The Gödel Engine (additional material): Derivation of the special solution to the geodesic equations

Size: px
Start display at page:

Download "The Gödel Engine (additional material): Derivation of the special solution to the geodesic equations"

Transcription

1 EUROGRAPHICS 2009 / H.-C. Hege, I. Hotz, and T. Munzner Guest Editors) Volume ), Number 3 The Gödel Engine additional material): Derivation of the special solution to the geodesic equations F. Grave,2, T. Müller, C. Dachsbacher and G. Wunner 2 Visualization Research Center, University of Stuttgart, Germany 2. Institute for Theoretical Physics, University of Stuttgart, Gemany. Introduction Our contribution The Gödel Engine - An interactive approach to visualization in general relativity uses the analytical solution to the geodesic equations of Gödel s universe to enable interactive renderings including a local illumination model. Section 5. of the paper provides compact instructions on solving these equations. Although this section is self-contained, we provide this detailed version of the derivation to simplify the verification of our results. Due to the page limitation and the focus of the conference these calculations have not been included in the paper itself. All differentiations are with respect to the affine curve parameter λ unless otherwise denoted. 2. Gödel s metric In general relativity, distances in spacetime are calculated using the line element ds 2 3 = g µνx)dx µ dx ν. µ,ν=0 This is comparable to the Pythagorean theorem for the distance between two points in Euclidian space. Here, the points on a four-dimensional pseudo-riemannian manifold are infinitesimally neighboring and the metric tensor g µν, a 4 4 matrix, is introduced. Note that we use index notation g µν when referring to the entries of the metric tensor g. In Gödel s universe we obtain a line element [KWSD04] and therefore a metric tensor ds 2 = c 2 dt 2 + g = dr 2 +[r/)] 2 + r2 [r/)] 2) dϕ 2 + dz 2 2r 2 c dtdϕ a c 2 0 r2 c [r/)] 2 r2 c 0 r 2 [r/)] 2) 0. ) This metric tensor has a different algebraic sign compared to [KWSD04]. The underlying physics remain unaffected by this convention. 3. Lagrange formalism We can formulate the Lagrangian or Lagrange function of motion [Rin0] which reads L = g µνẋ µ ẋ ν = g µνu µ u ν = κc 2. 2) Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main Street, Malden, MA 0248, USA.

2 The equations of motion are second-order ordinary differential equations. They can be derived using the Lagrangian, namely The parameter κ denotes the type of geodesic, we have κ = : d L dλ ẋ µ L x µ = 0. 3) timelike geodesics, κ = 0 : lightlike geodesics, κ = : spacelike geodesics. We can find constants of motion if a spacetime has certain symmetries. This enables us to formulate an equivalent set of equations of motion which are of first order in λ. These constants can be found, for example, by applying the Noether theorem L Lx µ ) L ẋ µ = const. 4) 4. Equations of motion in Gödel s universe With Eqns. and 2 the Langrangian of Gödel s universe reads L = c 2 ṫ 2 + ṙ 2 +[r/)] 2 + r2 [r/)] 2) ϕ 2 + ż 2 2r 2 c ṫ ϕ = κc 2 5) a and is independent of t,ϕ and z. Using Eq. 4 we find three constants of motion k 0 = cṫ r2 ϕ, 6a) k 2 = r 2 [r/)] 2) ϕ r2 c ṫ, 6b) k 3 = ż. 6c) These expressions are constant for every λ for a particular geodesic. We can therefore use these constants of motion to specify the initial conditions x µ 0) and ẋ µ 0) of this geodesic: k 0 = cṫ0) r2 0) ϕ0), k 2 = r 2 0) [r0)/)] 2) ϕ0) r2 0)c ṫ0), 7a) 7b) We solve Eqns. 6 with respect to ẋ µ and arrive at k 3 = ż0). 7c) [r/)] 2 cṫ = k 0 +[r/)] 2 k 2 +[r/)] 2 ), ϕ = k 2 r 2 k 0 / ) r 2 +[r/)] 2), 8a) 8b) 8c) These expressions are then inserted into the Lagrangian Eq. 5) to eliminate ṫ, ϕ and ż. The Lagrangian now depends only on rλ) and its derivative: ṙ 2 k0 2 [r/)] 2) + k2 2 /r2 2k 0 k 2 /a L = +[r/)] 2 + k3 2 = κc 2. 9)

3 We obtain a coupled first-order ordinary differential equations system using Eqns. 8 and 9: [r/)] 2 cṫ = k 0 +[r/)] 2 k 2 +[r/)] 2 ), ṙ 2 = κc 2 k 2 3) ϕ = k 2 r 2 k 0 / ) r 2 +[r/)] 2), +[r/)] 2) k2 2 r 2 + 2k0 k 2 + k0 2 a 0a) [r/)] 2), 0b) The equations presented here are formulated for arbitrary initial conditions. We now restrict the solution to special initial conditions. Within the context of the paper we are only interested in geodesics starting at the origin. Isometries are used to obtain indirect access to the general solution of the geodesic equations. For further details see Sec Starting at the origin r0) = 0, Eqns. 7 simplify to These equations show that k 0 can be identified with the negative time direction and we therefore choose k 0 = ±. A positive sign denotes geodesics evolving into the past while a negative sign corresponds to geodesics propagating into the future. When we investigate the visual appearance of an object as seen by an observer we need k 0 = +, because we trace the geodesics back into the past starting at the observer s position. If we illuminate an object, we use geodesics propagating into the future. Constant of motion k 3 is the component of the geodesics s starting direction along the z-axis. We restrict ż0) = k 3 [ ;] and obtain ṙ0) = k 2 3 )/2 for photons leaving the origin r = 0. The vertical starting angle ϑ 0 results to as stated in the paper. ϑ 0 = arctan 0c) 0d) k 0 = cṫ0), a) k 2 = 0, b) k 3 = ż0). c) ) ) ṙ ż = arccos ż ṙ 2 + ż 2 = arccosk 3 ) The final differential equations for lightlike geodesics κ = 0) and k 0 = ± result from inserting Eqns. in Eqns. 0. In geometrical units c = ), they can be written as ṫ = k 0 [r/)] 2 +[r/)] 2, ż0) z ϑ 0 ṙ0) ẋ µ 0) r ) ṙ 2 = k3 2 )[r/)] 2 2, 2b) k ϕ = 0 +[r/)] 2 ), 2c) Eqns. and 2c are coupled to Eq. 2b. Eq. 2d is trivial. The integration of these equations can be verified using the integration tables of [BSMM07] and elementary trigonometric transformations or by inserting the solution into Eqns. 2. We will solve Eq. 2b first. 2d) 5. Solution to the geodesic equations Radial coordinate After separation of variables we obtain ±dr 4a 2 k 2 3 )/+k2 3 ) r2 = +k 2 3 dλ,

