Comparing asteroids, comets, moons & planets as WD pollution progenitors

Size: px
Start display at page:

Download "Comparing asteroids, comets, moons & planets as WD pollution progenitors"

Transcription

1 NASA/JPL-Caltech M. Kornmesser Comparing asteroids, comets, moons & planets as WD pollution progenitors Dimitri Veras (University of Warwick) ESO /

2 Start with observables Number of confirmed WD planets Mullally et al. (2008) Hogan et al. (2009) 0! Debes et al. (2011) Faedi et al. (2011) Steele et al. (2011) Number of WD dust discs Zuckerman & Becklin (1987); Becklin et al. (2005) 30 Kilic et al. (2005) Reach et al. (2005) Farihi et al. (2009) Number of WD gas discs! Gänsicke et al. (2006) Gänsicke et al. (2007) Gänsicke et al. (2008) 7 Debes et al. (2012) Brinkworth et al. (2012) Melis et al. (2012)

3 Location of WD discs See Debes talk on Wed! SUN (FOR SCALE) DISC WD VERY COMPACT!

4 Metal pollution in white dwarf atmospheres Widespread Diverse Sometimes Earth-like Sometimes water-rich Zuckerman et al. (2003, 2010), Koester et al. (2014) See Zuckerman talk on Fri! e.g. Gänsicke et al. (2012) See Gänsicke talk on Thurs! e.g. Klein et al. (2010) Farihi et al. (2013), See Raddi talk on Fri!

5 Goal: Reproduce Observables Accretion occurs early and late in DA WDs Koester, Gänsicke, Farihi (2014)

6 Goal: Reproduce Observables Accretion of up to g over 1 Myr in DB WDs Girven et al. (2012) DBZ DAZ

7 What causes WD pollution? NASA/JPL-Caltech Asteroids NASA/JPL-Caltech Comets Planets Gemini Observatory Jon Lomberg Compositionally Dynamically

8 What causes WD pollution? NASA/JPL-Caltech Asteroids Graham et al. (1990) Jura (2003, 2008) Bonsor et al. (2011) Debes et al. (2012) Bear & Soker (2013) Frewen & Hansen (2014) Veras et al. (2014a,b) NASA/JPL-Caltech Comets Planets Gemini Observatory Jon Lomberg

9 Asteroid Challenges Unknown accompanying planet(s) One planet + One belt Bonsor, Mustill & Wyatt (2011) Kuiper belt scattered inward Debes, Walsh & Stark (2012) Resonant diffusion towards WD Frewen & Hansen (2014) Planet mass and eccentricity dependence

10 Asteroid Challenges Unknown accompanying debris Veras, Jacobson, Gänsicke (Submitted to MNRAS) 100m - 10km asymmetric asteroids

11 Asteroid Challenges Unknown accompanying debris Veras, Jacobson, Gänsicke (Submitted to MNRAS)

12 Asteroid Challenges Need self-consistent size Wyatt, Farihi, Pringle & Bonsor (2014) Mass power law exponent q t 2 sink + t2 disc (yr)

13 Asteroid Challenges Depleted during main-sequence Debes, Walsh & Stark (2012) Number of Exo-belts Median mass = 820MSS-belt log (M/M SS belt )

14 Asteroid Challenges Need to numerically resolve very close pericentre passages Veras, Leinhardt, Bonsor, Gänsicke (Submitted to MNRAS) Disruption Spreading

15 Asteroid Challenges Need to numerically resolve very close pericentre passages Veras, Leinhardt, Bonsor, Gänsicke (Submitted to MNRAS) time / years Formation timescale of eccentric rings Breakup distance / RWD

16 What causes WD pollution? NASA/JPL-Caltech Asteroids Alcock et al. (1986) Parriott & Alcock (1998) Jura (2011) Stone et al. (2014) Veras et al. (2014c) NASA/JPL-Caltech Comets Planets Gemini Observatory Jon Lomberg

17 Comet Challenges Need to incorporate Galactic tides, stellar flybys and mass loss Main sequence TMSyr orbital period / yr Regions of Motion for 0.02 Veras, Evans, Wyatt, Tout (2014) [ Great Escape III ] Beyond Hill Axes x z Nonadiabatic PostMS Rkpc TPAGB Adiabatic Nonadiabatic Galactic MS Orbit Crossin g with Clo sest Stellar Flyby 8M 1M M 0 1M M 0 8M Bulge Disc Halo Distance to Galactic Centre / kpc

18 Comet Challenges Exo-Oort clouds not massive enough Veras, Shannon, Gänsicke (Submitted to MNRAS)

19 Comet Challenges Exo-Oort clouds not massive enough Veras, Shannon, Gänsicke (Submitted to MNRAS) GB Start

20 Distance / au Comet Challenges Composition-dependent dynamics Stone, Metzger & Loeb (Submitted to MNRAS) Sublimation distances comet comet ice comet rock WD cooling age / yr See Stone poster for more details! (#56) See Shannon poster for Oort cloud rockets! (#6)

21 What causes WD pollution? NASA/JPL-Caltech Asteroids Debes & Sigurdsson (2002) Veras et al. (2013) Voyatzis et al. (2013) Mustill et al. (2014) NASA/JPL-Caltech Comets Planets Gemini Observatory Jon Lomberg Next talk!

