Seminar 5 Sustainability

Size: px
Start display at page:

Download "Seminar 5 Sustainability"

Transcription

1 Seminar 5 Susainabiliy Soluions Quesion : Hyperbolic Discouning -. Suppose a faher inheris a family forune of 0 million NOK an he wans o use some of i for himself (o be precise, he share ) bu also o beques some of i o his chil (he share 2 ) an granchil (he share 3 ). He hinks abou he problem in he following way: m x U = ln + β(ln 2 + ln 3 )., 2, 3 Hence he Lagrangian is: L = ln + β(ln 2 + ln 3 ) + λ( ) Involving he following coniions for opimaliy: = β 2 2 = 3 = So ha 2 = β an hence = + 2β hus = ( + 2β), so ha = ( + 2β) The iscoun facor which recovers he sharing scheme 4 0, 3 0, 3 is hen β = The son oes no respec he las will of his ol man bu ivies he remaining family forune beween himself an his chil accoring o he following valuaion: U = ln 2 + β ln 3 The uiliy funcion of he faher has no been explici in quesion, an wihou i he problem couln really have been solve. I am very sorry abou ha.

2 Involving he following coniions for opimaliy: 2 = β = So ha 3 = β 2 an hence 0.6 = 2 + β 2 which, wih β = 0.75 implies: 2 = 2 35 = = 9 35 = We are looking for he subgame-perfec soluion of he game beween he firs wo generaions. As he faher akes he acion of his son ino accoun we nee o solve U ( 2 ) = βu ( 2 ) for 2 = BR( ). In our specific case his is: = = 4 7 ( ) Subsiue his ino he original problem of he faher: m x U( ) + β[u(br( )) + U( BR( ))] wih he necessary coniion: U ( ) = β [U ( BR( )) U (BR( ))]BR ( ) + U ( BR( )). Which, in our specific case yiels: = ( ) 4 7 ( ) 4 which can be solve for he following shares of, 2 an 3 : = 3 = = 8 2 = = ( ) 28 =

3 Quesion 2: Opimal growh wih a naural resource consrain Aggregae proucion funcion wih echnological progress M : Y = ƒ (, R ) = K α (M R ) α () Noe ha echnological progress here is resource augmening an ha he proucion funcion has consan reurns o scale in an M R. 2- Show ha he ineres rae in he economy, i.e. he marginal prouciviy of capial, is consan provie MR is consan.: K Y M = αk α (M K R ) α R α = α = r (2) Since α is a consan parameer, his is consan (r = r) if M R is consan over ime. Noe ha he coniion can be rewrien in he following way ha comes in hany laer: Y = α Y = r (3) 2-2 Show ha when he ineres rae is consan, he resource price, i.e. he marginal prouciviy of he resource, is proporional o M.: Y = ( α)k α R M α R α = ( α) K M R α M = p (4) is proporional o M if r consan over ime, i.e. if M R is consan. In ha case, every increase in M over ime has he same effec on he marginal prouciviy of he resource, irrespecive of. 2-3 Explain wha is mean by ineremporal efficiency. Wih regars o he resource, ineremporal efficiency requires ha lim S = 0 an he Hoelling rule hols: ṗ p = r Y R = r (5) Y R Ṁ Ṙ α + ( α) α = r (6) M R In microeconomic erms, he Hoelling rule was an arbirage rule: he resource ren ha o grow a a rae equal o he ousie opion growh rae he rae of ineres. In 3

4 macroeconomic erms, ha implies ha he growh rae in he marginal prouciviy of he resource mus be equal o he marginal prouciviy of capial. Noe ha he oher ineremporal efficiency coniion you have encounere (an will soon mee again), he Ramsey rule, oes no apply here: in his ype of moel, we are given an exogenous savings rae an hence he Ramsey rule (a rule for he opimal ineremporal allocaion of capial, i.e. he savings rae) oes no apply. 2-4 Assume ha M grows a a consan rae m > 0. Show ha in his case i is possible o have an ineremporally efficien growh pah along which he ineres rae is consan an oupu grows a a consan rae g. The approach here is o ask: Given ha M grows a a consan rae, he ineres rae is consan an oupu grows a a consan rae g, is i possible o have an ineremporally efficien growh pah? Firs, as we have seen a consan ineres rae implies ha M R is consan. From he proucion funcion () i hen follows ha if oupu grows a a consan rae g, so oes : M Y = K α (M R ) α R α = Seconly, we see from (3) ha if echnology grows a a consan rae m, hen so oes he marginal prouciviy of he resource Y R. As a hir sep, noice ha he Hoelling rule in (5) hen implies ha r = m. Explicily wriing ou he iffereniaion as one in (6) an insering wha we foun so far we hen ge he following: Ṙ αg + ( α)m α = r = m R Ṙ αg αm = α R Ṙ g m = (7) R Noe ha, by he Hoelling rule, resource exracion is eclining. Denoe Ṙ = which R is consan. For o be negaive, we mus have m > g. Also we see ha resource exracion formally nees o go on forever. 2-5 Wha is he ineres rae along he pah escribe in (2-4)? As we have seen above an ineremporally efficien growh pah in his paricular moel requires r = m. In wors: he consan marginal prouciviy of capial equals he exogenous growh rae in he echnology level. 4

5 2-6 Wha is he relaionship beween he growh rae g an he saving rae s = K Y along he pah escribe in (2-4)? We have: g = = Y Y = s Y Making use of (3) an m = r: g = s r α = s m α (8) In sanar growh moels wihou a naural resource, he balance growh pah is inepenen of he saving rae. This is no he case wih an exhausible resource. Raher we ge ha he higher he saving rae, he higher he growh in oupu. This can also be seen by urning (8) aroun: he growh rae of he economy is exogenous an consan, as is he savings rae an he capial share of proucion. s = g α r = g (9) Y 2-7 (a) Derive he coniions for he opimal oucome. Wha is ifferen now is ha we o no have an exogenous saving rae bu ha we eermine he opimal saving/invesmen in he moel. Also, we are no only ou afer some ineremporally efficien pah bu he socially opimal pah. The opimizaion problem is: m x W = C,R 0 (C )e ρ. subjec o: = ƒ (, R ) C. an Ṡ = R an S 0 = 0 R (0) The curren value Hamilonian for his problem is: H = (C ) + μ[ƒ (, R ) C ] λr. 5

