OSIRIS: The Latest Keck Instrument and its Science

Size: px
Start display at page:

Download "OSIRIS: The Latest Keck Instrument and its Science"

Transcription

1 OSIRIS: The Latest Keck Instrument and its Science James Larkin UCLA April 5, 2007 Photo John MacDonald CFHT

2 Outline How is OSIRIS different? Early Science Future Directions April 5, 2007 OSIRIS 2

3 How is OSIRIS Different? First it works with the Keck Adaptive Optics (AO) System So it dissects very small (~1 arcsecond) patches of the sky. Keck AO installed in 1999 High order Laser AO Just upgraded with new wfs and controller. Great performance April 5, 2007 OSIRIS 3

4 How Small is an arcsecond? Hold your thumb out at arm s length. Your thumbnail is about the same angular size as the moon, about 30 arcmin. An arcsecond is the width of your thumb held at a distance of 2km (1.3 miles) This is about 60 times smaller than the human eye can resolve. April 5, 2007 OSIRIS 4

5 The atmosphere limits angular resolution. Light from science target Perfect Plane Wave Atmosphere corrugates the wavefront Creates blurred images Seeing disk ~ 1 arcsecond Telescope System Science Camera Atmospheric cell sizes are ~20 cm They set the resolution regardless Telescope diameter. April 5, 2007 OSIRIS 5

6 Light from science target AO measures and corrects for the atmospheric turbulence. Light from reference star Creates partially sharpened images FWHM ~ arcsecond Strehl Ratio ~ Percentage of power restored to core. Deformable Mirror Science Camera Beam Splitter Computer Wavefront Sensor April 5, 2007 OSIRIS 6

7 Na Laser Guide Star AO Sodium Layer Altitude of 90km (mesosphere) 5-10 km thick. From ablation of meteorites High Power Laser Tuned to 589 nm Resonant scattering Claire Max, LLNL April 5, 2007 OSIRIS 7

8 Laser Guide Star Produces star at high altitude Can be placed directly on the target. Sodium Beacon Rayleigh Back Scatter April 5, 2007 OSIRIS 8 From Claire Max

9 AO on real objects Neptune Redshift 0.5 Disk Galaxy April 5, 2007 OSIRIS 9

10 Spectrographs April 5, 2007 OSIRIS 10

11 Spectrographs April 5, 2007 OSIRIS 11

12 Slit Spectroscopy Deimos, LRIS April 5, 2007 OSIRIS 12

13 AO Focus Pupil Plane Lenslet Array 1mm MEMs Optical - Infrasil, biconvex elements. Thickness is 1.0 mm with EFL of 0.8 mm. Pitch is 250 microns. 72x72 lenslet square area centered in 1.5 diameter circular substrate. ~98% fill factor April 5, 2007 OSIRIS 13

14 Dispersing Lenslet Spots April 5, 2007 OSIRIS 14

15 Dispersing Lenslet Spots April 5, 2007 OSIRIS 15

16 Dispersing Lenslet Spots April 5, 2007 OSIRIS 16

17 5% Bandpass OSIRIS Spectra White Light (3072 spectra) Arc Lines (3072 spectra) April 5, 2007 OSIRIS 17

18 Hn3 Diffraction-limited pinholes FWHM = 1.78 lenslets = 36 mas. April 5, 2007 OSIRIS 18

19 UCLA Infrared Lab Founded in 1989 Part of UCO Professors: Ian McLean and James Larkin Graduate Students: Matthew Barczys, Michael McElwain, Emily Rice, Sara Salha, Erin Smith, Shelley Wright Engineering Staff: Ted Aliado, George Brims, John Canfield, Chris Johnson, Evan Kress, Ken Magnone, John Milburn, Eric Wang, Jason Weiss. Major Instruments: GEMINI, NAVYCAM, KCAM*, NIRSPEC*, FLITECAM, NIRC2*, OSIRIS*, SHARC* Future Instruments: GPI IFU*, MOSFIRE, IRIS* *Optimized for AO April 5, 2007 OSIRIS 19

20 New Technologies made OSIRIS possible Hawaii-2 Detector (2048x2048) Rockwell R=3900 broadband spectrum requires >1700 pixels Extremely low dark currents (0.025 e/sec) which is still above background between OH-lines at AO platescales. 32 channels of cryogenic preamplifiers built at UCLA. Operates at about 60K or -350 F. April 5, 2007 OSIRIS 20

21 Small pupils require fast lenslets, which require a fast spectrograph. Large all metal off-axis optics - SSG Inc. April 5, 2007 OSIRIS 21

22 Fixed Grating Diffraction Products ruled directly on gold coating. The desire for high repeatibility, ease of reduction and calibration favor a fixed grating. Large format detector allows us to fit full broad band in one shot. Blazing the grating at 6.5 microns places each order within different bands. Order: 3 rd 4 th 5 th 6th Range: cm ~Band: K H J z April 5, 2007 OSIRIS 22

23 Six internal cryogenic mechanisms Designed and built at UCLA Each mechanism must run many thousands of times at -350 F. Special dry lubricants. Great care is used in selecting materials. April 5, 2007 OSIRIS 23

24 April 5, 2007 OSIRIS 24

25 April 5, 2007 OSIRIS 25

26 April 5, 2007 OSIRIS 26

27 April 5, 2007 OSIRIS 27

28 April 5, 2007 OSIRIS 28

29 First light Feb 22, 2005 clear with about 1 seeing FWHM=0.043 at K 40% Strehl at K First target was within 0.15 of field center. 0.2 April 5, 2007 OSIRIS 29

30 NGC 4151 Nearby Galaxy with a central active blackhole. April 5, 2007 OSIRIS 30

31 nucleus Flux [a.u.] H2 HeI H2 Brγ H2 [Ca VIII] off-nucleus [Fe II] CO λ [micron] April 5, 2007 OSIRIS 31

32 nucleus Flux [a.u.] H2 HeI H2 Brγ H2 [Ca VIII] off-nucleus [Fe II] CO λ [micron] April 5, 2007 OSIRIS 32