22 What about moons? Contains more mass than asteroids Regular delivery to WD dynamically unlikely (?) Hardest to model numerically (and perhaps analytically) See Payne poster! (#52)

23 Conclusions Origin of WD debris still mystery Dynamically, exo-oort cloud comets cannot be primary Total mass and delivery timescales still issues for asteroids Post-main-sequence planetary architectures largely unexplored

24 Semimajor axis in astronomical units Tidal engulfment distance for 1 planet Mustill & Villaver (2012) Time (Myr) Giant Planets Survive Planets Crash Stellar Radius Pulses

25 Semimajor axis in astronomical units Minimum mass in Jupiter masses Surviving the giant branch phases ENGULFED SURVIVED Exoplanets Solar System Planets Asteroid Belt Kuiper Belt Sedna Will planets be swallowed? Giant Mass in Jupiter masses ME MA V E

26 Planet motion: Mass- loss 2-body problem Giant Gyldén (1884) ; Mestschersky (1893) ; Jeans (1924)

27 Regimes of motion Veras, Wyatt, Mustill, Bonsor, Eldridge (2011) Giant Orbital Period << Mass Loss Timescale ADIABATIC REGIME Semimajor axis increases Eccentricity is constant Orbital Period >> Mass Loss Timescale RUNAWAY REGIME Semimajor axis increases more Eccentricity no longer constant

28 Adiabatic regime Veras, Wyatt, Mustill, Bonsor, Eldridge (2011) Giant Planet Planet AU 100 True Anomaly (deg) fdegrees Star Star AU Star Time/1000 yr Time (1000 yr)

29 Runaway regime Veras, Wyatt, Mustill, Bonsor, Eldridge (2011) Giant Planet Planet AU True Anomaly (deg) fdegrees AU Star Star Star Time/1000 yr Time (1000 yr)

30 The Solar System s Critical semimajor axis in 10 3 au a AU Stability Boundary The Solar System s Stability Boundary DANGER OF EJECTION BOUNDED Thermally Pulsing AGB Veras & Wyatt (2012) Model Η Number Early AGB RGB Giant

31 Anisotropic mass loss Giant Veras, Hadjidemetriou, Tout (2013)

32 :1 5:4 4:3 3:2 5:3 Initial Semimajor Axis Ratio Lo g 10 tinstyr Instability Times for M t 0 6M MS WD Hill Stability Boundary Veras, Mustill, Bonsor, Wyatt (2013) Full-lifetime simulations

33 Observation Motivation Disc shape change Gänsicke, Koester, Marsh, Southworth, Rebassa-Mansergas (2008) WD

34 Link with observations WD Veras, Mustill, Bonsor, Wyatt (2013) EjectionHyper Orbit PlanPlan Hit WD Collision 25 Number of of Unstable unstable Systems WD systems M 0 5M SIMULATED Log 10 White Dwarf Cooling Ageyr Log 10 [White Dwarf Cooling Age] /yr An Observed Polluted WD Sample OBSERVED SAMPLE Number of WD polluted systems Number of WD Polluted Systems Log 10 White Dwarf Cooling Ageyr

35 Hill Stability Marchal & Bozis (1982) Milani & Nobili (1983) Gladman (1993) Georgakarakos (2008) MS Donnison (2011) Veras, Mustill, Bonsor, Wyatt (2013)

36 Lagrange Stability Barnes & Greenberg (2006, 2007) Raymond et al. (2009) Veras & Mustill (2013) MS log 10 x 5.2 µ M J /M 0.18

37 Many planets Chambers et al. (1996) Chatterjee et al. (2008) Smith & Lissauer (2009) MS

38 How big? Giant Veras, Mustill, Bonsor, Wyatt (2013) Sun

39 How much mass lost? Giant Veras, Mustill, Bonsor, Wyatt (2013) All stars lose over half of their mass

40 Mutual Hill Radii Multi-planet instability 8 Debes & Sigurdsson (2002) Giant Log t (orbits) Without Mass Loss With Constant Mass Loss

41 Multi-planet instability from strong mass loss Giant Voyatzis, Hadjidemetriou, Veras, Varvoglis (2013) Mass Loss Stopped Planet 1 Planet 2 Time (kyr)

42 Multi-planet instability MS Mustill, Veras, Villaver (2014) Giant WD

43 Initial Semimajor Axis Ratio Veras, Mustill, Bonsor, Wyatt (2013) 30 Survivor Orbits for M t 0 5M Semimajor WD 25 Axes DistanceAU Pericentres Max AGB Radius

44 1 planet, 1 star, 0 discs Veras, Evans, Wyatt, Tout (2014)

45 Veras, Shannon, Gänsicke (Submitted to MNRAS 2014) Exo-Oort clouds Extends from 10 4 au 10 5 au Radial distributions a 1,a 1.5,a 2 Inclinations sin i Eccentricities random Orbital angles random # of comets per sim: 5000

46 Veras, Shannon, Gänsicke (Submitted to MNRAS 2014) Comet escape from close flyby

47 Observation Motivation Bowler et al. (2010) Absence of planets at low semimajor axes Giant Star Stellar Mass Planets

48 Observation Motivation Gänsicke, Marsh, Southworth, Rebassa-Mansergas (2006) Gaseous discs Points =Ca II emission line profiles

49 Observation Motivation Koester (2013) Typical WDs DB He lines DA H lines

50 Atmospheric sinking time / yr Observation Motivation Wyatt, Farihi, Pringle, Bonsor (2014) Sinking timescales He-dominated DB H-dominated DA Time after becoming white dwarf / yr

51 Observation Motivation Gänsicke et al. (2012) Metal pollution is diverse

52 Observation Motivation Klein, Jura, Koester, Zuckerman, Melis (2010) Some pollution is Earth-like White dwarf GD 40

53 Observation Motivation Farihi, Gänsicke, Koester (2013) Some pollution includes water White Dwarf

54 Age/yr Fate of Earth Schröder & Connon Smith (2008) Giant Earth Orbit Mass of Sun log 10 (d/r ) Red Giant Branch Asymptotic Giant Branch

55 Asteroid Challenges Circularising eccentric rings Veras, Leinhardt, Gänsicke (In Prep) Sublimation + PR-Drag 10 Semimajor axis decrease from radiation 1 aau R 10 4 m R 10 3 m R 10 2 m R 10 1 m R 10 0 m R 10 2 m R 10 4 m R 10 6 m tmyr

Exoplanets: a dynamic field

Exoplanets: a dynamic field Exoplanets: a dynamic field Alexander James Mustill Amy Bonsor, Melvyn B. Davies, Boris Gänsicke, Anders Johansen, Dimitri Veras, Eva Villaver The (transiting) exoplanet population Solar System Hot Jupiters:

More information

The chemistry of exo-terrestrial material in evolved planetary systems. Boris Gänsicke