6 Necessary coniions for an opimum inclue: (C ) μ 0 (= 0 for C > 0), () μƒ R (, R ) λ 0 (= 0 for R > 0), (2) μ = μρ μƒ K (, R ) (3) λ = λρ. (4) Then, as in class, iffereniae () wih respec o : μ = (C) an inser his an () ino (3): (C) = (C)ρ (C)ƒ (K, R). This can be re-wrien as Ramsey rule: K r = ρ + η C (5) A his poin, noe ha he consumpion growh rae along he balance growh pah C equals g. This can be seen from he following ransformaions: Y = K + C C = Y K an hence = Ẏ K. As K K = g K = gk we have K = ġk + g K = g K. Puing hings ogeher yiels: C = Ẏ g K Y K (Y K) C = Ẏ g K = gy g K = g(y K) C = g In aiion, he efficiency coniions of he Hoelling rule (5) an lim S = 0 mus hol. 2-7 (b) Show uner wha coniions a growh pah of he ype escribe in (2-4) is opimal (assume ha η = C is consan). When such a growh pah exiss, how oes he growh rae epen on he parameers in he welfare funcion? Ineremporal efficiency is a preconiion. From all he ineremporally efficien growh pahs, we now choose one. We sill have ha r = m. Then rewrie he Ramsey rule as: m = ρ + ηg g = m ρ η Compare his o he coniion erive in (7): g m = 6

7 Where we foun ha i mus be rue ha m > g. To have he same in he socially opimal soluion, in he Ramsey rule ha implies: m > g an g = m ρ m > m ρ η mη > m ρ ρ > m( η) η Since ρ 0 by assumpion, his is always rue if η >. If η <, hen i is only rue if: ρ m < ( η) 7

8 Quesion 3: Discouning an Susainabiliy Suppose uiliy epens on an aggregae consumpion goo C an an aggregae environmenal goo E, an i is given by he specific form (C, E) = ln C γ E γ 3-. Show ha he consumpion iscoun rae r C is given by r C = ρ + g C. where wih r C = ρ C(C, E) C (C, E) C = CC + CEĖ C C = CCC C C + CEE Ė C E C = g C Ė E = g E C = ( γ)c γ E γ C γ E γ CC = γ C 2 CE = 0 = γ C so ha C ( γ)c = C C 2 r C = ρ + g C C γ g C 3-2. Wha is he iscoun rae for he environmenal goo r E? Similar o above we have r E = ρ E(C, E) E (C, E) 8

9 where E = EEĖ + EC E E = EEE E Ė E + ECC E C wih C = g C Ė E = g E E = γc γ E γ C γ E γ = γ E EE = γ E 2 EC = 0 so ha E = γe E E E 2 γ g E r E = ρ + g E 3-3. Which of hese wo raes is likely o be larger? Discuss. r C > r E whenever g C > g E, which is he mos plausible scenario. In oher wors, we fin ha environmenal goos have o be iscoune a a lower han average rae an consumpion goos have o be iscoune a a higher han average rae. In oher wors, he environmen s conribuion o fuure uiliy is becoming relaively more imporan. 2 2 Recall ha he quesion is how much of goo o I nee o have omorrow in orer o accep a one uni reucion oay. If r C is higher han r E ha means ha you have o give me unis of consumpion goo +r C omorrow (e.g. 8/0 when r C = 0.25) an ha you have o give me unis of he environmenal goo +r E omorrow (e.g. 9/0 when r E = 0.). 9

3.1.3 INTRODUCTION TO DYNAMIC OPTIMIZATION: DISCRETE TIME PROBLEMS. A. The Hamiltonian and First-Order Conditions in a Finite Time Horizon

3.1.3 INTRODUCTION TO DYNAMIC OPTIMIZATION: DISCRETE TIME PROBLEMS. A. The Hamiltonian and First-Order Conditions in a Finite Time Horizon 3..3 INRODUCION O DYNAMIC OPIMIZAION: DISCREE IME PROBLEMS A. he Hamilonian and Firs-Order Condiions in a Finie ime Horizon Define a new funcion, he Hamilonian funcion, H. H he change in he oal value of

More information

COMPETITIVE GROWTH MODEL

COMPETITIVE GROWTH MODEL COMPETITIVE GROWTH MODEL I Assumpions We are going o now solve he compeiive version of he opimal growh moel. Alhough he allocaions are he same as in he social planning problem, i will be useful o compare

More information

Green accounting: Green NNP and genuine savings

Green accounting: Green NNP and genuine savings Green accouning: Green NNP an genuine savings Lecures in resource economics Spring 2, Par G.B. Asheim, na.res., upae 27.3.2 1 Naional accouning gives a isore picure of savings if changes in socks of naural

More information

Seminar 4: Hotelling 2

Seminar 4: Hotelling 2 Seminar 4: Hoelling 2 November 3, 211 1 Exercise Par 1 Iso-elasic demand A non renewable resource of a known sock S can be exraced a zero cos. Demand for he resource is of he form: D(p ) = p ε ε > A a

More information

Macroeconomic Theory Ph.D. Qualifying Examination Fall 2005 ANSWER EACH PART IN A SEPARATE BLUE BOOK. PART ONE: ANSWER IN BOOK 1 WEIGHT 1/3

Macroeconomic Theory Ph.D. Qualifying Examination Fall 2005 ANSWER EACH PART IN A SEPARATE BLUE BOOK. PART ONE: ANSWER IN BOOK 1 WEIGHT 1/3 Macroeconomic Theory Ph.D. Qualifying Examinaion Fall 2005 Comprehensive Examinaion UCLA Dep. of Economics You have 4 hours o complee he exam. There are hree pars o he exam. Answer all pars. Each par has

More information

Economics 8105 Macroeconomic Theory Recitation 6

Economics 8105 Macroeconomic Theory Recitation 6 Economics 8105 Macroeconomic Theory Reciaion 6 Conor Ryan Ocober 11h, 2016 Ouline: Opimal Taxaion wih Governmen Invesmen 1 Governmen Expendiure in Producion In hese noes we will examine a model in which

More information

Problem Set #3: AK models

Problem Set #3: AK models Universiy of Warwick EC9A2 Advanced Macroeconomic Analysis Problem Se #3: AK models Jorge F. Chavez December 3, 2012 Problem 1 Consider a compeiive economy, in which he level of echnology, which is exernal

More information

Cooperative Ph.D. Program in School of Economic Sciences and Finance QUALIFYING EXAMINATION IN MACROECONOMICS. August 8, :45 a.m. to 1:00 p.m.

