The Formation of Population III Protostars. Matthew Turk - Stanford/KIPAC with Tom Abel (Stanford/KIPAC)

Size: px
Start display at page:

Download "The Formation of Population III Protostars. Matthew Turk - Stanford/KIPAC with Tom Abel (Stanford/KIPAC)"

Transcription

1 The Formation of Population III Protostars Matthew Turk - Stanford/KIPAC with Tom Abel (Stanford/KIPAC)

2 (preamble)

3 Population III Stars

4 Population III

5 Population III

6 Population III.1

7 Population III.2

8 Population III.1 Population III.2

9 Population III.1 Population III.2

10 The Story So Far

11 (some of) The Story So Far

12 Many published studies! Bromm, Coppi & Larson Omukai & Palla Heger & Woosley

13 Abel, Anninos, Norman & Zhang (1998) First nested grid calculation

14 Abel, Bryan & Norman (2002) First AMR calculation Single star forming in isolation solar masses

15 O Shea & Norman (2007) Many realizations Collapse time affects accretion rates Accretion rates: uncertain!

16 Yoshida et al (2006, 2008) SPH with particle splitting Advanced chemistry Formed a protostar

17 Baryons Dark Matter

18

19

20 z ~ 30 { 10 6 M

21 Controlled by H2 cooling

22 Form Alone

23 Massive

24 Questions:

25 1. In what way do H2 formation rates affect collapse?

26 2. Can we constrain the initial mass function?

27 3. What can this tell us about enrichment?

28 3. What can this tell us about enrichment? ( )

29 How can we study these objects?

30 AMR

31 Universe

32

33 BORING BORING INTERESTING BORING

34

35

36

37

38

39

40

41

42

43 Chemistry

44 Very Simple Chemistry Helium 24% Hydrogen 76%

45 Very Simple Chemistry Helium 24% H H + He He + He ++ e - H - H2 H2+ Hydrogen 76% D D + HD

46 Very Simple Chemistry Helium 24% Hydrogen 76% H H + He He + He ++ e - H - H2 H2 + D D + HD

47 Very Simple Chemistry Helium 24% Hydrogen 76% H H + He He + He ++ e - H - H2 H2 + D D + HD

48 Process Time CMB Star See work by Glover, Omukai, Galli, Palla, Shull, Abel,...

49 Process Density CMB Star See work by Glover, Omukai, Galli, Palla, Shull, Abel,...

50 10-2 Background! H2 forms via H - channel

51 10-2 Background! H2 forms via H - channel Molecular Hydrogen Fraction: 2x10-6

52 10 4 Roto-Vibrational Levels Molecular Hydrogen Fraction: 10-3

53 10 4 (Full) Roto-Vibrational Levels Molecular Hydrogen Fraction: 10-3

54 10 4 Density independent cooling Molecular Hydrogen Fraction: 10-3

55 10 7 Three-body! H 2 + H 3H 2H + H 2 2H 2 2H + H H 2 + H H 2 + H 2 2H + H 2 Molecular Hydrogen Fraction: ~1.0 Glover 2008, Turk et al (in prep)

56 10 12 Optically Thick Molecular Hydrogen Fraction: ~1.0 See Ripamonti & Abel 2004

57 10 14 Collision Induced Emission H2 H2 Molecular Hydrogen Fraction: ~1.0

58 10 14 Collision Induced Emission H2 H2 H2 H2 Molecular Hydrogen Fraction: ~1.0

59 10 14 Collision Induced Emission H2 H2 H2 H2 Molecular Hydrogen Fraction: ~1.0

60 10 20 Molecular Hydrogen Fraction: << 1

61 10 20 T ~ 20,000K Molecular Hydrogen Fraction: << 1

62 10 20 T ~ 20,000K Code breakdown! Molecular Hydrogen Fraction: << 1

63 Adaptive Mesh Refinement (patch-based) N-body Dark Matter Radiative Cooling 12-species chemistry model

64 Adaptive Mesh Refinement (patch-based) N-body Dark Matter Radiative Cooling 12-species chemistry model Spatial Range of 2 42

65 Adaptive Mesh Refinement (patch-based) N-body Dark Matter Radiative Cooling 12-species chemistry model Spatial Range of 2 42 Protostellar densities

66 (Earth) (Flu Virus)

67 300 kpc h-1

68 300 kpc h-1

69 3.2 x 10 9 Solar Masses 300 kpc h -1

70 3.2 x 10 9 Solar Masses 300 kpc h -1

71 3.2 x 10 9 Solar Masses 300 kpc h -1

72 Limitations

73 Box Size Wave modes truncated at L -1

74 Courant Condition

75 H2 Formation Rates (with Paul Clark, Simon Glover, Ralf Klessen, Thomas Greif)

76 Dissociation ~1800K Association

77 Problem Setup Cosmological Initial Conditions Branched at 10 2 cm cells per Jeans Length Stopped at cm -3 Internal comparison

78 5000 AU (10-14 g/cc) (Glover 2008)

79 500 AU (10-12 g/cc) (Glover 2008)

80 50 AU (10-10 g/cc) (Glover 2008)

81 Higher H2 Rates Lower H2 Rates

82 Forming a Protostar

83 Problem Setup Three sets of initial conditions 16 cells per Jeans Length Stopped at ~10 19 cm -3

84 Problem Setup Three sets of initial conditions 16 cells per Jeans Length Stopped at ~10 19 cm levels of refinement 0.3 solar radii

85 500 AU 50 AU 5 AU 0.5 AU g/cc g/cc 10-8 g/cc 10-8 g/cc

86 100 AU

87 100 AU

88

89

90 Density x y g/cc z 250 AU SIM2 Temperature H2 Fraction 2000K 10% H2

91

92 Hotter gas

93 Faster accretion

94 ...more massive?