The chemistry of exo-terrestrial material in evolved planetary systems. Boris Gänsicke The chemistry of exo-terrestrial material in evolved planetary systems Boris Gänsicke Transiting planets M & R bulk densities What is the bulk composition of exo-planets? large degeneracy How to measure

More information

Boris Gänsicke. Ancient planetary systems around white dwarfs

Boris Gänsicke. Ancient planetary systems around white dwarfs Boris Gänsicke Ancient planetary systems around white dwarfs Detlev Koester, Jay Farihi, Jonathan Girven, Elme Breedt, Steven Parsons, Nicola Gentile Fusillo, Tom Marsh, Carolyn Brinkworth, Matt Burleigh,

More information

Of serendipitous discoveries. Boris Gänsicke

Of serendipitous discoveries. Boris Gänsicke Of serendipitous discoveries Boris Gänsicke 1917: Van Maanen s star Ca H/K Carnegie Institution for Science Farihi 2016, NewAR 71, 9 Van Maanen 1917, PASP 29, 258 1920, Cont. Mt. Wilson Obs. 182 The 3

More information

arxiv: v2 [astro-ph.ep] 3 Feb 2011

arxiv: v2 [astro-ph.ep] 3 Feb 2011 Asymmetric Line Profiles in Spectra of Gaseous Metal Disks Around Single White Dwarfs arxiv:1102.0446v2 [astro-ph.ep] 3 Feb 2011 Stephan Hartmann, Thorsten Nagel, Thomas Rauch and Klaus Werner Institute

More information

Hot Dust Around Young Stars and Evolved Stars

Hot Dust Around Young Stars and Evolved Stars Hot Dust Around Young Stars and Evolved Stars Kate Su Steward Observatory University of Arizona Dust Zones Revealed by Great Observatories edge-on view of nearby planetary debris disks distance, r, increases

More information

University of Bristol - Explore Bristol Research. Peer reviewed version. Link to published version (if available): 10.

University of Bristol - Explore Bristol Research. Peer reviewed version. Link to published version (if available): 10. Veras, D., Leinhardt, Z. M., Bonsor, A., & Gaensicke, B. T. 2014. Formation of planetary debris discs around white dwarfs I. Tidal disruption of an extremely eccentric asteroid. Monthly Notices of the

More information

Planetary system dynamics Part III Mathematics / Part III Astrophysics

Planetary system dynamics Part III Mathematics / Part III Astrophysics Planetary system dynamics Part III Mathematics / Part III Astrophysics Lecturer: Prof. Mark Wyatt (Dr. Amy Bonsor on 9,11 Oct) Schedule: Michaelmas 2017 Mon, Wed, Fri at 10am MR11, 24 lectures, start Fri

More information

Detectability of extrasolar debris. Mark Wyatt Institute of Astronomy, University of Cambridge

Detectability of extrasolar debris. Mark Wyatt Institute of Astronomy, University of Cambridge Detectability of extrasolar debris Mark Wyatt Institute of Astronomy, University of Cambridge Why image extrasolar debris? Emission spectrum shows dust thermal emission, used to infer radius of parent

More information

arxiv:submit/ [astro-ph.ep] 3 Sep 2018

arxiv:submit/ [astro-ph.ep] 3 Sep 2018 Mon. Not. R. Astron. Soc. 000, 1 10 (2018) Printed 3 September 2018 (MN LATEX style file v2.2) Effects of non-kozai mutual inclinations on two-planet system stability through all phases of stellar evolution

More information

The Long-Term Dynamical Evolution of Planetary Systems

The Long-Term Dynamical Evolution of Planetary Systems The Long-Term Dynamical Evolution of Planetary Systems Melvyn B. Davies Department of Astronomy and Theoretical Physics Lund University Co-authors: Fred Adams, Philip Armitage, John Chambers, Eric Ford,

More information

Dynamic Exoplanets. Alexander James Mustill

Dynamic Exoplanets. Alexander James Mustill Dynamic Exoplanets Alexander James Mustill Exoplanets: not (all) like the Solar System Exoplanets: not (all) like the Solar System Solar System Lissauer et al 14 Key questions to bear in mind What is role

More information

The dynamical evolution of transiting planetary systems including a realistic collision prescription

The dynamical evolution of transiting planetary systems including a realistic collision prescription The dynamical evolution of transiting planetary systems including a realistic collision prescription Alexander James Mustill Melvyn B. Davies Anders Johansen MNRAS submitted, arxiv.org/abs/1708.08939 Alexander

More information

Debris discs, exoasteroids and exocomets. Mark Wyatt Institute of Astronomy, University of Cambridge

Debris discs, exoasteroids and exocomets. Mark Wyatt Institute of Astronomy, University of Cambridge Debris discs, exoasteroids and exocomets Mark Wyatt Institute of Astronomy, University of Cambridge The Solar System s outer and inner debris belts Outer debris: Kuiper belt Inner debris: Asteroid belt

More information

AUTHOR: Timothy Kinnear. DEGREE: M.Sc. TITLE: Irradiated Gaseous Discs Around White Dwarfs DATE OF DEPOSIT:...

AUTHOR: Timothy Kinnear. DEGREE: M.Sc. TITLE: Irradiated Gaseous Discs Around White Dwarfs DATE OF DEPOSIT:... AUTHOR: Timothy Kinnear DEGREE: M.Sc. TITLE: Irradiated Gaseous Discs Around White Dwarfs DATE OF DEPOSIT:............................ I agree that this thesis shall be available in accordance with the

More information

DEPARTMENT OF PHYSICS AND ASTRONOMY. Planets around white dwarfs Matt Burleigh

DEPARTMENT OF PHYSICS AND ASTRONOMY. Planets around white dwarfs Matt Burleigh DEPARTMENT OF PHYSICS AND ASTRONOMY Planets around white dwarfs Matt Burleigh Contents Original motivation DODO - results from our direct imaging survey Where do we go next? The role for E-ELT Direct imaging

More information

Data from: The Extrasolar Planet Encyclopaedia.

Data from: The Extrasolar Planet Encyclopaedia. Data from: The Extrasolar Planet Encyclopaedia http://exoplanet.eu/ 2009->10 Status of Exoplanet Searches Direct Detection: 5->9 planets detected Sensitive to large planets in large orbits around faint

More information

Minimum Mass Solar Nebulae, Nice model, & Planetary Migration.