33 NGC Maps April 5, 2007 OSIRIS 33

34 Each pixel=129 km 0.8 Stratosphere Surface April 5, 2007 OSIRIS 34 Bouchez and OSIRIS Team

35 LGS Observations of V723 Cas (Nova Cas 1995) Campbell, Lyke, Team Keck Resolve Novae Shells Observe morphology & kinematics Directly determine distance Spatially distinct emission regions? [Si VI] μm [Al IX] μm Brγ μm April 5, 2007 OSIRIS 35

36 3D Visualization Red: [Al IX] Blue: [Si VI] Green: Brγ April 5, 2007 OSIRIS 36

37 How old is our Milky Way Galaxy? NGC 1232 Galaxies are a massive collection of stars, gas, dust, and dark matter Ages of oldest stars (white dwarfs) show a Milky Way age of 7.3 Billion Years Old Clusters of stars in the Milky Way implies an age between 7.5 to 10 Billion Years Old Unknown Birthdate for Spiral Galaxies??? Shelley Wright April 5, 2007 OSIRIS 37

38 Spiral Galaxy s Unique Rotation April 5, 2007 OSIRIS 38

39 OSIRIS LGS-AO Observations of Galaxies 9.5 Billion Years Ago 9.6 Gyr 9.7 Gyr 9.5 Gyr Gyr 9.6 Gyr Hα emission redshifted into the near infrared April 5, 2007 OSIRIS 39

40 Candidate Disk Galaxy 9.3 Billion Years Ago Wright et al 2007 April 5, 2007 OSIRIS 40

41 OSIRIS: Galaxies in the Early Universe Observe spectral shifts of hydrogen emission lines due to velocity offsets. Velocity maps (center column) show unexpected patternssome rotate, some don t! Suggests a complex fragmentation view of galaxy formation. (L to R) Line emission, velocity, and velocity dispersion maps for 3 target galaxies. April 5, 2007 OSIRIS 41 Results in preparation: D. Law, C. Steidel, D. Erb, J. Larkin, S. Wright, et al. These data obtainable only with Keck LGS + OSIRIS.

42 4c48.48:Radio Galaxy OSIRIS (z=2.343, 11.1 Billion light years) 1 [OIII] (500.7nm) Steps=27 km/s H+K image Carson et al kpc Weiss and OSIRIS Team April 5, 2007 OSIRIS 42

43 Last night New OSIRIS redshift record of z=6.42 ~10 9 solar mass blackhole (Quasar) Capak, Scoville, Larkin & Wright Light from 12.9 Billion years ago Seen only 800 Million years after the Big Bang. April 5, 2007 OSIRIS 43

44 Variability of Sgr A* K-band 0.02 /lenslet 15 minutes per slice With Ghez et al. Laser Shuttered by Telescope Crossing SGR A * AU Time April 5, 2007 OSIRIS 44

45 HD G1 Primary Binary L Dwarf companions April 5, 2007 OSIRIS 45

46 High Contrast Imaging Mike McElwain s Thesis At moderate Strehl ratios (< 0.95) and small separations (< 1 ), speckle noise produced by atmospheric wavefront distortion and imperfect optics are the dominate noise source. Typical speckle pattern for Keck II + OSIRIS Imager Innovative techniques for enhancing contrast Simultaneous Differential Imaging Spectral Suppression Speckles are wavelength dependent and can be modeled for each wavelength. Keck II + OSIRIS Spec in the Kbb filter April 5, 2007 OSIRIS 46

47 GQ Lup Possible planetary companion (J=13mag). Companion is 250 times fainter and only 0.73 away. 10 Minute exposure with Keck. McElwain, Metchev and OSIRIS Team April 5, 2007 OSIRIS 47

48 Future IFS: GPI: Gemini Planet Imager Instrument for the Gemini Telescopes PI: Bruce Macintosh (LLNL) PS: James Graham (UCB) Colloborations at LLNL, HIA, AMNH, JPL, U.of Montreal, and UCSC. UCLA will be responsible for the infrared integral field spectrograph. April 5, 2007 OSIRIS 48

49 GPI Main Mission Goal of GPI is to look at nearby young stars (about 100 stars) and try and find Jovian planets that are still self-luminous. Problem remains, the star is still much brighter (>1,000,000) and within 1 arcsecond of the planet. GPI is an extreme AO system with special coronagraph and interferometric calibration system. April 5, 2007 OSIRIS 49

50 Why an IFU? It takes a spectrum! At Strehl ratios of ~95%, dominant background is in speckles. A Planet will be fainter than many of these speckles. But the speckles are really little rainbows! So an IFU will see a different speckle pattern at each wavelength. April 5, 2007 OSIRIS 50

51 Speckles In Standard Image April 5, 2007 OSIRIS 51

52 Speckles with IFU April 5, 2007 OSIRIS 52

53 IRIS: Super OSIRIS for TMT April 5, 2007 OSIRIS 53

54 IRIS Optics Expandable with dithered lenslets. Lenslet Array 4.3 m Common reimager camera lens Alternate Gratings On Turret Imager Filter Wheels April 5, 2007 OSIRIS F/15 AO 54 Focus

55 Scientific Justifications Star and planet formation (YSO s) Probably only one per field. Stellar Clusters / population studies Single Field many objects Proportional to field size Galactic Center Single Field many objects. Requires precision astrometry Planets & Moons One per field AGN Quasars Radio Galaxies One per field Strong Gravitational Lenses Typically 1 or less in separation or extent Spatially resolved kinematics and chemistry within high z galaxies. Core sizes 0.2, scale 1 =9 kpc Res~4000 K~22-23mag April 5, 2007 OSIRIS 55

56 Summary OSIRIS is now in regular use at Keck. IFSs are becoming the instrument of choice for AO systems. TPF-C had an IFS as its baseline. At UCLA we re working to lead diffraction-limited IFS development. OSIRIS: 2005 GPI: 2010 IRIS: 2015 April 5, 2007 OSIRIS 56

57 Happy Birthday Debbie! April 5, 2007 OSIRIS 57

Speckles and adaptive optics

Speckles and adaptive optics Chapter 9 Speckles and adaptive optics A better understanding of the atmospheric seeing and the properties of speckles is important for finding techniques to reduce the disturbing effects or to correct

More information

arxiv:astro-ph/ v1 29 Jul 1999

arxiv:astro-ph/ v1 29 Jul 1999 Imaging the Universe in Three Dimensions: Astrophysics with Advanced Multi-Wavelength Imaging Devices. ASP Conference Series, Vol. xxx, 2000 W. van Breugel & J. Bland-Hawthorn (eds.) Image Slicing with