95 Metal Pollution

96 Smith et al 2008

97 Wise & Abel

98 What s next?

99 Sink Particles. Self-consistent means of avoiding the courant condition.

100 Bigger Boxes. 300 kpc h Mpc h -1

101 More realizations. Separate formation environment from formation physics.

102 Accretion Simulations. Full radiative transfer with an evolving accretion shock, followed for many mass-doublings.

103 Thank you. Additional thanks to: Greg Bryan (Columbia) Mike Norman (UCSD) Simon Glover (Heidelberg) Britton Smith (UC Boulder) John Wise (NASA/Goddard) Jeff Oishi (UC Berkeley)

The chemistry and thermodynamics of Pop III star formation

The chemistry and thermodynamics of Pop III star formation The chemistry and thermodynamics of Pop III star formation Where do the first stars form Form in dark matter minihalos with mass Mhalo 5 10 5 M Redshift z = 16-20 Tvir ~ 1000 K Gas density is around 1

More information

The first stars and primordial IMBHs

The first stars and primordial IMBHs The first stars and primordial IMBHs Ab initio predictions of black hole merger rates by the time LISA flies? Tom Abel Penn State Initial Conditions Time Evolution z=100 z=24 z=20.4 10 comoving kpc Cosmological

More information

The Pop III/II Transition

The Pop III/II Transition The First Stars and Galaxies: Challenges for the Next Decade March 8-11, 2010 Austin, Texas The Pop III/II Transition Raffaella Schneider INAF/Osservatorio Astrofisico di Arcetri What are the minimal conditions

More information

Effects of Varying the Three-Body Molecular Hydrogen Formation Rate in Primordial Star Formation

Effects of Varying the Three-Body Molecular Hydrogen Formation Rate in Primordial Star Formation SLAC-PUB-14304 Effects of Varying the Three-Body Molecular Hydrogen Formation Rate in Primordial Star Formation Matthew J. Turk 1, Paul Clark 2, S. C. O. Glover 2, T. H. Greif 3, Tom Abel 4, Ralf Klessen

More information

The First Stars. Simone Ferraro Princeton University. Sept 25, 2012

The First Stars. Simone Ferraro Princeton University. Sept 25, 2012 The First Stars Simone Ferraro Princeton University Sept 25, 2012 Outline Star forming minihalos at high z Cooling physics and chemistry Gravitational Collapse and formation of protostar Magnetic fields

More information

FORMATION OF PRIMORDIAL STARS

FORMATION OF PRIMORDIAL STARS Talk@INT, UW, July 5, 2006 FORMATION OF PRIMORDIAL STARS Naoki Yoshida Department of Physics Nagoya University Outline Thermal evolution of a primordial gas - Physics at high densities (cooling, chem.

More information

The First Black Holes and. their Host Galaxies. John Wise

The First Black Holes and. their Host Galaxies. John Wise The First Black Holes and John Wise Chao Shi (GT), Pengfei Chen (UCSD), Ayçin Aykutalp (GT), Tom Abel (Stanford), Peter Johansson (Helsinki), Michael Norman (UCSD), Brian O Shea (MSU), John Regan (Helsinki),

More information

arxiv: v1 [astro-ph.co] 10 Oct 2012

arxiv: v1 [astro-ph.co] 10 Oct 2012 Draft version March 12, 2013 Preprint typeset using L A TEX style emulateapj v. 5/2/11 PROTOSTELLAR FEEDBACK AND FINAL MASS OF THE SECOND-GENERATION PRIMORDIAL STARS Takashi Hosokawa 1,2, Naoki Yoshida

More information

The Competitive Accretion Debate

The Competitive Accretion Debate The Competitive Accretion Debate 1,2 Paul C. Clark 2 Ralf S. Klessen 3 Ian A. Bonnell 3 Rowan J. Smith 1 KITP 2 University of Heidelberg 3 University of St Andrews What is CA and how does it work? Theory

More information

Simulations of First Star Formation

Simulations of First Star Formation Simulations of First Star Formation Michael L. Norman (UCSD) Brian O Shea (LANL) 1 Formation of the first stars: current paradigm (Abel et al. 2002, Bromm et al. 2002,Yoshida et al. 2006) DM halos of M~10

More information

The First Stars and their Impact on Cosmology

The First Stars and their Impact on Cosmology The First Stars and their Impact on Cosmology V. Bromm University of Texas, Austin, TX 78712, USA Within variants of the cold dark matter model of cosmological structure formation, the first sources of

More information

The Pop III IMF: A Progress Report. Michael L. Norman University of California, San Diego & San Diego Supercomputer Center

The Pop III IMF: A Progress Report. Michael L. Norman University of California, San Diego & San Diego Supercomputer Center The Pop III IMF: A Progress Report Michael L. Norman University of California, San Diego & San Diego Supercomputer Center Disclaimer Notion of Pop III IMF is not well-defined We don t observe Pop III stars

More information

Making Sense of the Universe with Supercomputers

Making Sense of the Universe with Supercomputers Making Sense of the Universe with Supercomputers Tom Abel Kavli Institute for Particle Astrophysics and Cosmology, Stanford, SLAC Adaptive Mesh Refinement in Cosmology: First Stars Adaptive Ray-Tracing

More information

POPULATION III STAR FORMATION IN A CDM UNIVERSE. I. THE EFFECT OF FORMATION REDSHIFT AND ENVIRONMENT ON PROTOSTELLAR ACCRETION RATE