Minimum Mass Solar Nebulae, Nice model, & Planetary Migration. Minimum Mass Solar Nebulae, Nice model, & Planetary Migration. Aurélien CRIDA 1) MMSN : definition, recipe Minimum Mass Solar Nebula Little reminder : It is not a nebula, but a protoplanetary disc. Solar

More information

Lecture Outlines. Chapter 15. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 15. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 15 Astronomy Today 7th Edition Chaisson/McMillan Chapter 15 The Formation of Planetary Systems Units of Chapter 15 15.1 Modeling Planet Formation 15.2 Terrestrial and Jovian Planets

More information

Debris Disks and the Evolution of Planetary Systems. Christine Chen September 1, 2009

Debris Disks and the Evolution of Planetary Systems. Christine Chen September 1, 2009 Debris Disks and the Evolution of Planetary Systems Christine Chen September 1, 2009 Why Study Circumstellar Disks? How common is the architecture of our solar system (terrestrial planets, asteroid belt,

More information

White dwarfs, brown dwarfs and debris disks with UKIDSS

White dwarfs, brown dwarfs and debris disks with UKIDSS White dwarfs, brown dwarfs and debris disks with UKIDSS with Paul Steele (now MPE Garching), Jay Farihi, Richard Jameson, Sarah Casewell, Paul Dobbie (transported to Tasmania) Boris Gaensicke and Jonathan

More information

Transit detection limits for sub-stellar and terrestrial companions to white dwarfs

Transit detection limits for sub-stellar and terrestrial companions to white dwarfs Transit detection limits for sub-stellar and terrestrial companions to white dwarfs F Faedi 1, R West 1, M R Burleigh 1, M R Goad 1 and L Hebb 2 1 Department of Physics and Astronomy, University of Leicester,

More information

arxiv: v1 [astro-ph.ep] 18 Nov 2014

arxiv: v1 [astro-ph.ep] 18 Nov 2014 Evidence for an Anhydrous Carbonaceous Extrasolar Minor Planet M. Jura a, P. Dufour b, S. Xu a,c ( 许偲艺 ), B. Zuckerman a, B. Klein a, E. D. Young d, & C. Melis e arxiv:1411.5036v1 [astro-ph.ep] 18 Nov

More information

How inner planetary systems relate to inner and outer debris belts. Mark Wyatt Institute of Astronomy, University of Cambridge

How inner planetary systems relate to inner and outer debris belts. Mark Wyatt Institute of Astronomy, University of Cambridge How inner planetary systems relate to inner and outer debris belts Mark Wyatt Institute of Astronomy, University of Cambridge The Solar System s outer and inner debris belts Outer debris: Kuiper belt Inner

More information

The dynamical evolution of exoplanet systems. Melvyn B. Davies Department of Astronomy and Theoretical Physics Lund University

The dynamical evolution of exoplanet systems. Melvyn B. Davies Department of Astronomy and Theoretical Physics Lund University The dynamical evolution of exoplanet systems Melvyn B. Davies Department of Astronomy and Theoretical Physics Lund University Today s Talk 1) Begin with our Solar System. 2) Then consider tightly-packed

More information

Forming habitable planets on the computer

Forming habitable planets on the computer Forming habitable planets on the computer Anders Johansen Lund University, Department of Astronomy and Theoretical Physics 1/9 Two protoplanetary discs (Andrews et al., 2016) (ALMA Partnership, 2015) Two

More information

What Have We Found? 1978 planets in 1488 systems as of 11/15/15 (http://exoplanet.eu/ ) 1642 planets candidates (http://exoplanets.

What Have We Found? 1978 planets in 1488 systems as of 11/15/15 (http://exoplanet.eu/ ) 1642 planets candidates (http://exoplanets. Exoplanets. II What Have We Found? 1978 planets in 1488 systems as of 11/15/15 (http://exoplanet.eu/ ) 1642 planets + 3787 candidates (http://exoplanets.org) Detected by radial velocity/astrometry: 621

More information

Mars Growth Stunted by an Early Orbital Instability between the Giant Planets

Mars Growth Stunted by an Early Orbital Instability between the Giant Planets Mars Growth Stunted by an Early Orbital Instability between the Giant Planets M.S. Clement University of Oklahoma Advisor: Professor N.A. Kaib Collaborators: S.N. Raymond, K.J. Walsh 19 September 2017

More information

Ruth Murray-Clay University of California, Santa Barbara

Ruth Murray-Clay University of California, Santa Barbara A Diversity of Worlds: Toward a Theoretical Framework for the Structures of Planetary Systems Ruth Murray-Clay University of California, Santa Barbara Strange New Worlds. Slide credit: Scott Gaudi ~1500

More information

Planetary System Stability and Evolution. N. Jeremy Kasdin Princeton University

Planetary System Stability and Evolution. N. Jeremy Kasdin Princeton University Planetary System Stability and Evolution N. Jeremy Kasdin Princeton University (Lots of help from Eric Ford, Florida and Robert Vanderbei, Princeton) KISS Exoplanet Workshop 10 November 2009 Motivation

More information

Post-main Sequence Evolution of Planetary Systems

Post-main Sequence Evolution of Planetary Systems Post-main Sequence Evolution of Planetary Systems Amy Bonsor Institute of Astronomy St. John s College University of Cambridge A thesis submitted for the degree of Doctor of Philosophy October 2011 Declaration

More information

Planetary system dynamics Mathematics tripos part III / part III Astrophysics

Planetary system dynamics Mathematics tripos part III / part III Astrophysics Planetary system dynamics Mathematics tripos part III / part III Astrophysics Lecturer: Dr Mark Wyatt Schedule: Lent 2014 Mon Wed Fri 10am MR9, 24 lectures, start Fri 17 Jan, end Wed 12 Mar Problems: My

More information

Galactic, stellar (and planetary) archaeology with Gaia: The galactic white dwarf population

