ALMA polarization of HL Tau - investigating planet formation -

Size: px
Start display at page:

Download "ALMA polarization of HL Tau - investigating planet formation -"

Transcription

1 ALMA polarization of HL Tau - investigating planet formation - The Astrophysical Journal Letters, 844:L5 (5pp), 2017 July 20 ALMA Band 7 (870 µm) essential. The wavelength dependence of the polarization fraction is not strong in the case of the grain alignment, while it is strong in the case of the self-scattering because the scattering-induced polarization is efficient only when the maximum grain size is around l 2p where λ is the wavelengths (Kataoka et al. 2015). To obtain the wavelength-dependent polarimetric images, we observe the HL Tau disk with the Atacama Large Millimeter/ submillimeter Array (ALMA) using Band 3. HL Tau is a young star in the Taurus molecular cloud with a distance of 140 pc (Rebull et al. 2004). The circumstellar disk is around in 100 au scale (Kwon et al. 2011). The disk has several ring and gap structures with tens of au scales (ALMA Partnership et al. 2015). The observed band corresponds to wavelengths of 3.1 mm, which is sufficiently longer than the previous CARMA polarimetric observations at 1.3 mm (Stephens et al. 2014). ALMA Band 3 (3.1 mm) HL Tau Kataoka et al. 2. Observations Stephens et al Kataoka et al HL Tau was observed by ALMA on 2016 October 12, during its Cycle 4 operation ( S, PI: A. Kataoka). Scattering Alignment The antenna configuration was C40-6, and 41 antennas were operating. The correlator processed four spectral windows centered at 90.5, 92.5, 102.5, and GHz with a bandwidth of 1.75 GHz each. The bandpass, amplitude, and phase were calibrated by observationsakimasa of J , J , Kataoka and (NAOJ fellow, NAOJ) J , respectively, and the polarization calibration was performed T. bymuto observations (Kogakuin of J U.), M. Momose, The rawt. data Tsukagoshi were (Ibaraki U.), H.Nagai (NAOJ), M. Fukagawa (Nagoya U.), reduced H. Shibai by the(osaka EA-ARC U.), staff. T. Hanawa (Chiba U.), K. Murakawa (Osaka-S.), Kees Dullemond, Adriana Pohl (Heidelberg) We further perform the iterative CLEAN deconvolution

2 Today's talk Old and new theories for explaining millimeter-wave polarization 1. Alignment with magnetic fields 2. Self-scattering of thermal dust emission Kataoka et al Alignment with radiation fields gure 8. Same as Figure 5, but for model A in the case of the lopsided protoplanetary disk. The object is optically thin everywhere. Testing the theory with ALMA polarization observations HD morphology of pol. vectors HL Tau - wavelength dependence Kataoka et al AU

3 Star and disk formation Molecular cloud cores Protostar and envelope Protostar and protoplanetary disk Toward MS Timescale ~ years ~ years ~ years ~0.1 pc Spatial scale =20,000 AU ~1,000 AU ~100 AU ~ 200 arcsec ~10 arcsec ~1 arcsec Key physics magnetic fields or turbulence? jets, outflows grain growth

4 SED of a protoplanetary disk TW Hya (Mstar = 0.6 M, Teff = 4000 K) MIR Scattered Light (sub-)mm star a b d c Distance in AU 1 Turbulent Mixing (radial or vertical) disk Vertical Settling Radial Drift a) Sticking b) Bouncing c) Fragmentation with mass transfer d) Fragmentation mm 3.0 mm ALMA 10 µm VLTI/MATISSE 2 µm 10 µm EELT JWST/MIRI Fig. 1. Illustration of the structure, grain evolution processes and observational constraints for protoplanetary disks. On the left side we show the main grain transport and collision mechanism properties. The different lengths of the arrows illustrate the different velocities Menu of the different et al. grains On the right hand side, we show the Testi areas ofet theal. disk 2014 that can be probed by the various techniques. The axis shows the logarithmic radial distance from the central star. The horizontal bars show the highest angular resolutions (left edge of the bars) that can be achieved with a set of upcoming facilities and instruments for at the typical distance of the nearest star forming regions. The millimeter emission is thermal dust emission from the disk. How can we polarize the thermal dust emission? with respect to the gas. The force exerted on them depends not only on the relative Akimasa motion Kataoka between (NAOJ gas andfellow) dust, but a dimensionless number, which relates the stopping time to the orbital period K. The concept of the Stokes number is

5 Polarization mechanisms 1. Alignment of elongated dust grains with magnetic fields Magnetic Field Linear polarization e.g., Lazarian and Hoang The self-scattering of thermal dust emission Kataoka et al Alignment of elongated dust grains with radiation fields Tazaki, Lazarian et al. 2017

6 Dust is big in disks 0.1μm 1mm 1m 1km km κ abs,sca [cm 2 /g] dust opacity a max =1 µm, κ abs a max =1 µm, κ sca a max =100 µm, κ abs a max =100 µm, κ sca λ [µm] scattering > absorption

7 Light source of scattering IR scattered light example (face-on, PI) Infrared disk radio scattered light (self-scattering) Pohl et al millimeter?

8 Polarization due to scattering incident light (unpolarized) a dust grain an observer an observer an observer

9 Polarization due to scattering thermal dust emission of other dust grains a dust grain The observer is you. Horizontal Polarization (the line of sight is perpendicular to the plane of this slide)

10 Polarization due to scattering Horizontal Polarization

11 Polarization due to scattering Unpolarized

12 Polarization due to scattering Unpolarized

13 Polarization due to scattering Vertical Polarization

14 self-scattering in an inclined disk polarization reversal in the large grain case, which yields an intrinsic (or face-on) polarization direction in the radial (as opposed to azimuthal) direction and an inclination-induced polarization along the major (rather than minor) axis. The interplay between the intrinsic and inclination-induced polarization leads to polarization directions in the region of high polarized intensity (the most easily observable part) completely different from those observed in HL thermal dust emission of the disc closer to the observer (the right half) brighter. The polarization fraction is, however, higher on the far side (especially towards the outer part of the disc) because the polarization degree of the scattered light is higher for backward scattering than for forward scattering (see Fig. 6). The most striking difference between this case and the Rayleigh scattering case shown in Fig. 5 lies in the polarization direction. The difference comes from the polarization vector (disk, edge-on view) Figure 7. Scattering-induced polarization by large grains. As in Fig. 5, plotted are the polarized intensity (colour map) and polarization vectors (line segments, with length proportional to the polarization fraction). Note the strong asymmetry with respect to the major axis in both the polarized intensity and the polarization vectors. The polarization along the major axis in the central region is due to polarization reversal, which may be a robust indicator of scattering by large, mm/cm-sized, grains. The near side of the disc is on the right. thermal dust emission i=45 Yang, Li, et al See also Kataoka et al. 2016a

15 Conditions of dust grains for polarization For efficient scattering (grain size) >~ λ For efficient polarization (grain size) <~ λ There is a grain size which contributes most to the polarized emission P P 90 λ=870 µm (ALMA Band 7) Maximum grain size [cm] grain size [cm] P ω Albedo If (grain size) ~ λ/2π, the polarized emission due to dust scattering is the strongest

