Implementation of float float operators on graphic hardware

Size: px
Start display at page:

Download "Implementation of float float operators on graphic hardware"

Transcription

1 Implementation of float float operators on graphic hardware Guillaume Da Graça David Defour DALI, Université de Perpignan

2 Outline Why GPU? Floating point arithmetic on GPU Float float format Problem & solution David Defour 2

3 Why do we want to use GPU? 300 Intel Pentium GFLOP ATI [R300 R360 R420] NVIDIA [NV30 NV35 NV40 G70] years David Defour 3

4 David Defour 4

5 David Defour 5

6 David Defour 6

7 Floating point format on GPU Reference Total Sig n Number of bits Exponant Mantissa Special values Nvidia (+ 1 NaN, Inf ATI No (+ 1 No documentation IEEE-754 ANSI-ISO ( (+ 1 NaN, Inf David Defour 7

8 Paranoia on GPU* Adaptation for GPU of Kahan s Paranoia test set Test arithmetic properties of the system Some results: Addition is done with one guard bit Addition and multiplication are truncated Multiplication is faithfully rounded * Karl E. Hillesland, Anselmo Lastra, GPU Floating Point Paranoia (ATI R300, Nvidia NV35, David Defour 8

9 Accuracy and GPU GPUs are driven by game and video Single precision should suffice Computational horse power of GPU is interesting for scientific use, however 24 bits is not enough We need precise operators Our contribution: We developed float float operators to reach 45 bits We used algorithms usually used for expansion. David Defour 9

10 An example: Add12 Proposition Add12:* Let a and b be floating point numbers. If the floating point arithmetic is faithful and satisfies properties A1 and A2, then the numbers s and r computed by the following algorithm satisfy s + r = a + b and either r = s = 0 or r < ulp(s. Add12( a, b s = a + b v = s a r = (a (s v + ( b v Return ( s, r The 2 requirements A1 : The roundoff error of a floating point sum is itself a floating point number A2 : if b a then fl(a+b 2 a D. M. Priest, On properties of loating point arithmetics: Numerical stability and the cost of accurate computations. Phd Thesis, 1992 David Defour 10

11 Accuracy Operator Add12 Mul12 Add22 Mull22 Theoretical accuracy Exact Exact Measured accuracy 48 Exact PROBLEM: We fail to obtain the expected accuracy. David Defour 11

12 The truth In fact, the information provided by paranoia is not completely true. We conducted some tests and Addition is done internally with 26 bits (we have more than 1 guard bit However, Sterbenz lemma remains valid!!! David Defour 12

13 The problem: Let us consider the Fast 2 Sum algorithm and The addition on 26 bits with truncation rounding mode A = B = S = A + B = V = S A = T = B V = _ David Defour 13

14 Addition with 25 bits(1 guard bit A = Previous example B = S = A + B = V = S A = T = B V = With 1 digit difference A = _ B = 1 S = A + B = V = S A = 1 0 T = B V = David Defour

15 Solution Proposition Add12: Let a and b be floating point numbers. If the floating point arithmetic is faithful, then the numbers c and d computed by the following algorithm satisfy c + d = a + b and either c = d = 0 or d <ulp(c. Add12( a, b If a < b swap( a, b s = a + b v = s a f = (b ((s v a v If (r+v f s = a r = b Return ( s, r Overhead : 1 addition and 2 tests David Defour 15

16 Algorithms for 45 bits ADD12(a, b if a < b end if swap(a, b s a + b, d s a g s d, h g a, f b h e f d if e + d f end if s a e b return (s, e MUL12(a, b (a hi, a lo SPLIT(a (b hi, b lo SPLIT(b p a * b SPLIT(a t ( * a a hi t (t a a lo a a hi e ((a hi * b hi p + a hi * b lo + a lo * b hi + a lo * b lo return (p, e return (a hi, a lo D. M. Priest, Algorithms for arbitrary precision floating point arithmetic, Proceedings of the 10 th IEEE Symposium on Computer Arithmetic (Arith 10, 1991 David Defour 16

