pe pt dt = e pt Probabilty of death given survival till t : pe pt = p Expected life at t : pe(s t)p ds = e (s t)p t =

Size: px
Start display at page:

Download "pe pt dt = e pt Probabilty of death given survival till t : pe pt = p Expected life at t : pe(s t)p ds = e (s t)p t ="

Transcription

1 BLANCHARD Probabiliy of Deah: π () = pe p ; Probabily of living ill : Ω () = pe p d = e p Probabily of deah given survival ill : pe p = p e p Expeced life a : (s ) pe (s )p ds = p 1 Populaion normalized o consan cohor size p. Cohor born a 0 has size pe p : (prob of living ill imes pop. size-deerminisic) Populaion: pe(s )p ds = e (s )p = 1 Insurance exiss. Agens die wih prob. densiy p. So no ne profis for insurance implies hey receive p for each uni hey leave. They plan o leave all, and receive pw if alive. On average insurance companies pay ou pw and receive pw from esaes where W is aggregae wealh. 1

2 Max ST dw (s, ) d 0 = lim e v ln c (v, s) e (θ+p)( v) dv = (r () + p) w (s, ) + y (s, ) c (s, ) v (r(u)+p)du w (s, v) dv Noes: If r (u) is consan v (r (u) + p) du = (r + p) (v ). To assure zero erminal wealh r (u) > p is assumed. Also Ω (v ) = e p( v) in Yaari s erms. r > p is assumed. Hamilonian: FOC H = ln c + λ ((r + p) w + y c) c 1 ċ = λ; c = λ λ λ = λ ( r p + p + θ) = λ (r θ) ċ = c (r θ) 2

3 Budge c (s, v) e v (r(u)+p)du dv = w (s, ) + h (s, ) (r + p) (w + h) c = ẇ + ḣ Human capial is discouned fuure labor income: h = ḣ = (r + p)h y y (s, v) e v (r(u)+p)du dv ẇ = (r + p) (w + h) c ḣ ẇ = (r + p) w + y c 3

4 Conjecure c (s, ) = (p + θ) (w + h) ċ = (p + θ) ((r + p) w + y c + (r + p)h y) ċ = (p + θ) ((r + p) (w + h) c) ċ = (r + p) (p + θ) (w + h) (p + θ) c ċ = (r θ) c checks ou 4

5 AGGREGATE CONSUMPTION Aggregae H H () = C = (p + θ) (W + H) pe p(s ) y (s, v) e v (r(u)+p)du dvds Assume common income or wage y(v), and noing ha populaion inegraes o 1: H () = = = pe p(s ) [ y (s, v) e v (r(u)+p)du dvds ] y (s, v) e v (r(u)+p)du pe p(s ) ds [Y (v) e v (r(u)+p)du ds Ḣ = (r + p) H Y () ] dv dv 5

6 Aggregae W W () = Ẇ = w (, ) pw + = pw + w(s, )e p(s ) ds dw (s, ) pe p(s ) ds d ((r + p) w + y c) pe p(s ) ds = pw + (r + p) W + Y C = rw + Y C So while hose alive have heir wealh grow a (r + p), aggregae wealh accumulaes a rae r, since pw is a ransfer from he dead. 6

7 Aggregae Dynamics C = (p + θ) (H + W ) Ċ = (p + θ) ( Ḣ + Ẇ ) Ċ = (p + θ) (rw + Y C + (r + p) H Y ) = (p + θ) ((r + p) (W + H) C pw ) = (r + p)c (p + θ) C (p + θ) pw = (r θ) C (p + θ) pw Ċ = (r θ) C (p + θ) pw Ẇ = rw + Y C Seady Sae C = (p + θ) pw r θ 7

8 OPEN ECONOMY Ċ = (r θ) C (p + θ) pf F = rf + Y C [ ] r θ (p + θ) p J = 1 r De: (r θ) r (p + θ) p < 0? A Seady Sae: ( ) (p + θ) p C = rf (r θ) r Noe: r θ. So F may be negaive. If r is oo big however he economy may explode: you need r < p + θ, or r θ < p. This implies r (r θ) < p (p + θ). So De < 0. Furhermore, ) If (r θ) > 0 his implies > 1, or C > rf. ( (p+θ)p (r θ)r 8

9 CLOSED ECONOMY: F (K) = F (K, 1) δk, r = F Ċ = (r (K) θ) C (p + θ) pk K = F (K) C J = For C > 0,a seady sae, r (k ) > θ. r θ (p + θ) p 1 F If r θ > p, (r θ) C = (r θ) F (K) > pc (r θ) F (K) = (p + θ) pk > pc = pf (K) (p + θ) K > F (K) The laer implies, if r > p + θ, rk > F (K),bu oupu mus exceed MP K K, so r (K) < (p + θ). So De J < 0. 9

10 Declining Labor Income: y(s, v) = ay (v)e α(s v) Toal income a :sum of cohor income weighed by pop.size v Y (v) = y(s, v)pe p(s v) ds = Y (v) ap p + α a = p + α p h (s, ) = ay (v) e α(s v) e v = e α(s ) ( p + α p ) (r(u)+p)du dv Y (v) e v (r(u)+p+α)du dv 10

11 = = H () pe p(s ) ( ( ) p + α e α(s ) p ( (p + α) e (p+α)(s ) = e (p+α)(s ) ( = Dynamics: Y (v) e v (r(u)+p+α)du dv ( Y (v) e v (r(u)+p+α)1 du dv C = (θ + p) (H + W ) Ḣ = (r + p + α) H Y Ẇ = rw + Y C Compue Ċ using Ẇ, ) Y (v) e v (r(u)+p+α)du dv ds ) ds Y (v) e v (r(u)+p+α)du dv ) Ḣ, and subsiue ) 11

12 for H from firs equaion above: Ċ = (r (k) + α θ) C (p + α) (p + θ) K K = F (K) C Seady Sae: (p + α) (p + θ) K C = (r (K) + α θ) (p + α) (p + θ) F (K) = r (r (K) + α θ) rk Define ˆk r ) (ˆk = θ α :Noe ha θ α ) can be negaive, so r (ˆk < 0. Plo seady sae C as a funcion of K, which asympoes a [ ˆk. (r (k) + α θ) r J = (K) C (p + α) (p + θ) 1 F (K) DET = r (r (k) + α θ)+r (K) C (p + α) (p + θ) I is negaive as before because we assume (r (k) + α θ) < (p + α) (p + θ) and r (K) < 0. ] 12