Cooperative Ph.D. Program in School of Economic Sciences and Finance QUALIFYING EXAMINATION IN MACROECONOMICS. August 8, :45 a.m. to 1:00 p.m. Cooperaive Ph.D. Program in School of Economic Sciences and Finance QUALIFYING EXAMINATION IN MACROECONOMICS Augus 8, 213 8:45 a.m. o 1: p.m. THERE ARE FIVE QUESTIONS ANSWER ANY FOUR OUT OF FIVE PROBLEMS.

More information

Introduction to choice over time

Introduction to choice over time Microeconomic Theory -- Choice over ime Inroducion o choice over ime Individual choice Income and subsiuion effecs 7 Walrasian equilibrium ineres rae 9 pages John Riley Ocober 9, 08 Microeconomic Theory

More information

Reserves measures have an economic component eg. what could be extracted at current prices?

Reserves measures have an economic component eg. what could be extracted at current prices? 3.2 Non-renewable esources A. Are socks of non-renewable resources fixed? eserves measures have an economic componen eg. wha could be exraced a curren prices? - Locaion and quaniies of reserves of resources

More information

The Brock-Mirman Stochastic Growth Model

The Brock-Mirman Stochastic Growth Model c December 3, 208, Chrisopher D. Carroll BrockMirman The Brock-Mirman Sochasic Growh Model Brock and Mirman (972) provided he firs opimizing growh model wih unpredicable (sochasic) shocks. The social planner

More information

( ) ( ) ( ) ( u) ( u) = are shown in Figure =, it is reasonable to speculate that. = cos u ) and the inside function ( ( t) du

( ) ( ) ( ) ( u) ( u) = are shown in Figure =, it is reasonable to speculate that. = cos u ) and the inside function ( ( t) du Porlan Communiy College MTH 51 Lab Manual The Chain Rule Aciviy 38 The funcions f ( = sin ( an k( sin( 3 38.1. Since f ( cos( k ( = cos( 3. Bu his woul imply ha k ( f ( = are shown in Figure =, i is reasonable

More information

1. Consider a pure-exchange economy with stochastic endowments. The state of the economy

1. Consider a pure-exchange economy with stochastic endowments. The state of the economy Answer 4 of he following 5 quesions. 1. Consider a pure-exchange economy wih sochasic endowmens. The sae of he economy in period, 0,1,..., is he hisory of evens s ( s0, s1,..., s ). The iniial sae is given.

More information

Final Exam Advanced Macroeconomics I

Final Exam Advanced Macroeconomics I Advanced Macroeconomics I WS 00/ Final Exam Advanced Macroeconomics I February 8, 0 Quesion (5%) An economy produces oupu according o α α Y = K (AL) of which a fracion s is invesed. echnology A is exogenous

More information

Chapter 2 The Derivative Applied Calculus 107. We ll need a rule for finding the derivative of a product so we don t have to multiply everything out.

Chapter 2 The Derivative Applied Calculus 107. We ll need a rule for finding the derivative of a product so we don t have to multiply everything out. Chaper The Derivaive Applie Calculus 107 Secion 4: Prouc an Quoien Rules The basic rules will le us ackle simple funcions. Bu wha happens if we nee he erivaive of a combinaion of hese funcions? Eample

More information

( ) (, ) F K L = F, Y K N N N N. 8. Economic growth 8.1. Production function: Capital as production factor

( ) (, ) F K L = F, Y K N N N N. 8. Economic growth 8.1. Production function: Capital as production factor 8. Economic growh 8.. Producion funcion: Capial as producion facor Y = α N Y (, ) = F K N Diminishing marginal produciviy of capial and labor: (, ) F K L F K 2 ( K, L) K 2 (, ) F K L F L 2 ( K, L) L 2

More information

Solutions Problem Set 3 Macro II (14.452)

Solutions Problem Set 3 Macro II (14.452) Soluions Problem Se 3 Macro II (14.452) Francisco A. Gallego 04/27/2005 1 Q heory of invesmen in coninuous ime and no uncerainy Consider he in nie horizon model of a rm facing adjusmen coss o invesmen.

More information

Lecture Notes 3: Quantitative Analysis in DSGE Models: New Keynesian Model

Lecture Notes 3: Quantitative Analysis in DSGE Models: New Keynesian Model Lecure Noes 3: Quaniaive Analysis in DSGE Models: New Keynesian Model Zhiwei Xu, Email: xuzhiwei@sju.edu.cn The moneary policy plays lile role in he basic moneary model wihou price sickiness. We now urn

More information

This document was generated at 7:34 PM, 07/27/09 Copyright 2009 Richard T. Woodward

This document was generated at 7:34 PM, 07/27/09 Copyright 2009 Richard T. Woodward his documen was generaed a 7:34 PM, 07/27/09 Copyrigh 2009 Richard. Woodward 15. Bang-bang and mos rapid approach problems AGEC 637 - Summer 2009 here are some problems for which he opimal pah does no

More information

Lecture 3: Solow Model II Handout

Lecture 3: Solow Model II Handout Economics 202a, Fall 1998 Lecure 3: Solow Model II Handou Basics: Y = F(K,A ) da d d d dk d = ga = n = sy K The model soluion, for he general producion funcion y =ƒ(k ): dk d = sƒ(k ) (n + g + )k y* =

More information

Midterm Exam. Macroeconomic Theory (ECON 8105) Larry Jones. Fall September 27th, Question 1: (55 points)

Midterm Exam. Macroeconomic Theory (ECON 8105) Larry Jones. Fall September 27th, Question 1: (55 points) Quesion 1: (55 poins) Macroeconomic Theory (ECON 8105) Larry Jones Fall 2016 Miderm Exam Sepember 27h, 2016 Consider an economy in which he represenaive consumer lives forever. There is a good in each