4 where the two signs on the left-hand side result from extracting the root of Eq. 2b and describe a photon leaving from or arriving at the origin, respectively. This equation is integrated, which yields ) r 2 2 ±arcsin k3 2 r 0 = λ λ 0± ) with two different integration constants λ 0± depending on the branch of the solution. Furthermore we set r 0 = 0 due to our initial conditions. This can be written as k3 2 2 rλ) = ± 2 sin λ λ 0± ). The different branches of the solution are merged to a continuous function for both incoming and outgoing photons and the initial condition r0) = 0 k3 2 rλ) = 2 sin 2 λ, 3) which is as introduced in the paper. Time coordinate After inserting Eq. 3 into we find ) 2 )/ k2 3 ) sin2 k3 2/)λ ṫ = k 0 ) 2)/ k2 3 )+sin2 k3 2/)λ which integrates to tλ) = k 0 λ 2 k 0 arctan 2 +k tan λ +π λ+ +t s. 2 π 2 The floor function x is introduced, because arctantanx)) x but resembles a discontinuous function. In mathematical terms arctantanx)) is a piecewise linear function sawtooth function ), because π/2 < arctany) < π/2 y R. Adding an appropriate piecewise constant function results to arctantanx)) + π x/π + /2 = x. Hence, the solution is continuously differentiable for all λ. We set the integration constant t s = t0) w.l.o.g. to zero. Angular coordinate We insert Eq. 3 into 2c, which takes the form ϕ = k 0 +k 2 3 )/ k2 3 ) +k 2 3 )/ k2 3 )+sin2 +k 2 3 /)λ )) and is solved by ϕλ) = k 0 arctan tan λ +π 2 π λ+ +k 2 3 π 2 π λ +ϕ s. The function x guarantees the continuous differentiability of the angular solution. The integration constant ϕ s = ϕ0) must be interpreted as the angular starting direction of the geodesic within the rϕ-plane. z-coordinate Obviously, Eq. 2d is solved by zλ) = k 3 λ+z s,

5 where we set z 3 = 0 due to the initial conditions. Abbreviations With the help functions +k 2 3 f qλ) = π π λ+q, gλ) = arctan 2 2 tan λ, 2 the calculations provided here reproduce the analytical solution as presented in the paper. References [BSMM07] BRONSTEIN I., SEMENDJAJEW K., MUSIOL G., MÜHLIG H.: Handbook of Mathematics. Springer, [KWSD04] KAJARI E., WALSER R., SCHLEICH W. P., DELGADO A.: Sagnac Effect of Gödel s Universe. Gen. Rel. Grav., ), [Rin0] RINDLER W.: Relativity - Special, General and Cosmology. Oxford University Press, 200.

I. HARTLE CHAPTER 8, PROBLEM 2 (8 POINTS) where here an overdot represents d/dλ, must satisfy the geodesic equation (see 3 on problem set 4)

I. HARTLE CHAPTER 8, PROBLEM 2 (8 POINTS) where here an overdot represents d/dλ, must satisfy the geodesic equation (see 3 on problem set 4) Physics 445 Solution for homework 5 Fall 2004 Cornell University 41 points) Steve Drasco 1 NOTE From here on, unless otherwise indicated we will use the same conventions as in the last two solutions: four-vectors

More information

Übungen zu RT2 SS (4) Show that (any) contraction of a (p, q) - tensor results in a (p 1, q 1) - tensor.

Übungen zu RT2 SS (4) Show that (any) contraction of a (p, q) - tensor results in a (p 1, q 1) - tensor. Übungen zu RT2 SS 2010 (1) Show that the tensor field g µν (x) = η µν is invariant under Poincaré transformations, i.e. x µ x µ = L µ νx ν + c µ, where L µ ν is a constant matrix subject to L µ ρl ν ση

More information

Physics 325: General Relativity Spring Final Review Problem Set

Physics 325: General Relativity Spring Final Review Problem Set Physics 325: General Relativity Spring 2012 Final Review Problem Set Date: Friday 4 May 2012 Instructions: This is the third of three review problem sets in Physics 325. It will count for twice as much

More information

Lecture: Lorentz Invariant Dynamics

Lecture: Lorentz Invariant Dynamics Chapter 5 Lecture: Lorentz Invariant Dynamics In the preceding chapter we introduced the Minkowski metric and covariance with respect to Lorentz transformations between inertial systems. This was shown

More information

Appendix to Lecture 2

Appendix to Lecture 2 PHYS 652: Astrophysics 1 Appendix to Lecture 2 An Alternative Lagrangian In class we used an alternative Lagrangian L = g γδ ẋ γ ẋ δ, instead of the traditional L = g γδ ẋ γ ẋ δ. Here is the justification

More information

Exact Solutions of the Einstein Equations

Exact Solutions of the Einstein Equations Notes from phz 6607, Special and General Relativity University of Florida, Fall 2004, Detweiler Exact Solutions of the Einstein Equations These notes are not a substitute in any manner for class lectures.