13 If we allow Money: Le m = M P, W = K + m ṁ m = σ π where σ,is he growh of nominal balances, π is inflaion. Equilibrium condiion: reurn on money equals reurn on capial, r (k). If σ = 0, r (k) = π, he reurn on holding money equals o he deflaion rae (Compare wih he case below where money eners uiliy, and has an addiional uiliy reurn.) If money pays ineres σ, in proporion o money holdings, hen in equilibrium, r (k) = σ π. If σ = r (k), in equilibrium, π = 0. In any case, now equilibrium condiions are: Ċ = (r (K) θ) C (p + θ) p (K + m) K = F (K) C ṁ = r (k) m Seady saes: m = 0, r (k) = 0 CRRA UTILITY = U (c) = (1 σ) 1 c (1 σ) dc (s, ) = σ 1 (r () θ) c (s, ) d c (s, ) = 1 (w (s, ) + h (s, )) e σ 1 v [(1 σ)(r(u)+p) (θ+p)]du dv 13

14 dc (s, ) ) = (ẇ 1 + d ḣ 2 (w + h) Ċ = 1 ((r + p) (H + W ) pw C) 1 (W + H) = 1 (r + p) C 1 C 1 pw 1 (W + H) ( ) (r + p) = C σ 1 pw 1 ((r + p) (1 σ) (θ + p)) So Ċ = σ 1 (r () θ) C pw 1 K = F (K) = 1 σ 1 ((1 σ) (r (k) + p) (θ + p)) Noe: Solve for seady sae as a funcion of r and plug ino ( Ċ = 0, ) (σ 1) (r + p) + (θ + p) C = pk r θ as opposed o log uiliy, where C = cases dc dk according o σ 1. If σ < 1, dc dk 14 ( ) p(p+θ) r θ pk.consider

15 may be negaive: increasing K causes decreasing r.denominaor will decrease if r increases, as will numeraor, bu denominaor can dominae. Local Dynamics: Cr σ (p + α) 1 (p + α) k 2 1 F 0 r θ+α σ 0 (1 σ) σ r (σ 1)(r+p+α)+(θ+p) σ DET < 0, T RACE > 0, ROOT ST RUCT URE : + + INTRODUCING MONEY IN UTILITY Max 0 (ln c + ln m) e (θ+p) d ẇ = (r + p) w + y c (π + r) m H = ln c + ln m +λ ((r + p) w + y c (π + r) m) FOC c 1 1 = λ, = λ (π + r), c = (π + r) m m ċ = c (r θ) Wealh 15

16 w + h = h = Differeniaing h, w + h : (c (s, v)) e v (r+p)du dv (y (s, v) m (r + π)) e v (r+p)du dv ḣ = y (s, v) + m (r + π) + (r + p)h c + (r + p) w = ẇ + ḣ = ẇ c y + (π + r) m ẇ = (r + p) w + y c (π + r) m Consumpion funcion: c = (θ + p) (w + h) ċ = ((θ + p) [(r + p) w + y c (π + r) m y + m (r + = [(r + p) (θ + p) (w + h) (θ + p) c] = (r + p) c (θ + p) c = (r θ) c 16

17 Aggregaing H = W = (Y (v) (π + r) M (v)) e v (r+p)du dv w (s, ) e p(s ) ds Ḣ = (r + p) H Y + (r + π) M inegraing by pars dw (s, ) Ẇ = w (, ) pw + pe p(s ) ds d = pw + (r + p) W + Y C (π + r) M C = (θ + p) ( (W + H) (r + p) H Y + (r + π) M Ċ = (θ + p) pw + (r + p) W + Y C (π + r) M Ċ = (θ + p) ((r + p) (W + H) C pw ) Ċ = (r + p) (θ + p) (W + H) (θ + p) C p (θ + p) W Ċ = (r + p) C (θ + p) C p (θ + p) W = (r θ) C (θ + p) pw 17

18 From FOC: (π + r) M = C (π + r) M = (θ + p) (W + H) πm = C rm M = πm = C + rm Dynamics M = πm = C + rm K = F (K) C Ċ = (r θ) C (p) (p + θ) (K + M) INTRODUCING ENDOGENOUS LABOR ( )) Max ln c + aln ( l l e -(θ+p) FOC 0 ẇ = (r + p) w + ly + c a l l = λy, ly ac = yl ċ (r θ) c 18

19 (p + α) h = e ( ly ) α(s ) ca e v (r+p+α)du dv p (p + α) = e α(s ) (ly) e v (r+p+α)du dv p ( ) (θ + p) c = (w + h) ( 1 + a ) (θ + p) ((r ċ = + p) w + ly + c + (r + p + α) h y l) ( 1 + a ) (θ + p) ċ = ((r + p) w + c + (r + p + α) h + ac) 1 + a = c (r θ) ( ) (θ + p) C = (W + H) 1 + a ( ) ( (θ + p) rw + LY C Ċ = 1 + a + (r + p + α) H LY (p + θ) (p + α) Ċ = (r θ) C+ W 1 + a ) 19

20 Dynamics (p + θ) (p + α) Ċ = (r θ) C + K 1 + a K = F (K, L) C L = LY BC Y Y = F L (K, L) 20

Cooperative Ph.D. Program in School of Economic Sciences and Finance QUALIFYING EXAMINATION IN MACROECONOMICS. August 8, :45 a.m. to 1:00 p.m.

Cooperative Ph.D. Program in School of Economic Sciences and Finance QUALIFYING EXAMINATION IN MACROECONOMICS. August 8, :45 a.m. to 1:00 p.m. Cooperaive Ph.D. Program in School of Economic Sciences and Finance QUALIFYING EXAMINATION IN MACROECONOMICS Augus 8, 213 8:45 a.m. o 1: p.m. THERE ARE FIVE QUESTIONS ANSWER ANY FOUR OUT OF FIVE PROBLEMS.

More information

ANSWERS TO EVEN NUMBERED EXERCISES IN CHAPTER 6 SECTION 6.1: LIFE CYCLE CONSUMPTION AND WEALTH T 1. . Let ct. ) is a strictly concave function of c

ANSWERS TO EVEN NUMBERED EXERCISES IN CHAPTER 6 SECTION 6.1: LIFE CYCLE CONSUMPTION AND WEALTH T 1. . Let ct. ) is a strictly concave function of c John Riley December 00 S O EVEN NUMBERED EXERCISES IN CHAPER 6 SECION 6: LIFE CYCLE CONSUMPION AND WEALH Eercise 6-: Opimal saving wih more han one commodiy A consumer has a period uiliy funcion δ u (

More information

Essential Microeconomics : OPTIMAL CONTROL 1. Consider the following class of optimization problems

Essential Microeconomics : OPTIMAL CONTROL 1. Consider the following class of optimization problems Essenial Microeconomics -- 6.5: OPIMAL CONROL Consider he following class of opimizaion problems Max{ U( k, x) + U+ ( k+ ) k+ k F( k, x)}. { x, k+ } = In he language of conrol heory, he vecor k is he vecor

