for Gravitational Waves observation F. Frasconi for the VIRGO Collaboration 16 th Lomonosov Conference Moscow State

More information

Gravitational Waves. Masaru Shibata U. Tokyo

Gravitational Waves. Masaru Shibata U. Tokyo Gravitational Waves Masaru Shibata U. Tokyo 1. Gravitational wave theory briefly 2. Sources of gravitational waves 2A: High frequency (f > 10 Hz) 2B: Low frequency (f < 10 Hz) (talk 2B only in the case

More information

LIGO and the Quest for Gravitational Waves

LIGO and the Quest for Gravitational Waves LIGO and the Quest for Gravitational Waves "Colliding Black Holes" Credit: National Center for Supercomputing Applications (NCSA) LIGO-G030523-00-M Barry C. Barish Caltech UT Austin 24-Sept-03 1 A Conceptual

More information

Black Hole Physics via Gravitational Waves

Black Hole Physics via Gravitational Waves Black Hole Physics via Gravitational Waves Image: Steve Drasco, California Polytechnic State University and MIT How to use gravitational wave observations to probe astrophysical black holes In my entire

More information

Searching for gravitational waves from neutron stars

Searching for gravitational waves from neutron stars Searching for gravitational waves from neutron stars Ian Jones D.I.Jones@soton.ac.uk General Relativity Group, Southampton University Ian Jones Searching for gravitational waves from neutron stars 1/23

More information

Gravitational Wave Searches status and plans

Gravitational Wave Searches status and plans Gravitational Wave Searches status and plans Sheila Rowan for the LSC Institute for Gravitational Research University of Glasgow RAL PPD Group 8 th October 2008 Gravitation Newton s Theory instantaneous

More information

Over View LISA - Laser Interferometer Space Antenna, is a ESA- NASA joint space mission to detect low-frequency gravitational waves.

Over View LISA - Laser Interferometer Space Antenna, is a ESA- NASA joint space mission to detect low-frequency gravitational waves. Gravitational Wave Astronomy With LISA Rajesh Kumble Nayak, IISER-Kolkata Over View LISA - Laser Interferometer Space Antenna, is a ESA- NASA joint space mission to detect low-frequency gravitational waves.

More information

Gravitational waves. What are gravitational waves (GWs)? N. K. Johnson-McDaniel. Wintersemester 2013

Gravitational waves. What are gravitational waves (GWs)? N. K. Johnson-McDaniel. Wintersemester 2013 Gravitational waves N. K. Johnson-McDaniel TPI, FSU Jena Wintersemester 2013 What are gravitational waves (GWs)? Intuitively, ripples in spacetime that carry energy and (angular) momentum away from an

More information

Gravitational Waves. Kostas Kokkotas. Eberhard Karls University of Tübingen & Aristotle University of Thessaloniki. June 17, 07 Zakopane 1

Gravitational Waves. Kostas Kokkotas. Eberhard Karls University of Tübingen & Aristotle University of Thessaloniki. June 17, 07 Zakopane 1 Gravitational Waves Kostas Kokkotas Eberhard Karls University of Tübingen & Aristotle University of Thessaloniki June 17, 07 Zakopane 1 About the lectures Theory of Gravitational Waves Gravitational Wave

More information

ET Jessica Dück, Nico Lastzka, Sebastian Steinlechner, Roman Schnabel and Karsten Danzmann

ET Jessica Dück, Nico Lastzka, Sebastian Steinlechner, Roman Schnabel and Karsten Danzmann ET Jessica Dück, Nico Lastzka, Sebastian Steinlechner, Roman Schnabel and Karsten Danzmann Absorption Measurements on Silicon Institute for Gravitational Physics, Leibniz Universität Hannover and Max Planck

More information

The Quest to Detect Gravitational Waves

The Quest to Detect Gravitational Waves The Quest to Detect Gravitational Waves Peter Shawhan California Institute of Technology / LIGO Laboratory What Physicists Do lecture Sonoma State University March 8, 2004 LIGO-G040055-00-E Outline Different

More information

Strong field tests of Gravity using Gravitational Wave observations

Strong field tests of Gravity using Gravitational Wave observations Strong field tests of Gravity using Gravitational Wave observations K. G. Arun Chennai Mathematical Institute Astronomy, Cosmology & Fundamental Physics with GWs, 04 March, 2015 indig K G Arun (CMI) Strong

More information