16 Grain size constraints by polarization Expected polarization degree (scalable) 0.87 mm (Band 7) 0.34 mm (Band 10) 3.1 mm (Band 3) 7 mm (Band 1) Maximum grain size [cm] Kataoka, et al., 2015 Multi-wave polarization constraints on the grain size

17 HL Tau - continuum The Astrophysical Journal Letters, 808:L3 (10pp), ALMA2015 Partnership July 20 et al. ALMA Partnership, 2015

18 HL Tau pol. - prediction λ=870µm i = 47 (ALMA Partnership 2015) The polarization vectors are parallel to the minor axis Kataoka, et al., 2016a (see also Yang et al. 2016)

19 HL Tau polarization with ALMA 100 AU 100 AU We find the azimuthal polarization vectors at 3.1 mm wavelength Kataoka, et al., 2017

20 HL Tau polarization 100 AU 100 AU data from Stephens et al., 2014 Kataoka, et al., 2017 The polarization vectors at 1.3 mm are parallel to the minor axis The polarization vectors at 3.1 mm are in the azimuthal direction wavelength-dependent polarization in mm range

21 Polarization mechanisms 1. Alignment of elongated dust grains with magnetic fields Magnetic Field Thermal emission Linear polarization e.g., Lazarian and Hoang The self-scattering of thermal dust emission Kataoka et al Alignment of elongated dust grains with radiation fields Tazaki, Lazarian et al. 2017

22 Alignment with radiation fields Incident light Front view Side view If dust grains have a helicity, they emit intrinsic polarization. Tazaki, Lazarian et al. 2017

23 Alignment with radiation fields a~100 µm azaki et al. aligned with mag. fields aligned with rad. fields Figure 5. Timescales relevant to RAT alignment. Top and bottom panels show the a n of E-vector is plotted as the white bar. Left and right panels represent mid-infrared panels correspond to the two different locations in the disk, (R, z) = (50 au, 0 au), a vely. The dust grains are assumed to be magnetically poor ( f p = 0.01 and φ sp = 0). the timescale of the gaseous damping (t represent gas ) and the RAT alignment times 3 and f -parameter are assumed to be α = 10 = 0.5, respectively. J high J precession timescale (t ). Green and blue lines show the Larmor precession ti r Tazaki, Lazarian et al. 2017rad, (see also Lazarian and Hoang 2007) p inclusions ( f p = 10%, φsp = 3%, Ncl = ), respectively. The dashed line in th grain size does not strongly affect on the resultant polarization

24 Polarization mechanisms alignment with B-fields self-scattering alignment with radiation Toroidal magnetic fields are assumed Inclination-induced scattering -> parallel to the minor axis Grain size is a ~λ/2π: strong wavelength dependence Grains are needed to be big (~>100um) Radiation gradient is in the radial direction.

25 Polarization mechanisms alignment with B-fields self-scattering alignment with radiation AASTEX wavelength-dependentpolarization AU 100 AU self-scattering alignment with radiation Figure 2. Comparison of the polarization images between = 1.3 mm(carma Stephens et al. 2014) and = 3.1 mm

26 espite these detections, the polarization morpholousually were not consistent with what would be exed from magnetically Wavelength aligned dust grains. In particudependence Stephens et al. (2014) used the Combined Array for arch in Millimeter-wave Astronomy (CARMA) to sure the 1.3 mm polarization morphology in HL Tau. 2 morphology was inconsistent with grains aligned the commonly-expected toroidal magnetic fields 2015), the Class 0 disk candidate of NGC 1333 IRAS 4A arization/e-field vectors distributed radially in the (Cox et al. 2015), the Herbig AE late-stage protoplanetary disk HD (Kataoka et al. 2016), and the disk ). Instead, the E-vectors were oriented more or less g the minor axis of the disk. Kataoka et al. (2015, candidate of the high-mass protostar Cepheus A HW2 ) and Yang et al. (2016) suggested that the polarizamorphology is actually consistent with that expected have also been detected at mid-infrared wavelengths of (Fernández-López et al. 2016). Polarization toward disks self-scattering (also see Pohl et al. 2016; Yang et 8.7, 10.3, and 12.5 µm (Li et al. 2016, 2017). However, 017). Indeed, several disks where polarization polarized is emission at mid-infrared wavelengths can occur cted show consistency with the polarization morlogy expected from self-scattering rather than grains causing di culty in interpreting the polarization mor- due to absorption, emission, and sometimes scattering, ed with the magnetic field. However, except for phology. ALMA observations of HD (Kataoka et al. Despite these detections, the polarization morphologies usually were not consistent with what would be ex- ) and HL Tau (Kataoka et al. 2017), the published rvations are too coarse to resolve more than a fewpected from magnetically aligned dust grains. In particular, Stephens et al. (2014) used the Combined Array for pendent beams across the disk, making it di cult istinguish between scattering and other polarization Research in Millimeter-wave Astronomy (CARMA) to hanisms. measure the 1.3 mm polarization morphology in HL Tau. he high-resolution ALMA observations of HD The morphology was inconsistent with grains aligned ataoka et al. (2016) resolved polarization for many with the commonly-expected toroidal magnetic fields Figure 1. ALMA polarimetric observations at 3 mm of independent resolution elements across the disk. (polarization/e-field (top, vectors distributed radially in the Kataoka et al. 2017), 1.3 mm (middle), and 870 µm (bottom), polarization was radial throughout most of the disk, disk). Instead, the E-vectors were oriented more or less where the red vectors show the >3 polarization morphology (i.e., h is vectors expected have not for been grains rotated). alignedvector withlengths a toroidal are linearly field, along proportionalthe to P edges.thecolorscaleshowsthepolarizedintensity,whichis morphology changed from ra- 2016) and Yang et al. (2016) suggested that the polariza- the minor axis of the disk. Kataoka et al. (2015, toward masked to only show 3 detections. Stokes I contours in each to azimuthal, which is more consistent with scatter- tion panel morphology is actually consistent with that expected are shown for [3, 10, 25, 50, 100, 200, 325, 500, 750, 1000] Models in Kataoka et al. (2016) found that scattercan broadly from I,where self-scattering (also see Pohl et al. 2016; Yang et selfscattering sharply and , respectively. but not everywhere. A complete phology expected from self-scattering rather than grains I is 44, 154, and 460 µjy bm 1 for 3 mm, 1.3 mm, and 870 µm, respectively. reproduce the features observed in parts al. 2017). Indeed, several disks where polarization is he disk especially where the polarization ~1 % orientas change of detected show consistency with ~0.8 the polarization % mor- ~0 % erstanding of this interesting case is still missing. aligned with the magnetic field. However, except for L Tau is one of the brightest Class I/II in the sky at the ALMA observations of HD (Kataoka et al. )millimeter wavelengths, and thus the polarization 2016) and HL Tau (Kataoka et al. 2017), the published phology can be determined at high resolution + with observations are too coarse to resolve more than a few + onable integration times. Kataoka et al. (2017) fold up on the Stephens et al. (2014) observations with to distinguish between scattering and other polarization independent beams across the disk, making it di cult + observations of HL Tau. Surprisingly, they found mechanisms. the polarization morphology was azimuthal, which The high-resolution ALMA observations of HD estsalignment grains aligned with their long axes perpendicuto the radiation field, as predicted~1 by Tazaki % et al. 10s of independent resolution elements across the disk. by Kataoka et al. (2016) resolved polarization for many Figure 1. ALMA polarimetric observations at 3 mm (top, Kataoka et al. 2017), 1.3 mm ~1 (middle), % and 870 µm (bottom), ~1 % 7). Henceforth, we will call this grain alignment The polarization where the red was vectors radial show throughout the >3 polarization most of the morphology disk, (i.e., with rad. hanism alignment with the radiation anisotropy. which is vectors expected have not forbeen grains rotated). aligned Vector withlengths a toroidal are linearly field, proportional to P.Thecolorscaleshowsthepolarizedintensity,whichis he very di erent polarization morphologies observed but toward the edges morphology changed from ra- to.3 mm (0. 00 masked to only show 3 detections. Stokes I contours in each panel 6 resolution, Stephens et al. 2014) and 3 mmdial are azimuthal, shown for which [3, 10, 25, is50, more 100, consistent 200, 325, 500, with 750, 1000] scattering. Models I,where resolution, Kataoka et al. 2017) suggest that the I is 44, in 154, Kataoka and 460 et µjy al. bm (2016) 1 for found 3 mm, that 1.3 mm, scattering canrespectively. broadly reproduce the features observed in parts and 870 µm, phology of the polarization emission is strongly deent on the wavelength. This Letter presents ALMAof the disk especially Akimasa where Kataoka the(naoj polarization fellow) orienta- = Stephens et al (see also Kataoka et al. 2017) = = *Numbers are based on very rough estimate