More information

The Blanchard (1985) Model of Perpetual Youth

The Blanchard (1985) Model of Perpetual Youth c November 20, 2017, Chrisopher D. Carroll BlanchardFinieHorizon The Blanchard (1985) Model of Perpeual Youh This handou analyzes a way o relax he sandard assumpion of infinie lifeimes in he Ramsey/Cass-Koopmans

More information

1 Answers to Final Exam, ECN 200E, Spring

1 Answers to Final Exam, ECN 200E, Spring 1 Answers o Final Exam, ECN 200E, Spring 2004 1. A good answer would include he following elemens: The equiy premium puzzle demonsraed ha wih sandard (i.e ime separable and consan relaive risk aversion)

More information

1. Consider a pure-exchange economy with stochastic endowments. The state of the economy

1. Consider a pure-exchange economy with stochastic endowments. The state of the economy Answer 4 of he following 5 quesions. 1. Consider a pure-exchange economy wih sochasic endowmens. The sae of he economy in period, 0,1,..., is he hisory of evens s ( s0, s1,..., s ). The iniial sae is given.

More information

Midterm Exam. Macroeconomic Theory (ECON 8105) Larry Jones. Fall September 27th, Question 1: (55 points)

Midterm Exam. Macroeconomic Theory (ECON 8105) Larry Jones. Fall September 27th, Question 1: (55 points) Quesion 1: (55 poins) Macroeconomic Theory (ECON 8105) Larry Jones Fall 2016 Miderm Exam Sepember 27h, 2016 Consider an economy in which he represenaive consumer lives forever. There is a good in each

More information

The Brock-Mirman Stochastic Growth Model

The Brock-Mirman Stochastic Growth Model c December 3, 208, Chrisopher D. Carroll BrockMirman The Brock-Mirman Sochasic Growh Model Brock and Mirman (972) provided he firs opimizing growh model wih unpredicable (sochasic) shocks. The social planner

More information

Macroeconomic Theory Ph.D. Qualifying Examination Fall 2005 ANSWER EACH PART IN A SEPARATE BLUE BOOK. PART ONE: ANSWER IN BOOK 1 WEIGHT 1/3

Macroeconomic Theory Ph.D. Qualifying Examination Fall 2005 ANSWER EACH PART IN A SEPARATE BLUE BOOK. PART ONE: ANSWER IN BOOK 1 WEIGHT 1/3 Macroeconomic Theory Ph.D. Qualifying Examinaion Fall 2005 Comprehensive Examinaion UCLA Dep. of Economics You have 4 hours o complee he exam. There are hree pars o he exam. Answer all pars. Each par has

More information

( ) (, ) F K L = F, Y K N N N N. 8. Economic growth 8.1. Production function: Capital as production factor

( ) (, ) F K L = F, Y K N N N N. 8. Economic growth 8.1. Production function: Capital as production factor 8. Economic growh 8.. Producion funcion: Capial as producion facor Y = α N Y (, ) = F K N Diminishing marginal produciviy of capial and labor: (, ) F K L F K 2 ( K, L) K 2 (, ) F K L F L 2 ( K, L) L 2

More information

Lecture Notes 3: Quantitative Analysis in DSGE Models: New Keynesian Model

Lecture Notes 3: Quantitative Analysis in DSGE Models: New Keynesian Model Lecure Noes 3: Quaniaive Analysis in DSGE Models: New Keynesian Model Zhiwei Xu, Email: xuzhiwei@sju.edu.cn The moneary policy plays lile role in he basic moneary model wihou price sickiness. We now urn

More information

Final Exam Advanced Macroeconomics I

Final Exam Advanced Macroeconomics I Advanced Macroeconomics I WS 00/ Final Exam Advanced Macroeconomics I February 8, 0 Quesion (5%) An economy produces oupu according o α α Y = K (AL) of which a fracion s is invesed. echnology A is exogenous

More information

E β t log (C t ) + M t M t 1. = Y t + B t 1 P t. B t 0 (3) v t = P tc t M t Question 1. Find the FOC s for an optimum in the agent s problem.

E β t log (C t ) + M t M t 1. = Y t + B t 1 P t. B t 0 (3) v t = P tc t M t Question 1. Find the FOC s for an optimum in the agent s problem. Noes, M. Krause.. Problem Se 9: Exercise on FTPL Same model as in paper and lecure, only ha one-period govenmen bonds are replaced by consols, which are bonds ha pay one dollar forever. I has curren marke

More information

Solutions Problem Set 3 Macro II (14.452)

Solutions Problem Set 3 Macro II (14.452) Soluions Problem Se 3 Macro II (14.452) Francisco A. Gallego 04/27/2005 1 Q heory of invesmen in coninuous ime and no uncerainy Consider he in nie horizon model of a rm facing adjusmen coss o invesmen.

More information

Lecture 3: Solow Model II Handout

Lecture 3: Solow Model II Handout Economics 202a, Fall 1998 Lecure 3: Solow Model II Handou Basics: Y = F(K,A ) da d d d dk d = ga = n = sy K The model soluion, for he general producion funcion y =ƒ(k ): dk d = sƒ(k ) (n + g + )k y* =

More information

Problem Set 5. Graduate Macro II, Spring 2017 The University of Notre Dame Professor Sims

Problem Set 5. Graduate Macro II, Spring 2017 The University of Notre Dame Professor Sims Problem Se 5 Graduae Macro II, Spring 2017 The Universiy of Nore Dame Professor Sims Insrucions: You may consul wih oher members of he class, bu please make sure o urn in your own work. Where applicable,

More information

A New-Keynesian Model

A New-Keynesian Model Deparmen of Economics Universiy of Minnesoa Macroeconomic Theory Varadarajan V. Chari Spring 215 A New-Keynesian Model Prepared by Keyvan Eslami A New-Keynesian Model You were inroduced o a monopolisic

More information

Introduction to choice over time

Introduction to choice over time Microeconomic Theory -- Choice over ime Inroducion o choice over ime Individual choice Income and subsiuion effecs 7 Walrasian equilibrium ineres rae 9 pages John Riley Ocober 9, 08 Microeconomic Theory

More information

A Dynamic Model of Economic Fluctuations

A Dynamic Model of Economic Fluctuations CHAPTER 15 A Dynamic Model of Economic Flucuaions Modified for ECON 2204 by Bob Murphy 2016 Worh Publishers, all righs reserved IN THIS CHAPTER, OU WILL LEARN: how o incorporae dynamics ino he AD-AS model