Galactic, stellar (and planetary) archaeology with Gaia: The galactic white dwarf population Galactic, stellar (and planetary) archaeology with Gaia: The galactic white dwarf population Boris Gänsicke & Roberto Raddi Richard Ashley Jay Farihi Nicola Gentile Fusillo Mark Hollands Paula Izquierdo

More information

The Connection between Planets and White Dwarfs. Gilles Fontaine Université de Montréal

The Connection between Planets and White Dwarfs. Gilles Fontaine Université de Montréal The Connection between Planets and White Dwarfs Gilles Fontaine Université de Montréal Astrophysical Context 1) Planets around white dwarfs (WD s) have yet to be found through the more standard methods:

More information

arxiv: v1 [astro-ph.ep] 23 Jan 2013

arxiv: v1 [astro-ph.ep] 23 Jan 2013 Formation, Detection and Characterization of Extrasolar Habitable Planets Proceedings IAU Symposium No. 293, 2012 c 2012 International Astronomical Union N. Haghighipour, ed. DOI: 00.0000/X000000000000000X

More information

Chapter 06 Let s Make a Solar System

Chapter 06 Let s Make a Solar System like? Big picture. Chapter 06 Let s Make a Solar System How did it come to be this way? Where did it come from? Will I stop sounding like the Talking Heads? The solar system exhibits clear patterns of

More information

Astronomy 241: Review Questions #2 Distributed: November 7, 2013

Astronomy 241: Review Questions #2 Distributed: November 7, 2013 Astronomy 241: Review Questions #2 Distributed: November 7, 2013 Review the questions below, and be prepared to discuss them in class. For each question, list (a) the general topic, and (b) the key laws

More information

Gaseous debris discs around white dwarfs

Gaseous debris discs around white dwarfs Gaseous debris discs around white dwarfs Christopher J. Manser Collaborators: Boris Gänsicke, Tom Marsh, Detlev Koester, Dimitri Veras, Nicola Pietro Gentile Fusillo C.Manser@Warwick.ac.uk Saturn to scale

More information

How did it come to be this way? Will I stop sounding like the

How did it come to be this way? Will I stop sounding like the Chapter 06 Let s Make a Solar System How did it come to be this way? Where did it come from? Will I stop sounding like the Talking Heads? What does the solar system look like? Big picture. The solar system

More information

Astronomy 405 Solar System and ISM

Astronomy 405 Solar System and ISM Astronomy 405 Solar System and ISM Lecture 17 Planetary System Formation and Evolution February 22, 2013 grav collapse opposed by turbulence, B field, thermal Cartoon of Star Formation isolated, quasi-static,

More information

Evidence for Terrestrial Planetary System Remnants at White Dwarfs

Evidence for Terrestrial Planetary System Remnants at White Dwarfs Evidence for Terrestrial Planetary System Remnants at White Dwarfs Jay Farihi Department of Physics & Astronomy, University of Leicester, Leicester LE1 7RH, UK; jf123@star.le.ac.uk Abstract. The last several

More information

Origin of the Solar System

Origin of the Solar System Origin of the Solar System Current Properties of the Solar System Look for General Properties Dynamical Regularities Orbits in plane, nearly circular Orbit sun in same direction (CCW from North pole) Rotation

More information

The dynamical evolution of the asteroid belt in the pebble accretion scenario

The dynamical evolution of the asteroid belt in the pebble accretion scenario The dynamical evolution of the asteroid belt in the pebble accretion scenario S. Pirani 1, A. Johansen 1, B. Bitsch 1, A. J. Mustill 1 and D. Turrini 2,3 1 Lund Observatory, Department of Astronomy and

More information

Pluto, the Kuiper Belt, and Trans- Neptunian Objects

Pluto, the Kuiper Belt, and Trans- Neptunian Objects Pluto, the Kuiper Belt, and Trans- Neptunian Objects 1 What about Pluto? Pluto used to be considered a planet Pluto is one of a large number of Trans-Neptunian Objects, not even the largest one! Discovery

More information

PLANETARY FORMATION THEORY EXPLORING EXOPLANETS

PLANETARY FORMATION THEORY EXPLORING EXOPLANETS PLANETARY FORMATION THEORY EXPLORING EXOPLANETS This is what we call planets around OTHER stars! PLANETARY FORMATION THEORY EXPLORING EXOPLANETS This is only as of June 2012. We ve found at least double

More information

The Fomalhaut Debris Disk

The Fomalhaut Debris Disk The Fomalhaut Debris Disk IRAS 12 micron http://ssc.spitzer.caltech.edu/documents/compendium/foma lhaut/ Fomalhaut is a bright A3 V star 7.7 pc away IRAS discovered an IR excess indicating a circumstellar

More information

Solar abundances of rock-forming elements, extreme oxygen and hydrogen in a young polluted white dwarf

Solar abundances of rock-forming elements, extreme oxygen and hydrogen in a young polluted white dwarf Advance Access publication 2016 September 2 doi:10.1093/mnras/stw2182 Solar abundances of rock-forming elements, extreme oxygen and hydrogen in a young polluted white dwarf J. Farihi, 1 D. Koester, 2 B.

More information

arxiv: v1 [astro-ph.ep] 23 Jun 2015

arxiv: v1 [astro-ph.ep] 23 Jun 2015 Mon. Not. R. Astron. Soc. 000, 1 14 (XXXX) Printed 5 July 018 (MN LATEX style file v.) Sublimation-induced orbital perturbations of extrasolar active asteroids and comets: application to white dwarf systems

More information

Solar System evolution and the diversity of planetary systems

Solar System evolution and the diversity of planetary systems Solar System evolution and the diversity of planetary systems Alessandro Morbidelli (OCA, Nice) Work in collaboration with: R. Brasser, A. Crida, R. Gomes, H. Levison, F. Masset, D. O brien, S. Raymond,

More information

Dynamical behaviour of the primitive asteroid belt

Dynamical behaviour of the primitive asteroid belt Mon. Not. R. Astron. Soc. 293, 405 410 (1998) Dynamical behaviour of the primitive asteroid belt Adrián Brunini Observatorio Astronómico de La Plata, Profoeg, Paseo del Bosque, (1900) La Plata, Argentina

More information

arxiv: v2 [astro-ph.ep] 10 Feb 2015

arxiv: v2 [astro-ph.ep] 10 Feb 2015 Mon. Not. R. Astron. Soc., 1?? (214) Printed 24 September 218 (MN LATEX style file v2.2) The frequency and infrared brightness of circumstellar discs at white dwarfs M. Rocchetto 1, J. Farihi 1, B. T.