27 HL Tau polarization The maximum grain size is ~ 70 µm Kataoka, et al., 2017

28 Summary Theories 1. Alignment with (toroidal) magnetic fields. 2. Self-scattering of thermal dust emission 3. Alignment with radiation fields Observations HD (+1,3?) HL Tau 2+3 (1 is ruled out) 100 AU Implications to planet formation if (2) self-scattering works, the grain size is ~ λ/(2π) 100 AU 100 AU

Akimasa Kataoka (NAOJ fellow, NAOJ)

Akimasa Kataoka (NAOJ fellow, NAOJ) Investigating planet formation by FIR and sub-mm polarization observations of protoplanetary disks The Astrophysical Journal Letters, 844:L5 (5pp), 2017 July 20 ALMA Band 7 (870 µm) essential. The wavelength

More information

arxiv: v2 [astro-ph.sr] 6 Nov 2015

arxiv: v2 [astro-ph.sr] 6 Nov 2015 MNRAS, 1 12 (215) Preprint 9 November 215 Compiled using MNRAS LATEX style file v3. Inclination-Induced Polarization of Scattered Millimeter Radiation from Protoplanetary Disks: The Case of HL Tau Haifeng

More information

Cosmology and Fundamental Physics Stars and Stellar Evolution Resolved Stellar Populations and their Environments Galaxy Evolution

Cosmology and Fundamental Physics Stars and Stellar Evolution Resolved Stellar Populations and their Environments Galaxy Evolution Astro2020 Science White Paper Polarization in Disks Thematic Areas: Planetary Systems Star and Planet Formation Formation and Evolution of Compact Objects Cosmology and Fundamental Physics Stars and Stellar

More information

Recent advances in understanding planet formation

Recent advances in understanding planet formation Credit: ALMA (ESO/NAOJ/NRAO) Recent advances in understanding planet formation Misato Fukagawa Chile observatory (Mitaka), NAOJ Contents of this talk 1. Introduction: Exoplanets, what we want to know from

More information

ALMA Science Cases with our Galaxy. SNU Town hall meeting for ALMA Cycle March 23 Woojin Kwon

ALMA Science Cases with our Galaxy. SNU Town hall meeting for ALMA Cycle March 23 Woojin Kwon ALMA Science Cases with our Galaxy SNU Town hall meeting for ALMA Cycle 5 2016 March 23 Woojin Kwon 1201 refereed articles (ADS) with ALMA in abstracts, as of 3/21/2016 618 publications at www.almascience.org

More information

Planet formation in the ALMA era. Giuseppe Lodato

Planet formation in the ALMA era. Giuseppe Lodato Planet formation in the ALMA era Giuseppe Lodato A revolution in planet formation theory New facilities are revolutionizing our understanding of the planet formation process Extra-solar planet detection

More information

Dust Growth in Protoplanetary Disks: The First Step Toward Planet Formation. Laura Pérez Jansky Fellow NRAO

Dust Growth in Protoplanetary Disks: The First Step Toward Planet Formation. Laura Pérez Jansky Fellow NRAO Dust Growth in Protoplanetary Disks: The First Step Toward Planet Formation Laura Pérez Jansky Fellow NRAO From ISM Dust to Planetary Systems Size = µμm ISM Dust mm mm/cm observations Directly observable

More information

21. The Green Bank Ammonia Survey: Dense Cores Under Pressure in Orion A Kirk+ ApJ in press GAS Herschel YSO

21. The Green Bank Ammonia Survey: Dense Cores Under Pressure in Orion A Kirk+ ApJ in press GAS Herschel YSO 21. The Green Bank Ammonia Survey: Dense Cores Under Pressure in Orion A Kirk+ ApJ in press GAS Herschel YSO Spitzer YSO JCMT prestellar core prestellar core JCMT protostellar core protostellar core surface

More information

Setting the Stage for Planet Formation: Grain Growth in Circumstellar Disks

Setting the Stage for Planet Formation: Grain Growth in Circumstellar Disks Setting the Stage for Planet Formation: Grain Growth in Circumstellar Disks Leonardo Testi (European Southern Observatory) Disk Evolution From Grains to Pebbles Do we understand what we observe? Wish List

More information

Star and Planet Formation: New Insights from Spatially Resolved Observations

Star and Planet Formation: New Insights from Spatially Resolved Observations Star and Planet Formation: New Insights from Spatially Resolved Observations Laura M. Pérez Universidad de Chile Division B, Comision B4 Radio Astronomy August 24, 2018 Setting the stage: Our current view

More information

Non-axisymmetric structure in million-year-old discs around intermediate-mass stars

Non-axisymmetric structure in million-year-old discs around intermediate-mass stars Non-axisymmetric structure in million-year-old discs around intermediate-mass stars Misato Fukagawa (NAOJ) C. A. Grady, J. P. Wisniewski, Y. Ohta, M. Momose, Y. Matura, T. Kotani, Y. Okamoto, J. Hashimoto,

More information

Studying the Origins of Stars and their! Planetary Systems with ALMA & VLA"

Studying the Origins of Stars and their! Planetary Systems with ALMA & VLA Studying the Origins of Stars and their! Planetary Systems with ALMA & VLA" 14 th Synthesis Imaging Workshop! Laura Pérez" Jansky Fellow, National Radio Astronomy Observatory! Collaborators:" Claire Chandler

More information

Th. Henning, J. Bouwman, J. Rodmann MPI for Astronomy (MPIA), Heidelberg. Grain Growth in Protoplanetary Disks From Infrared to Millimetre Wavelengths