More information

Economics 6130 Cornell University Fall 2016 Macroeconomics, I - Part 2

Economics 6130 Cornell University Fall 2016 Macroeconomics, I - Part 2 Economics 6130 Cornell Universiy Fall 016 Macroeconomics, I - Par Problem Se # Soluions 1 Overlapping Generaions Consider he following OLG economy: -period lives. 1 commodiy per period, l = 1. Saionary

More information

Online Appendix to Solution Methods for Models with Rare Disasters

Online Appendix to Solution Methods for Models with Rare Disasters Online Appendix o Soluion Mehods for Models wih Rare Disasers Jesús Fernández-Villaverde and Oren Levinal In his Online Appendix, we presen he Euler condiions of he model, we develop he pricing Calvo block,

More information

Problem Set #3: AK models

Problem Set #3: AK models Universiy of Warwick EC9A2 Advanced Macroeconomic Analysis Problem Se #3: AK models Jorge F. Chavez December 3, 2012 Problem 1 Consider a compeiive economy, in which he level of echnology, which is exernal

More information

Lecture 19. RBC and Sunspot Equilibria

Lecture 19. RBC and Sunspot Equilibria Lecure 9. RBC and Sunspo Equilibria In radiional RBC models, business cycles are propagaed by real echnological shocks. Thus he main sory comes from he supply side. In 994, a collecion of papers were published

More information

Economics 8105 Macroeconomic Theory Recitation 6

Economics 8105 Macroeconomic Theory Recitation 6 Economics 8105 Macroeconomic Theory Reciaion 6 Conor Ryan Ocober 11h, 2016 Ouline: Opimal Taxaion wih Governmen Invesmen 1 Governmen Expendiure in Producion In hese noes we will examine a model in which

More information

Introduction D P. r = constant discount rate, g = Gordon Model (1962): constant dividend growth rate.

Introduction D P. r = constant discount rate, g = Gordon Model (1962): constant dividend growth rate. Inroducion Gordon Model (1962): D P = r g r = consan discoun rae, g = consan dividend growh rae. If raional expecaions of fuure discoun raes and dividend growh vary over ime, so should he D/P raio. Since

More information

T. J. HOLMES AND T. J. KEHOE INTERNATIONAL TRADE AND PAYMENTS THEORY FALL 2011 EXAMINATION

T. J. HOLMES AND T. J. KEHOE INTERNATIONAL TRADE AND PAYMENTS THEORY FALL 2011 EXAMINATION ECON 841 T. J. HOLMES AND T. J. KEHOE INTERNATIONAL TRADE AND PAYMENTS THEORY FALL 211 EXAMINATION This exam has wo pars. Each par has wo quesions. Please answer one of he wo quesions in each par for a

More information

Problem Set on Differential Equations

Problem Set on Differential Equations Problem Se on Differenial Equaions 1. Solve he following differenial equaions (a) x () = e x (), x () = 3/ 4. (b) x () = e x (), x (1) =. (c) xe () = + (1 x ()) e, x () =.. (An asse marke model). Le p()

More information

t + t sin t t cos t sin t. t cos t sin t dt t 2 = exp 2 log t log(t cos t sin t) = Multiplying by this factor and then integrating, we conclude that

t + t sin t t cos t sin t. t cos t sin t dt t 2 = exp 2 log t log(t cos t sin t) = Multiplying by this factor and then integrating, we conclude that ODEs, Homework #4 Soluions. Check ha y ( = is a soluion of he second-order ODE ( cos sin y + y sin y sin = 0 and hen use his fac o find all soluions of he ODE. When y =, we have y = and also y = 0, so

More information

Rational Bubbles in Non-Linear Business Cycle Models. Robert Kollmann Université Libre de Bruxelles & CEPR

Rational Bubbles in Non-Linear Business Cycle Models. Robert Kollmann Université Libre de Bruxelles & CEPR Raional Bubbles in Non-Linear Business Cycle Models Rober Kollmann Universié Libre de Bruxelles & CEPR April 9, 209 Main resul: non-linear DSGE models have more saionary equilibria han you hink! Blanchard

More information

3.1.3 INTRODUCTION TO DYNAMIC OPTIMIZATION: DISCRETE TIME PROBLEMS. A. The Hamiltonian and First-Order Conditions in a Finite Time Horizon

3.1.3 INTRODUCTION TO DYNAMIC OPTIMIZATION: DISCRETE TIME PROBLEMS. A. The Hamiltonian and First-Order Conditions in a Finite Time Horizon 3..3 INRODUCION O DYNAMIC OPIMIZAION: DISCREE IME PROBLEMS A. he Hamilonian and Firs-Order Condiions in a Finie ime Horizon Define a new funcion, he Hamilonian funcion, H. H he change in he oal value of

More information

This document was generated at 7:34 PM, 07/27/09 Copyright 2009 Richard T. Woodward

This document was generated at 7:34 PM, 07/27/09 Copyright 2009 Richard T. Woodward his documen was generaed a 7:34 PM, 07/27/09 Copyrigh 2009 Richard. Woodward 15. Bang-bang and mos rapid approach problems AGEC 637 - Summer 2009 here are some problems for which he opimal pah does no

More information

Suggested Solutions to Assignment 4 (REQUIRED) Submisson Deadline and Location: March 27 in Class

Suggested Solutions to Assignment 4 (REQUIRED) Submisson Deadline and Location: March 27 in Class EC 450 Advanced Macroeconomics Insrucor: Sharif F Khan Deparmen of Economics Wilfrid Laurier Universiy Winer 2008 Suggesed Soluions o Assignmen 4 (REQUIRED) Submisson Deadline and Locaion: March 27 in

More information

Policy regimes Theory

Policy regimes Theory Advanced Moneary Theory and Policy EPOS 2012/13 Policy regimes Theory Giovanni Di Barolomeo giovanni.dibarolomeo@uniroma1.i The moneary policy regime The simple model: x = - s (i - p e ) + x e + e D p

More information

COMPETITIVE GROWTH MODEL

COMPETITIVE GROWTH MODEL COMPETITIVE GROWTH MODEL I Assumpions We are going o now solve he compeiive version of he opimal growh moel. Alhough he allocaions are he same as in he social planning problem, i will be useful o compare

More information

Lecture Notes 5: Investment

Lecture Notes 5: Investment Lecure Noes 5: Invesmen Zhiwei Xu (xuzhiwei@sju.edu.cn) Invesmen decisions made by rms are one of he mos imporan behaviors in he economy. As he invesmen deermines how he capials accumulae along he ime,

More information

The general Solow model

The general Solow model The general Solow model Back o a closed economy In he basic Solow model: no growh in GDP per worker in seady sae This conradics he empirics for he Wesern world (sylized fac #5) In he general Solow model:

More information

Lecture 2D: Rank-Size Rule

Lecture 2D: Rank-Size Rule Econ 4935 Urban Economics Lecure 2D: Rank-Size Rule Insrucor: Hiroki Waanabe Fall 2012 Waanabe Econ 4935 2D Rank-Size Rule 1 / 58 1 Rank-Size Rule 2 Eeckhou 3 Now We Know Waanabe Econ 4935 2D Rank-Size

More information

Math 333 Problem Set #2 Solution 14 February 2003

Math 333 Problem Set #2 Solution 14 February 2003 Mah 333 Problem Se #2 Soluion 14 February 2003 A1. Solve he iniial value problem dy dx = x2 + e 3x ; 2y 4 y(0) = 1. Soluion: This is separable; we wrie 2y 4 dy = x 2 + e x dx and inegrae o ge The iniial

More information

Final Exam Spring, Answers

Final Exam Spring, Answers Final Exam 180.604 Spring, 2001 Answers This exam consiss of wo pars. The firs par is a se of shor discussion-ype quesions. The second par conains wo long quesions, each of which has muliple subpars. You

More information

Macroeconomics Qualifying Examination

Macroeconomics Qualifying Examination Macroeconomics Qualifying Examinaion January 205 Deparmen of Economics UNC Chapel Hill Insrucions: This examinaion consiss of four quesions. Answer all quesions. If you believe a quesion is ambiguously

More information

FINM 6900 Finance Theory

FINM 6900 Finance Theory FINM 6900 Finance Theory Universiy of Queensland Lecure Noe 4 The Lucas Model 1. Inroducion In his lecure we consider a simple endowmen economy in which an unspecified number of raional invesors rade asses

More information

Final Exam. Tuesday, December hours

Final Exam. Tuesday, December hours San Francisco Sae Universiy Michael Bar ECON 560 Fall 03 Final Exam Tuesday, December 7 hours Name: Insrucions. This is closed book, closed noes exam.. No calculaors of any kind are allowed. 3. Show all

More information

Graduate Macro Theory II: Notes on Neoclassical Growth Model

Graduate Macro Theory II: Notes on Neoclassical Growth Model Graduae Macro Theory II: Noes on Neoclassical Growh Model Eric Sims Universiy of Nore Dame Spring 2015 1 Basic Neoclassical Growh Model The economy is populaed by a large number of infiniely lived agens.

More information

Problem set 3: Endogenous Innovation - Solutions

Problem set 3: Endogenous Innovation - Solutions Problem se 3: Endogenous Innovaion - Soluions Loïc Baé Ocober 25, 22 Opimaliy in he R & D based endogenous growh model Imporan feaure of his model: he monopoly markup is exogenous, so ha here is no need

More information

Math 106: Review for Final Exam, Part II. (x x 0 ) 2 = !

Math 106: Review for Final Exam, Part II. (x x 0 ) 2 = ! Mah 6: Review for Final Exam, Par II. Use a second-degree Taylor polynomial o esimae 8. We choose f(x) x and x 7 because 7 is he perfec cube closes o 8. f(x) x / f(7) f (x) x / f (7) x / 7 / 7 f (x) 9

More information

Dynamics of Firms and Trade in General Equilibrium. Robert Dekle, Hyeok Jeong and Nobuhiro Kiyotaki USC, KDI School and Princeton

Dynamics of Firms and Trade in General Equilibrium. Robert Dekle, Hyeok Jeong and Nobuhiro Kiyotaki USC, KDI School and Princeton Dynamics of Firms and Trade in General Equilibrium Rober Dekle, Hyeok Jeong and Nobuhiro Kiyoaki USC, KDI School and Princeon real exchange rae.5 2 Figure. Aggregae Exchange Rae Disconnec in Japan 98 99

More information

1 st order ODE Initial Condition

1 st order ODE Initial Condition Mah-33 Chapers 1-1 s Order ODE Sepember 1, 17 1 1 s order ODE Iniial Condiion f, sandard form LINEAR NON-LINEAR,, p g differenial form M x dx N x d differenial form is equivalen o a pair of differenial

More information

Appendix 14.1 The optimal control problem and its solution using

Appendix 14.1 The optimal control problem and its solution using 1 Appendix 14.1 he opimal conrol problem and is soluion using he maximum principle NOE: Many occurrences of f, x, u, and in his file (in equaions or as whole words in ex) are purposefully in bold in order

More information

LABOR MATCHING MODELS: BASIC DSGE IMPLEMENTATION APRIL 12, 2012

LABOR MATCHING MODELS: BASIC DSGE IMPLEMENTATION APRIL 12, 2012 LABOR MATCHING MODELS: BASIC DSGE IMPLEMENTATION APRIL 12, 2012 FIRM VACANCY-POSTING PROBLEM Dynamic firm profi-maimizaion problem ma 0 ( ) f Ξ v, n + 1 = 0 ( f y wn h g v ) Discoun facor beween ime 0

More information

( ) a system of differential equations with continuous parametrization ( T = R + These look like, respectively:

( ) a system of differential equations with continuous parametrization ( T = R + These look like, respectively: XIII. DIFFERENCE AND DIFFERENTIAL EQUATIONS Ofen funcions, or a sysem of funcion, are paramerized in erms of some variable, usually denoed as and inerpreed as ime. The variable is wrien as a funcion of

More information

Lecture 2D: Rank-Size Rule

Lecture 2D: Rank-Size Rule Econ 460 Urban Economics Lecure 2D: Rank-Size Rule Insrucor: Hiroki Waanabe Summer 2012 2012 Hiroki Waanabe 1 / 56 1 Rank-Size Rule 2 Eeckhou 3 Now We Know 2012 Hiroki Waanabe 2 / 56 1 Rank-Size Rule US

More information

Math 36. Rumbos Spring Solutions to Assignment #6. 1. Suppose the growth of a population is governed by the differential equation.