More information

This document was generated at 1:04 PM, 09/10/13 Copyright 2013 Richard T. Woodward. 4. End points and transversality conditions AGEC

This document was generated at 1:04 PM, 09/10/13 Copyright 2013 Richard T. Woodward. 4. End points and transversality conditions AGEC his documen was generaed a 1:4 PM, 9/1/13 Copyrigh 213 Richard. Woodward 4. End poins and ransversaliy condiions AGEC 637-213 F z d Recall from Lecure 3 ha a ypical opimal conrol problem is o maimize (,,

More information

Essential Microeconomics : OPTIMAL CONTROL 1. Consider the following class of optimization problems

Essential Microeconomics : OPTIMAL CONTROL 1. Consider the following class of optimization problems Essenial Microeconomics -- 6.5: OPIMAL CONROL Consider he following class of opimizaion problems Max{ U( k, x) + U+ ( k+ ) k+ k F( k, x)}. { x, k+ } = In he language of conrol heory, he vecor k is he vecor

More information

Problem Set 5. Graduate Macro II, Spring 2017 The University of Notre Dame Professor Sims

Problem Set 5. Graduate Macro II, Spring 2017 The University of Notre Dame Professor Sims Problem Se 5 Graduae Macro II, Spring 2017 The Universiy of Nore Dame Professor Sims Insrucions: You may consul wih oher members of he class, bu please make sure o urn in your own work. Where applicable,

More information

BU Macro BU Macro Fall 2008, Lecture 4

BU Macro BU Macro Fall 2008, Lecture 4 Dynamic Programming BU Macro 2008 Lecure 4 1 Ouline 1. Cerainy opimizaion problem used o illusrae: a. Resricions on exogenous variables b. Value funcion c. Policy funcion d. The Bellman equaion and an

More information

The Brock-Mirman Stochastic Growth Model

The Brock-Mirman Stochastic Growth Model c November 20, 207, Chrisopher D. Carroll BrockMirman The Brock-Mirman Sochasic Growh Model Brock and Mirman (972) provided he firs opimizing growh model wih unpredicable (sochasic) shocks. The social

More information

1 Consumption and Risky Assets

1 Consumption and Risky Assets Soluions o Problem Se 8 Econ 0A - nd Half - Fall 011 Prof David Romer, GSI: Vicoria Vanasco 1 Consumpion and Risky Asses Consumer's lifeime uiliy: U = u(c 1 )+E[u(c )] Income: Y 1 = Ȳ cerain and Y F (

More information

Problem 1 / 25 Problem 2 / 20 Problem 3 / 10 Problem 4 / 15 Problem 5 / 30 TOTAL / 100

Problem 1 / 25 Problem 2 / 20 Problem 3 / 10 Problem 4 / 15 Problem 5 / 30 TOTAL / 100 eparmen of Applied Economics Johns Hopkins Universiy Economics 602 Macroeconomic Theory and Policy Miderm Exam Suggesed Soluions Professor Sanjay hugh Fall 2008 NAME: The Exam has a oal of five (5) problems

More information

The general Solow model

The general Solow model The general Solow model Back o a closed economy In he basic Solow model: no growh in GDP per worker in seady sae This conradics he empirics for he Wesern world (sylized fac #5) In he general Solow model:

More information

The Real Exchange Rate, Real Interest Rates, and the Risk Premium. Charles Engel University of Wisconsin

The Real Exchange Rate, Real Interest Rates, and the Risk Premium. Charles Engel University of Wisconsin The Real Exchange Rae, Real Ineres Raes, an he Risk Premium Charles Engel Universiy of Wisconsin 1 Define he excess reurn or risk premium on Foreign s.. bons: λ i + Es+ 1 s i = r + Eq+ 1 q r The famous

More information

Explaining Total Factor Productivity. Ulrich Kohli University of Geneva December 2015

Explaining Total Factor Productivity. Ulrich Kohli University of Geneva December 2015 Explaining Toal Facor Produciviy Ulrich Kohli Universiy of Geneva December 2015 Needed: A Theory of Toal Facor Produciviy Edward C. Presco (1998) 2 1. Inroducion Toal Facor Produciviy (TFP) has become

More information

1 Answers to Final Exam, ECN 200E, Spring

1 Answers to Final Exam, ECN 200E, Spring 1 Answers o Final Exam, ECN 200E, Spring 2004 1. A good answer would include he following elemens: The equiy premium puzzle demonsraed ha wih sandard (i.e ime separable and consan relaive risk aversion)

More information

E β t log (C t ) + M t M t 1. = Y t + B t 1 P t. B t 0 (3) v t = P tc t M t Question 1. Find the FOC s for an optimum in the agent s problem.

E β t log (C t ) + M t M t 1. = Y t + B t 1 P t. B t 0 (3) v t = P tc t M t Question 1. Find the FOC s for an optimum in the agent s problem. Noes, M. Krause.. Problem Se 9: Exercise on FTPL Same model as in paper and lecure, only ha one-period govenmen bonds are replaced by consols, which are bonds ha pay one dollar forever. I has curren marke

More information

ANSWERS TO EVEN NUMBERED EXERCISES IN CHAPTER 6 SECTION 6.1: LIFE CYCLE CONSUMPTION AND WEALTH T 1. . Let ct. ) is a strictly concave function of c

ANSWERS TO EVEN NUMBERED EXERCISES IN CHAPTER 6 SECTION 6.1: LIFE CYCLE CONSUMPTION AND WEALTH T 1. . Let ct. ) is a strictly concave function of c John Riley December 00 S O EVEN NUMBERED EXERCISES IN CHAPER 6 SECION 6: LIFE CYCLE CONSUMPION AND WEALH Eercise 6-: Opimal saving wih more han one commodiy A consumer has a period uiliy funcion δ u (

More information

Suggested Solutions to Assignment 4 (REQUIRED) Submisson Deadline and Location: March 27 in Class