Th. Henning, J. Bouwman, J. Rodmann MPI for Astronomy (MPIA), Heidelberg. Grain Growth in Protoplanetary Disks From Infrared to Millimetre Wavelengths Th. Henning, J. Bouwman, J. Rodmann MPI for Astronomy (MPIA), Heidelberg Grain Growth in Protoplanetary Disks From Infrared to Millimetre Wavelengths Cumber01.ppt 30.5.2001 Motivation From molecular cloud

More information

HD Transition Disk Herbig Ae/Be stars 2014

HD Transition Disk Herbig Ae/Be stars 2014 a b HD142527 Transition Disk Herbig Ae/Be stars 2014 HD142527 ALMA results by Sebastián Pérez Simon Casassus Valentin Christiaens Francois Ménard also with Gerrit van der Plas, Pablo Román, Christian Flores,

More information

arxiv: v1 [astro-ph.sr] 18 Dec 2018

arxiv: v1 [astro-ph.sr] 18 Dec 2018 ALMA polarimetric studies of rotating jet/disk systems arxiv:1812.07618v1 [astro-ph.sr] 18 Dec 2018 F. Bacciotti, J.M. Girart, M. Padovani, L. Podio, R. Paladino, L. Testi, E. Bianchi, D. Galli, C. Codella,

More information

arxiv: v1 [astro-ph.sr] 31 Dec 2008

arxiv: v1 [astro-ph.sr] 31 Dec 2008 To appear in Magnetic Fields in the Universe II (2008) RevMexAA(SC) POLARIZATION OF FIR EMISSION FROM T TAURI DISKS Jungyeon Cho 1 and A. Lazarian 2 arxiv:0901.0142v1 [astro-ph.sr] 31 Dec 2008 RESUMEN

More information

Circumstellar disks The MIDI view. Sebastian Wolf Kiel University, Germany

Circumstellar disks The MIDI view. Sebastian Wolf Kiel University, Germany Circumstellar disks The MIDI view Sebastian Wolf Kiel University, Germany MPIA MIDI SG concluding meeting May 5, 2014 Overview Circumstellar disks: Potential of IR long-baseline interferometry MIDI: Exemplary

More information

Unveiling the role of the magnetic field at the smallest scales of star formation

Unveiling the role of the magnetic field at the smallest scales of star formation Unveiling the role of the magnetic field at the smallest scales of star formation Photo credit: C. Hull Chat Hull Jansky Fellow Harvard-Smithsonian Center for Astrophysics National Radio Astronomy Observatory

More information

Polarization simulations of cloud cores

Polarization simulations of cloud cores Polarization simulations of cloud cores Veli-Matti Pelkonen 1 Contents 1. Introduction 2. Grain alignment by radiative torques (RATs) 3. Observational evidence for RATs 4. Radiative transfer modelling,

More information

Deflection of a Protostellar Outflow: The Bent Story of NGC 1333 IRAS 4A. NGC 1333 Cluster Forming Region. Driving Source. IRAS 4A Protobinary System

Deflection of a Protostellar Outflow: The Bent Story of NGC 1333 IRAS 4A. NGC 1333 Cluster Forming Region. Driving Source. IRAS 4A Protobinary System Deflection of a Protostellar Outflow: The Bent Story of NGC 1333 IRAS 4A SNU Colloquium 2006. 3. 22. Minho Choi Evolutionary Scenario of Low-Mass Young Stellar Objects Classification Spectral Energy Distribution

More information

Astro2020 Science White Paper Dust growth and dust trapping in protoplanetary disks with the ngvla

Astro2020 Science White Paper Dust growth and dust trapping in protoplanetary disks with the ngvla Astro2020 Science White Paper Dust growth and dust trapping in protoplanetary disks with the ngvla Thematic Areas: Star and Planet Formation Principal Author: Name: Nienke van der Marel Institution: Herzberg

More information

Planet formation in protoplanetary disks. Dmitry Semenov Max Planck Institute for Astronomy Heidelberg, Germany

Planet formation in protoplanetary disks. Dmitry Semenov Max Planck Institute for Astronomy Heidelberg, Germany Planet formation in protoplanetary disks Dmitry Semenov Max Planck Institute for Astronomy Heidelberg, Germany Suggested literature "Protoplanetary Dust" (2010), eds. D. Apai & D. Lauretta, CUP "Protostars

More information

E-ELT/HIRES Disk-Star Interactions at the epoch of planet formation

E-ELT/HIRES Disk-Star Interactions at the epoch of planet formation E-ELT/HIRES Disk-Star Interactions at the epoch of planet formation Leonardo Testi (ESO/INAF-Arcetri) B. Nisini (INAF-Monteporzio), J. Alcalaʼ (INAF-Capodimonte) From Cores to Planetary Systems Core (Hernandez

More information

Star Formation. Spitzer Key Contributions to Date

Star Formation. Spitzer Key Contributions to Date Star Formation Answering Fundamental Questions During the Spitzer Warm Mission Phase Lori Allen CfA John Carpenter, Caltech Lee Hartmann, University of Michigan Michael Liu, University of Hawaii Tom Megeath,

More information

Investigations of the Formation and Evolution of Planetary Systems

Investigations of the Formation and Evolution of Planetary Systems Investigations of the Formation and Evolution of Planetary Systems Alwyn Wootten, Bryan Butler, Antonio Hales, Stuartt Corder, 1 Robert Brown 2 & David Wilner 3 Abstract. Stars and planets are the fundamental

More information

Observing Magnetic Field In Molecular Clouds. Kwok Sun Tang Hua-Bai Li The Chinese University of Hong Kong

Observing Magnetic Field In Molecular Clouds. Kwok Sun Tang Hua-Bai Li The Chinese University of Hong Kong Observing Magnetic Field In Molecular Clouds Kwok Sun Tang Hua-Bai Li The Chinese University of Hong Kong B t = v B + η 2 B (Induction Equation) Coupling between gas and B-field Image courtesy: of NASA

More information

Solar Systems Near and Far - ALMA View

Solar Systems Near and Far - ALMA View Solar Systems Near and Far - ALMA View Bryan Butler National Radio Astronomy Observatory Atacama Large Millimeter/submillimeter Array Expanded Very Large Array Robert C. Byrd Green Bank Telescope Very

More information

Star Formation. Answering Fundamental Questions During the Spitzer Warm Mission Phase

Star Formation. Answering Fundamental Questions During the Spitzer Warm Mission Phase Star Formation Answering Fundamental Questions During the Spitzer Warm Mission Phase Lori Allen CfA John Carpenter, Caltech Lee Hartmann, University of Michigan Michael Liu, University of Hawaii Tom Megeath,

More information

Transition Disk Chemistry in the Eye of ALMA

Transition Disk Chemistry in the Eye of ALMA COURTESY NASA/JPL-CALTECH Spectroscopy2011 January 16, 2011 Transition Disk Chemistry in the Eye of ALMA Ilse Cleeves Univ. of Michigan ADVISOR: Edwin Bergin Outline I. Transition Disks: Introduction II.