Math 36. Rumbos Spring Solutions to Assignment #6. 1. Suppose the growth of a population is governed by the differential equation. Mah 36. Rumbos Spring 1 1 Soluions o Assignmen #6 1. Suppose he growh of a populaion is governed by he differenial equaion where k is a posiive consan. d d = k (a Explain why his model predics ha he populaion

More information

Seminar 5 Sustainability

Seminar 5 Sustainability Seminar 5 Susainabiliy Soluions Quesion : Hyperbolic Discouning -. Suppose a faher inheris a family forune of 0 million NOK an he wans o use some of i for himself (o be precise, he share ) bu also o beques

More information

d 1 = c 1 b 2 - b 1 c 2 d 2 = c 1 b 3 - b 1 c 3

d 1 = c 1 b 2 - b 1 c 2 d 2 = c 1 b 3 - b 1 c 3 and d = c b - b c c d = c b - b c c This process is coninued unil he nh row has been compleed. The complee array of coefficiens is riangular. Noe ha in developing he array an enire row may be divided or

More information

Explaining Total Factor Productivity. Ulrich Kohli University of Geneva December 2015

Explaining Total Factor Productivity. Ulrich Kohli University of Geneva December 2015 Explaining Toal Facor Produciviy Ulrich Kohli Universiy of Geneva December 2015 Needed: A Theory of Toal Facor Produciviy Edward C. Presco (1998) 2 1. Inroducion Toal Facor Produciviy (TFP) has become

More information

dt = C exp (3 ln t 4 ). t 4 W = C exp ( ln(4 t) 3) = C(4 t) 3.

dt = C exp (3 ln t 4 ). t 4 W = C exp ( ln(4 t) 3) = C(4 t) 3. Mah Rahman Exam Review Soluions () Consider he IVP: ( 4)y 3y + 4y = ; y(3) = 0, y (3) =. (a) Please deermine he longes inerval for which he IVP is guaraneed o have a unique soluion. Soluion: The disconinuiies

More information

The Brock-Mirman Stochastic Growth Model

The Brock-Mirman Stochastic Growth Model c November 20, 207, Chrisopher D. Carroll BrockMirman The Brock-Mirman Sochasic Growh Model Brock and Mirman (972) provided he firs opimizing growh model wih unpredicable (sochasic) shocks. The social

More information

EXERCISES FOR SECTION 1.5

EXERCISES FOR SECTION 1.5 1.5 Exisence and Uniqueness of Soluions 43 20. 1 v c 21. 1 v c 1 2 4 6 8 10 1 2 2 4 6 8 10 Graph of approximae soluion obained using Euler s mehod wih = 0.1. Graph of approximae soluion obained using Euler

More information

Green accounting: Green NNP and genuine savings

Green accounting: Green NNP and genuine savings Green accouning: Green NNP an genuine savings Lecures in resource economics Spring 2, Par G.B. Asheim, na.res., upae 27.3.2 1 Naional accouning gives a isore picure of savings if changes in socks of naural

More information

Appendix to The Macroeconomics of Trend Inflation Journal of Economic Literature, September 2014

Appendix to The Macroeconomics of Trend Inflation Journal of Economic Literature, September 2014 Appendix o The Macroeconomics of Trend Inflaion Journal of Economic Lieraure, Sepember 204 Guido Ascari Universiy of Oxford and Universiy of Pavia Argia M. Sbordone Federal Reserve Bank of New York Sepember

More information

A Note on Raising the Mandatory Retirement Age and. Its Effect on Long-run Income and Pay As You Go (PAYG) Pensions

A Note on Raising the Mandatory Retirement Age and. Its Effect on Long-run Income and Pay As You Go (PAYG) Pensions The Sociey for Economic Sudies The Universiy of Kiakyushu Working Paper Series No.2017-5 (acceped in March, 2018) A Noe on Raising he Mandaory Reiremen Age and Is Effec on Long-run Income and Pay As You

More information

Homework 10 (Stats 620, Winter 2017) Due Tuesday April 18, in class Questions are derived from problems in Stochastic Processes by S. Ross.

Homework 10 (Stats 620, Winter 2017) Due Tuesday April 18, in class Questions are derived from problems in Stochastic Processes by S. Ross. Homework (Sas 6, Winer 7 Due Tuesday April 8, in class Quesions are derived from problems in Sochasic Processes by S. Ross.. A sochasic process {X(, } is said o be saionary if X(,..., X( n has he same

More information

Mathematical Foundations -1- Choice over Time. Choice over time. A. The model 2. B. Analysis of period 1 and period 2 3

Mathematical Foundations -1- Choice over Time. Choice over time. A. The model 2. B. Analysis of period 1 and period 2 3 Mahemaial Foundaions -- Choie over Time Choie over ime A. The model B. Analysis of period and period 3 C. Analysis of period and period + 6 D. The wealh equaion 0 E. The soluion for large T 5 F. Fuure

More information

MONOPOLISTIC COMPETITION IN A DSGE MODEL: PART II OCTOBER 4, 2011 BUILDING THE EQUILIBRIUM. p = 1. Dixit-Stiglitz Model

MONOPOLISTIC COMPETITION IN A DSGE MODEL: PART II OCTOBER 4, 2011 BUILDING THE EQUILIBRIUM. p = 1. Dixit-Stiglitz Model MONOPOLISTIC COMPETITION IN A DSGE MODEL: PART II OCTOBER 4, 211 Dixi-Sigliz Model BUILDING THE EQUILIBRIUM DS MODEL I or II Puing hings ogeher impose symmery across all i 1 pzf k( k, n) = r & 1 pzf n(

More information

Decentralizing the Growth Model. 5/4/96 version

Decentralizing the Growth Model. 5/4/96 version Econ. 5b Spring 996 C. Sims I. The Single-Agen-Type Model The agen maximizes subjec o and Decenralizing he Growh Model 5/4/96 version E U( C ) C + I f( K, L, A),,.,, (2) K I + δk (3) L (4) () K, all. (5)

More information

Problem 1 / 25 Problem 2 / 20 Problem 3 / 10 Problem 4 / 15 Problem 5 / 30 TOTAL / 100

Problem 1 / 25 Problem 2 / 20 Problem 3 / 10 Problem 4 / 15 Problem 5 / 30 TOTAL / 100 eparmen of Applied Economics Johns Hopkins Universiy Economics 602 Macroeconomic Theory and Policy Miderm Exam Suggesed Soluions Professor Sanjay hugh Fall 2008 NAME: The Exam has a oal of five (5) problems

More information

Stochastic Model for Cancer Cell Growth through Single Forward Mutation

Stochastic Model for Cancer Cell Growth through Single Forward Mutation Journal of Modern Applied Saisical Mehods Volume 16 Issue 1 Aricle 31 5-1-2017 Sochasic Model for Cancer Cell Growh hrough Single Forward Muaion Jayabharahiraj Jayabalan Pondicherry Universiy, jayabharahi8@gmail.com

More information

HOMEWORK # 2: MATH 211, SPRING Note: This is the last solution set where I will describe the MATLAB I used to make my pictures.