Suggested Solutions to Assignment 4 (REQUIRED) Submisson Deadline and Location: March 27 in Class EC 450 Advanced Macroeconomics Insrucor: Sharif F Khan Deparmen of Economics Wilfrid Laurier Universiy Winer 2008 Suggesed Soluions o Assignmen 4 (REQUIRED) Submisson Deadline and Locaion: March 27 in

More information

Problem set 3: Endogenous Innovation - Solutions

Problem set 3: Endogenous Innovation - Solutions Problem se 3: Endogenous Innovaion - Soluions Loïc Baé Ocober 25, 22 Opimaliy in he R & D based endogenous growh model Imporan feaure of his model: he monopoly markup is exogenous, so ha here is no need

More information

SZG Macro 2011 Lecture 3: Dynamic Programming. SZG macro 2011 lecture 3 1

SZG Macro 2011 Lecture 3: Dynamic Programming. SZG macro 2011 lecture 3 1 SZG Macro 2011 Lecure 3: Dynamic Programming SZG macro 2011 lecure 3 1 Background Our previous discussion of opimal consumpion over ime and of opimal capial accumulaion sugges sudying he general decision

More information

Online Appendix to Solution Methods for Models with Rare Disasters

Online Appendix to Solution Methods for Models with Rare Disasters Online Appendix o Soluion Mehods for Models wih Rare Disasers Jesús Fernández-Villaverde and Oren Levinal In his Online Appendix, we presen he Euler condiions of he model, we develop he pricing Calvo block,

More information

Section 5: Chain Rule

Section 5: Chain Rule Chaper The Derivaive Applie Calculus 11 Secion 5: Chain Rule There is one more ype of complicae funcion ha we will wan o know how o iffereniae: composiion. The Chain Rule will le us fin he erivaive of

More information

This document was generated at 5:08 PM, 09/24/13 Copyright 2013 Richard T. Woodward

This document was generated at 5:08 PM, 09/24/13 Copyright 2013 Richard T. Woodward his documen was generaed a 5:8 PM, 9/24/13 Copyrigh 213 Richard. Woodward 6. Lessons in he opimal use of naural resource from opimal conrol heory AGEC 637-213 I. he model of Hoelling 1931 Hoelling's 1931

More information

Introduction D P. r = constant discount rate, g = Gordon Model (1962): constant dividend growth rate.

Introduction D P. r = constant discount rate, g = Gordon Model (1962): constant dividend growth rate. Inroducion Gordon Model (1962): D P = r g r = consan discoun rae, g = consan dividend growh rae. If raional expecaions of fuure discoun raes and dividend growh vary over ime, so should he D/P raio. Since

More information

Lecture Notes 5: Investment

Lecture Notes 5: Investment Lecure Noes 5: Invesmen Zhiwei Xu (xuzhiwei@sju.edu.cn) Invesmen decisions made by rms are one of he mos imporan behaviors in he economy. As he invesmen deermines how he capials accumulae along he ime,

More information

A New-Keynesian Model

A New-Keynesian Model Deparmen of Economics Universiy of Minnesoa Macroeconomic Theory Varadarajan V. Chari Spring 215 A New-Keynesian Model Prepared by Keyvan Eslami A New-Keynesian Model You were inroduced o a monopolisic

More information

Advanced Integration Techniques: Integration by Parts We may differentiate the product of two functions by using the product rule:

Advanced Integration Techniques: Integration by Parts We may differentiate the product of two functions by using the product rule: Avance Inegraion Techniques: Inegraion by Pars We may iffereniae he prouc of wo funcions by using he prouc rule: x f(x)g(x) = f (x)g(x) + f(x)g (x). Unforunaely, fining an anierivaive of a prouc is no

More information

On Customized Goods, Standard Goods, and Competition

On Customized Goods, Standard Goods, and Competition On Cusomize Goos, Sanar Goos, an Compeiion Nilari. Syam C. T. auer College of usiness Universiy of Houson 85 Melcher Hall, Houson, TX 7704 Email: nbsyam@uh.eu Phone: (71 74 4568 Fax: (71 74 457 Nana Kumar

More information

Problem Set on Differential Equations

Problem Set on Differential Equations Problem Se on Differenial Equaions 1. Solve he following differenial equaions (a) x () = e x (), x () = 3/ 4. (b) x () = e x (), x (1) =. (c) xe () = + (1 x ()) e, x () =.. (An asse marke model). Le p()

More information

Policy regimes Theory

Policy regimes Theory Advanced Moneary Theory and Policy EPOS 2012/13 Policy regimes Theory Giovanni Di Barolomeo giovanni.dibarolomeo@uniroma1.i The moneary policy regime The simple model: x = - s (i - p e ) + x e + e D p

More information

On Measuring Pro-Poor Growth. 1. On Various Ways of Measuring Pro-Poor Growth: A Short Review of the Literature

On Measuring Pro-Poor Growth. 1. On Various Ways of Measuring Pro-Poor Growth: A Short Review of the Literature On Measuring Pro-Poor Growh 1. On Various Ways of Measuring Pro-Poor Growh: A Shor eview of he Lieraure During he pas en years or so here have been various suggesions concerning he way one should check

More information

Intermediate Macro In-Class Problems

Intermediate Macro In-Class Problems Inermediae Macro In-Class Problems Exploring Romer Model June 14, 016 Today we will explore he mechanisms of he simply Romer model by exploring how economies described by his model would reac o exogenous

More information

A Note on Raising the Mandatory Retirement Age and. Its Effect on Long-run Income and Pay As You Go (PAYG) Pensions

A Note on Raising the Mandatory Retirement Age and. Its Effect on Long-run Income and Pay As You Go (PAYG) Pensions The Sociey for Economic Sudies The Universiy of Kiakyushu Working Paper Series No.2017-5 (acceped in March, 2018) A Noe on Raising he Mandaory Reiremen Age and Is Effec on Long-run Income and Pay As You

More information

Topics in Combinatorial Optimization May 11, Lecture 22

Topics in Combinatorial Optimization May 11, Lecture 22 8.997 Topics in Combinaorial Opimizaion May, 004 Lecure Lecurer: Michel X. Goemans Scribe: Alanha Newman Muliflows an Disjoin Pahs Le G = (V,E) be a graph an le s,,s,,...s, V be erminals. Our goal is o