17 Algorithms for 45 bits ADD22(a hi, a lo, b hi, b lo (u hi, u lo ADD12(a hi, b hi (v hi, v lo ADD12(a lo, b lo (w hi, w lo ADD12(u lo, v hi (p hi, p lo ADD12(v lo, w lo (r 3, r 2 ADD12(w hi, p hi (s, r 1 (e, v lo return (s, e ADD12(u hi, r 3 ADD12(r 2, r 1 * MUL22(a hi, a lo, b hi, b lo (u hi, u lo SPLIT(a hi (v hi, v lo SPLIT(b hi m hi a hi * b hi m lo (((u hi * v hi m hi + (u hi * v lo + (u lo * v hi + (u lo * v lo m lo m lo + a hi * b lo + a lo * b hi s m hi + m lo e m hi s + m lo return (s, e * Yozo Hida and Xiaoye S. Li and David H. Bailey, Algorithms for quad double precision floating point arithmetic, Proceedings of the 15th Symposium on Computer Arithmetic, 2001 David Defour 17

18 CPU Timing Time Size David Defour 18

19 GPU Timing Time Size David Defour 19

20 Conclusion Creating multiprecision operators on GPUs is not as easy as it is on CPUs Floating point arithmetic on GPUs is not normalized The GPU s computational horse power makes it interesting as numerical coprocessor Future: Find optimization using the fact that addition is done with 26 bits Provide multiprecision operators (GMP, MPFR Find evaluation scheme for special functions using available hardware David Defour 20

Accurate polynomial evaluation in floating point arithmetic

Accurate polynomial evaluation in floating point arithmetic in floating point arithmetic Université de Perpignan Via Domitia Laboratoire LP2A Équipe de recherche en Informatique DALI MIMS Seminar, February, 10 th 2006 General motivation Provide numerical algorithms

More information

Faithful Horner Algorithm

Faithful Horner Algorithm ICIAM 07, Zurich, Switzerland, 16 20 July 2007 Faithful Horner Algorithm Philippe Langlois, Nicolas Louvet Université de Perpignan, France http://webdali.univ-perp.fr Ph. Langlois (Université de Perpignan)

More information

A new multiplication algorithm for extended precision using floating-point expansions. Valentina Popescu, Jean-Michel Muller,Ping Tak Peter Tang

A new multiplication algorithm for extended precision using floating-point expansions. Valentina Popescu, Jean-Michel Muller,Ping Tak Peter Tang A new multiplication algorithm for extended precision using floating-point expansions Valentina Popescu, Jean-Michel Muller,Ping Tak Peter Tang ARITH 23 July 2016 AMPAR CudA Multiple Precision ARithmetic

More information

How to Ensure a Faithful Polynomial Evaluation with the Compensated Horner Algorithm

How to Ensure a Faithful Polynomial Evaluation with the Compensated Horner Algorithm How to Ensure a Faithful Polynomial Evaluation with the Compensated Horner Algorithm Philippe Langlois, Nicolas Louvet Université de Perpignan, DALI Research Team {langlois, nicolas.louvet}@univ-perp.fr

More information

Towards Fast, Accurate and Reproducible LU Factorization

Towards Fast, Accurate and Reproducible LU Factorization Towards Fast, Accurate and Reproducible LU Factorization Roman Iakymchuk 1, David Defour 2, and Stef Graillat 3 1 KTH Royal Institute of Technology, CSC, CST/PDC 2 Université de Perpignan, DALI LIRMM 3

More information

Accurate Floating Point Product and Exponentiation

Accurate Floating Point Product and Exponentiation Accurate Floating Point Product and Exponentiation Stef Graillat To cite this version: Stef Graillat. Accurate Floating Point Product and Exponentiation. IEEE Transactions on Computers, Institute of Electrical