POPULATION III STAR FORMATION IN A CDM UNIVERSE. I. THE EFFECT OF FORMATION REDSHIFT AND ENVIRONMENT ON PROTOSTELLAR ACCRETION RATE The Astrophysical Journal, 654:66Y92, 2007 January 1 # 2007. The American Astronomical Society. All rights reserved. Printed in U.S.A. POPULATION III STAR FORMATION IN A CDM UNIVERSE. I. THE EFFECT OF

More information

DR.RUPNATHJI( DR.RUPAK NATH )

DR.RUPNATHJI( DR.RUPAK NATH ) Abstract The first stars to form in the Universe the so-called Population III stars bring an end to the cosmological Dark Ages, and exert an important influence on the formation of subsequent generations

More information

arxiv: v1 [astro-ph.ga] 5 Jun 2014

arxiv: v1 [astro-ph.ga] 5 Jun 2014 The formation of massive primordial stars in the presence of moderate UV backgrounds arxiv:1406.1465v1 [astro-ph.ga] 5 Jun 2014 M. A. Latif 1, D. R. G. Schleicher 1, S. Bovino 1, T. Grassi 2,3, M. Spaans

More information

An overview of star formation

An overview of star formation An overview of star formation Paul Clark ITA: Ralf Klessen Robi Banerjee Simon Glover Ian Bonnell Clare Dobbs Jim Dale Why study star formation? Stars chemically the enrich the Universe, so star formation

More information

Cosmology Simulations with Enzo

Cosmology Simulations with Enzo Cosmology Simulations with Enzo John Wise (Georgia Tech) Enzo Workshop 17 May 2012 Outline Based on the simulation setup of Abel, Wise, & Bryan (2007), The HII Region of a Primordial Star Introduction

More information

Physics of Primordial Star Formation

Physics of Primordial Star Formation Physics of Primordial Star Formation Naoki Yoshida University of Tokyo SFDE17 Bootcamp, Quy Nhon, August 6th So far, we learned 1. The standard cosmological model 2. Growth of density fluctuations 3. Assembly

More information

arxiv: v5 [astro-ph.co] 14 Sep 2015

arxiv: v5 [astro-ph.co] 14 Sep 2015 Formation of the First Galaxies: Theory and Simulations Jarrett L. Johnson arxiv:1105.5701v5 [astro-ph.co] 14 Sep 2015 Abstract The properties of the first galaxies are shaped in large part by the first

More information

Open-Source Astrophysics with the Enzo Community Code. Brian W. O Shea Michigan State University

Open-Source Astrophysics with the Enzo Community Code. Brian W. O Shea Michigan State University Open-Source Astrophysics with the Enzo Community Code Brian W. O Shea Michigan State University What is Enzo? N-body + hydro (+MHD + RHD +...) blockstructured AMR code originally written at NCSA (by Greg

More information

Accretion phase of star formation in clouds with different metallicities

Accretion phase of star formation in clouds with different metallicities doi:10.1093/mnras/stu2633 Accretion phase of star formation in clouds with different metallicities Masahiro N. Machida and Teppei Nakamura Department of Earth and Planetary Sciences, Faculty of Sciences,

More information

arxiv: v2 [astro-ph.co] 23 May 2013

arxiv: v2 [astro-ph.co] 23 May 2013 Mon. Not. R. Astron. Soc. 000, 1 5 (2013) Printed 20 August 2018 (MN LATEX style file v2.2) Impact of an accurate modeling of primordial chemistry in high resolution studies arxiv:1305.1480v2 [astro-ph.co]

More information

The Very First Stars: Formation and Reionization of the Universe

The Very First Stars: Formation and Reionization of the Universe Chemical Abundances in the Universe: Connecting First Stars to Planets Proceedings IAU Symposium No. 265, 2009 K. Cunha, M. Spite & B. Barbuy, eds. c International Astronomical Union 2010 doi:10.1017/s1743921310000116

More information

arxiv: v2 [astro-ph.co] 18 Jun 2012

arxiv: v2 [astro-ph.co] 18 Jun 2012 Mon. Not. R. Astron. Soc. 000, 1 8 (2010) Printed 14 October 2018 (MN LATEX style file v2.2) Variable Accretion Rates and Fluffy First Stars arxiv:1112.4157v2 [astro-ph.co] 18 Jun 2012 Rowan J. Smith 1,

More information

THE ROLE OF RADIATION PRESSURE IN HIGH-Z DWARF GALAXIES

THE ROLE OF RADIATION PRESSURE IN HIGH-Z DWARF GALAXIES THE ROLE OF RADIATION PRESSURE IN HIGH-Z DWARF GALAXIES John Wise (Georgia Tech) Tom Abel (Stanford), Michael Norman (UC San Diego), Britton Smith (Michigan State), Matthew Turk (Columbia) 14 Dec 2012

More information

arxiv: v1 [astro-ph] 28 Aug 2008

arxiv: v1 [astro-ph] 28 Aug 2008 Low-Metallicity Star Formation: From the First Stars to Dwarf Galaxies Proceedings IAU Symposium No. 255, 2008 c 2008 International Astronomical Union L.K. Hunt, S. Madden & R. Schneider, eds. DOI: 00.0000/X000000000000000X

More information

The Early Generations of Low-metallicity Stars

The Early Generations of Low-metallicity Stars Stellar Evolution at low Metallicity: Mass Loss, Eplosions, Cosmology ASP Conference Series, Vol. 353, 2006 Henny J.G.L.M. Lamers, Norbert Langer, Tiit Nugis, Kalju Annuk The Early Generations of Low-metallicity