More information

Doppler imaging of the planetary debris disc at the white dwarf SDSS J

Doppler imaging of the planetary debris disc at the white dwarf SDSS J doi:10.1093/mnras/stv2603 Doppler imaging of the planetary debris disc at the white dwarf SDSS J122859.93+104032.9 Christopher J. Manser, 1 Boris T. Gänsicke, 1 Thomas R. Marsh, 1 Dimitri Veras, 1 Detlev

More information

Dr G. I. Ogilvie Lent Term 2005 INTRODUCTION

Dr G. I. Ogilvie Lent Term 2005 INTRODUCTION Accretion Discs Mathematical Tripos, Part III Dr G. I. Ogilvie Lent Term 2005 INTRODUCTION 0.1. Accretion If a particle of mass m falls from infinity and comes to rest on the surface of a star of mass

More information

Characterizing the Chemistry of Planetary Materials Around White Dwarf Stars

Characterizing the Chemistry of Planetary Materials Around White Dwarf Stars Characterizing the Chemistry of Planetary Materials Around White Dwarf Stars B. Zuckerman and E.D. Young Contents Overview... 2 Modern Picture of White Dwarf Planetary Systems... 3 Observational Basis...

More information

Astronomy 405 Solar System and ISM

Astronomy 405 Solar System and ISM Astronomy 405 Solar System and ISM Lecture 18 Planetary System Formation and Evolution February 25, 2013 grav collapse opposed by turbulence, B field, thermal Cartoon of Star Formation isolated, quasi-static,

More information

Terrestrial planet formation: planetesimal mixing KEVIN WALSH (SWRI)

Terrestrial planet formation: planetesimal mixing KEVIN WALSH (SWRI) Terrestrial planet formation: planetesimal mixing KEVIN WALSH (SWRI) Questions How are terrestrial planets put together? Where do they get their material? Questions How are terrestrial planets put together?

More information

INVESTIGATION OF ORBITAL EVOLUTION OF INTERPLANETARY DUST PARTICLES ORIGINATING FROM KUIPER BELT AND ASTEROID BELT OBJECTS

INVESTIGATION OF ORBITAL EVOLUTION OF INTERPLANETARY DUST PARTICLES ORIGINATING FROM KUIPER BELT AND ASTEROID BELT OBJECTS INVESTIGATION OF ORBITAL EVOLUTION OF INTERPLANETARY DUST PARTICLES ORIGINATING FROM KUIPER BELT AND ASTEROID BELT OBJECTS 1 PALAK DHARSANDIA, 2 DR. JAYESH PABARI, 3 DR. CHARMY PATEL 1 Research Scholar,

More information

EART164: PLANETARY ATMOSPHERES

EART164: PLANETARY ATMOSPHERES EART164: PLANETARY ATMOSPHERES Francis Nimmo Last Week - Dynamics Reynolds number, turbulent vs. laminar flow Velocity fluctuations, Kolmogorov cascade Brunt-Vaisala frequency, gravity waves Rossby waves,

More information

The Planet Pluto. & Kuiper Belt. The Search for PLANET X Pluto Discovered. Note how Pluto Moved in 6 days. Pluto (Hades): King of the Underworld

The Planet Pluto. & Kuiper Belt. The Search for PLANET X Pluto Discovered. Note how Pluto Moved in 6 days. Pluto (Hades): King of the Underworld X The Planet Pluto & Kuiper Belt Updated May 9, 2016 The Search for PLANET X Recall Neptune was predicted from observed changes in orbit of Uranus Lowell & Pickering suggest small changes in Neptune s

More information

Planet Formation: theory and observations. Sean Raymond University of Colorado (until Friday) Observatoire de Bordeaux

Planet Formation: theory and observations. Sean Raymond University of Colorado (until Friday) Observatoire de Bordeaux Planet Formation: theory and observations Sean Raymond University of Colorado (until Friday) Observatoire de Bordeaux Outline Stages of Planet Formation Solar System Formation Cores to disks (c2d) Observational

More information

What can we learn by evolving the host star? Eva Villaver Universidad Autónoma de Madrid

What can we learn by evolving the host star? Eva Villaver Universidad Autónoma de Madrid What can we learn by evolving the host star? Eva Villaver Universidad Autónoma de Madrid WD POLUTION PLANET STIRRING A LEFT OVER DEBRIS DISK ROTATION 1-3 % FAST RGB ROTATORS PLANET STAR CHEMISTRY LITHIUM

More information

Chapter 15 The Formation of Planetary Systems

Chapter 15 The Formation of Planetary Systems Chapter 15 The Formation of Planetary Systems Units of Chapter 15 15.1 Modeling Planet Formation 15.2 Formation of the Solar System 15.3 Terrestrial and Jovian Planets 15.4 Interplanetary Debris 15.5 Solar

More information

Lecture Outlines. Chapter 15. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 15. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 15 Astronomy Today 8th Edition Chaisson/McMillan Chapter 15 Exoplanets Units of Chapter 15 15.1 Modeling Planet Formation 15.2 Solar System Regularities and Irregularities 15.3

More information

The Dynamical Evolution of Exoplanet Systems

The Dynamical Evolution of Exoplanet Systems The Dynamical Evolution of Exoplanet Systems Melvyn B. Davies Department of Astronomy and Theoretical Physics Lund Observatory Collaborators: Clément Bonnerot, John Chambers, Ross Church, Francesca de

More information

Giant Planet Formation

Giant Planet Formation Giant Planet Formation Overview Observations: Meteorites to Extrasolar Planets Our Solar System Dynamics Meteorites Geology Planetary composition & structure Other Stars Circumstellar disks Extrasolar

More information

ASTR 200 : Lecture 6 Introduction to the Solar System Pearson Education Inc., publishing as Addison-Wesley

ASTR 200 : Lecture 6 Introduction to the Solar System Pearson Education Inc., publishing as Addison-Wesley ASTR 200 : Lecture 6 Introduction to the Solar System 1 2004 Pearson Education Inc., publishing as Addison-Wesley ANNOUNCEMENTS Keep up with reading! Always posted on course web site. Reading material

More information

Exoplanets around (very) evolved stars

Exoplanets around (very) evolved stars Exoplanets around (very) evolved stars Roberto Silvotti INAF - Osservatorio Astrofisico di Torino & Matt Burleigh University of Leicester PLATO 2.0 Science Workshop, ESA-ESTEC, 29-31/07/2013 Outline post-rgb

More information

Who was here? How can you tell? This is called indirect evidence!