More information

The Potential of Ground Based Telescopes. Jerry Nelson UC Santa Cruz 5 April 2002

The Potential of Ground Based Telescopes. Jerry Nelson UC Santa Cruz 5 April 2002 The Potential of Ground Based Telescopes Jerry Nelson UC Santa Cruz 5 April 2002 Contents Present and Future Telescopes Looking through the atmosphere Adaptive optics Extragalactic astronomy Planet searches

More information

Spectroscopy. AST443, Lecture 14 Stanimir Metchev

Spectroscopy. AST443, Lecture 14 Stanimir Metchev Spectroscopy AST443, Lecture 14 Stanimir Metchev Administrative Homework 2: problem 5.4 extension: until Mon, Nov 2 Homework 3: problems 8.32, 8.41, 10.31, 11.32 of Bradt due in class Mon, Nov 9 Reading:

More information

The NFIRAOS MCAO System on the Thirty Meter Telescope. Paul Hickson, UBC MAD

The NFIRAOS MCAO System on the Thirty Meter Telescope. Paul Hickson, UBC MAD The NFIRAOS MCAO System on the Thirty Meter Telescope Paul Hickson, UBC MAD2009 2009-06-10 TMT in a nutshell 30m f/1 primary, RC optics, 20 field of view Filled circular aperture high contrast PSF Integrated

More information

Keck/Subaru Exchange Program Subaru Users Meeting January 20, 2011

Keck/Subaru Exchange Program Subaru Users Meeting January 20, 2011 Keck/Subaru Exchange Program Subaru Users Meeting January 20, 2011 Taft Armandroff, Director W. M. Keck Observatory With science results from: Drew Newman and Richard Ellis, Caltech A. Romanowsky, J. Strader,

More information

An Introduction to. Adaptive Optics. Presented by. Julian C. Christou Gemini Observatory

An Introduction to. Adaptive Optics. Presented by. Julian C. Christou Gemini Observatory An Introduction to Adaptive Optics Presented by Julian C. Christou Gemini Observatory Gemini North in action Turbulence An AO Outline Atmospheric turbulence distorts plane wave from distant object. How

More information

Measuring Black Hole Masses in Nearby Galaxies with Laser Guide Star Adaptive Optics

Measuring Black Hole Masses in Nearby Galaxies with Laser Guide Star Adaptive Optics Measuring Black Hole Masses in Nearby Galaxies with Laser Guide Star Adaptive Optics Claire Max Anne Medling Mark Ammons UC Santa Cruz Ric Davies Hauke Engel MPE-Garching Image of NGC 6240: Bush et al.

More information

Gemini South and LMC Credit Roger Smith (CTIO/Keck) Dennis Crabtree Gemini Observatory

Gemini South and LMC Credit Roger Smith (CTIO/Keck) Dennis Crabtree Gemini Observatory Gemini South and LMC Credit Roger Smith (CTIO/Keck) Dennis Crabtree Gemini Observatory OPD, SOAR and Gemini, Campos do Jordao, March 2010 1 Instruments Gemini s strengths: Observing flexibility IR sensitivity

More information

TMT Instrumentation and Performance:

TMT Instrumentation and Performance: TMT Instrumentation and Performance: A Handbook for the July 2007 TMT Science Workshop May 24, 2007 TMT.INS.PRE.07.012.REL01 1 Important Note Feasibility studies for all TMT instrument concepts were conducted

More information

The infrared imaging spectrograph (IRIS) for TMT: sensitivities and simulations

The infrared imaging spectrograph (IRIS) for TMT: sensitivities and simulations The infrared imaging spectrograph (IRIS) for TMT: sensitivities and simulations Shelley A. Wright a*, Elizabeth J. Barton b, James E. Larkin c, Anna M. Moore d, David Crampton e,f, Luc Simard e,f, and

More information

Astronomical Research at the Center for Adaptive Optics. Sandra M. Faber, CfAO SACNAS Conference October 4, 2003

Astronomical Research at the Center for Adaptive Optics. Sandra M. Faber, CfAO SACNAS Conference October 4, 2003 Astronomical Research at the Center for Adaptive Optics Sandra M. Faber, CfAO SACNAS Conference October 4, 2003 Science with Natural Guide Stars Any small bright object can be a natural guide star: Examples:

More information

ADVANCING HIGH-CONTRAST ADAPTIVE OPTICS

ADVANCING HIGH-CONTRAST ADAPTIVE OPTICS ADVANCING HIGH-CONTRAST ADAPTIVE OPTICS S. Mark Ammons LLNL Bruce Macintosh Stanford University Lisa Poyneer LLNL Dave Palmer LLNL and the Gemini Planet Imager Team ABSTRACT A long-standing challenge has

More information

TMT Overview Telescope / Instruments / Sites

TMT Overview Telescope / Instruments / Sites 1 SUBARU N a t io na l A s t r o n o m ic a l J a p an TMT Overview Telescope / Instruments / Sites of O b s e r v a t o r y Tomonori USUDA (SUBARU Telescope) TMT Reference Design (as of Dec 06)! Costs:

More information

High Contrast Imaging: Direct Detection of Extrasolar Planets

High Contrast Imaging: Direct Detection of Extrasolar Planets High Contrast Imaging: Direct Detection of Extrasolar Planets James R. Graham University of Toronto Dunlap Institute and Astronomy & Astrophysics September 16, 2010 Exoplanet Science How and where to planets

More information

AST 101 Intro to Astronomy: Stars & Galaxies

AST 101 Intro to Astronomy: Stars & Galaxies AST 101 Intro to Astronomy: Stars & Galaxies Telescopes Mauna Kea Observatories, Big Island, HI Imaging with our Eyes pupil allows light to enter the eye lens focuses light to create an image retina detects

More information

Astronomie et astrophysique pour physiciens CUSO 2015

Astronomie et astrophysique pour physiciens CUSO 2015 Astronomie et astrophysique pour physiciens CUSO 2015 Instruments and observational techniques Adaptive Optics F. Pepe Observatoire de l Université Genève F. Courbin and P. Jablonka, EPFL Page 1 Adaptive

More information

Exoplanets Direct imaging. Direct method of exoplanet detection. Direct imaging: observational challenges

Exoplanets Direct imaging. Direct method of exoplanet detection. Direct imaging: observational challenges Black body flux (in units 10-26 W m -2 Hz -1 ) of some Solar System bodies as seen from 10 pc. A putative hot Jupiter is also shown. The planets have two peaks in their spectra. The short-wavelength peak

More information

BUILDING GALAXIES. Question 1: When and where did the stars form?