More information

arxiv: v2 [gr-qc] 27 Apr 2013

arxiv: v2 [gr-qc] 27 Apr 2013 Free of centrifugal acceleration spacetime - Geodesics arxiv:1303.7376v2 [gr-qc] 27 Apr 2013 Hristu Culetu Ovidius University, Dept.of Physics and Electronics, B-dul Mamaia 124, 900527 Constanta, Romania

More information

PHY6426/Fall 07: CLASSICAL MECHANICS HOMEWORK ASSIGNMENT #1 due by 9:35 a.m. Wed 09/05 Instructor: D. L. Maslov Rm.

PHY6426/Fall 07: CLASSICAL MECHANICS HOMEWORK ASSIGNMENT #1 due by 9:35 a.m. Wed 09/05 Instructor: D. L. Maslov Rm. PHY646/Fall 07: CLASSICAL MECHANICS HOMEWORK ASSIGNMENT # due by 9:35 a.m. Wed 09/05 Instructor: D. L. Maslov maslov@phys.ufl.edu 39-053 Rm. 4 Please help your instructor by doing your work neatly.. Goldstein,

More information

2 General Relativity. 2.1 Curved 2D and 3D space

2 General Relativity. 2.1 Curved 2D and 3D space 22 2 General Relativity The general theory of relativity (Einstein 1915) is the theory of gravity. General relativity ( Einstein s theory ) replaced the previous theory of gravity, Newton s theory. The

More information

3 The Friedmann-Robertson-Walker metric

3 The Friedmann-Robertson-Walker metric 3 The Friedmann-Robertson-Walker metric 3.1 Three dimensions The most general isotropic and homogeneous metric in three dimensions is similar to the two dimensional result of eq. (43): ( ) dr ds 2 = a

More information

3 Parallel transport and geodesics

3 Parallel transport and geodesics 3 Parallel transport and geodesics 3.1 Differentiation along a curve As a prelude to parallel transport we consider another form of differentiation: differentiation along a curve. A curve is a parametrized

More information

Problem 1, Lorentz transformations of electric and magnetic

Problem 1, Lorentz transformations of electric and magnetic Problem 1, Lorentz transformations of electric and magnetic fields We have that where, F µν = F µ ν = L µ µ Lν ν F µν, 0 B 3 B 2 ie 1 B 3 0 B 1 ie 2 B 2 B 1 0 ie 3 ie 2 ie 2 ie 3 0. Note that we use the

More information

Spacetime and 4 vectors

Spacetime and 4 vectors Spacetime and 4 vectors 1 Minkowski space = 4 dimensional spacetime Euclidean 4 space Each point in Minkowski space is an event. In SR, Minkowski space is an absolute structure (like space in Newtonian

More information

General Birkhoff s Theorem

General Birkhoff s Theorem General Birkhoff s Theorem Amir H. Abbassi Department of Physics, School of Sciences, Tarbiat Modarres University, P.O.Box 14155-4838, Tehran, I.R.Iran E-mail: ahabbasi@net1cs.modares.ac.ir Abstract Space-time

More information

Orbital Motion in Schwarzschild Geometry

Orbital Motion in Schwarzschild Geometry Physics 4 Lecture 29 Orbital Motion in Schwarzschild Geometry Lecture 29 Physics 4 Classical Mechanics II November 9th, 2007 We have seen, through the study of the weak field solutions of Einstein s equation

More information

Solving the Geodesic Equation

Solving the Geodesic Equation Solving the Geodesic Equation Jeremy Atkins December 12, 2018 Abstract We find the general form of the geodesic equation and discuss the closed form relation to find Christoffel symbols. We then show how

More information

Minkowski spacetime. Pham A. Quang. Abstract: In this talk we review the Minkowski spacetime which is the spacetime of Special Relativity.

Minkowski spacetime. Pham A. Quang. Abstract: In this talk we review the Minkowski spacetime which is the spacetime of Special Relativity. Minkowski spacetime Pham A. Quang Abstract: In this talk we review the Minkowski spacetime which is the spacetime of Special Relativity. Contents 1 Introduction 1 2 Minkowski spacetime 2 3 Lorentz transformations

More information

BLACK HOLES (ADVANCED GENERAL RELATIV- ITY)

BLACK HOLES (ADVANCED GENERAL RELATIV- ITY) Imperial College London MSc EXAMINATION May 2015 BLACK HOLES (ADVANCED GENERAL RELATIV- ITY) For MSc students, including QFFF students Wednesday, 13th May 2015: 14:00 17:00 Answer Question 1 (40%) and

More information

Kerr-Schild Method and Geodesic Structure in Codimension-2 BBH

Kerr-Schild Method and Geodesic Structure in Codimension-2 BBH 1 Kerr-Schild Method and Geodesic Structure in Codimension-2 Brane Black Holes B. Cuadros-Melgar Departamento de Ciencias Físicas, Universidad Nacional Andrés Bello, Santiago, Chile Abstract We consider

More information

Classical Oscilators in General Relativity

Classical Oscilators in General Relativity Classical Oscilators in General Relativity arxiv:gr-qc/9709020v2 22 Oct 2000 Ion I. Cotăescu and Dumitru N. Vulcanov The West University of Timişoara, V. Pârvan Ave. 4, RO-1900 Timişoara, Romania Abstract