More information

n [Mpc -3 ] [erg] E bind

n [Mpc -3 ] [erg] E bind Submitted to ApJ on April 26, 2007 Preprint typeset using L A TEX style emulateapj v. 10/09/06 SLAC-PUB-12666 astro-ph/0707.2059 August 2007 SUPPRESSION OF H 2 COOLING IN THE ULTRAVIOLET BACKGROUND John

More information

The Supermassive Seeds of Supermassive Black Holes

The Supermassive Seeds of Supermassive Black Holes The Supermassive Seeds of Supermassive Black Holes Jarrett Johnson (LANL) with Hui Li, Joe Smidt, Dan Whalen, Wes Even, Chris Fryer (LANL) Bhaskar Agarwal, Claudio Dalla Vecchia, Eyal Neistein (MPE) Ken

More information

Astrochemistry. Lecture 10, Primordial chemistry. Jorma Harju. Department of Physics. Friday, April 5, 2013, 12:15-13:45, Lecture room D117

Astrochemistry. Lecture 10, Primordial chemistry. Jorma Harju. Department of Physics. Friday, April 5, 2013, 12:15-13:45, Lecture room D117 Astrochemistry Lecture 10, Primordial chemistry Jorma Harju Department of Physics Friday, April 5, 2013, 12:15-13:45, Lecture room D117 The first atoms (1) SBBN (Standard Big Bang Nucleosynthesis): elements

More information

Exploring galactic environments with AMR simulations on Blue Waters

Exploring galactic environments with AMR simulations on Blue Waters Exploring galactic environments with AMR simulations on Blue Waters Brian O Shea (MSU; PI), on behalf of: David Collins (FSU; co-pi) Lauren Corlies (STScI) Cameron Hummels (CalTech) Claire Kopenhofer (MSU)

More information

Probing the Nature of Dark Matter with the First Galaxies (Reionization, 21-cm signal)

Probing the Nature of Dark Matter with the First Galaxies (Reionization, 21-cm signal) Probing the Nature of Dark Matter with the First Galaxies (Reionization, 21-cm signal) Anastasia Fialkov Ecole Normale Superieure Debates on the Nature of Dark Matter 20 May 2014 Outline The early Universe

More information

arxiv: v2 [astro-ph.ga] 8 Jul 2016

arxiv: v2 [astro-ph.ga] 8 Jul 2016 Preprint 20 September 2018 Compiled using MNRAS LATEX style file v3.0 Amplification of Magnetic Fields in a Primordial H ii Region and Supernova Daegene Koh, 1 John H. Wise, 1 1 Center for Relativistic

More information

The Formation of Population III stars in a ΛCDM universe

The Formation of Population III stars in a ΛCDM universe Chapter 4 The Formation of Population III stars in a ΛCDM universe 4.1 Summary In this chapter I discuss aspects of primordial star formation in a ΛCDM universe. The collapse of gas in a representative

More information

arxiv: v1 [astro-ph.ga] 7 Oct 2018

arxiv: v1 [astro-ph.ga] 7 Oct 2018 Simulating the Cosmic Dawn with Enzo arxiv:1810.03179v1 [astro-ph.ga] 7 Oct 2018 Michael L. Norman Britton Smith James Bordner October 9, 2018 Abstract We review two decades of progress using the Enzo

More information

Cosmic Variance of Small-Scale Structure Formation: Large-Scale Density and CDM-Baryon Drift Velocity Environment

Cosmic Variance of Small-Scale Structure Formation: Large-Scale Density and CDM-Baryon Drift Velocity Environment Cosmic Variance of Small-Scale Structure Formation: Large-Scale Density and CDM-Baryon Drift Velocity Environment Based on collaboration with: Paul Shapiro (Texas), Ilian Iliev (Sussex), Garrelt Mellema

More information

RESOLVING THE FORMATION OF PROTOGALAXIES. I. VIRIALIZATION

RESOLVING THE FORMATION OF PROTOGALAXIES. I. VIRIALIZATION SLAC-PUB-1249 May 27 Submitted to ApJ on March 8, 27 Preprint typeset using L A TEX style emulateapj v. 3/7/7 RESOLVING THE FORMATION OF PROTOGALAXIES. I. VIRIALIZATION John H. Wise and Tom Abel Kavli

More information

Michael Shull (University of Colorado)

Michael Shull (University of Colorado) Early Galaxies, Stars, Metals, and the Epoch of Reionization Michael Shull (University of Colorado) Far-IR Workshop (Pasadena, CA) May 29, 2008 Submillimeter Galaxies: only the brightest? How long? [dust

More information

RESOLVING THE FORMATION OF PROTOGALAXIES. III. FEEDBACK FROM THE FIRST STARS

RESOLVING THE FORMATION OF PROTOGALAXIES. III. FEEDBACK FROM THE FIRST STARS Draft version October 24, 2007 Preprint typeset using L A TEX style emulateapj v. 03/07/07 SLAC-PUB-12923 October 2007 RESOLVING THE FORMATION OF PROTOGALAXIES. III. FEEDBACK FROM THE FIRST STARS John

More information

Cosmological simulations of X-ray heating during the Universe s Dark Ages

Cosmological simulations of X-ray heating during the Universe s Dark Ages Cosmological simulations of X-ray heating during the Universe s Dark Ages Jordan Mirocha 1,5, Jack Burns 1,5, Eric Hallman 2,5, Steven Furlanetto 3,6, John Wise 4 1 University of Colorado at Boulder 2