BUILDING GALAXIES. Question 1: When and where did the stars form? BUILDING GALAXIES The unprecedented accuracy of recent observations of the power spectrum of the cosmic microwave background leaves little doubt that the universe formed in a hot big bang, later cooling

More information

Keck laser guide star: Science case

Keck laser guide star: Science case Keck laser guide star: Science case Claire Max, LLNL Keck SSC Meeting September 11, 2000 Science case: Central issues How do Keck NGS and LGS AO compare with AO systems on other 8-10 m telescopes? How

More information

W. M. Keck Observatory Subaru Users Meeting

W. M. Keck Observatory Subaru Users Meeting W. M. Keck Observatory Subaru Users Meeting Taft Armandroff, Director January 16, 2013 Table of Contents Keck / Subaru Exchange Program Recent Keck Observatory Instrumentation and Adaptive Optics Development

More information

5.0 Collaborative Proposal

5.0 Collaborative Proposal 5.0 Collaborative Proposal 5.1 List (all institutions) of Proposal Participants: P.I. Claire Max (UCSC) Professor max@ucolick.org co-pi: David Koo (UCSC) Professor koo@ucolick.org co-pi: James Larkin (UCLA)

More information

Introduction to SDSS -instruments, survey strategy, etc

Introduction to SDSS -instruments, survey strategy, etc Introduction to SDSS -instruments, survey strategy, etc (materials from http://www.sdss.org/) Shan Huang 17 February 2010 Survey type Status Imaging and Spectroscopy Basic Facts SDSS-II completed, SDSS-III

More information

7. Telescopes: Portals of Discovery Pearson Education Inc., publishing as Addison Wesley

7. Telescopes: Portals of Discovery Pearson Education Inc., publishing as Addison Wesley 7. Telescopes: Portals of Discovery Parts of the Human Eye pupil allows light to enter the eye lens focuses light to create an image retina detects the light and generates signals which are sent to the

More information

Extreme AO Coronagraph Science with GPI. James R. Graham UC, Berkeley

Extreme AO Coronagraph Science with GPI. James R. Graham UC, Berkeley Extreme AO Coronagraph Science with GPI James R. Graham UC, Berkeley Outline 2 ExAOC science impact Direct vs. indirect planet searches GPI experimental design Our knowledge of exoplanets defines AO design

More information

USING THE ISS TO ASSEMBLE A VERY LARGE TELESCOPE

USING THE ISS TO ASSEMBLE A VERY LARGE TELESCOPE USING THE ISS TO ASSEMBLE A VERY LARGE TELESCOPE Holland C. Ford (JHU) and James H. Crocker (Lockheed Martin) Presented by Warren Moos (JHU) 4/15/2003 1 A 30-m Very Large Space Telescope (VLST) : Assumptions

More information

JWST/NIRSpec. P. Ferruit. (ESA JWST project scientist) Slide #1

JWST/NIRSpec. P. Ferruit. (ESA JWST project scientist) Slide #1 P. Ferruit (ESA JWST project scientist)! Slide #1 Acknowledgements Thanks for giving me the opportunity to present the NIRSpec instrument. All along this presentation you will see the results of work conducted

More information

High contrast imaging at 3-5 microns. Philip M. Hinz University of Arizona Matt Kenworthy, Ari Heinze, John Codona, Roger Angel

High contrast imaging at 3-5 microns. Philip M. Hinz University of Arizona Matt Kenworthy, Ari Heinze, John Codona, Roger Angel High contrast imaging at 3-5 microns Philip M. Hinz University of Arizona Matt Kenworthy, Ari Heinze, John Codona, Roger Angel University of Arizona ABSTRACT The 6.5 m MMT with its integrated deformable

More information

High-Redshift Galaxies: A brief summary

High-Redshift Galaxies: A brief summary High-Redshift Galaxies: A brief summary Brant Robertson (Caltech) on behalf of David Law (UCLA), Bahram Mobasher (UCR), and Brian Siana (Caltech/Incoming CGE) Observable Cosmological History t~3.7x10 5

More information

Exoplanets Direct imaging. Direct method of exoplanet detection. Direct imaging: observational challenges

Exoplanets Direct imaging. Direct method of exoplanet detection. Direct imaging: observational challenges Black body flux (in units 10-26 W m -2 Hz -1 ) of some Solar System bodies as seen from 10 pc. A putative hot Jupiter is also shown. The planets have two peaks in their spectra. The short-wavelength peak

More information

POSITION SENSITIVE DETECTORS - 8. Dept. Physics & Astronomy

POSITION SENSITIVE DETECTORS - 8. Dept. Physics & Astronomy POSITION SENSITIVE DETECTORS - 8 Optical and IR Applications in Astronomy and Astrophysics Ian S. McLean Dept. Physics & Astronomy University it of California, i Los Angeles INTRODUCTION 400 th anniversary

More information

Classical Interferometric Arrays. Andreas Quirrenbach Landessternwarte Heidelberg

Classical Interferometric Arrays. Andreas Quirrenbach Landessternwarte Heidelberg Classical Interferometric Arrays Andreas Quirrenbach Landessternwarte Heidelberg The VLT Interferometer Tucson 11/14/2006 Andreas Quirrenbach 2 Optical / Infrared Interferometry Today Access to milliarcsecond-scale

More information

Keck Adaptive Optics Note 1069

Keck Adaptive Optics Note 1069 Keck Adaptive Optics Note 1069 Tip-Tilt Sensing with Keck I Laser Guide Star Adaptive Optics: Sensor Selection and Performance Predictions DRAFT to be updated as more performance data becomes available

More information

Searching for Other Worlds: The Methods

Searching for Other Worlds: The Methods Searching for Other Worlds: The Methods John Bally 1 1 Center for Astrophysics and Space Astronomy Department of Astrophysical and Planetary Sciences University of Colorado, Boulder The Search Extra-Solar

More information

Why Use a Telescope?