More information

Full file at

Full file at Full file a hps://frasockeu SOLUTIONS TO CHAPTER 2 Problem 2 (a) The firm's problem is o choose he quaniies of capial, K, and effecive labor, AL, in order o minimize coss, wal + rk, subjec o he producion

More information

FINM 6900 Finance Theory

FINM 6900 Finance Theory FINM 6900 Finance Theory Universiy of Queensland Lecure Noe 4 The Lucas Model 1. Inroducion In his lecure we consider a simple endowmen economy in which an unspecified number of raional invesors rade asses

More information

Final Spring 2007

Final Spring 2007 .615 Final Spring 7 Overview The purpose of he final exam is o calculae he MHD β limi in a high-bea oroidal okamak agains he dangerous n = 1 exernal ballooning-kink mode. Effecively, his corresponds o

More information

Macroeconomics I, UPF Professor Antonio Ciccone SOLUTIONS PROBLEM SET 1

Macroeconomics I, UPF Professor Antonio Ciccone SOLUTIONS PROBLEM SET 1 Macroeconomics I, UPF Professor Anonio Ciccone SOUTIONS PROBEM SET. (from Romer Advanced Macroeconomics Chaper ) Basic properies of growh raes which will be used over and over again. Use he fac ha he growh

More information

Chapter Three Systems of Linear Differential Equations

Chapter Three Systems of Linear Differential Equations Chaper Three Sysems of Linear Differenial Equaions In his chaper we are going o consier sysems of firs orer orinary ifferenial equaions. These are sysems of he form x a x a x a n x n x a x a x a n x n

More information

IMPLICIT AND INVERSE FUNCTION THEOREMS PAUL SCHRIMPF 1 OCTOBER 25, 2013

IMPLICIT AND INVERSE FUNCTION THEOREMS PAUL SCHRIMPF 1 OCTOBER 25, 2013 IMPLICI AND INVERSE FUNCION HEOREMS PAUL SCHRIMPF 1 OCOBER 25, 213 UNIVERSIY OF BRIISH COLUMBIA ECONOMICS 526 We have exensively sudied how o solve sysems of linear equaions. We know how o check wheher

More information

Y 0.4Y 0.45Y Y to a proper ARMA specification.

Y 0.4Y 0.45Y Y to a proper ARMA specification. HG Jan 04 ECON 50 Exercises II - 0 Feb 04 (wih answers Exercise. Read secion 8 in lecure noes 3 (LN3 on he common facor problem in ARMA-processes. Consider he following process Y 0.4Y 0.45Y 0.5 ( where

More information

Final Exam. Tuesday, December hours

Final Exam. Tuesday, December hours San Francisco Sae Universiy Michael Bar ECON 560 Fall 03 Final Exam Tuesday, December 7 hours Name: Insrucions. This is closed book, closed noes exam.. No calculaors of any kind are allowed. 3. Show all

More information

Graduate Macro Theory II: Notes on Neoclassical Growth Model

Graduate Macro Theory II: Notes on Neoclassical Growth Model Graduae Macro Theory II: Noes on Neoclassical Growh Model Eric Sims Universiy of Nore Dame Spring 2015 1 Basic Neoclassical Growh Model The economy is populaed by a large number of infiniely lived agens.

More information

MONOPOLISTIC COMPETITION IN A DSGE MODEL: PART II OCTOBER 4, 2011 BUILDING THE EQUILIBRIUM. p = 1. Dixit-Stiglitz Model

MONOPOLISTIC COMPETITION IN A DSGE MODEL: PART II OCTOBER 4, 2011 BUILDING THE EQUILIBRIUM. p = 1. Dixit-Stiglitz Model MONOPOLISTIC COMPETITION IN A DSGE MODEL: PART II OCTOBER 4, 211 Dixi-Sigliz Model BUILDING THE EQUILIBRIUM DS MODEL I or II Puing hings ogeher impose symmery across all i 1 pzf k( k, n) = r & 1 pzf n(

More information

D.I. Survival models and copulas

D.I. Survival models and copulas D- D. SURVIVAL COPULA D.I. Survival moels an copulas Definiions, relaionships wih mulivariae survival isribuion funcions an relaionships beween copulas an survival copulas. D.II. Fraily moels Use of a

More information

A dynamic AS-AD Model

A dynamic AS-AD Model A ynamic AS-AD Moel (Lecure Noes, Thomas Seger, Universiy of Leipzig, winer erm 10/11) This file escribes a ynamic AS-AD moel. The moel can be employe o assess he ynamic consequences of macroeconomic shocks

More information

Appendix 14.1 The optimal control problem and its solution using

Appendix 14.1 The optimal control problem and its solution using 1 Appendix 14.1 he opimal conrol problem and is soluion using he maximum principle NOE: Many occurrences of f, x, u, and in his file (in equaions or as whole words in ex) are purposefully in bold in order

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Exam: ECON4325 Moneary Policy Dae of exam: Tuesday, May 24, 206 Grades are given: June 4, 206 Time for exam: 2.30 p.m. 5.30 p.m. The problem se covers 5 pages

More information

T. J. HOLMES AND T. J. KEHOE INTERNATIONAL TRADE AND PAYMENTS THEORY FALL 2011 EXAMINATION

T. J. HOLMES AND T. J. KEHOE INTERNATIONAL TRADE AND PAYMENTS THEORY FALL 2011 EXAMINATION ECON 841 T. J. HOLMES AND T. J. KEHOE INTERNATIONAL TRADE AND PAYMENTS THEORY FALL 211 EXAMINATION This exam has wo pars. Each par has wo quesions. Please answer one of he wo quesions in each par for a

More information

A Dynamic Model of Economic Fluctuations

A Dynamic Model of Economic Fluctuations CHAPTER 15 A Dynamic Model of Economic Flucuaions Modified for ECON 2204 by Bob Murphy 2016 Worh Publishers, all righs reserved IN THIS CHAPTER, OU WILL LEARN: how o incorporae dynamics ino he AD-AS model

More information

Economic Growth & Development: Part 4 Vertical Innovation Models. By Kiminori Matsuyama. Updated on , 11:01:54 AM