More information

arxiv:astro-ph/ v1 3 Nov 2003

arxiv:astro-ph/ v1 3 Nov 2003 Annu. Rev. Astron. Astrophys. 2004 42 1056-8700/04/0610-00 The First Stars Volker Bromm Department of Astronomy, Harvard University, 60 Garden St., Cambridge, Massachusetts 02138; email: vbromm@cfa.harvard.edu

More information

Lighting the Universe with filaments

Lighting the Universe with filaments Lighting the Universe with filaments Liang Gao 1,, Tom Theuns 1,2 1 Institute for Computational Cosmology, Durham University, South Road, Durham DH1 3LE, UK 2 Department of Physics, University of Antwerp,

More information

arxiv:astro-ph/ v1 29 Oct 2004

arxiv:astro-ph/ v1 29 Oct 2004 The Formation of Population III Binaries Kazuya Saigo 1, Tomoaki Matsumoto 2, & Masayuki Umemura 3 ABSTRACT arxiv:astro-ph/0410733v1 29 Oct 2004 We explore the possibility for the formation of Population

More information

The Origin of Supermassive Black Holes. Daniel Whalen. McWilliams Fellow Carnegie Mellon

The Origin of Supermassive Black Holes. Daniel Whalen. McWilliams Fellow Carnegie Mellon The Origin of Supermassive Black Holes Daniel Whalen McWilliams Fellow Carnegie Mellon Mergers Accretion The SMBH Conundrum SDSS quasars of ~ 10 9 Msun have been found at z ~ 6, a Gyr after the Big Bang

More information

The Formation and Evolution of Galaxy Clusters

The Formation and Evolution of Galaxy Clusters IAU Joint Discussion # 10 Sydney, July, 2003 The Formation and Evolution of Galaxy Clusters Simon D.M. White Max Planck Institute for Astrophysics The WMAP of the whole CMB sky Bennett et al 2003 > 105

More information

Feedback, AGN and galaxy formation. Debora Sijacki

Feedback, AGN and galaxy formation. Debora Sijacki Feedback, AGN and galaxy formation Debora Sijacki Formation of black hole seeds: the big picture Planck data, 2013 (new results 2015) Formation of black hole seeds: the big picture CMB black body spectrum

More information

Ionization Feedback in Massive Star Formation

Ionization Feedback in Massive Star Formation Ionization Feedback in Massive Star Formation Thomas Peters Institut für Theoretische Astrophysik Zentrum für Astronomie der Universität Heidelberg Ralf Klessen, Robi Banerjee (ITA, Heidelberg) Mordecai-Mark

More information

Massive black hole formation in cosmological simulations

Massive black hole formation in cosmological simulations Institut d Astrophysique de Paris IAP - France Massive black hole formation in cosmological simulations Mélanie HABOUZIT Marta Volonteri In collaboration with Yohan Dubois Muhammed Latif Outline Project:

More information

arxiv: v2 [astro-ph.co] 11 Mar 2014

arxiv: v2 [astro-ph.co] 11 Mar 2014 Mon. Not. R. Astron. Soc. 000, 1?? (2009) Printed 26 June 2018 (MN LaT E X style file v2.2) Impact of baryonic streaming velocities on the formation of supermassive black holes via direct collapse arxiv:1311.5866v2

More information

Star Formation at the End of the Dark Ages

Star Formation at the End of the Dark Ages Star Formation at the End of the Dark Ages...or when (rest-frame) UV becomes (observed) IR Piero Madau University of California Santa Cruz Distant Star Formation: what who came first? neanderthal Outline

More information

Connecting the earliest galaxies to the Local Group and Milky Way

Connecting the earliest galaxies to the Local Group and Milky Way Connecting the earliest galaxies to the Local Group and Milky Way Brian O Shea Michigan State University http://www.msu.edu/~oshea With: Pengfei Chen (UCSD) David Collins (FSU) Cameron Hummels (Caltech)

More information

The Initial Mass Function Elisa Chisari

The Initial Mass Function Elisa Chisari The Initial Mass Function AST 541 Dec 4 2012 Outline The form of the IMF Summary of observations Ingredients of a complete model A Press Schechter model Numerical simulations Conclusions The form of the

More information

The formation of direct collapse black holes under the influence of streaming velocities

The formation of direct collapse black holes under the influence of streaming velocities Mon. Not. R. Astron. Soc., 1 8 (22) Printed 12 January 218 (MN LATEX style file v2.2) The formation of direct collapse black holes under the influence of streaming velocities Anna T. P. Schauer 1, John

More information

IV From cores to stars

IV From cores to stars IV From cores to stars 4.0 The Jeans condition When the supporting pressure in a region is not able to hold that region up against gravitational collapse it is said to be Jeans unstable. The Jeans length

More information

High-redshift formation and evolution of central massive objects II. The census of BH seeds

High-redshift formation and evolution of central massive objects II. The census of BH seeds Mon. Not. R. Astron. Soc. 421, 1465 1475 (2012) doi:10.1111/j.1365-2966.2012.20406.x High-redshift formation and evolution of central massive objects II. The census of BH seeds B. Devecchi, 1 M. Volonteri,

More information

arxiv:astro-ph/ v2 14 Dec 2005

arxiv:astro-ph/ v2 14 Dec 2005 Mon. Not. R. Astron. Soc. 000, 1 13 (2003) Printed 24 September 2018 (MN LATEX style file v2.2) The First Generation of Star-Forming Haloes Darren S. Reed 1, Richard Bower 1, Carlos S. Frenk 1, Liang Gao