More information

NRAO Instruments Provide Unique Windows On Star Formation

NRAO Instruments Provide Unique Windows On Star Formation NRAO Instruments Provide Unique Windows On Star Formation Crystal Brogan North American ALMA Science Center Atacama Large Millimeter/submillimeter Array Expanded Very Large Array Robert C. Byrd Green Bank

More information

Astrochemistry from a Sub-pc Scale to a kpc Scale. Satoshi Yamamoto Department of Physics and RESCUE The University of Tokyo

Astrochemistry from a Sub-pc Scale to a kpc Scale. Satoshi Yamamoto Department of Physics and RESCUE The University of Tokyo Astrochemistry from a Sub-pc Scale to a kpc Scale Satoshi Yamamoto Department of Physics and RESCUE The University of Tokyo Contents Physical and Chemical Processes in Disk Formation around Solar-type

More information

Near-Infrared Imaging Observations of the Orion A-W Star Forming Region

Near-Infrared Imaging Observations of the Orion A-W Star Forming Region Chin. J. Astron. Astrophys. Vol. 2 (2002), No. 3, 260 265 ( http: /www.chjaa.org or http: /chjaa.bao.ac.cn ) Chinese Journal of Astronomy and Astrophysics Near-Infrared Imaging Observations of the Orion

More information

2018 TIARA Summer School Origins of the Solar System. Observations and Modelling of Debris Disks. J.P. Marshall (ASIAA) Wednesday 18 th July 2018

2018 TIARA Summer School Origins of the Solar System. Observations and Modelling of Debris Disks. J.P. Marshall (ASIAA) Wednesday 18 th July 2018 2018 TIARA Summer School Origins of the Solar System Observations and Modelling of Debris Disks J.P. Marshall (ASIAA) Wednesday 18 th July 2018 [Hogerheijde 1998] Debris disks Tenuous belts of icy and

More information

Ay 20 Basic Astronomy and the Galaxy Problem Set 2

Ay 20 Basic Astronomy and the Galaxy Problem Set 2 Ay 20 Basic Astronomy and the Galaxy Problem Set 2 October 19, 2008 1 Angular resolutions of radio and other telescopes Angular resolution for a circular aperture is given by the formula, θ min = 1.22λ

More information

Resolving the hot atmospheres of evolved stars with ALMA LBs. Wouter Vlemmings, Chalmers Univ. of Technology w. Theo Khouri, Eamon O Gorman et al.

Resolving the hot atmospheres of evolved stars with ALMA LBs. Wouter Vlemmings, Chalmers Univ. of Technology w. Theo Khouri, Eamon O Gorman et al. Resolving the hot atmospheres of evolved stars with ALMA LBs Wouter Vlemmings, Chalmers Univ. of Technology w. Theo Khouri, Eamon O Gorman et al. AGB mass loss (before) dust formation Ballistic motions

More information

Millimetre Science with the AT

Millimetre Science with the AT Millimetre Science with the AT Astrochemistry with mm-wave Arrays G.A. Blake, Caltech 29Nov 2001 mm-arrays: Important Features - Spatial Filtering - Transform to image plane - Cross Correlation (Sub)Millimeter

More information

Setting the stage for solar system formation

Setting the stage for solar system formation Setting the stage for solar system formation ALMA insights into the early years of young stars Jes Jørgensen! Niels Bohr Institute & Centre for Star and Planet Formation University of Copenhagen http://youngstars.nbi.dk

More information

Energy Sources of the Far IR Emission of M33

Energy Sources of the Far IR Emission of M33 Energy Sources of the Far IR Emission of M33 Hinz, Reike et al., ApJ 154: S259 265 (2004). Presented by James Ledoux 24 µm 70 µm 160 µm Slide 1 M33 Properties Distance 840kpc = 2.7 Mlyr (1'' ~ 4 pc) Also

More information

Mid-IR and Far-IR Spectroscopic Measurements & Variability. Kate Su (University of Arizona)

Mid-IR and Far-IR Spectroscopic Measurements & Variability. Kate Su (University of Arizona) Mid-IR and Far-IR Spectroscopic Measurements & Variability Kate Su (University of Arizona) Five Zones of Debris Dust edge-on view of the Fomalhaut planetary system distance, r 1500 K very hot dust 500

More information

Recap Lecture + Thomson Scattering. Thermal radiation Blackbody radiation Bremsstrahlung radiation

Recap Lecture + Thomson Scattering. Thermal radiation Blackbody radiation Bremsstrahlung radiation Recap Lecture + Thomson Scattering Thermal radiation Blackbody radiation Bremsstrahlung radiation LECTURE 1: Constancy of Brightness in Free Space We use now energy conservation: de=i ν 1 da1 d Ω1 dt d

More information

Dust polarization observations towards interstellar filaments as seen by Planck: Signature of the magnetic field geometry

Dust polarization observations towards interstellar filaments as seen by Planck: Signature of the magnetic field geometry Dust (total) emission of the ISM as seen by Planck Dust polarization observations towards interstellar filaments as seen by Planck: Signature of the magnetic field geometry Doris Arzoumanian (IAS, Orsay)

More information

AU Mic: Transitional Disk?

AU Mic: Transitional Disk? disks to planets AU Mic: Transitional Disk? 33 AU AU Mic [Liu 2004] AU Mic: SED suggests inner disk clearing AO and HST imaging resolves structure no planets >1M Jup at >20 AU STIS counts β Pic 120 AU

More information

Spatially Resolved Magnetic Field Structure in the Disk of a T Tauri Star

Spatially Resolved Magnetic Field Structure in the Disk of a T Tauri Star Spatially Resolved Magnetic Field Structure in the Disk of a T Tauri Star Ian W. Stephens 1,2, Leslie W. Looney 2, Woojin Kwon 3, Manuel Fernández-López 2,4, A. Meredith Hughes 5, Lee G. Mundy 6, Richard

More information

SMA observations of Magnetic fields in Star Forming Regions. Josep Miquel Girart Institut de Ciències de l Espai (CSIC-IEEC)

SMA observations of Magnetic fields in Star Forming Regions. Josep Miquel Girart Institut de Ciències de l Espai (CSIC-IEEC) SMA observations of Magnetic fields in Star Forming Regions Josep Miquel Girart Institut de Ciències de l Espai (CSIC-IEEC) SMA Community Day, July 11, 2011 Simultaneous process of infall and outflow"

More information

Unbiased line surveys of protostellar envelopes A study of the physics and chemistry of the youngest protostars in Corona Australis

Unbiased line surveys of protostellar envelopes A study of the physics and chemistry of the youngest protostars in Corona Australis Unbiased line surveys of protostellar envelopes A study of the physics and chemistry of the youngest protostars in Corona Australis Johan E. Lindberg Astrochemistry Laboratory NASA Goddard Space Flight

More information

Can we do this science with SKA1-mid?