More information

Physics 480/581. Homework No. 10 Solutions: due Friday, 19 October, 2018

Physics 480/581. Homework No. 10 Solutions: due Friday, 19 October, 2018 Physics 480/58 Homework No. 0 Solutions: due Friday, 9 October, 208. Using the coordinate bases for -forms, and their reciprocal bases for tangent vectors, and the usual form of the Schwarzschild metric,

More information

Lagrangian for Central Potentials

Lagrangian for Central Potentials Physics 411 Lecture 2 Lagrangian for Central Potentials Lecture 2 Physics 411 Classical Mechanics II August 29th 2007 Here we will review the Lagrange formulation in preparation for the study of the central

More information

On the shadows of black holes and of other compact objects

On the shadows of black holes and of other compact objects On the shadows of black holes and of other compact objects Volker Perlick ( ZARM, Univ. Bremen, Germany) 1. Schwarzschild spacetime mass m photon sphere at r = 3m shadow ( escape cones ): J. Synge, 1966

More information

Tutorial Exercises: Geometric Connections

Tutorial Exercises: Geometric Connections Tutorial Exercises: Geometric Connections 1. Geodesics in the Isotropic Mercator Projection When the surface of the globe is projected onto a flat map some aspects of the map are inevitably distorted.

More information

THEODORE VORONOV DIFFERENTIAL GEOMETRY. Spring 2009

THEODORE VORONOV DIFFERENTIAL GEOMETRY. Spring 2009 [under construction] 8 Parallel transport 8.1 Equation of parallel transport Consider a vector bundle E B. We would like to compare vectors belonging to fibers over different points. Recall that this was

More information

=0 x i p j t + (pj v i )

=0 x i p j t + (pj v i ) The energy momentum tensor This is also a little exercise of inserting c at the correct places. We put c equal 1 for convenience and re-insert it at the end. Recall the Euler equations for an ideal fluid

More information

The Klein-Gordon Equation Meets the Cauchy Horizon

The Klein-Gordon Equation Meets the Cauchy Horizon Enrico Fermi Institute and Department of Physics University of Chicago University of Mississippi May 10, 2005 Relativistic Wave Equations At the present time, our best theory for describing nature is Quantum

More information

arxiv: v1 [gr-qc] 31 Jan 2013

arxiv: v1 [gr-qc] 31 Jan 2013 Circular orbits in the extreme Reissner-Nordstrøm dihole metric Andreas Wünsch, Thomas Müller, Daniel Weiskopf, and Günter Wunner. Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring

More information

arxiv:gr-qc/ v1 23 Jun 1998

arxiv:gr-qc/ v1 23 Jun 1998 Superluminal travel requires negative energies Ken D. Olum Institute of Cosmology Department of Physics and Astronomy Tufts University Medford, MA 02155 (June 1998) arxiv:gr-qc/9806091v1 23 Jun 1998 Abstract

More information

Is there a magnification paradox in gravitational lensing?

Is there a magnification paradox in gravitational lensing? Is there a magnification paradox in gravitational lensing? Olaf Wucknitz wucknitz@astro.uni-bonn.de Astrophysics seminar/colloquium, Potsdam, 26 November 2007 Is there a magnification paradox in gravitational

More information

Einstein Toolkit Workshop. Joshua Faber Apr

Einstein Toolkit Workshop. Joshua Faber Apr Einstein Toolkit Workshop Joshua Faber Apr 05 2012 Outline Space, time, and special relativity The metric tensor and geometry Curvature Geodesics Einstein s equations The Stress-energy tensor 3+1 formalisms

More information

Einstein s Theory of Gravity. June 10, 2009

Einstein s Theory of Gravity. June 10, 2009 June 10, 2009 Newtonian Gravity Poisson equation 2 U( x) = 4πGρ( x) U( x) = G d 3 x ρ( x) x x For a spherically symmetric mass distribution of radius R U(r) = 1 r U(r) = 1 r R 0 r 0 r 2 ρ(r )dr for r >

More information

On the Hawking Wormhole Horizon Entropy

On the Hawking Wormhole Horizon Entropy ESI The Erwin Schrödinger International Boltzmanngasse 9 Institute for Mathematical Physics A-1090 Wien, Austria On the Hawking Wormhole Horizon Entropy Hristu Culetu Vienna, Preprint ESI 1760 (2005) December

More information

An introduction to General Relativity and the positive mass theorem

An introduction to General Relativity and the positive mass theorem An introduction to General Relativity and the positive mass theorem National Center for Theoretical Sciences, Mathematics Division March 2 nd, 2007 Wen-ling Huang Department of Mathematics University of

More information

= w. These evolve with time yielding the

= w. These evolve with time yielding the 1 Analytical prediction and representation of chaos. Michail Zak a Jet Propulsion Laboratory California Institute of Technology, Pasadena, CA 91109, USA Abstract. 1. Introduction The concept of randomness

More information

Are spacetime horizons higher dimensional sources of energy fields? (The black hole case).

Are spacetime horizons higher dimensional sources of energy fields? (The black hole case). Are spacetime horizons higher dimensional sources of energy fields? (The black hole case). Manasse R. Mbonye Michigan Center for Theoretical Physics Physics Department, University of Michigan, Ann Arbor,

More information

General Relativity and Cosmology Mock exam

General Relativity and Cosmology Mock exam Physikalisches Institut Mock Exam Universität Bonn 29. June 2011 Theoretische Physik SS 2011 General Relativity and Cosmology Mock exam Priv. Doz. Dr. S. Förste Exercise 1: Overview Give short answers

More information

Einstein s Equations. July 1, 2008

Einstein s Equations. July 1, 2008 July 1, 2008 Newtonian Gravity I Poisson equation 2 U( x) = 4πGρ( x) U( x) = G d 3 x ρ( x) x x For a spherically symmetric mass distribution of radius R U(r) = 1 r U(r) = 1 r R 0 r 0 r 2 ρ(r )dr for r

More information

Special and General Relativity (PHZ 4601/5606) Fall 2018 Classwork and Homework. Every exercise counts 10 points unless stated differently.