More information

The Effects of Radiative Transfer on Low-Mass Star Formation

The Effects of Radiative Transfer on Low-Mass Star Formation The Effects of Radiative Transfer on Low-Mass Star Formation Stella Offner NSF Fellow, ITC Dense Cores in Dark Clouds Oct 23 2009 Collaborators: Chris McKee (UC Berkeley), Richard Klein (UC Berkeley; LLNL),

More information

The Evolution and Explosion of Mass-Accreting Pop III Stars. Ken Nomoto (IPMU / U.Tokyo)

The Evolution and Explosion of Mass-Accreting Pop III Stars. Ken Nomoto (IPMU / U.Tokyo) The Evolution and Explosion of Mass-Accreting Pop III Stars Ken Nomoto (IPMU / U.Tokyo) Pop III Stars Pop III GRBs Pop III SNe? M > 10 5 M :SMS (Super Massive Stars) GR instability Collapse M ~ 300-10

More information

arxiv:astro-ph/ v2 2 Feb 2003

arxiv:astro-ph/ v2 2 Feb 2003 submitted to ApJ, February 1 Preprint typeset using L A TEX style emulateapj v. 04/03/99 SIMULATIONS OF EARLY STRUCTURE FORMATION: PRIMORDIAL GAS CLOUDS arxiv:astro-ph/0301645v2 2 Feb 2003 Naoki Yoshida

More information

Observational Programme in Kent

Observational Programme in Kent Observational Programme in Kent ASTRO-F, WFCAM, SCUBA-2, SALT UKIRT: individual protostellar outflows SAO/MMT/LBT: individual high- mass protostars NTT/Calar Alto + SEST: rho Ophiuchus 2MASS/NTT: Rosette

More information

The fragmentation of pre-enriched primordial objects

The fragmentation of pre-enriched primordial objects Mon. Not. R. Astron. Soc. 328, 969 976 (2001) The fragmentation of pre-enriched primordial objects V. Bromm, 1,2P A. Ferrara, 3 P. S. Coppi 2 and R. B. Larson 2 1 Institute of Astronomy, Madingley Road,

More information

UNDERSTANDING THE IMF

UNDERSTANDING THE IMF UNDERSTANDING THE IMF Richard B. Larson Department of Astronomy, Yale University Box 208101, New Haven, CT 06520-8101, USA larson@astro.yale.edu Abstract It is suggested that the thermal physics of star-forming

More information

arxiv:astro-ph/ v1 28 Dec 1999

arxiv:astro-ph/ v1 28 Dec 1999 THE FORMATION OF THE FIRST STARS 1 Richard B. Larson Yale Astronomy Department New Haven, CT 06520-8101, USA larson@astro.yale.edu arxiv:astro-ph/9912539v1 28 Dec 1999 ABSTRACT The first bound star-forming

More information

THE FORMATION OF THE FIRST STARS. Richard B. Larson

THE FORMATION OF THE FIRST STARS. Richard B. Larson 1 THE FORMATION OF THE FIRST STARS Richard B. Larson Department of Astronomy, Yale University, Box 208101, New Haven, CT 06520-8101, USA Abstract The first bound star-forming systems in the universe are

More information

Why is star formation correlated with molecular gas? Simon Glover

Why is star formation correlated with molecular gas? Simon Glover Why is star formation correlated with molecular gas? Simon Glover Schruba (2012) Good evidence that molecular gas and star formation are correlated in local spirals (see also K. Sandstrom s talk) Obvious

More information

arxiv:astro-ph/ v1 17 May 1997

arxiv:astro-ph/ v1 17 May 1997 First Structure Formation: I. Primordial Star Forming Regions in hierarchical models. arxiv:astro-ph/9705131v1 17 May 1997 Tom Abel 1,2, Peter Anninos 1, Michael L. Norman 1, & Yu Zhang 1 abel@mpa-garching.mpg.de,

More information

Chapter 11 The Formation and Structure of Stars

Chapter 11 The Formation and Structure of Stars Chapter 11 The Formation and Structure of Stars Guidepost The last chapter introduced you to the gas and dust between the stars that are raw material for new stars. Here you will begin putting together

More information

Chapter 11 The Formation of Stars

Chapter 11 The Formation of Stars Chapter 11 The Formation of Stars A World of Dust The space between the stars is not completely empty, but filled with very dilute gas and dust, producing some of the most beautiful objects in the sky.

More information

The turbulent formation of stars

The turbulent formation of stars The turbulent formation of stars Christoph Federrath Citation: Physics Today 71, 6, 38 (2018); doi: 10.1063/PT.3.3947 View online: https://doi.org/10.1063/pt.3.3947 View Table of Contents: http://physicstoday.scitation.org/toc/pto/71/6

More information

ON THE ROTATION OF SUPERMASSIVE STARS. Submitted to ApJL

ON THE ROTATION OF SUPERMASSIVE STARS. Submitted to ApJL Draft version October 13, 2018 Typeset using LATEX twocolumn style in AASTeX61 ON THE ROTATION OF SUPERMASSIVE STARS Lionel Haemmerlé, 1 Tyrone E. Woods, 2 Ralf S. Klessen, 3, 4 Alexander Heger, 5 and

More information

THE FIRST STARS. Volker Bromm. Richard B. Larson 1. INTRODUCTION

THE FIRST STARS. Volker Bromm. Richard B. Larson 1. INTRODUCTION Annu. Rev. Astron. Astrophys. 2004. 42:79 118 doi: 10.1146/annurev.astro.42.053102.134034 Copyright c 2004 by Annual Reviews. All rights reserved First published online as a Review in Advance on May 19,