Can we do this science with SKA1-mid? Can we do this science with SKA1-mid? Let s start with the baseline design SKA1-mid expected to go up to 3.05 GHz Proposed array configuration: 133 dishes in ~1km core, +64 dishes out to 4 km, +57 antennas

More information

The skin of Orion. Molecular Astrophysics: The Herschel and ALMA era PRESS RELEASE

The skin of Orion. Molecular Astrophysics: The Herschel and ALMA era PRESS RELEASE Molecular Astrophysics: The Herschel and ALMA era PRESS RELEASE The skin of Orion 9- October- 2015 Imaging Orion in ionized carbon emission. Among the brightest emissions from the interstellar medium and

More information

The large-scale magnetic field in protoplanetary disks

The large-scale magnetic field in protoplanetary disks The large-scale magnetic field in protoplanetary disks Jérôme Guilet MPA, Garching Max-Planck-Princeton center for plasma physics In collaboration with Gordon Ogilvie (Cambridge) 1/24 Talk outline 1) Impacts

More information

Observational signatures of proto brown dwarf formation in protostellar disks

Observational signatures of proto brown dwarf formation in protostellar disks Mem. S.A.It. Vol. 84, 88 c SAIt 213 Memorie della Observational signatures of proto brown dwarf formation in protostellar disks O. V. Zakhozhay 1, E. I. Vorobyov 2,3, and M. M. Dunham 4 1 Main Astronomical

More information

The ALMA SKA Synergy For Star and Stellar Cluster Formation

The ALMA SKA Synergy For Star and Stellar Cluster Formation The ALMA SKA Synergy For Star and Stellar Cluster Formation Gary Fuller Jodrell Bank Centre for Astrophysics & UK ALMA Regional Centre Node University of Manchester What is ALMA? Atacama Large Millimetre/Sub-millimetre

More information

arxiv: v1 [astro-ph.sr] 4 Feb 2014

arxiv: v1 [astro-ph.sr] 4 Feb 2014 Draft version February 5, 2014 Preprint typeset using L A TEX style emulateapj v. 5/2/11 LARGE-SCALE ASYMMETRIES IN THE TRANSITIONAL DISKS OF SAO 206462 AND SR 21 Laura M. Pérez 1,2, Andrea Isella 3, John

More information

Debate on the toroidal structures around hidden- vs non hidden-blr of AGNs

Debate on the toroidal structures around hidden- vs non hidden-blr of AGNs IoA Journal Club Debate on the toroidal structures around hidden- vs non hidden-blr of AGNs 2016/07/08 Reported by T. Izumi Unification scheme of AGNs All AGNs are fundamentally the same (Antonucci 1993)

More information

Kuiper Belt Dynamics and Interactions

Kuiper Belt Dynamics and Interactions Kuiper Belt Dynamics and Interactions Minor Planet Center Ruth Murray-Clay Harvard-Smithsonian Center for Astrophysics Kuiper belt µm ejected by radiation pressure larger grains migrate in via PR drag

More information

Direct imaging of extra-solar planets

Direct imaging of extra-solar planets Chapter 6 Direct imaging of extra-solar planets Direct imaging for extra-solar planets means that emission from the planet can be spatially resolved from the emission of the bright central star The two

More information

ASTR2050 Spring Please turn in your homework now! In this class we will discuss the Interstellar Medium:

ASTR2050 Spring Please turn in your homework now! In this class we will discuss the Interstellar Medium: ASTR2050 Spring 2005 Lecture 10am 29 March 2005 Please turn in your homework now! In this class we will discuss the Interstellar Medium: Introduction: Dust and Gas Extinction and Reddening Physics of Dust

More information

The innermost circumstellar environment of massive young stellar objects revealed by infrared interferometry

The innermost circumstellar environment of massive young stellar objects revealed by infrared interferometry The innermost circumstellar environment of massive young stellar objects revealed by infrared interferometry Thomas Preibisch, Stefan Kraus, Keiichi Ohnaka Max Planck Institute for Radio Astronomy, Bonn

More information

Unraveling the Envelope and Disk: The ALMA Perspective

Unraveling the Envelope and Disk: The ALMA Perspective Unraveling the Envelope and Disk: The ALMA Perspective Leslie Looney (UIUC) Lee Mundy (UMd), Hsin-Fang Chiang (UIUC), Kostas Tassis (UChicago), Woojin Kwon (UIUC) The Early Disk Disks are probable generic

More information

THE LAST SURVEY OF THE OLD WSRT: TOOLS AND RESULTS FOR THE FUTURE HI ABSORPTION SURVEYS

THE LAST SURVEY OF THE OLD WSRT: TOOLS AND RESULTS FOR THE FUTURE HI ABSORPTION SURVEYS F. Maccagni; R. Morganti; T. Oosterloo; K. Geréb; N. Maddox, J. Allison THE LAST SURVEY OF THE OLD WSRT: TOOLS AND RESULTS FOR THE FUTURE HI ABSORPTION SURVEYS A SURVEY BEFORE THE BLIND SURVEYS During

More information

Chapter 6 Imaging chemical differentiation around the low-mass protostar L483-mm

Chapter 6 Imaging chemical differentiation around the low-mass protostar L483-mm Chapter 6 Imaging chemical differentiation around the low-mass protostar L483-mm Abstract This paper presents a millimeter wavelength aperture-synthesis study of the spatial variations of the chemistry

More information

Interferometric Observations of S140-IRS1

Interferometric Observations of S140-IRS1 Interferometric Observations of S140-IRS1 e-merlin early science workshop April 2014 Luke T. Maud University of Leeds, UK Melvin G. Hoare University of Leeds Star formation scenario Collapse of a core

More information

Searching for Other Worlds: The Methods

Searching for Other Worlds: The Methods Searching for Other Worlds: The Methods John Bally 1 1 Center for Astrophysics and Space Astronomy Department of Astrophysical and Planetary Sciences University of Colorado, Boulder The Search Extra-Solar

More information

The VLA Nascent Disk and Multiplicity (VANDAM) Survey of Perseus

The VLA Nascent Disk and Multiplicity (VANDAM) Survey of Perseus The VLA Nascent Disk and Multiplicity (VANDAM) Survey of Perseus John Tobin NWO Veni Fellow Leiden Observatory Leiden, The Netherlands VANDAM Team: John Tobin (PI), Leslie Looney (Illinois), Zhi-Yun Li

More information

A100 Exploring the Universe: The Milky Way as a Galaxy. Martin D. Weinberg UMass Astronomy

A100 Exploring the Universe: The Milky Way as a Galaxy. Martin D. Weinberg UMass Astronomy A100 Exploring the Universe: The Milky Way as a Galaxy Martin D. Weinberg UMass Astronomy astron100-mdw@courses.umass.edu November 12, 2014 Read: Chap 19 11/12/14 slide 1 Exam #2 Returned and posted tomorrow

More information

Interpreting AGN polarization at innermost spatial scales. Makoto Kishimoto. KSU - Kyoto Sangyo Univ

Interpreting AGN polarization at innermost spatial scales. Makoto Kishimoto. KSU - Kyoto Sangyo Univ Interpreting AGN polarization at innermost spatial scales Makoto Kishimoto KSU - Kyoto Sangyo Univ A map of an AGN The key for AGN pol interpretation Continuum pol PA: parallel or perpendicular Emission

More information

Formation, Detection and the Distribution of Complex Organic Molecules with the Atacama Large Millimeter/submillimeter Array (ALMA)