HOMEWORK # 2: MATH 211, SPRING Note: This is the last solution set where I will describe the MATLAB I used to make my pictures. HOMEWORK # 2: MATH 2, SPRING 25 TJ HITCHMAN Noe: This is he las soluion se where I will describe he MATLAB I used o make my picures.. Exercises from he ex.. Chaper 2.. Problem 6. We are o show ha y() =

More information

BOKDSGE: A DSGE Model for the Korean Economy

BOKDSGE: A DSGE Model for the Korean Economy BOKDSGE: A DSGE Model for he Korean Economy June 4, 2008 Joong Shik Lee, Head Macroeconomeric Model Secion Research Deparmen The Bank of Korea Ouline 1. Background 2. Model srucure & parameer values 3.

More information

Lecture 10 Estimating Nonlinear Regression Models

Lecture 10 Estimating Nonlinear Regression Models Lecure 0 Esimaing Nonlinear Regression Models References: Greene, Economeric Analysis, Chaper 0 Consider he following regression model: y = f(x, β) + ε =,, x is kx for each, β is an rxconsan vecor, ε is

More information

Graduate Macro Theory II: A New Keynesian Model with Price Stickiness

Graduate Macro Theory II: A New Keynesian Model with Price Stickiness Graduae Macro Theory II: A New Keynesian Model wih Price Sickiness Eric Sims Universiy of Nore Dame Spring 215 1 Inroducion This se of noes lays and ou and analyzes he canonical New Keynesian NK model.

More information

Full file at

Full file at Full file a hps://frasockeu SOLUTIONS TO CHAPTER 2 Problem 2 (a) The firm's problem is o choose he quaniies of capial, K, and effecive labor, AL, in order o minimize coss, wal + rk, subjec o he producion

More information

Solutions to Assignment 1

Solutions to Assignment 1 MA 2326 Differenial Equaions Insrucor: Peronela Radu Friday, February 8, 203 Soluions o Assignmen. Find he general soluions of he following ODEs: (a) 2 x = an x Soluion: I is a separable equaion as we

More information

Reading from Young & Freedman: For this topic, read sections 25.4 & 25.5, the introduction to chapter 26 and sections 26.1 to 26.2 & 26.4.

Reading from Young & Freedman: For this topic, read sections 25.4 & 25.5, the introduction to chapter 26 and sections 26.1 to 26.2 & 26.4. PHY1 Elecriciy Topic 7 (Lecures 1 & 11) Elecric Circuis n his opic, we will cover: 1) Elecromoive Force (EMF) ) Series and parallel resisor combinaions 3) Kirchhoff s rules for circuis 4) Time dependence

More information

Lecture #8 Redfield theory of NMR relaxation

Lecture #8 Redfield theory of NMR relaxation Lecure #8 Redfield heory of NMR relaxaion Topics The ineracion frame of reference Perurbaion heory The Maser Equaion Handous and Reading assignmens van de Ven, Chapers 6.2. Kowalewski, Chaper 4. Abragam

More information

1 1 + x 2 dx. tan 1 (2) = ] ] x 3. Solution: Recall that the given integral is improper because. x 3. 1 x 3. dx = lim dx.

1 1 + x 2 dx. tan 1 (2) = ] ] x 3. Solution: Recall that the given integral is improper because. x 3. 1 x 3. dx = lim dx. . Use Simpson s rule wih n 4 o esimae an () +. Soluion: Since we are using 4 seps, 4 Thus we have [ ( ) f() + 4f + f() + 4f 3 [ + 4 4 6 5 + + 4 4 3 + ] 5 [ + 6 6 5 + + 6 3 + ]. 5. Our funcion is f() +.

More information

= ( ) ) or a system of differential equations with continuous parametrization (T = R

= ( ) ) or a system of differential equations with continuous parametrization (T = R XIII. DIFFERENCE AND DIFFERENTIAL EQUATIONS Ofen funcions, or a sysem of funcion, are paramerized in erms of some variable, usually denoed as and inerpreed as ime. The variable is wrien as a funcion of

More information

Reserves measures have an economic component eg. what could be extracted at current prices?

Reserves measures have an economic component eg. what could be extracted at current prices? 3.2 Non-renewable esources A. Are socks of non-renewable resources fixed? eserves measures have an economic componen eg. wha could be exraced a curren prices? - Locaion and quaniies of reserves of resources

More information

Optimal Investment, Consumption and Retirement Decision with Disutility and Borrowing Constraints

Optimal Investment, Consumption and Retirement Decision with Disutility and Borrowing Constraints Opimal Invesmen, Consumpion and Reiremen Decision wih Disuiliy and Borrowing Consrains Yong Hyun Shin Join Work wih Byung Hwa Lim(KAIST) June 29 July 3, 29 Yong Hyun Shin (KIAS) Workshop on Sochasic Analysis

More information

Long-run growth effects of taxation in a non-scale growth model with innovation

Long-run growth effects of taxation in a non-scale growth model with innovation Deparmen of Economics Working Paper No. 0104 hp://www.fas.nus.edu.sg/ecs/pub/wp/wp0104.pdf Long-run growh effecs of axaion in a non-scale growh model wih innovaion (Forhcoming in he Economics Leer) Jinli

More information

Macroeconomics I, UPF Professor Antonio Ciccone SOLUTIONS PROBLEM SET 1

Macroeconomics I, UPF Professor Antonio Ciccone SOLUTIONS PROBLEM SET 1 Macroeconomics I, UPF Professor Anonio Ciccone SOUTIONS PROBEM SET. (from Romer Advanced Macroeconomics Chaper ) Basic properies of growh raes which will be used over and over again. Use he fac ha he growh

More information

! ln 2xdx = (x ln 2x - x) 3 1 = (3 ln 6-3) - (ln 2-1)

! ln 2xdx = (x ln 2x - x) 3 1 = (3 ln 6-3) - (ln 2-1) 7. e - d Le u = and dv = e - d. Then du = d and v = -e -. e - d = (-e - ) - (-e - )d = -e - + e - d = -e - - e - 9. e 2 d = e 2 2 2 d = 2 e 2 2d = 2 e u du Le u = 2, hen du = 2 d. = 2 eu = 2 e2.! ( - )e

More information

Problem Set 1 "Working with the Solow model"

Problem Set 1 Working with the Solow model Problem Se "Working wih he Solow model" Le's define he following exogenous variables: s δ n savings rae depreciaion rae of physical capial populaion growh rae L labor supply e n (Normalizing labor supply

More information

1 Consumption and Risky Assets

1 Consumption and Risky Assets Soluions o Problem Se 8 Econ 0A - nd Half - Fall 011 Prof David Romer, GSI: Vicoria Vanasco 1 Consumpion and Risky Asses Consumer's lifeime uiliy: U = u(c 1 )+E[u(c )] Income: Y 1 = Ȳ cerain and Y F (