More information

The dependence of star cluster formation on initial conditions. Matthew Bate University of Exeter

The dependence of star cluster formation on initial conditions. Matthew Bate University of Exeter The dependence of star cluster formation on initial conditions Matthew Bate University of Exeter Stellar properties do not greatly depend on initial conditions constellation Little evidence for variation

More information

Black Hole Formation in the Early Universe

Black Hole Formation in the Early Universe 1 Black Hole Formation in the Early Universe Luo Yang (Osaka University) XC30 2 1. Introduction Observations of high-redshift quasars reveal that some supermassive black holes (SMBH) with masses exceeding

More information

arxiv: v2 [astro-ph.ga] 23 Jan 2018

arxiv: v2 [astro-ph.ga] 23 Jan 2018 Preprint 20 July 2018 Compiled using MNRAS LATEX style file v3.0 Effect of lithium hydride on the cooling of primordial gas Boyuan Liu and Volker Bromm Department of Astronomy, University of Texas, Austin,

More information

Gravitational collapse of gas

Gravitational collapse of gas Gravitational collapse of gas Assume a gas cloud of mass M and diameter D Sound speed for ideal gas is c s = γ P ρ = γ nkt ρ = γ kt m Time for sound wave to cross the cloud t sound = D == D m c s γ kt

More information

Numerical resolution effects on simulations of massive black hole seeds

Numerical resolution effects on simulations of massive black hole seeds Advance Access publication 2014 February 5 doi:10.1093/mnras/stu068 Numerical resolution effects on simulations of massive black hole seeds John A. Regan, 1,2 Peter H. Johansson 1 and Martin G. Haehnelt

More information

Published in: LOW-METALLICITY STAR FORMATION: FROM THE FIRST STARS TO DWARF GALAXIES

Published in: LOW-METALLICITY STAR FORMATION: FROM THE FIRST STARS TO DWARF GALAXIES University of Groningen Interstellar Chemistry Spaans, Marco Published in: LOW-METALLICITY STAR FORMATION: FROM THE FIRST STARS TO DWARF GALAXIES DOI: 10.1017/S1743921308024885 IMPORTANT NOTE: You are

More information

EVOLUTION OF STARS: A DETAILED PICTURE

EVOLUTION OF STARS: A DETAILED PICTURE EVOLUTION OF STARS: A DETAILED PICTURE PRE-MAIN SEQUENCE PHASE CH 9: 9.1 All questions 9.1, 9.2, 9.3, 9.4 at the end of this chapter are advised PRE-PROTOSTELLAR PHASE SELF -GRAVITATIONAL COLL APSE p 6

More information

Recent Progress in Modeling of Galaxy Formation. Oleg Gnedin (University of Michigan)

Recent Progress in Modeling of Galaxy Formation. Oleg Gnedin (University of Michigan) Recent Progress in Modeling of Galaxy Formation Oleg Gnedin (University of Michigan) In current simulations, galaxies look like this: 10 kpc Disk galaxy at z=3: stars, molecular gas, atomic gas (Zemp,

More information

arxiv: v2 [astro-ph.ga] 29 Oct 2014

arxiv: v2 [astro-ph.ga] 29 Oct 2014 Astronomy& Astrophysics manuscript no. paper01_aanda_final_publish_arxiv c ESO 2017 December 11, 2017 Effects of turbulence and rotation on protostar formation as a precursor of massive black holes C.

More information

arxiv: v1 [astro-ph] 15 Dec 2008

arxiv: v1 [astro-ph] 15 Dec 2008 Mon. Not. R. Astron. Soc. 000, 1 5 () Printed 8 May 2009 (MN LATEX style file v2.2) Photo-heating and supernova feedback amplify each other s effect on the cosmic star formation rate arxiv:0812.2913v1

More information

The implications of dust for high-redshift protogalaxies and the formation of binary disks

The implications of dust for high-redshift protogalaxies and the formation of binary disks Astronomy & Astrophysics manuscript no. dustpaper c ESO 2018 June 7, 2018 The implications of dust for high-redshift protogalaxies and the formation of binary disks M. A. Latif 1, D. R. G. Schleicher 2,

More information

Chapter 16 Lecture. The Cosmic Perspective Seventh Edition. Star Birth Pearson Education, Inc.

Chapter 16 Lecture. The Cosmic Perspective Seventh Edition. Star Birth Pearson Education, Inc. Chapter 16 Lecture The Cosmic Perspective Seventh Edition Star Birth 2014 Pearson Education, Inc. Star Birth The dust and gas between the star in our galaxy is referred to as the Interstellar medium (ISM).

More information

Impact of Type Ia Supernova Ejecta on Binary Companions

Impact of Type Ia Supernova Ejecta on Binary Companions Impact of Type Ia Supernova Ejecta on Binary Companions Speaker: Kuo-Chuan Pan (ASTR) Charm++ Workshop, April 18, 2011 1 [Dept. of Astronomy] Advisor: Prof. Paul Ricker Collaborator: Prof. Ronald Taam

More information

arxiv: v2 [astro-ph.ga] 28 Dec 2017

arxiv: v2 [astro-ph.ga] 28 Dec 2017 Mon. Not. R. Astron. Soc. 000, 000 000 (0000) Printed 29 December 2017 (MN LATEX style file v2.2) Can Population III stars survive to the present day? Jayanta Dutta 1,2, Sharanya Sur 3, Athena Stacy 4