Why Use a Telescope? 1 Why Use a Telescope? All astronomical objects are distant so a telescope is needed to Gather light -- telescopes sometimes referred to as light buckets Resolve detail Magnify an image (least important

More information

GEMINI 8-M Telescopes Project

GEMINI 8-M Telescopes Project GEMINI 8-M Telescopes Project RPT-PS-G0065 The Gemini Instrumentation Program F. C. Gillett, D. A. Simons March 25, 1996 GEMINI PROJECT OFFICE 950 N. Cherry Ave. Tucson, Arizona 85719 Phone: (520) 318-8545

More information

Black Holes in Hibernation

Black Holes in Hibernation Black Holes in Hibernation Black Holes in Hibernation Only about 1 in 100 galaxies contains an active nucleus. This however does not mean that most galaxies do no have SMBHs since activity also requires

More information

Adaptive Optics for the Giant Magellan Telescope. Marcos van Dam Flat Wavefronts, Christchurch, New Zealand

Adaptive Optics for the Giant Magellan Telescope. Marcos van Dam Flat Wavefronts, Christchurch, New Zealand Adaptive Optics for the Giant Magellan Telescope Marcos van Dam Flat Wavefronts, Christchurch, New Zealand How big is your telescope? 15-cm refractor at Townsend Observatory. Talk outline Introduction

More information

Black Holes and Active Galactic Nuclei

Black Holes and Active Galactic Nuclei Black Holes and Active Galactic Nuclei A black hole is a region of spacetime from which gravity prevents anything, including light, from escaping. The theory of general relativity predicts that a sufficiently

More information

The Near-Infrared Spectrograph on JWST: Killer Science Enabled by Amazing Technology. Jason Tumlinson STScI Hubble Science Briefing Nov.

The Near-Infrared Spectrograph on JWST: Killer Science Enabled by Amazing Technology. Jason Tumlinson STScI Hubble Science Briefing Nov. The Near-Infrared Spectrograph on JWST: Killer Science Enabled by Amazing Technology Jason Tumlinson STScI Hubble Science Briefing Nov. 21, 2013 1.) Seek the first stars and galaxies that formed in the

More information

Gemini: A Visiting DMD-based spectro-imager

Gemini: A Visiting DMD-based spectro-imager BATMAN @ Gemini: A Visiting DMD-based spectro-imager Frederic Zamkotsian, Julien Zoubian, Romain Thomas, Carlo Schimd, Sylvain de la Torre, Eric Jullo, Olivier Ilbert, Samuel Boissier, Georges Comte, Jean-Claude

More information

The Large Synoptic Survey Telescope

The Large Synoptic Survey Telescope The Large Synoptic Survey Telescope Philip A. Pinto Steward Observatory University of Arizona for the LSST Collaboration 17 May, 2006 NRAO, Socorro Large Synoptic Survey Telescope The need for a facility

More information

Science with Micado. the high resolution camera for the E-ELT Renato Falomo. INAF Observatory of Padova, Italy. 25 February IASF, Milano

Science with Micado. the high resolution camera for the E-ELT Renato Falomo. INAF Observatory of Padova, Italy. 25 February IASF, Milano Science with Micado the high resolution camera for the E-ELT Renato Falomo INAF Observatory of Padova, Italy 25 February 2010 -- IASF, Milano Overview of MICADO (Tehnology & Science) Resolved stellar population

More information

1 Lecture, 2 September 1999

1 Lecture, 2 September 1999 1 Lecture, 2 September 1999 1.1 Observational astronomy Virtually all of our knowledge of astronomical objects was gained by observation of their light. We know how to make many kinds of detailed measurements

More information

W. M. KECK OBSERVATORY AWARDED NSF GRANT TO DEVELOP NEXT-GENERATION ADAPTIVE OPTICS SYSTEM

W. M. KECK OBSERVATORY AWARDED NSF GRANT TO DEVELOP NEXT-GENERATION ADAPTIVE OPTICS SYSTEM Media Contact Mari-Ela Chock Telephone (808) 881-3827 Cell (808) 554-0567 Email mchock@keck.hawaii.edu Website www.keckobservatory.org FOR IMMEDIATE RELEASE October 4, 2018 W. M. KECK OBSERVATORY AWARDED

More information

Properties of the Solar System

Properties of the Solar System Properties of the Solar System Dynamics of asteroids Telescopic surveys, especially those searching for near-earth asteroids and comets (collectively called near-earth objects or NEOs) have discovered

More information

Extragalactic Sub-Committee, Keck NGAO

Extragalactic Sub-Committee, Keck NGAO Extragalactic Sub-Committee, Keck NGAO Claire Max, Tommaso Treu, Aaron Barth, David Koo, Chuck Steidel, Richard Ellis, Rich Dekaney CfAO Workshop on Keck NGAO March 30-31, 2006 We are focusing on four

More information

4. Future telescopes & IFU facilities. Next generation IFUs Adaptive optics Extremely large telescopes Next space telescope: JWST

4. Future telescopes & IFU facilities. Next generation IFUs Adaptive optics Extremely large telescopes Next space telescope: JWST 4. Future telescopes & IFU facilities Next generation IFUs Adaptive optics Extremely large telescopes Next space telescope: JWST Next generation IFUs At ESO: KMOS (infrared) MUSE (optical) XSHOOTER & SPHERE

More information

Searching for Other Worlds

Searching for Other Worlds Searching for Other Worlds Lecture 32 1 In-Class Question What is the Greenhouse effect? a) Optical light from the Sun is reflected into space while infrared light passes through the atmosphere and heats

More information

Agenda Announce: Visions of Science Visions of Science Winner

Agenda Announce: Visions of Science  Visions of Science Winner 7. Telescopes: Portals of Discovery All of this has been discovered and observed these last days thanks to the telescope that I have [built], after having been enlightened by divine grace. Galileo Galilei

More information

Chapter 5: Telescopes

Chapter 5: Telescopes Chapter 5: Telescopes You don t have to know different types of reflecting and refracting telescopes. Why build bigger and bigger telescopes? There are a few reasons. The first is: Light-gathering power:

More information

Final Announcements. Lecture25 Telescopes. The Bending of Light. Parts of the Human Eye. Reading: Chapter 7. Turn in the homework#6 NOW.