Economic Growth & Development: Part 4 Vertical Innovation Models. By Kiminori Matsuyama. Updated on , 11:01:54 AM Economic Growh & Developmen: Par 4 Verical Innovaion Models By Kiminori Masuyama Updaed on 20-04-4 :0:54 AM Page of 7 Inroducion In he previous models R&D develops producs ha are new ie imperfec subsiues

More information

Unemployment and Mismatch in the UK

Unemployment and Mismatch in the UK Unemploymen and Mismach in he UK Jennifer C. Smih Universiy of Warwick, UK CAGE (Cenre for Compeiive Advanage in he Global Economy) BoE/LSE Conference on Macroeconomics and Moneary Policy: Unemploymen,

More information

Chapter 15 A Model with Periodic Wage Contracts

Chapter 15 A Model with Periodic Wage Contracts George Alogoskoufis, Dynamic Macroeconomics, 2016 Chaper 15 A Model wih Periodic Wage Conracs In his chaper we analyze an alernaive model of aggregae flucuaions, which is based on periodic nominal wage

More information

Online Convex Optimization Example And Follow-The-Leader

Online Convex Optimization Example And Follow-The-Leader CSE599s, Spring 2014, Online Learning Lecure 2-04/03/2014 Online Convex Opimizaion Example And Follow-The-Leader Lecurer: Brendan McMahan Scribe: Sephen Joe Jonany 1 Review of Online Convex Opimizaion

More information

( ) a system of differential equations with continuous parametrization ( T = R + These look like, respectively:

( ) a system of differential equations with continuous parametrization ( T = R + These look like, respectively: XIII. DIFFERENCE AND DIFFERENTIAL EQUATIONS Ofen funcions, or a sysem of funcion, are paramerized in erms of some variable, usually denoed as and inerpreed as ime. The variable is wrien as a funcion of

More information

Dealing with the Trilemma: Optimal Capital Controls with Fixed Exchange Rates

Dealing with the Trilemma: Optimal Capital Controls with Fixed Exchange Rates Dealing wih he Trilemma: Opimal Capial Conrols wih Fixed Exchange Raes by Emmanuel Farhi and Ivan Werning June 15 Ricardo Reis Columbia Universiy Porugal s challenge risk premium Porugal s challenge sudden

More information

Solutions to Assignment 1

Solutions to Assignment 1 MA 2326 Differenial Equaions Insrucor: Peronela Radu Friday, February 8, 203 Soluions o Assignmen. Find he general soluions of he following ODEs: (a) 2 x = an x Soluion: I is a separable equaion as we

More information

Chapter 7: Solving Trig Equations

Chapter 7: Solving Trig Equations Haberman MTH Secion I: The Trigonomeric Funcions Chaper 7: Solving Trig Equaions Le s sar by solving a couple of equaions ha involve he sine funcion EXAMPLE a: Solve he equaion sin( ) The inverse funcions

More information

5.1 - Logarithms and Their Properties

5.1 - Logarithms and Their Properties Chaper 5 Logarihmic Funcions 5.1 - Logarihms and Their Properies Suppose ha a populaion grows according o he formula P 10, where P is he colony size a ime, in hours. When will he populaion be 2500? We

More information

pe pt dt = e pt Probabilty of death given survival till t : pe pt = p Expected life at t : pe(s t)p ds = e (s t)p t =

pe pt dt = e pt Probabilty of death given survival till t : pe pt = p Expected life at t : pe(s t)p ds = e (s t)p t = BLANCHARD Probabiliy of Deah: π () = pe p ; Probabily of living ill : Ω () = pe p d = e p Probabily of deah given survival ill : pe p = p e p Expeced life a : (s ) pe (s )p ds = p 1 Populaion normalized

More information

Announcements: Warm-up Exercise:

Announcements: Warm-up Exercise: Fri Apr 13 7.1 Sysems of differenial equaions - o model muli-componen sysems via comparmenal analysis hp//en.wikipedia.org/wiki/muli-comparmen_model Announcemens Warm-up Exercise Here's a relaively simple

More information

Inventory Analysis and Management. Multi-Period Stochastic Models: Optimality of (s, S) Policy for K-Convex Objective Functions

Inventory Analysis and Management. Multi-Period Stochastic Models: Optimality of (s, S) Policy for K-Convex Objective Functions Muli-Period Sochasic Models: Opimali of (s, S) Polic for -Convex Objecive Funcions Consider a seing similar o he N-sage newsvendor problem excep ha now here is a fixed re-ordering cos (> 0) for each (re-)order.

More information

= ( ) ) or a system of differential equations with continuous parametrization (T = R

= ( ) ) or a system of differential equations with continuous parametrization (T = R XIII. DIFFERENCE AND DIFFERENTIAL EQUATIONS Ofen funcions, or a sysem of funcion, are paramerized in erms of some variable, usually denoed as and inerpreed as ime. The variable is wrien as a funcion of

More information

KINEMATICS IN ONE DIMENSION

KINEMATICS IN ONE DIMENSION KINEMATICS IN ONE DIMENSION PREVIEW Kinemaics is he sudy of how hings move how far (disance and displacemen), how fas (speed and velociy), and how fas ha how fas changes (acceleraion). We say ha an objec

More information

LABOR MATCHING MODELS: BASIC DSGE IMPLEMENTATION APRIL 12, 2012

LABOR MATCHING MODELS: BASIC DSGE IMPLEMENTATION APRIL 12, 2012 LABOR MATCHING MODELS: BASIC DSGE IMPLEMENTATION APRIL 12, 2012 FIRM VACANCY-POSTING PROBLEM Dynamic firm profi-maimizaion problem ma 0 ( ) f Ξ v, n + 1 = 0 ( f y wn h g v ) Discoun facor beween ime 0

More information

1 Price Indexation and In ation Inertia

1 Price Indexation and In ation Inertia Lecures on Moneary Policy, In aion and he Business Cycle Moneary Policy Design: Exensions [0/05 Preliminary and Incomplee/Do No Circulae] Jordi Galí Price Indexaion and In aion Ineria. In aion Dynamics