Special and General Relativity (PHZ 4601/5606) Fall 2018 Classwork and Homework. Every exercise counts 10 points unless stated differently. 1 Special and General Relativity (PHZ 4601/5606) Fall 2018 Classwork and Homework Every exercise counts 10 points unless stated differently. Set 1: (1) Homework, due ( F ) 8/31/2018 before ( ) class. Consider

More information

Arc Length and Riemannian Metric Geometry

Arc Length and Riemannian Metric Geometry Arc Length and Riemannian Metric Geometry References: 1 W F Reynolds, Hyperbolic geometry on a hyperboloid, Amer Math Monthly 100 (1993) 442 455 2 Wikipedia page Metric tensor The most pertinent parts

More information

Black Holes and Wave Mechanics

Black Holes and Wave Mechanics Black Holes and Wave Mechanics Dr. Sam R. Dolan University College Dublin Ireland Matematicos de la Relatividad General Course Content 1. Introduction General Relativity basics Schwarzschild s solution

More information

Chapter 2 General Relativity and Black Holes

Chapter 2 General Relativity and Black Holes Chapter 2 General Relativity and Black Holes In this book, black holes frequently appear, so we will describe the simplest black hole, the Schwarzschild black hole and its physics. Roughly speaking, a

More information

arxiv: v1 [gr-qc] 28 Mar 2012

arxiv: v1 [gr-qc] 28 Mar 2012 Causality violation in plane wave spacetimes arxiv:103.6173v1 [gr-qc] 8 Mar 01 Keywords: vacuum spacetimes, closed null geodesics, plane wave spacetimes D. Sarma 1, M. Patgiri and F. Ahmed 3 Department

More information

Write your CANDIDATE NUMBER clearly on each of the THREE answer books provided. Hand in THREE answer books even if they have not all been used.

Write your CANDIDATE NUMBER clearly on each of the THREE answer books provided. Hand in THREE answer books even if they have not all been used. UNIVERSITY OF LONDON BSc/MSci EXAMINATION May 2007 for Internal Students of Imperial College of Science, Technology and Medicine This paper is also taken for the relevant Examination for the Associateship

More information

3.1 Transformation of Velocities

3.1 Transformation of Velocities 3.1 Transformation of Velocities To prepare the way for future considerations of particle dynamics in special relativity, we need to explore the Lorentz transformation of velocities. These are simply derived

More information

General Relativity ASTR 2110 Sarazin. Einstein s Equation

General Relativity ASTR 2110 Sarazin. Einstein s Equation General Relativity ASTR 2110 Sarazin Einstein s Equation Curvature of Spacetime 1. Principle of Equvalence: gravity acceleration locally 2. Acceleration curved path in spacetime In gravitational field,

More information

Imperial College 4th Year Physics UG, General Relativity Revision lecture. Toby Wiseman; Huxley 507,

Imperial College 4th Year Physics UG, General Relativity Revision lecture. Toby Wiseman; Huxley 507, Imperial College 4th Year Physics UG, 2012-13 General Relativity Revision lecture Toby Wiseman; Huxley 507, email: t.wiseman@imperial.ac.uk 1 1 Exam This is 2 hours. There is one compulsory question (

More information

THE LOCAL AND GLOBAL GEOMETRICAL ASPECTS OF THE TWIN PARADOX IN STATIC SPACETIMES: II. REISSNER NORDSTRÖM AND ULTRASTATIC METRICS

THE LOCAL AND GLOBAL GEOMETRICAL ASPECTS OF THE TWIN PARADOX IN STATIC SPACETIMES: II. REISSNER NORDSTRÖM AND ULTRASTATIC METRICS Vol. 45 2014) ACTA PHYSICA POLONICA B No 8 THE LOCAL AND GLOBAL GEOMETRICAL ASPECTS OF THE TWIN PARADOX IN STATIC SPACETIMES: II. REISSNER NORDSTRÖM AND ULTRASTATIC METRICS Leszek M. Sokołowski, Zdzisław

More information

Properties of Traversable Wormholes in Spacetime

Properties of Traversable Wormholes in Spacetime Properties of Traversable Wormholes in Spacetime Vincent Hui Department of Physics, The College of Wooster, Wooster, Ohio 44691, USA. (Dated: May 16, 2018) In this project, the Morris-Thorne metric of

More information

Special and General Relativity based on the Physical Meaning of the Spacetime Interval

Special and General Relativity based on the Physical Meaning of the Spacetime Interval Special and General Relativity based on the Physical Meaning of the Spacetime Interval Alan Macdonald Department of Mathematics Luther College macdonal@luther.edu http://faculty.luther.edu/ macdonal Abstract

More information

Lagrangian Formulation of Elastic Wave Equation on Riemannian Manifolds

Lagrangian Formulation of Elastic Wave Equation on Riemannian Manifolds RWE-C3-EAFIT Lagrangian Formulation of Elastic Wave Equation on Riemannian Manifolds Hector Roman Quiceno E. Advisors Ph.D Jairo Alberto Villegas G. Ph.D Diego Alberto Gutierrez I. Centro de Ciencias de

More information

Curved spacetime and general covariance

Curved spacetime and general covariance Chapter 7 Curved spacetime and general covariance In this chapter we generalize the discussion of preceding chapters to extend covariance to more general curved spacetimes. 219 220 CHAPTER 7. CURVED SPACETIME