Final Announcements. Lecture25 Telescopes. The Bending of Light. Parts of the Human Eye. Reading: Chapter 7. Turn in the homework#6 NOW. Final Announcements Turn in the homework#6 NOW. Homework#5 and Quiz#6 will be returned today. Today is the last lecture. Lecture25 Telescopes Reading: Chapter 7 Final exam on Thursday Be sure to clear

More information

telescopes resolve it into many faint (i.e. distant) stars What does it tell us?

telescopes resolve it into many faint (i.e. distant) stars What does it tell us? The Milky Way From a dark site the Milky Way can be seen as a broad band across the sky What is it? telescopes resolve it into many faint (i.e. distant) stars What does it tell us? that we live in a spiral

More information

Astronomy 203 practice final examination

Astronomy 203 practice final examination Astronomy 203 practice final examination Fall 1999 If this were a real, in-class examination, you would be reminded here of the exam rules, which are as follows: You may consult only one page of formulas

More information

Number of Stars: 100 billion (10 11 ) Mass : 5 x Solar masses. Size of Disk: 100,000 Light Years (30 kpc)

Number of Stars: 100 billion (10 11 ) Mass : 5 x Solar masses. Size of Disk: 100,000 Light Years (30 kpc) THE MILKY WAY GALAXY Type: Spiral galaxy composed of a highly flattened disk and a central elliptical bulge. The disk is about 100,000 light years (30kpc) in diameter. The term spiral arises from the external

More information

LGS AO at the W. M. Keck Observatory

LGS AO at the W. M. Keck Observatory LGS AO at the W. M. Keck Observatory R. Campbell, D. Le Mignant, P. Wizinowich Photo Credit: Subaru Telescope 28 May 2005 UT 1 Acknowledge Co-Authors AO Scientists / Astronomers M. van Dam A. Bouchez J.

More information

1. Give short answers to the following questions. a. What limits the size of a corrected field of view in AO?

1. Give short answers to the following questions. a. What limits the size of a corrected field of view in AO? Astronomy 418/518 final practice exam 1. Give short answers to the following questions. a. What limits the size of a corrected field of view in AO? b. Describe the visibility vs. baseline for a two element,

More information

An Introduction to Radio Astronomy

An Introduction to Radio Astronomy An Introduction to Radio Astronomy Bernard F. Burke Massachusetts Institute of Technology and Francis Graham-Smith Jodrell Bank, University of Manchester CAMBRIDGE UNIVERSITY PRESS Contents Preface Acknowledgements

More information

T-REX. Renato Falomo. T-REX meeting, Bologna 14 Jan 2013

T-REX. Renato Falomo. T-REX meeting, Bologna 14 Jan 2013 T-REX Renato Falomo T-REX meeting, Bologna 14 Jan 2013 1 T-REX MICADO: Multi-AO Imaging Camera for Deep Observations The Consortium MPE Garching, Germany MPIA Heidelberg, Germany USM Munich, Germany OAPD

More information

Star Formation Near Supermassive Black Holes

Star Formation Near Supermassive Black Holes 1 Star Formation Near Supermassive Black Holes Jessica Lu California Institute of Technology June 8, 2009 Collaborators: Andrea Ghez, Keith Matthews, (all) Mark Morris, Seth Hornstein, Eric Becklin, Sylvana

More information

Overview: Astronomical Spectroscopy

Overview: Astronomical Spectroscopy Overview: Astronomical Spectroscopy or How to Start Thinking Creatively about Measuring the Universe Basic Spectrograph Optics Objective Prism Spectrometers - AESoP Slit Spectrometers Spectrometers for

More information

Our Galaxy. Milky Way Galaxy = Sun + ~100 billion other stars + gas and dust. Held together by gravity! The Milky Way with the Naked Eye

Our Galaxy. Milky Way Galaxy = Sun + ~100 billion other stars + gas and dust. Held together by gravity! The Milky Way with the Naked Eye Our Galaxy Milky Way Galaxy = Sun + ~100 billion other stars + gas and dust Held together by gravity! The Milky Way with the Naked Eye We get a special view of our own galaxy because we are part of it!

More information

in formation Stars in motion Jessica R. Lu Institute for Astronomy University of Hawaii

in formation Stars in motion Jessica R. Lu Institute for Astronomy University of Hawaii Stars in formation in motion Jessica R. Lu Institute for Astronomy University of Hawaii Stars in formation in motion 105 Msun 104 Msun 103 Msun Frontiers in star formation include massive young clusters

More information

Galaxy Ecosystems Adam Leroy (OSU), Eric Murphy (NRAO/IPAC) on behalf of ngvla Working Group 2

Galaxy Ecosystems Adam Leroy (OSU), Eric Murphy (NRAO/IPAC) on behalf of ngvla Working Group 2 Next Generation Very Large Array Working Group 2 HI in M74: Walter+ 08 CO in M51: Schinnerer+ 13 Continuum in M82: Marvil & Owen Galaxy Ecosystems Adam Leroy (OSU), Eric Murphy (NRAO/IPAC) on behalf of

More information

Introduction of near-infrared (NIR) spectroscopy. Ken-ichi Tadaki (NAOJ)

Introduction of near-infrared (NIR) spectroscopy. Ken-ichi Tadaki (NAOJ) Introduction of near-infrared (NIR) spectroscopy Ken-ichi Tadaki (NAOJ) Near-infrared in astronomy absorption by terrestrial atmosphere - wavelength range of 1-5 um - observable windows are limited (J,

More information

A Random Walk Through Astrometry

A Random Walk Through Astrometry A Random Walk Through Astrometry Astrometry: The Second Oldest Profession George H. Kaplan Astronomical Applications Department Astrometry Department U.S. Naval Observatory Random Topics to be Covered

More information

Beyond Our Solar System Chapter 24

Beyond Our Solar System Chapter 24 Beyond Our Solar System Chapter 24 PROPERTIES OF STARS Distance Measuring a star's distance can be very difficult Stellar parallax Used for measuring distance to a star Apparent shift in a star's position

More information

BROCK UNIVERSITY. Test 2, March 2018 Number of pages: 9 Course: ASTR 1P02, Section 1 Number of Students: 465 Date of Examination: March 12, 2018