More information

CHAPTER 12 DIRECT CURRENT CIRCUITS

CHAPTER 12 DIRECT CURRENT CIRCUITS CHAPTER 12 DIRECT CURRENT CIUITS DIRECT CURRENT CIUITS 257 12.1 RESISTORS IN SERIES AND IN PARALLEL When wo resisors are conneced ogeher as shown in Figure 12.1 we said ha hey are conneced in series. As

More information

Dynamic firm profit-maximization problem. max ( ( )) Total output sold in perfectlycompetitive

Dynamic firm profit-maximization problem. max ( ( )) Total output sold in perfectlycompetitive LABOR SEARCH MODELS: BASIC DSGE IMPLEMENTATION NOVEMBER 2, 200 FIRM VACANCY-POSTING PROBLEM Dynamic firm profi-maimizaion problem f f Ξ 0 y wn g v v, n + = 0 ma ( ( Discoun facor beween ime 0 and because

More information

Fall 2015 Final Examination (200 pts)

Fall 2015 Final Examination (200 pts) Econ 501 Fall 2015 Final Examinaion (200 ps) S.L. Parene Neoclassical Growh Model (50 ps) 1. Derive he relaion beween he real ineres rae and he renal price of capial using a no-arbirage argumen under he

More information

Macroeconomics 1. Ali Shourideh. Final Exam

Macroeconomics 1. Ali Shourideh. Final Exam 4780 - Macroeconomic 1 Ali Shourideh Final Exam Problem 1. A Model of On-he-Job Search Conider he following verion of he McCall earch model ha allow for on-he-job-earch. In paricular, uppoe ha ime i coninuou

More information

(MS, ) Problem 1

(MS, ) Problem 1 MS, 7.6.4) AKTUAREKSAMEN KONTROL I FINANSIERING OG LIVSFORSIKRING ved Københavns Universie Sommer 24 Skriflig prøve den 4. juni 24 kl..-4.. All wrien aids are allowed. The wo problems of oally 3 quesions

More information

Chapter 15 A Model with Periodic Wage Contracts

Chapter 15 A Model with Periodic Wage Contracts George Alogoskoufis, Dynamic Macroeconomics, 2016 Chaper 15 A Model wih Periodic Wage Conracs In his chaper we analyze an alernaive model of aggregae flucuaions, which is based on periodic nominal wage

More information

Comparing Theoretical and Practical Solution of the First Order First Degree Ordinary Differential Equation of Population Model

Comparing Theoretical and Practical Solution of the First Order First Degree Ordinary Differential Equation of Population Model Open Access Journal of Mahemaical and Theoreical Physics Comparing Theoreical and Pracical Soluion of he Firs Order Firs Degree Ordinary Differenial Equaion of Populaion Model Absrac Populaion dynamics

More information

Intermediate Macro In-Class Problems

Intermediate Macro In-Class Problems Inermediae Macro In-Class Problems Exploring Romer Model June 14, 016 Today we will explore he mechanisms of he simply Romer model by exploring how economies described by his model would reac o exogenous

More information

Lectures 29 and 30 BIQUADRATICS AND STATE SPACE OP AMP REALIZATIONS. I. Introduction

Lectures 29 and 30 BIQUADRATICS AND STATE SPACE OP AMP REALIZATIONS. I. Introduction EE-202/445, 3/18/18 9-1 R. A. DeCarlo Lecures 29 and 30 BIQUADRATICS AND STATE SPACE OP AMP REALIZATIONS I. Inroducion 1. The biquadraic ransfer funcion has boh a 2nd order numeraor and a 2nd order denominaor:

More information

ADVANCED MATHEMATICS FOR ECONOMICS /2013 Sheet 3: Di erential equations

ADVANCED MATHEMATICS FOR ECONOMICS /2013 Sheet 3: Di erential equations ADVANCED MATHEMATICS FOR ECONOMICS - /3 Shee 3: Di erenial equaions Check ha x() =± p ln(c( + )), where C is a posiive consan, is soluion of he ODE x () = Solve he following di erenial equaions: (a) x

More information

Vehicle Arrival Models : Headway

Vehicle Arrival Models : Headway Chaper 12 Vehicle Arrival Models : Headway 12.1 Inroducion Modelling arrival of vehicle a secion of road is an imporan sep in raffic flow modelling. I has imporan applicaion in raffic flow simulaion where

More information

Introduction to AC Power, RMS RMS. ECE 2210 AC Power p1. Use RMS in power calculations. AC Power P =? DC Power P =. V I = R =. I 2 R. V p.

Introduction to AC Power, RMS RMS. ECE 2210 AC Power p1. Use RMS in power calculations. AC Power P =? DC Power P =. V I = R =. I 2 R. V p. ECE MS I DC Power P I = Inroducion o AC Power, MS I AC Power P =? A Solp //9, // // correced p4 '4 v( ) = p cos( ω ) v( ) p( ) Couldn' we define an "effecive" volage ha would allow us o use he same relaionships

More information

8. Basic RL and RC Circuits

8. Basic RL and RC Circuits 8. Basic L and C Circuis This chaper deals wih he soluions of he responses of L and C circuis The analysis of C and L circuis leads o a linear differenial equaion This chaper covers he following opics

More information

MATH 122B AND 125 FINAL EXAM REVIEW PACKET ANSWERS (Fall 2016) t f () t 1/2 3/4 5/4 7/4 2

MATH 122B AND 125 FINAL EXAM REVIEW PACKET ANSWERS (Fall 2016) t f () t 1/2 3/4 5/4 7/4 2 MATH B AND FINAL EXAM REVIEW PACKET ANSWERS (Fall 6).....6.8 f () / / / 7/ f( + h) f(). lim h h The slope of f a = f (6) The average rae of change of f from = o = dy = 8. a) f ( a) b) f ( a) + f( a). a)

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Exam: ECON4325 Moneary Policy Dae of exam: Tuesday, May 24, 206 Grades are given: June 4, 206 Time for exam: 2.30 p.m. 5.30 p.m. The problem se covers 5 pages

More information

MATH 31B: MIDTERM 2 REVIEW. x 2 e x2 2x dx = 1. ue u du 2. x 2 e x2 e x2] + C 2. dx = x ln(x) 2 2. ln x dx = x ln x x + C. 2, or dx = 2u du.

MATH 31B: MIDTERM 2 REVIEW. x 2 e x2 2x dx = 1. ue u du 2. x 2 e x2 e x2] + C 2. dx = x ln(x) 2 2. ln x dx = x ln x x + C. 2, or dx = 2u du. MATH 3B: MIDTERM REVIEW JOE HUGHES. Inegraion by Pars. Evaluae 3 e. Soluion: Firs make he subsiuion u =. Then =, hence 3 e = e = ue u Now inegrae by pars o ge ue u = ue u e u + C and subsiue he definiion

More information