More information

Curved Spacetime I. Dr. Naylor

Curved Spacetime I. Dr. Naylor Curved Spacetime I Dr. Naylor Last Week Einstein's principle of equivalence We discussed how in the frame of reference of a freely falling object we can construct a locally inertial frame (LIF) Space tells

More information

arxiv: v1 [gr-qc] 3 Aug 2017

arxiv: v1 [gr-qc] 3 Aug 2017 Stability of spherically symmetric timelike thin-shells in general relativity with a variable equation of state S. Habib Mazharimousavi, M. Halilsoy, S. N. Hamad Amen Department of Physics, Eastern Mediterranean

More information

Aspects of Black Hole Physics

Aspects of Black Hole Physics Contents Aspects of Black Hole Physics Andreas Vigand Pedersen The Niels Bohr Institute Academic Advisor: Niels Obers e-mail: vigand@nbi.dk Abstract: This project examines some of the exact solutions to

More information

8.821 String Theory Fall 2008

8.821 String Theory Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 8.8 String Theory Fall 008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 8.8 F008 Lecture 0: CFTs in D > Lecturer:

More information

Week 1. 1 The relativistic point particle. 1.1 Classical dynamics. Reading material from the books. Zwiebach, Chapter 5 and chapter 11

Week 1. 1 The relativistic point particle. 1.1 Classical dynamics. Reading material from the books. Zwiebach, Chapter 5 and chapter 11 Week 1 1 The relativistic point particle Reading material from the books Zwiebach, Chapter 5 and chapter 11 Polchinski, Chapter 1 Becker, Becker, Schwartz, Chapter 2 1.1 Classical dynamics The first thing

More information

We begin our discussion of special relativity with a power point presentation, available on the website.

We begin our discussion of special relativity with a power point presentation, available on the website. Special Relativity We begin our discussion of special relativity with a power point presentation, available on the website.. Spacetime From the power point presentation, you know that spacetime is a four

More information

PAPER 309 GENERAL RELATIVITY

PAPER 309 GENERAL RELATIVITY MATHEMATICAL TRIPOS Part III Monday, 30 May, 2016 9:00 am to 12:00 pm PAPER 309 GENERAL RELATIVITY Attempt no more than THREE questions. There are FOUR questions in total. The questions carry equal weight.

More information

A A + B. ra + A + 1. We now want to solve the Einstein equations in the following cases:

A A + B. ra + A + 1. We now want to solve the Einstein equations in the following cases: Lecture 29: Cosmology Cosmology Reading: Weinberg, Ch A metric tensor appropriate to infalling matter In general (see, eg, Weinberg, Ch ) we may write a spherically symmetric, time-dependent metric in

More information

Exercise 1 Classical Bosonic String

Exercise 1 Classical Bosonic String Exercise 1 Classical Bosonic String 1. The Relativistic Particle The action describing a free relativistic point particle of mass m moving in a D- dimensional Minkowski spacetime is described by ) 1 S

More information

Schwarschild Metric From Kepler s Law

Schwarschild Metric From Kepler s Law Schwarschild Metric From Kepler s Law Amit kumar Jha Department of Physics, Jamia Millia Islamia Abstract The simplest non-trivial configuration of spacetime in which gravity plays a role is for the region

More information

arxiv: v2 [gr-qc] 8 Nov 2017

arxiv: v2 [gr-qc] 8 Nov 2017 Proceedings of RAGtime?/?,??/?? September,????/????, Opava, Czech Republic 1 S. Hledík and Z. Stuchlík, editors, Silesian University in Opava,????, pp. 1 8 arxiv:1711.02442v2 [gr-qc] 8 Nov 2017 Chaotic

More information

FRW cosmology: an application of Einstein s equations to universe. 1. The metric of a FRW cosmology is given by (without proof)

FRW cosmology: an application of Einstein s equations to universe. 1. The metric of a FRW cosmology is given by (without proof) FRW cosmology: an application of Einstein s equations to universe 1. The metric of a FRW cosmology is given by (without proof) [ ] dr = d(ct) R(t) 1 kr + r (dθ + sin θdφ ),. For generalized coordinates

More information

A Summary of the Black Hole Perturbation Theory. Steven Hochman

A Summary of the Black Hole Perturbation Theory. Steven Hochman A Summary of the Black Hole Perturbation Theory Steven Hochman Introduction Many frameworks for doing perturbation theory The two most popular ones Direct examination of the Einstein equations -> Zerilli-Regge-Wheeler

More information

Tutorial General Relativity

Tutorial General Relativity Tutorial General Relativity Winter term 016/017 Sheet No. 3 Solutions will be discussed on Nov/9/16 Lecturer: Prof. Dr. C. Greiner Tutor: Hendrik van Hees 1. Tensor gymnastics (a) Let Q ab = Q ba be a

More information

THE GLOBALLY PATHOLOGIC PROPERTIES OF A STATIC PLANARY SYMMETRIC EXACT SOLUTIONS

THE GLOBALLY PATHOLOGIC PROPERTIES OF A STATIC PLANARY SYMMETRIC EXACT SOLUTIONS NLELE ŞTIINŢIFICE LE UNIVERSITĂŢII "L.I.CUZ" DIN IŞI Tomul XLIII-XLIV, s.i.b.fasc. Fizica Solidelor - Fizică Teoretică, 997-998 THE GLOBLLY PTHOLOGIC PROPERTIES OF STTIC PLNRY SYMMETRIC EXCT SOLUTIONS

More information

arxiv: v1 [gr-qc] 7 Jan 2018

arxiv: v1 [gr-qc] 7 Jan 2018 Dynamics of test particles in the five-dimensional Gödel spacetime Kevin Eickhoff 1, and Stephan Reimers 1, 1 Institut für Physik, Universität Oldenburg, 26111 Oldenburg, Germany Dated: 8. April 2018 We