BROCK UNIVERSITY. Test 2, March 2018 Number of pages: 9 Course: ASTR 1P02, Section 1 Number of Students: 465 Date of Examination: March 12, 2018 BROCK UNIVERSITY Page 1 of 9 Test 2, March 2018 Number of pages: 9 Course: ASTR 1P02, Section 1 Number of Students: 465 Date of Examination: March 12, 2018 Number of hours: 50 min Time of Examination:

More information

SALT s Venture into Near Infrared Astronomy with RSS NIR

SALT s Venture into Near Infrared Astronomy with RSS NIR SALT s Venture into Near Infrared Astronomy with RSS NIR Marsha Wolf University of Wisconsin Madison IUCAA RSS VIS future RSS NIR 5 June 2015 SALT Science Conference 2015 2 Robert Stobie Spectrograph 5

More information

NASA IRTF and Synergies with SOFIA

NASA IRTF and Synergies with SOFIA 1 NASA IRTF and Synergies with SOFIA Eric Becklin SOFIA/USRA Chief Scientific Advisor Professor Emeritus UCLA NASA IRTF: Future Directions Workshop Biosphere 2, Tucson AZ Feb. 14, 2018 2 Outline of Material

More information

Keck Adaptive Optics Note 455

Keck Adaptive Optics Note 455 Keck Adaptive Optics Note 455 Keck Next Generation Adaptive Optics Science Case Requirements Document Release 2.1 Version 2 March 12, 2008 NGAO_SCRD_Release2.1_v2.doc - 1 - Created on 03/12/2008 Keck Adaptive

More information

Goals of the meeting. Catch up with JWST news and developments: ERS and GO call for proposals are coming!!

Goals of the meeting. Catch up with JWST news and developments: ERS and GO call for proposals are coming!! Welcome Goals of the meeting Catch up with JWST news and developments: ERS and GO call for proposals are coming!! What is JWST capable of (focus on H 2 spectroscopy)? What do we need to do (models, lab)

More information

Note on OSIRIS Wavelength Calibrations D. Le Mignant, Oct. 5, 2007

Note on OSIRIS Wavelength Calibrations D. Le Mignant, Oct. 5, 2007 Note on OSIRIS Wavelength Calibrations D. Le Mignant, Oct. 5, 2007 1. Observations and data reduction In this short note, we report on some on-going analysis of OSIRIS data in an effort to document our

More information

Solar System Science with JWST!

Solar System Science with JWST! Solar System Science with JWST! Dean C. Hines Space Telescope Science Institute JWST Imaging Modes! Mode Imaging Aperture Mask Interferometry Coronography Instrument Wavelength (microns) Pixel Scale (arcsec)

More information

Astronomy 1 Fall 2016

Astronomy 1 Fall 2016 Astronomy 1 Fall 2016 One person s perspective: Three great events stand at the threshold of the modern age and determine its character: 1) the discovery of America; 2) the Reformation; 3) the invention

More information

Science Update SBAG July, Andrew Cheng (JHU/APL) Karl Hibbitts (JHU/APL) Eliot Young (SwRI)

Science Update SBAG July, Andrew Cheng (JHU/APL) Karl Hibbitts (JHU/APL) Eliot Young (SwRI) Science Update SBAG July, 2014 Andrew Cheng (JHU/APL) Karl Hibbitts (JHU/APL) Eliot Young (SwRI) Overview BOPPS science objectives BIRC calibration results UVVis update Science operations 4/23/14 2 BOPPS

More information

The Mid-Infrared Instrument for JWST. Some background about infrared astronomy The Mid-Infrared Instrument Some science ideas

The Mid-Infrared Instrument for JWST. Some background about infrared astronomy The Mid-Infrared Instrument Some science ideas The Mid-Infrared Instrument for JWST George Rieke Steward Observatory The University of Arizona Some background about infrared astronomy The Mid-Infrared Instrument Some science ideas Because the most

More information

2019 Astronomy Team Selection Test

2019 Astronomy Team Selection Test 2019 Astronomy Team Selection Test Acton-Boxborough Regional High School Written by Antonio Frigo Do not flip over this page until instructed. Instructions You will have 45 minutes to complete this exam.

More information

On to Telescopes. Imaging with our Eyes. Telescopes and cameras work much like our eyes. ASTR 1120 General Astronomy: Stars & Galaxies !

On to Telescopes. Imaging with our Eyes. Telescopes and cameras work much like our eyes. ASTR 1120 General Astronomy: Stars & Galaxies ! ASTR 1120 General Astronomy: Stars & Galaxies On to Telescopes!AST CLASS Learning from light: temperature (from continuum spectrum) chemical composition (from spectral lines) velocity (from Doppler shift)

More information

Million Element Integral Field Unit Design Study

Million Element Integral Field Unit Design Study Million Element Integral Field Unit Design Study Simon Morris, Robert Content, Cedric Lacey (University of Durham, UK) AURA contract No. 9414257-GEM00303 Milestone 1 Prepare and present a PowerPoint presentation

More information

The Milky Way. Overview: Number of Stars Mass Shape Size Age Sun s location. First ideas about MW structure. Wide-angle photo of the Milky Way

The Milky Way. Overview: Number of Stars Mass Shape Size Age Sun s location. First ideas about MW structure. Wide-angle photo of the Milky Way Figure 70.01 The Milky Way Wide-angle photo of the Milky Way Overview: Number of Stars Mass Shape Size Age Sun s location First ideas about MW structure Figure 70.03 Shapely (~1900): The system of globular

More information

Hubble Science Briefing

Hubble Science Briefing Hubble Science Briefing Delivering JWST Science, from Exoplanets to First Light: The Near-InfraRed Imager and Slitless Spectrograph (NIRISS) March 6, 2014 Alex Fullerton (STScI) 1 Agenda for Today The

More information

Ground-Layer Adaptive Optics Christoph Baranec (IfA, U. Hawai`i)

Ground-Layer Adaptive Optics Christoph Baranec (IfA, U. Hawai`i) Ground-Layer Adaptive Optics Christoph Baranec (IfA, U. Hawai`i) Photo credit: T. Stalcup What is Ground-layer Adaptive Optics (GLAO)? Benefits of GLAO to astronomy. MMT multiple-laser AO system. Ground-layer

More information

The Nulling Coronagraph Using a Nulling Interferometer for Planet Detection in Visible Light with a Single Aperture Telescope