Formation, Detection and the Distribution of Complex Organic Molecules with the Atacama Large Millimeter/submillimeter Array (ALMA) Formation, Detection and the Distribution of Complex Organic Molecules with the Atacama Large Millimeter/submillimeter Array (ALMA) Anthony J. Remijan, ALMA Program Scientist Joint ALMA Observatory National

More information

Topics for Today s Class

Topics for Today s Class Foundations of Astronomy 13e Seeds Chapter 11 Formation of Stars and Structure of Stars Topics for Today s Class 1. Making Stars from the Interstellar Medium 2. Evidence of Star Formation: The Orion Nebula

More information

arxiv:astro-ph/ v1 11 Aug 2004

arxiv:astro-ph/ v1 11 Aug 2004 Astronomy & Astrophysics manuscript no. February 2, 2008 (DOI: will be inserted by hand later) Planets opening dust gaps in gas disks Sijme-Jan Paardekooper 1 and Garrelt Mellema 2,1 arxiv:astro-ph/0408202v1

More information

Components of Galaxies Gas The Importance of Gas

Components of Galaxies Gas The Importance of Gas Components of Galaxies Gas The Importance of Gas Fuel for star formation (H 2 ) Tracer of galaxy kinematics/mass (HI) Tracer of dynamical history of interaction between galaxies (HI) The Two-Level Atom

More information

THE EMISSION AND DISTRIBUTION OF DUST OF THE TORUS OF NGC 1068

THE EMISSION AND DISTRIBUTION OF DUST OF THE TORUS OF NGC 1068 THE EMISSION AND DISTRIBUTION OF DUST OF THE TORUS OF NGC 1068 ENRIQUE LOPEZ RODRIGUEZ Instrument Scientist (HAWC+) Stratospheric Observatory For Infrared Astronomy (SOFIA) / NASA elopezrodriguez@nasa.gov

More information

Searching for protoplanets. Sebastian Wolf Kiel University, Germany

Searching for protoplanets. Sebastian Wolf Kiel University, Germany Searching for protoplanets Sebastian Wolf Kiel University, Germany 2013 Rocks! Hawaii April 11, 2013 [Wolf & D Angelo 2005] 2 Constraints on the late stages of planet formation Disk physics 3 Early stages

More information

ET: Astronomy 230 Section 1 MWF Astronomy Building. Outline. Presentations. Presentations. HW #2 is due on Friday First Presentations on

ET: Astronomy 230 Section 1 MWF Astronomy Building. Outline. Presentations. Presentations. HW #2 is due on Friday First Presentations on This Class (Lecture 8): Planet Formation Next Class: ET: Astronomy 230 Section 1 MWF 1400-1450 134 Astronomy Building Nature of Solar Systems HW #2 is due on Friday First Presentations on 19 th and 23

More information

Ionization Feedback in Massive Star Formation

Ionization Feedback in Massive Star Formation Ionization Feedback in Massive Star Formation Thomas Peters Institut für Theoretische Astrophysik Zentrum für Astronomie der Universität Heidelberg Ralf Klessen, Robi Banerjee (ITA, Heidelberg) Mordecai-Mark

More information

ALMA Observations of the Disk Wind Source AS 205

ALMA Observations of the Disk Wind Source AS 205 ALMA Observations of the Disk Wind Source AS 205 Keck/VLT ALMA 8 April 2013 Geoffrey A. Blake, Division of GPS, Caltech Transformational Science with ALMA: From Dust to Rocks to Planets Folks doing the

More information

arxiv: v1 [astro-ph.sr] 1 Jul 2016

arxiv: v1 [astro-ph.sr] 1 Jul 2016 Rotationally-Driven Fragmentation for the Formation of the Binary Protostellar System L1551 IRS 5 Jeremy Lim Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong arxiv:1607.00323v1

More information

FARADAY ROTATION MEASURE SYNTHESIS OF UGC 10288, NGC 4845, NGC 3044

FARADAY ROTATION MEASURE SYNTHESIS OF UGC 10288, NGC 4845, NGC 3044 FARADAY ROTATION MEASURE SYNTHESIS OF UGC 10288, NGC 4845, NGC 3044 PATRICK KAMIENESKI DYLAN PARÉ KENDALL SULLIVAN PI: DANIEL WANG July 21, 2016 Madison, WI OUTLINE Overview of RM Synthesis: Benefits Basic

More information

An Introduction to Radio Astronomy

An Introduction to Radio Astronomy An Introduction to Radio Astronomy Second edition Bernard F. Burke and Francis Graham-Smith CAMBRIDGE UNIVERSITY PRESS Contents Preface to the second edition page x 1 Introduction 1 1.1 The role of radio

More information

PMS OBJECTS IN THE STAR FORMATION REGION Cep OB3. II. YOUNG STELLAR OBJECTS IN THE Ha NEBULA Cep B

PMS OBJECTS IN THE STAR FORMATION REGION Cep OB3. II. YOUNG STELLAR OBJECTS IN THE Ha NEBULA Cep B Astrophysics, Vol. 56, No. 2, June, 2013 PMS OBJECTS IN THE STAR FORMATION REGION Cep OB3. II. YOUNG STELLAR OBJECTS IN THE Ha NEBULA Cep B E. H. Nikoghosyan Models for the spectral energy distributions

More information

Sgr A : from 10 0 to m in 3000 seconds

Sgr A : from 10 0 to m in 3000 seconds Sgr A : from 10 0 to 10 18 m in 3000 seconds Mark Wardle Department of Physics Macquarie University Outline The Galactic centre and Sgr A Mass determination Accretion Spectrum: radio to x-ray TeV gamma

More information

Stuctural diversity resolving Herbig Ae/Be circumstellar Disks at AU using PDI

Stuctural diversity resolving Herbig Ae/Be circumstellar Disks at AU using PDI Stuctural diversity resolving Herbig Ae/Be circumstellar Disks at 10150 AU using PDI Henning Avenhaus Institute for Astronomy, ETH Zürich 2013 ROCKS! Conference, Hawaii Sascha Quanz, Hans Martin Schmid,

More information

Lecture 26 Low-Mass Young Stellar Objects

Lecture 26 Low-Mass Young Stellar Objects Lecture 26 Low-Mass Young Stellar Objects 1. Nearby Star Formation 2. General Properties of Young Stars 3. T Tauri Stars 4. Herbig Ae/Be Stars References Adams, Lizano & Shu ARAA 25 231987 Lada OSPS 1999

More information

arxiv: v1 [astro-ph.sr] 29 Nov 2018

arxiv: v1 [astro-ph.sr] 29 Nov 2018 Draft version November 3, 18 Preprint typeset using L A TEX style AASTeX6 v. 1. THE FLARED GAS STRUCTURE OF THE TRANSITIONAL DISK AROUND SZ 91 Takashi Tsukagoshi 1, Munetake Momose, Yoshimi Kitamura 3,

More information

Brewster Angle and Total Internal Reflection

Brewster Angle and Total Internal Reflection Lecture 4: Polarization Outline 1 Polarized Light in the Universe 2 Brewster Angle and Total Internal Reflection 3 Descriptions of Polarized Light 4 Polarizers 5 Retarders Christoph U. Keller, Utrecht