More information

Brownian Motion and lorentzian manifolds

Brownian Motion and lorentzian manifolds The case of Jürgen Angst Institut de Recherche Mathématique Avancée Université Louis Pasteur, Strasbourg École d été de Probabilités de Saint-Flour juillet 2008, Saint-Flour 1 Construction of the diffusion,

More information

THE INVERSE TRIGONOMETRIC FUNCTIONS

THE INVERSE TRIGONOMETRIC FUNCTIONS THE INVERSE TRIGONOMETRIC FUNCTIONS Question 1 (**+) Solve the following trigonometric equation ( x ) π + 3arccos + 1 = 0. 1 x = Question (***) It is given that arcsin x = arccos y. Show, by a clear method,

More information

has a lot of good notes on GR and links to other pages. General Relativity Philosophy of general relativity.

has a lot of good notes on GR and links to other pages. General Relativity Philosophy of general relativity. http://preposterousuniverse.com/grnotes/ has a lot of good notes on GR and links to other pages. General Relativity Philosophy of general relativity. As with any major theory in physics, GR has been framed

More information

Particle Dynamics Around a Charged Black Hole

Particle Dynamics Around a Charged Black Hole Particle Dynamics Around a Charged Black Hole Sharif, M. and Iftikhar, S. Speaker: Sehrish Iftikhar Lahore College for Women University, Lahore, Pakistan Layout of the Talk Basic Concepts Dynamics of Neutral

More information

The line element for the hyperbolic plane was given in problem 12, of chapter 8 in Hartle

The line element for the hyperbolic plane was given in problem 12, of chapter 8 in Hartle Physics 4445 Solution for homework Fall 20 Cornell University (46 points) I. HARTLE CHAPTER 2, PROBLEM (8 POINTS) The line element for the hyperbolic plane was given in problem 2, of chapter 8 in Hartle

More information

2.1 The metric and and coordinate transformations

2.1 The metric and and coordinate transformations 2 Cosmology and GR The first step toward a cosmological theory, following what we called the cosmological principle is to implement the assumptions of isotropy and homogeneity withing the context of general

More information

Ballistic orbits for Gravitational Waves

Ballistic orbits for Gravitational Waves for Gravitational Waves Giuseppe d'ambrosi Jan-Willem van Holten [arxiv:1406.4282] Kyoto 02-07-2015 18th Capra meeting on Radiation Reaction in GR 1 2 3 Giuseppe d'ambrosi for Gravitational Waves 2 Black

More information

New Non-Diagonal Singularity-Free Cosmological Perfect-Fluid Solution

New Non-Diagonal Singularity-Free Cosmological Perfect-Fluid Solution New Non-Diagonal Singularity-Free Cosmological Perfect-Fluid Solution arxiv:gr-qc/0201078v1 23 Jan 2002 Marc Mars Departament de Física Fonamental, Universitat de Barcelona, Diagonal 647, 08028 Barcelona,

More information

Geometric inequalities for black holes

Geometric inequalities for black holes Geometric inequalities for black holes Sergio Dain FaMAF-Universidad Nacional de Córdoba, CONICET, Argentina. 3 August, 2012 Einstein equations (vacuum) The spacetime is a four dimensional manifold M with

More information

Schwarzschild s Metrical Model of a Liquid Sphere

Schwarzschild s Metrical Model of a Liquid Sphere Schwarzschild s Metrical Model of a Liquid Sphere N.S. Baaklini nsbqft@aol.com Abstract We study Schwarzschild s metrical model of an incompressible (liquid) sphere of constant density and note the tremendous

More information

Curved Spacetime... A brief introduction

Curved Spacetime... A brief introduction Curved Spacetime... A brief introduction May 5, 2009 Inertial Frames and Gravity In establishing GR, Einstein was influenced by Ernst Mach. Mach s ideas about the absolute space and time: Space is simply

More information

arxiv:gr-qc/ v1 16 Apr 2002

arxiv:gr-qc/ v1 16 Apr 2002 Local continuity laws on the phase space of Einstein equations with sources arxiv:gr-qc/0204054v1 16 Apr 2002 R. Cartas-Fuentevilla Instituto de Física, Universidad Autónoma de Puebla, Apartado Postal

More information

An Overview of Mathematical General Relativity

An Overview of Mathematical General Relativity An Overview of Mathematical General Relativity José Natário (Instituto Superior Técnico) Geometria em Lisboa, 8 March 2005 Outline Lorentzian manifolds Einstein s equation The Schwarzschild solution Initial

More information

The spacetime of special relativity

The spacetime of special relativity 1 The spacetime of special relativity We begin our discussion of the relativistic theory of gravity by reviewing some basic notions underlying the Newtonian and special-relativistic viewpoints of space

More information

Syllabus. May 3, Special relativity 1. 2 Differential geometry 3

Syllabus. May 3, Special relativity 1. 2 Differential geometry 3 Syllabus May 3, 2017 Contents 1 Special relativity 1 2 Differential geometry 3 3 General Relativity 13 3.1 Physical Principles.......................................... 13 3.2 Einstein s Equation..........................................

More information

William P. Thurston. The Geometry and Topology of Three-Manifolds

William P. Thurston. The Geometry and Topology of Three-Manifolds William P. Thurston The Geometry and Topology of Three-Manifolds Electronic version 1.1 - March 00 http://www.msri.org/publications/books/gt3m/ This is an electronic edition of the 1980 notes distributed

More information

Time Delay in Swiss Cheese Gravitational Lensing

Time Delay in Swiss Cheese Gravitational Lensing Time Delay in Swiss Cheese Gravitational Lensing B. Chen,, R. Kantowski,, and X. Dai, Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 West Brooks, Room 00, Norman, OK 7309,

More information

PHZ 6607 Fall 2004 Midterm exam, Due Monday, November 8.