More information

THE BELLMAN PRINCIPLE OF OPTIMALITY

THE BELLMAN PRINCIPLE OF OPTIMALITY THE BELLMAN PRINCIPLE OF OPTIMALITY IOANID ROSU As I undersand, here are wo approaches o dynamic opimizaion: he Ponrjagin Hamilonian) approach, and he Bellman approach. I saw several clear discussions

More information

Homework 2 Solutions

Homework 2 Solutions Mah 308 Differenial Equaions Fall 2002 & 2. See he las page. Hoework 2 Soluions 3a). Newon s secon law of oion says ha a = F, an we know a =, so we have = F. One par of he force is graviy, g. However,

More information

15.023J / J / ESD.128J Global Climate Change: Economics, Science, and Policy Spring 2008

15.023J / J / ESD.128J Global Climate Change: Economics, Science, and Policy Spring 2008 MIT OpenCourseWare hp://ocw.mi.edu 15.023J / 12.848J / ESD.128J Global Climae Change: Economics, Science, and Policy Spring 2008 For informaion abou ciing hese maerials or our Terms of Use, visi: hp://ocw.mi.edu/erms.

More information

13.3 Term structure models

13.3 Term structure models 13.3 Term srucure models 13.3.1 Expecaions hypohesis model - Simples "model" a) shor rae b) expecaions o ge oher prices Resul: y () = 1 h +1 δ = φ( δ)+ε +1 f () = E (y +1) (1) =δ + φ( δ) f (3) = E (y +)

More information

Macroeconomics Qualifying Examination

Macroeconomics Qualifying Examination Macroeconomics Qualifying Examinaion January 205 Deparmen of Economics UNC Chapel Hill Insrucions: This examinaion consiss of four quesions. Answer all quesions. If you believe a quesion is ambiguously

More information

Math 333 Problem Set #2 Solution 14 February 2003

Math 333 Problem Set #2 Solution 14 February 2003 Mah 333 Problem Se #2 Soluion 14 February 2003 A1. Solve he iniial value problem dy dx = x2 + e 3x ; 2y 4 y(0) = 1. Soluion: This is separable; we wrie 2y 4 dy = x 2 + e x dx and inegrae o ge The iniial

More information

The Natural Logarithm

The Natural Logarithm The Naural Logarihm 5-4-007 The Power Rule says n = n + n+ + C provie ha n. The formula oes no apply o. An anierivaive F( of woul have o saisfy F( =. Bu he Funamenal Theorem implies ha if > 0, hen Thus,

More information

Econ107 Applied Econometrics Topic 7: Multicollinearity (Studenmund, Chapter 8)

Econ107 Applied Econometrics Topic 7: Multicollinearity (Studenmund, Chapter 8) I. Definiions and Problems A. Perfec Mulicollineariy Econ7 Applied Economerics Topic 7: Mulicollineariy (Sudenmund, Chaper 8) Definiion: Perfec mulicollineariy exiss in a following K-variable regression

More information

1. An introduction to dynamic optimization -- Optimal Control and Dynamic Programming AGEC

1. An introduction to dynamic optimization -- Optimal Control and Dynamic Programming AGEC This documen was generaed a :37 PM, 1/11/018 Copyrigh 018 Richard T. Woodward 1. An inroducion o dynamic opimiaion -- Opimal Conrol and Dynamic Programming AGEC 64-018 I. Overview of opimiaion Opimiaion

More information

3.6 Derivatives as Rates of Change

3.6 Derivatives as Rates of Change 3.6 Derivaives as Raes of Change Problem 1 John is walking along a sraigh pah. His posiion a he ime >0 is given by s = f(). He sars a =0from his house (f(0) = 0) and he graph of f is given below. (a) Describe

More information

1. (16 points) Answer the following derivative-related questions. dx tan sec x. dx tan u = du d. dx du tan u. du tan u d v.

1. (16 points) Answer the following derivative-related questions. dx tan sec x. dx tan u = du d. dx du tan u. du tan u d v. Exam #2 Soluions. (6 poins) Answer he following eriaie-relae quesions. (a) (8 poins) If y an sec x, fin. This is an applicaion of he chain rule in wo sages, in which we shall le u sec x, an sec x: an sec

More information

Chapter 2. First Order Scalar Equations

Chapter 2. First Order Scalar Equations Chaper. Firs Order Scalar Equaions We sar our sudy of differenial equaions in he same way he pioneers in his field did. We show paricular echniques o solve paricular ypes of firs order differenial equaions.

More information

Module 2 F c i k c s la l w a s o s f dif di fusi s o i n

Module 2 F c i k c s la l w a s o s f dif di fusi s o i n Module Fick s laws of diffusion Fick s laws of diffusion and hin film soluion Adolf Fick (1855) proposed: d J α d d d J (mole/m s) flu (m /s) diffusion coefficien and (mole/m 3 ) concenraion of ions, aoms

More information

Problem Set #1 - Answers

Problem Set #1 - Answers Fall Term 24 Page of 7. Use indifference curves and a curved ransformaion curve o illusrae a free rade equilibrium for a counry facing an exogenous inernaional price. Then show wha happens if ha exogenous

More information

Learning a Class from Examples. Training set X. Class C 1. Class C of a family car. Output: Input representation: x 1 : price, x 2 : engine power

Learning a Class from Examples. Training set X. Class C 1. Class C of a family car. Output: Input representation: x 1 : price, x 2 : engine power Alpaydin Chaper, Michell Chaper 7 Alpaydin slides are in urquoise. Ehem Alpaydin, copyrigh: The MIT Press, 010. alpaydin@boun.edu.r hp://www.cmpe.boun.edu.r/ ehem/imle All oher slides are based on Michell.

More information

SOLUTIONS TO ECE 3084

SOLUTIONS TO ECE 3084 SOLUTIONS TO ECE 384 PROBLEM 2.. For each sysem below, specify wheher or no i is: (i) memoryless; (ii) causal; (iii) inverible; (iv) linear; (v) ime invarian; Explain your reasoning. If he propery is no

More information

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still.

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still. Lecure - Kinemaics in One Dimension Displacemen, Velociy and Acceleraion Everyhing in he world is moving. Nohing says sill. Moion occurs a all scales of he universe, saring from he moion of elecrons in

More information