More information

FORMATION OF SUPERMASSIVE BLACK HOLES Nestor M. Lasso Cabrera

FORMATION OF SUPERMASSIVE BLACK HOLES Nestor M. Lasso Cabrera FORMATION OF SUPERMASSIVE BLACK HOLES Nestor M. Lasso Cabrera In this presentation the different theories that can explain the formation of Supermassive Black Holes (SMBH) are presented. Before focus on

More information

Stellar Birth. Stellar Formation. A. Interstellar Clouds. 1b. What is the stuff. Astrophysics: Stellar Evolution. A. Interstellar Clouds (Nebulae)

Stellar Birth. Stellar Formation. A. Interstellar Clouds. 1b. What is the stuff. Astrophysics: Stellar Evolution. A. Interstellar Clouds (Nebulae) Astrophysics: Stellar Evolution 1 Stellar Birth Stellar Formation A. Interstellar Clouds (Nebulae) B. Protostellar Clouds 2 C. Protostars Dr. Bill Pezzaglia Updated: 10/02/2006 A. Interstellar Clouds 1.

More information

Astronomy. Astrophysics. Effects of turbulence and rotation on protostar formation as a precursor of massive black holes

Astronomy. Astrophysics. Effects of turbulence and rotation on protostar formation as a precursor of massive black holes DOI: 10.1051/0004-6361/201424658 c ESO 2014 Astronomy & Astrophysics Effects of turbulence and rotation on protostar formation as a precursor of massive black holes C. Van Borm 1,2, S. Bovino 1, M. A.

More information

The Interplay Between Galaxies and Black Holes A Theoretical Overview. Massimo Ricotti (U of Maryland)

The Interplay Between Galaxies and Black Holes A Theoretical Overview. Massimo Ricotti (U of Maryland) The Interplay Between Galaxies and Black Holes A Theoretical Overview Massimo Ricotti (U of Maryland) ..a tale of many sleepless nights Maya and Noemi Ricotti Cosmological Context Outline Formation of

More information

arxiv: v1 [astro-ph] 6 Aug 2008

arxiv: v1 [astro-ph] 6 Aug 2008 Mon. Not. R. Astron. Soc. 000, 000 000 (0000) Printed 7 February 2009 (MN LATEX style file v2.2) Chemical mixing in smoothed particle hydrodynamics simulations arxiv:0808.0843v1 [astro-ph] 6 Aug 2008 Thomas

More information

Accretion Mechanisms

Accretion Mechanisms Massive Protostars Accretion Mechanism Debate Protostellar Evolution: - Radiative stability - Deuterium shell burning - Contraction and Hydrogen Ignition Stahler & Palla (2004): Section 11.4 Accretion

More information

If you wish to make an apple pie from scratch, you must first invent the universe. Carl Sagan, Cosmos

If you wish to make an apple pie from scratch, you must first invent the universe. Carl Sagan, Cosmos Simulations and images: Matthew Turk, Tom Abel, KIPAC; Brian O Shea, Los Alamos National Laboratory; Michael L. Norman, University of California, San Diego; Greg Bryan, Columbia University. Image software:

More information

Dark Stars: Dark Matter annihilation can power the first stars. Katherine Freese Michigan Center for Theoretical Physics University of Michigan

Dark Stars: Dark Matter annihilation can power the first stars. Katherine Freese Michigan Center for Theoretical Physics University of Michigan Dark Stars: Dark Matter annihilation can power the first stars Katherine Freese Michigan Center for Theoretical Physics University of Michigan Collaborators Papers Phys. Rev. Lett. 98, 010001 (2008),arxiv:0705.0521

More information

arxiv: v2 [astro-ph.ga] 7 Feb 2015

arxiv: v2 [astro-ph.ga] 7 Feb 2015 Mon. Not. R. Astron. Soc. 000, 1 22 (2015) Printed 10 February 2015 (MN LaT E X style file v2.2) Primordial star formation under the influence of far ultraviolet radiation: 1540 cosmological halos and

More information

Chapter 1. Introduction

Chapter 1. Introduction Chapter 1 Introduction Cosmology is defined as The study of the physical universe considered as a totality of phenomena in time and space. [5] As one might expect from this lofty definition, the exploration

More information

Formation and cosmic evolution of supermassive black holes. Debora Sijacki

Formation and cosmic evolution of supermassive black holes. Debora Sijacki Formation and cosmic evolution of supermassive black holes Debora Sijacki Summer school: Black Holes at all scales Ioannina, Greece, Sept 16-19, 2013 Lecture 1: - formation of black hole seeds - low mass

More information

Collapse of Massive Cloud Cores

Collapse of Massive Cloud Cores Collapse of Massive Cloud Cores Robi Banerjee ITA, University of Heidelberg Based on 3D MHD, AMR* Simulations * Adaptive Mesh Refinement Collapse of Hydrostatic Cores Cloud formation by TI Slowly rotating

More information

Feedback and Galaxy Formation

Feedback and Galaxy Formation Heating and Cooling in Galaxies and Clusters Garching August 2006 Feedback and Galaxy Formation Simon White Max Planck Institute for Astrophysics Cluster assembly in ΛCDM Gao et al 2004 'Concordance'

More information

THE DESTRUCTION OF COSMOLOGICAL MINIHALOS BY PRIMORDIAL SUPERNOVAE

THE DESTRUCTION OF COSMOLOGICAL MINIHALOS BY PRIMORDIAL SUPERNOVAE The Astrophysical Journal, 682:49 67, 2008 July 20 # 2008. The American Astronomical Society. All rights reserved. Printed in U.S.A. THE DESTRUCTION OF COSMOLOGICAL MINIHALOS BY PRIMORDIAL SUPERNOVAE Daniel

More information