Who was here? How can you tell? This is called indirect evidence! 1 Who was here? How can you tell? This is called indirect evidence! 2 How does a planetary system form? The one we can study in the most detail is our solar system. If we want to know whether the solar

More information

Comet Science Goals II

Comet Science Goals II Comet Science Goals II {questions for goals} Don Brownlee Did the events postulated by the Nice Hypothesis really happen? Were there wide-spread solar system wide impact events that were coeval with the

More information

Importance of the study of extrasolar planets. Exoplanets Introduction. Importance of the study of extrasolar planets

Importance of the study of extrasolar planets. Exoplanets Introduction. Importance of the study of extrasolar planets Importance of the study of extrasolar planets Exoplanets Introduction Planets and Astrobiology (2017-2018) G. Vladilo Technological and scientific spin-offs Exoplanet observations are driving huge technological

More information

ASTR 200 : Lecture 6 Introduction to the Solar System Pearson Education Inc., publishing as Addison-Wesley

ASTR 200 : Lecture 6 Introduction to the Solar System Pearson Education Inc., publishing as Addison-Wesley ASTR 200 : Lecture 6 Introduction to the Solar System 1 2004 Pearson Education Inc., publishing as Addison-Wesley Comparative Planetology Studying the similarities among and differences between the planets

More information

Origin of the Solar System

Origin of the Solar System Origin of the Solar System Look for General Properties Dynamical Regularities Orbits in plane, nearly circular Orbit sun in same direction (CCW from N.P.) Rotation Axes to orbit plane (Sun & most planets;

More information

while the Planck mean opacity is defined by

while the Planck mean opacity is defined by PtII Astrophysics Lent, 2016 Physics of Astrophysics Example sheet 4 Radiation physics and feedback 1. Show that the recombination timescale for an ionised plasma of number density n is t rec 1/αn where

More information

Secular Resonances during Main-Sequence and Post-Main-Sequence Planetary System Dynamics

Secular Resonances during Main-Sequence and Post-Main-Sequence Planetary System Dynamics UNLV Theses, Dissertations, Professional Papers, and Capstones 8-1-2017 Secular Resonances during Main-Sequence and Post-Main-Sequence Planetary System Dynamics Jeremy L. Smallwood University of Nevada,

More information

Water in Exoplanets: Can we learn from our Solar System? Fred Ciesla Department of the Geophysical Sciences The University of Chicago

Water in Exoplanets: Can we learn from our Solar System? Fred Ciesla Department of the Geophysical Sciences The University of Chicago Water in Exoplanets: Can we learn from our Solar System? Fred Ciesla Department of the Geophysical Sciences The University of Chicago Gerard Kuiper What about Life? Water = Habitability Mystery of Earth

More information

Dynamical properties of the Solar System. Second Kepler s Law. Dynamics of planetary orbits. ν: true anomaly

Dynamical properties of the Solar System. Second Kepler s Law. Dynamics of planetary orbits. ν: true anomaly First Kepler s Law The secondary body moves in an elliptical orbit, with the primary body at the focus Valid for bound orbits with E < 0 The conservation of the total energy E yields a constant semi-major

More information

Multi-Planet Destabilisation and Escape in Post-Main Sequence Systems

Multi-Planet Destabilisation and Escape in Post-Main Sequence Systems Multi-Planet Destabilisation and Escape in Post-Main Sequence Systems Journal: Monthly Notices of the Royal Astronomical Society Manuscript ID: Draft Wiley - Manuscript type: Main Journal Date Submitted

More information

Kuiper Belt Dynamics and Interactions

Kuiper Belt Dynamics and Interactions Kuiper Belt Dynamics and Interactions Minor Planet Center Ruth Murray-Clay Harvard-Smithsonian Center for Astrophysics Kuiper belt µm ejected by radiation pressure larger grains migrate in via PR drag

More information

9.2 - Our Solar System

9.2 - Our Solar System 9.2 - Our Solar System Scientists describe our solar system as the Sun and all the planets and other celestial objects, such as moons, comets, and asteroids, that are held by the Sun s gravity and orbit

More information

EXOPLANET LECTURE PLANET FORMATION. Dr. Judit Szulagyi - ETH Fellow

EXOPLANET LECTURE PLANET FORMATION. Dr. Judit Szulagyi - ETH Fellow EXOPLANET LECTURE PLANET FORMATION Dr. Judit Szulagyi - ETH Fellow (judits@ethz.ch) I. YOUNG STELLAR OBJECTS AND THEIR DISKS (YSOs) Star Formation Young stars born in 10 4 10 6 M Sun Giant Molecular Clouds.