PHZ 6607 Fall 2004 Midterm exam, Due Monday, November 8. PHZ 6607 Fall 2004 Mierm exam, Due Monday, November 8. This is a take-home exam. You may use your class notes, your textbook and any algebra program, such as Maple or Mathematica, for assistance. If you

More information

Chapter 7 Curved Spacetime and General Covariance

Chapter 7 Curved Spacetime and General Covariance Chapter 7 Curved Spacetime and General Covariance In this chapter we generalize the discussion of preceding chapters to extend covariance to more general curved spacetimes. 145 146 CHAPTER 7. CURVED SPACETIME

More information

Hawking Radiation of Photons in a Vaidya-de Sitter Black Hole arxiv:gr-qc/ v1 15 Nov 2001

Hawking Radiation of Photons in a Vaidya-de Sitter Black Hole arxiv:gr-qc/ v1 15 Nov 2001 Hawking Radiation of Photons in a Vaidya-de Sitter Black Hole arxiv:gr-qc/0111045v1 15 Nov 2001 S. Q. Wu and X. Cai Institute of Particle Physics, Hua-Zhong Normal University, Wuhan 430079, P.R. China

More information

Ph236 Homework 4 Solutions

Ph236 Homework 4 Solutions Ph236 Homework 4 Solutions Abhilash ishra Fall 202 Problem : Gravitational fields and the equivalence principle a) For g αβ η αβ + h αβ : Γ α µν 2 ηαβ + h αβ ) h µν,β + h µβ,ν + h νβ,µ ) 2 ηαβ h µν,β +

More information

PHZ 6607 Special and General Relativity I Handout #1: The case for General Relativity

PHZ 6607 Special and General Relativity I Handout #1: The case for General Relativity Handout #1: The case for General Relativity General Relativity is an exceptionally powerful physical theory. Ultimately, it is also a theory about geometry, the geometry of a four dimensional spacetime.

More information

Cosmological constant is a conserved charge

Cosmological constant is a conserved charge Cosmological constant is a conserved Kamal Hajian Institute for Research in Fundamental Sciences (IPM) In collaboration with Dmitry Chernyavsky (Tomsk Polytechnic U.) arxiv:1710.07904, to appear in Classical

More information

Uniformity of the Universe

Uniformity of the Universe Outline Universe is homogenous and isotropic Spacetime metrics Friedmann-Walker-Robertson metric Number of numbers needed to specify a physical quantity. Energy-momentum tensor Energy-momentum tensor of

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.286: The Early Universe October 27, 2013 Prof. Alan Guth PROBLEM SET 6

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.286: The Early Universe October 27, 2013 Prof. Alan Guth PROBLEM SET 6 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.86: The Early Universe October 7, 013 Prof. Alan Guth PROBLEM SET 6 DUE DATE: Monday, November 4, 013 READING ASSIGNMENT: Steven Weinberg,

More information

Calculus of Variations Summer Term 2016

Calculus of Variations Summer Term 2016 Calculus of Variations Summer Term 2016 Lecture 14 Universität des Saarlandes 28. Juni 2016 c Daria Apushkinskaya (UdS) Calculus of variations lecture 14 28. Juni 2016 1 / 31 Purpose of Lesson Purpose

More information

06. Lagrangian Mechanics II

06. Lagrangian Mechanics II University of Rhode Island DigitalCommons@URI Classical Dynamics Physics Course Materials 2015 06. Lagrangian Mechanics II Gerhard Müller University of Rhode Island, gmuller@uri.edu Creative Commons License

More information

Rotating Charged Black Strings in General Relativity

Rotating Charged Black Strings in General Relativity arxiv:hep-th/9511188v 8 May 1996 Rotating Charged Black Strings in General Relativity José P.S. Lemos 1 Departamento de Astrofísica Observatório Nacional CNPq Rua General José Cristino 77, 091, Rio de

More information

Time-Periodic Solutions of the Einstein s Field Equations II: Geometric Singularities

Time-Periodic Solutions of the Einstein s Field Equations II: Geometric Singularities Science in China Series A: Mathematics 2009 Vol. 52 No. 11 1 16 www.scichina.com www.springerlink.com Time-Periodic Solutions of the Einstein s Field Equations II: Geometric Singularities KONG DeXing 1,

More information

MatFys. Week 5, Dec , 2005

MatFys. Week 5, Dec , 2005 MatFys Week 5, Dec. 1-18, 005 Lectures During this week s lectures we shall finish our treatment of classical mechanics and begin the quantum theory part of the course with an introduction to Hilbert spaces.

More information

HOMEWORK 10. Applications: special relativity, Newtonian limit, gravitational waves, gravitational lensing, cosmology, 1 black holes

HOMEWORK 10. Applications: special relativity, Newtonian limit, gravitational waves, gravitational lensing, cosmology, 1 black holes General Relativity 8.96 (Petters, spring 003) HOMEWORK 10. Applications: special relativity, Newtonian limit, gravitational waves, gravitational lensing, cosmology, 1 black holes 1. Special Relativity

More information

arxiv: v3 [gr-qc] 18 Oct 2017

arxiv: v3 [gr-qc] 18 Oct 2017 CHARACTERIZATION OF NULL GEODESICS ON KERR SPACETIMES CLAUDIO F. PAGANINI, BLAZEJ RUBA AND MARIUS A. OANCEA arxiv:1611.06927v3 [gr-qc] 18 Oct 2017 Albert Einstein Institute, Am Mühlenberg 1, D-14476 Potsdam,

More information