The Nulling Coronagraph Using a Nulling Interferometer for Planet Detection in Visible Light with a Single Aperture Telescope Terrestrial Planet Finder The Nulling Coronagraph Using a Nulling Interferometer for Planet Detection in Visible Light with a Single Aperture Telescope Michael Shao, B. Martin Levine, Duncan Liu, J. Kent

More information

ASTR 2310: Chapter 6

ASTR 2310: Chapter 6 ASTR 231: Chapter 6 Astronomical Detection of Light The Telescope as a Camera Refraction and Reflection Telescopes Quality of Images Astronomical Instruments and Detectors Observations and Photon Counting

More information

From the VLT to ALMA and to the E-ELT

From the VLT to ALMA and to the E-ELT From the VLT to ALMA and to the E-ELT Mission Develop and operate world-class observing facilities for astronomical research Organize collaborations in astronomy Intergovernmental treaty-level organization

More information

DIRECT PLANET DETECTION

DIRECT PLANET DETECTION DIRECT PLANET DETECTION James R. Graham (UCB) Bruce Macintosh (LLNL) & Mitchell Troy (JPL) 1 High Contrast Imaging? Broad new frontier enabled by large telescopes & AO Exoplanet detection Direct methods

More information

Astronomical Spectroscopy. Michael Cushing

Astronomical Spectroscopy. Michael Cushing Astronomical Spectroscopy Michael Cushing REU Presentation June, 08, 2009 What Is a Spectrum? A stars have Teff ~10 4 K. Continuum H Line Absorption Jacoby et al. (1984, ApJS, 56, 257) What is a Spectrum?

More information

Adaptive Optics with Laser Guide Stars - The ALFA system

Adaptive Optics with Laser Guide Stars - The ALFA system Adaptive Optics with Laser Guide Stars - The ALFA system Thomas Ott, Andreas Eckart, Wolfgang Hackenberg, Sebastian Rabien, Ric Davies, Stephan Anders Max-Planck Institut für extraterrestrische Physik,

More information

LECTURE 1: Introduction to Galaxies. The Milky Way on a clear night

LECTURE 1: Introduction to Galaxies. The Milky Way on a clear night LECTURE 1: Introduction to Galaxies The Milky Way on a clear night VISIBLE COMPONENTS OF THE MILKY WAY Our Sun is located 28,000 light years (8.58 kiloparsecs from the center of our Galaxy) in the Orion

More information

Potential Synergies Between MSE and the ELTs A Purely TMT-centric perspective But generally applicable to ALL ELTs

Potential Synergies Between MSE and the ELTs A Purely TMT-centric perspective But generally applicable to ALL ELTs Potential Synergies Between MSE and the ELTs A Purely TMT-centric perspective But generally applicable to ALL ELTs Warren Skidmore, TMT Instrument System Scientist 2 nd May, 2018 IPAC Science Talk 1 TMT

More information

Optics and Telescope. Chapter Six

Optics and Telescope. Chapter Six Optics and Telescope Chapter Six ASTR 111 003 Fall 2007 Lecture 06 Oct. 09, 2007 Introduction To Modern Astronomy I: Solar System Introducing Astronomy (chap. 1-6) Planets and Moons (chap. 7-15) Chap.

More information

Christian Marois Lawrence Livermore National Laboratory

Christian Marois Lawrence Livermore National Laboratory Christian Marois Lawrence Livermore National Laboratory -Detecting Exoplanets -Speckle noise attenuation techniques with specialized observation schemes and post-processing algorithms -Current On-sky performances

More information

Resolved Spectroscopy of Adolescent and Infant Galaxies (1 < z < 10) July 18, 2014 TMT Science Forum, Tucson

Resolved Spectroscopy of Adolescent and Infant Galaxies (1 < z < 10) July 18, 2014 TMT Science Forum, Tucson Resolved Spectroscopy of Adolescent and Infant Galaxies (1 < z < 10) July 18, 2014 TMT Science Forum, Tucson Shelley Wright (Dunlap Institute, Univ. of Toronto), and IRIS Science Team 1 How does the zoology

More information

Exoplanet Detection and Characterization with Mid-Infrared Interferometry

Exoplanet Detection and Characterization with Mid-Infrared Interferometry Exoplanet Detection and Characterization with Mid-Infrared Interferometry Rachel Akeson NASA Exoplanet Science Institute With thanks to Peter Lawson for providing material Sagan Workshop July 21, 2009

More information

Collecting Light. In a dark-adapted eye, the iris is fully open and the pupil has a diameter of about 7 mm. pupil

Collecting Light. In a dark-adapted eye, the iris is fully open and the pupil has a diameter of about 7 mm. pupil Telescopes Collecting Light The simplest means of observing the Universe is the eye. The human eye is sensitive to light with a wavelength of about 400 and 700 nanometers. In a dark-adapted eye, the iris

More information

The phenomenon of gravitational lenses

The phenomenon of gravitational lenses The phenomenon of gravitational lenses The phenomenon of gravitational lenses If we look carefully at the image taken with the Hubble Space Telescope, of the Galaxy Cluster Abell 2218 in the constellation

More information

Diffraction-Limited Imaging in the Visible On Large Ground-Based Telescopes. Craig Mackay, Institute of Astronomy, University of Cambridge.

Diffraction-Limited Imaging in the Visible On Large Ground-Based Telescopes. Craig Mackay, Institute of Astronomy, University of Cambridge. Diffraction-Limited Imaging in the Visible On Large Ground-Based Telescopes Craig Mackay, Institute of Astronomy, University of Cambridge. La Palma & The WHT The Hubble Space Telescope (HST) will not

More information

Galaxies & Introduction to Cosmology

Galaxies & Introduction to Cosmology Galaxies & Introduction to Cosmology Other Galaxies: How many are there? Hubble Deep Field Project 100 hour exposures over 10 days Covered an area of the sky about 1/100 the size of the full moon Probably

More information

ASTR 1120 General Astronomy: Stars & Galaxies

ASTR 1120 General Astronomy: Stars & Galaxies ASTR 1120 General Astronomy: Stars & Galaxies!AST CLASS Learning from light: temperature (from continuum spectrum) chemical composition (from spectral lines) velocity (from Doppler shift) "ODA# Detecting

More information