More information

Stuctural diversity resolving Herbig Ae/Be circumstellar Disks at AU using PDI

Stuctural diversity resolving Herbig Ae/Be circumstellar Disks at AU using PDI Stuctural diversity resolving Herbig Ae/Be circumstellar Disks at 10150 AU using PDI Henning Avenhaus Institute for Astronomy, ETH Zürich 2013 ROCKS! Conference, Hawaii Sascha Quanz, Hans Martin Schmid,

More information

Gas and dust spatial distribution in proto-planetary discs

Gas and dust spatial distribution in proto-planetary discs Gas and dust spatial distribution in proto-planetary discs Olja Panić 1,2 M.R.Hogerheijde 1, D.Wilner 3, C.Qi 3, E. van Dishoeck 1,4, B. Merín 5 1 Leiden Observatory; 2 European Southern Observatory; 3

More information

Chapter 5: Telescopes

Chapter 5: Telescopes Chapter 5: Telescopes You don t have to know different types of reflecting and refracting telescopes. Why build bigger and bigger telescopes? There are a few reasons. The first is: Light-gathering power:

More information

Debris dust tell us much about planetesimals and planets and sheds light to formation and evolution of planetary systems. KALAS et al.

Debris dust tell us much about planetesimals and planets and sheds light to formation and evolution of planetary systems. KALAS et al. Debris dust tell us much about planetesimals and planets and sheds light to formation and evolution of planetary systems KALAS et al. 2008 THE STAR Spectral type: F8 Distance : 17.4 pc Age : ~ 2 Gyr A

More information

Challenges for the Study of Hot Cores with ALMA: NGC 6334I

Challenges for the Study of Hot Cores with ALMA: NGC 6334I Challenges for the Study of Hot Cores with ALMA: NGC 6334I Crystal Brogan (NRAO/North American ALMA Science Center) Collaborators: Todd Hunter (NRAO) Remy Indebetouw (UVa/NRAO), Ken (Taco) Young (CfA),

More information

A Tale of Star and Planet Formation. Lynne Hillenbrand Caltech

A Tale of Star and Planet Formation. Lynne Hillenbrand Caltech A Tale of Star and Planet Formation Lynne Hillenbrand Caltech Vermeer s The Astronomer (1688) Mauna Kea (last week) photos by: Sarah Anderson and Bill Bates Context: Our Sun The Sun is a completely average

More information

Young stellar objects and their environment

Young stellar objects and their environment Recent Advances in Star Formation: Observations and Theory ASI Conference Series, 2012, Vol. 4, pp 107 111 Edited by Annapurni Subramaniam & Sumedh Anathpindika Young stellar objects and their environment

More information

Brewster Angle and Total Internal Reflection

Brewster Angle and Total Internal Reflection Lecture 5: Polarization Outline 1 Polarized Light in the Universe 2 Brewster Angle and Total Internal Reflection 3 Descriptions of Polarized Light 4 Polarizers 5 Retarders Christoph U. Keller, Leiden University,

More information

EXOPLANET LECTURE PLANET FORMATION. Dr. Judit Szulagyi - ETH Fellow

EXOPLANET LECTURE PLANET FORMATION. Dr. Judit Szulagyi - ETH Fellow EXOPLANET LECTURE PLANET FORMATION Dr. Judit Szulagyi - ETH Fellow (judits@ethz.ch) I. YOUNG STELLAR OBJECTS AND THEIR DISKS (YSOs) Star Formation Young stars born in 10 4 10 6 M Sun Giant Molecular Clouds.

More information

AST4930: Star and Planet Formation. Syllabus. AST4930: Star and Planet Formation, Spring 2014

AST4930: Star and Planet Formation. Syllabus. AST4930: Star and Planet Formation, Spring 2014 AST4930: Star and Planet Formation Lecture 1: Overview Assoc. Prof. Jonathan C. Tan jt@astro.ufl.edu Bryant 302 Syllabus AST4930: Star and Planet Formation, Spring 2014 Assoc. Prof. Jonathan C. Tan (jt

More information

- Potentials. - Liénard-Wiechart Potentials. - Larmor s Formula. - Dipole Approximation. - Beginning of Cyclotron & Synchrotron

- Potentials. - Liénard-Wiechart Potentials. - Larmor s Formula. - Dipole Approximation. - Beginning of Cyclotron & Synchrotron - Potentials - Liénard-Wiechart Potentials - Larmor s Formula - Dipole Approximation - Beginning of Cyclotron & Synchrotron Maxwell s equations in a vacuum become A basic feature of these eqns is the existence

More information

Time-variable phenomena in Herbig Ae/Be stars

Time-variable phenomena in Herbig Ae/Be stars Time-variable phenomena in Herbig Ae/Be stars! Péter Ábrahám Konkoly Observatory, Budapest, Hungary! Á. Kóspál, R. Szakáts! Santiago, 2014 April 7 Variability - and why it is interesting Herbig Ae/Be stars

More information

New ALMA Long Baseline Observations of the Transitional Disk around TW Hya

New ALMA Long Baseline Observations of the Transitional Disk around TW Hya New ALMA Long Baseline Observations of the Transitional Disk around TW Hya Takashi Tsukagoshi (Ibaraki University, Japan) H. Nomura, T. Muto, R. Kawabe, D. Ishimoto, K. D. Kanagawa, S. Okuzumi, S. Ida,

More information

Debris Disks: A Brief Observational History Thomas Oberst April 19, 2006 A671

Debris Disks: A Brief Observational History Thomas Oberst April 19, 2006 A671 Debris Disks: A Brief Observational History Thomas Oberst A671 Debris Disk; Artist s rendition (T. Pyle (SSC), JPL-Caltech, & NASA http://www.spitz er.caltech.edu/m edia/happenings /20051214/) Debris Disks

More information

Science at ESO. Mark Casali

Science at ESO. Mark Casali Science at ESO Mark Casali La Silla Paranal ALMA Visual/infrared light La Silla telescopes incl. 3.6m and NTT VLT, VLTI, VISTA and VST on Paranal E-ELT construction on Armazones Instrumentation development

More information

Chapter 16: Star Birth

Chapter 16: Star Birth Chapter 16 Lecture Chapter 16: Star Birth Star Birth 16.1 Stellar Nurseries Our goals for learning: Where do stars form? Why do stars form? Where do stars form? Star-Forming Clouds Stars form in dark clouds

More information

Probing the Molecular Outflows of the Coldest Known Object in the Universe The Boomerang Nebula. R.Sahai (JPL) W. Vlemmings, L-A Nyman & P.

Probing the Molecular Outflows of the Coldest Known Object in the Universe The Boomerang Nebula. R.Sahai (JPL) W. Vlemmings, L-A Nyman & P. Probing the Molecular Outflows of the Coldest Known Object in the Universe The Boomerang Nebula R.Sahai (JPL) W. Vlemmings, L-A Nyman & P. Huggins The Extraordinary Deaths of Ordinary Stars Planetary nebulae

More information

Components of Galaxies Stars What Properties of Stars are Important for Understanding Galaxies?

Components of Galaxies Stars What Properties of Stars are Important for Understanding Galaxies? Components of Galaxies Stars What Properties of Stars are Important for Understanding Galaxies? Temperature Determines the λ range over which the radiation is emitted Chemical Composition metallicities

More information