More information

2018 TIARA Summer School Origins of the Solar System. Observations and Modelling of Debris Disks. J.P. Marshall (ASIAA) Wednesday 18 th July 2018

2018 TIARA Summer School Origins of the Solar System. Observations and Modelling of Debris Disks. J.P. Marshall (ASIAA) Wednesday 18 th July 2018 2018 TIARA Summer School Origins of the Solar System Observations and Modelling of Debris Disks J.P. Marshall (ASIAA) Wednesday 18 th July 2018 [Hogerheijde 1998] Debris disks Tenuous belts of icy and

More information

1 Solar System Debris and Formation

1 Solar System Debris and Formation 1 Solar System Debris and Formation Chapters 14 and 15 of your textbook Exercises: Do all Review and Discussion and all Conceptual Self-Test 1.1 Solar System Debris Asteroids small rocky bodies Most under

More information

Astronomy 1140 Quiz 4 Review

Astronomy 1140 Quiz 4 Review Astronomy 1140 Quiz 4 Review Anil Pradhan December 6, 2016 I The Outer Planets in General 1. How do the sizes, masses and densities of the outer planets compare with the inner planets? The outer planets

More information

Lecture 44: The Future of Life in the Solar System

Lecture 44: The Future of Life in the Solar System Lecture 44 The Future of Life in the Solar System Astronomy 141 Autumn 2009 This lecture is about the future of life in the Solar System. The Sun today is a steadily shining, middle-aged Main Sequence

More information

Planetary migration and the Late Heavy Bombardment (better late than never)

Planetary migration and the Late Heavy Bombardment (better late than never) Planetary migration and the Late Heavy Bombardment (better late than never) S. Goldman April 2007 The early history of the Solar System, though still shrouded in mystery, is slowly being pieced together

More information

arxiv:astro-ph/ v1 25 Aug 1998

arxiv:astro-ph/ v1 25 Aug 1998 DETECTING PLANETS IN PLANETARY NEBULAE Noam Soker soker@physics.technion.ac.il arxiv:astro-ph/9808290v1 25 Aug 1998 Department of Physics, University of Haifa at Oranim Tivon 36006, Israel 2 ABSTRACT We

More information

The Collisional Evolution of Small Bodies in the Solar System

The Collisional Evolution of Small Bodies in the Solar System The Collisional Evolution of Small Bodies in the Solar System David P. O'Brien* Planetary Science Institute Tucson, AZ Invited Review CD '07 Alicante, Spain * with Don Davis, Scott Kenyon and Benjamin

More information

Debris disk structure arising from planetary perturbations

Debris disk structure arising from planetary perturbations Debris disk structure arising from planetary perturbations Mark Wyatt Institute of Astronomy, Cambridge Debris disk structure arising from planetary perturbations Disk dynamical theory and the observables

More information

Transneptunian objects. Minor bodies in the outer Solar System. Transneptunian objects

Transneptunian objects. Minor bodies in the outer Solar System. Transneptunian objects Transneptunian objects Minor bodies in the outer Solar System Planets and Astrobiology (2016-2017) G. Vladilo Around 1980 it was proposed that the hypothetical disk of small bodies beyond Neptune (called

More information

Habitable Planets: 2 Estimating f s "

Habitable Planets: 2 Estimating f s Habitable Planets: 2 Estimating f s " Stellar Requirements (f s )" We assume that our planet needs to orbit a star" Leaves out planets around brown dwarfs" Leaves out nomad planets (may be many)" About

More information

Planet formation in protoplanetary disks. Dmitry Semenov Max Planck Institute for Astronomy Heidelberg, Germany

Planet formation in protoplanetary disks. Dmitry Semenov Max Planck Institute for Astronomy Heidelberg, Germany Planet formation in protoplanetary disks Dmitry Semenov Max Planck Institute for Astronomy Heidelberg, Germany Suggested literature "Protoplanetary Dust" (2010), eds. D. Apai & D. Lauretta, CUP "Protostars

More information

Astronomy 1140 Quiz 4 Review

Astronomy 1140 Quiz 4 Review Astronomy 1140 Quiz 4 Review Anil Pradhan November 16, 2017 I Jupiter 1. How do Jupiter s mass, size, day and year compare to Earth s? Mass: 318 Earth masses (or about 1/1000th the mass of the Sun). Radius:

More information

Habitability in the Upsilon Andromedae System

Habitability in the Upsilon Andromedae System Habitability in the Upsilon Andromedae System Adrienne Dove University of Missouri Columbia Institute for Astronomy University of Hawaii Mentor: Nader Haghighipour ABSTRACT We investigate the habitability

More information

AST 105. Overview of the Solar System

AST 105. Overview of the Solar System AST 105 Overview of the Solar System Scale of the Solar System Earth Voyager 1, 1991, distance = 4 billion miles Recap: The Solar System in Scale If the Solar System were the size of a football

More information

Planetesimals are the building blocks of planets. We can trace them by the dust they produce by

Planetesimals are the building blocks of planets. We can trace them by the dust they produce by Debris Disks and the Search for Life Amaya Moro-Martín, amaya@stsci.edu Planetesimals are the building blocks of planets. We can trace them by the dust they produce by collisions and sublimation, which

More information

From pebbles to planetesimals and beyond

From pebbles to planetesimals and beyond From pebbles to planetesimals... and beyond (Lund University) Origins of stars and their planetary systems Hamilton, June 2012 1 / 16 Overview of topics Size and time Dust µ m Pebbles cm Planetesimals

More information

IX. Dwarf Planets A. A planet is defined to be an object that is large enough to coalesce into a sphere and to have cleared its orbit of other

IX. Dwarf Planets A. A planet is defined to be an object that is large enough to coalesce into a sphere and to have cleared its orbit of other 7/1 VII. VIII. Uranus A. Gas Giant 1. Rings but not visible 2. HUGE axial tilt 97! 3. Mostly hydrogen and helium 4. Medium rotation rate 5. Cold 55 K at the cloud tops B. Physical characteristics 1. Mass:

More information

on it, can still ripen a bunch of grapes as though it had nothing else in the Universe to do. Galileo Galilei

on it, can still ripen a bunch of grapes as though it had nothing else in the Universe to do. Galileo Galilei The Sun, with all the planets revolving around it, and depending on it, can still ripen a bunch of grapes as though it had nothing else in the Universe to do. Galileo Galilei What We Will Learn Today Where

More information

Institute for. Advanced Study. Multi-planetary systems. Hanno of Toronto, Scarborough, March 2013

Institute for. Advanced Study. Multi-planetary systems. Hanno of Toronto, Scarborough, March 2013 Institute for Advanced Study Multi-planetary systems Hanno Rein @University of Toronto, Scarborough, March 2013 Projects that I will not talk about today Symplectic integrators Viscous overstability Parallel

More information