More information

4ccurate 4lgorithms in Floating Point 4rithmetic

4ccurate 4lgorithms in Floating Point 4rithmetic 4ccurate 4lgorithms in Floating Point 4rithmetic Philippe LANGLOIS 1 1 DALI Research Team, University of Perpignan, France SCAN 2006 at Duisburg, Germany, 26-29 September 2006 Philippe LANGLOIS (UPVD)

More information

Computation of dot products in finite fields with floating-point arithmetic

Computation of dot products in finite fields with floating-point arithmetic Computation of dot products in finite fields with floating-point arithmetic Stef Graillat Joint work with Jérémy Jean LIP6/PEQUAN - Université Pierre et Marie Curie (Paris 6) - CNRS Computer-assisted proofs

More information

Compensated Horner scheme in complex floating point arithmetic

Compensated Horner scheme in complex floating point arithmetic Compensated Horner scheme in complex floating point arithmetic Stef Graillat, Valérie Ménissier-Morain UPMC Univ Paris 06, UMR 7606, LIP6 4 place Jussieu, F-75252, Paris cedex 05, France stef.graillat@lip6.fr,valerie.menissier-morain@lip6.fr

More information

On the computation of the reciprocal of floating point expansions using an adapted Newton-Raphson iteration

On the computation of the reciprocal of floating point expansions using an adapted Newton-Raphson iteration On the computation of the reciprocal of floating point expansions using an adapted Newton-Raphson iteration Mioara Joldes, Valentina Popescu, Jean-Michel Muller ASAP 2014 1 / 10 Motivation Numerical problems

More information

Extended precision with a rounding mode toward zero environment. Application on the CELL processor

Extended precision with a rounding mode toward zero environment. Application on the CELL processor Extended precision with a rounding mode toward zero environment. Application on the CELL processor Hong Diep Nguyen (hong.diep.nguyen@ens-lyon.fr), Stef Graillat (stef.graillat@lip6.fr), Jean-Luc Lamotte

More information

Algorithms for Accurate, Validated and Fast Polynomial Evaluation

Algorithms for Accurate, Validated and Fast Polynomial Evaluation Algorithms for Accurate, Validated and Fast Polynomial Evaluation Stef Graillat, Philippe Langlois, Nicolas Louvet Abstract: We survey a class of algorithms to evaluate polynomials with oating point coecients

More information

Introduction to Scientific Computing Languages

Introduction to Scientific Computing Languages 1 / 21 Introduction to Scientific Computing Languages Prof. Paolo Bientinesi pauldj@aices.rwth-aachen.de Numerical Representation 2 / 21 Numbers 123 = (first 40 digits) 29 4.241379310344827586206896551724137931034...

More information

Computation of the error functions erf and erfc in arbitrary precision with correct rounding

Computation of the error functions erf and erfc in arbitrary precision with correct rounding Computation of the error functions erf and erfc in arbitrary precision with correct rounding Sylvain Chevillard Arenaire, LIP, ENS-Lyon, France Sylvain.Chevillard@ens-lyon.fr Nathalie Revol INRIA, Arenaire,

More information

FLOATING POINT ARITHMETHIC - ERROR ANALYSIS

FLOATING POINT ARITHMETHIC - ERROR ANALYSIS FLOATING POINT ARITHMETHIC - ERROR ANALYSIS Brief review of floating point arithmetic Model of floating point arithmetic Notation, backward and forward errors Roundoff errors and floating-point arithmetic

More information

Lecture 7. Floating point arithmetic and stability

Lecture 7. Floating point arithmetic and stability Lecture 7 Floating point arithmetic and stability 2.5 Machine representation of numbers Scientific notation: 23 }{{} }{{} } 3.14159265 {{} }{{} 10 sign mantissa base exponent (significand) s m β e A floating

More information

How do computers represent numbers?

How do computers represent numbers? How do computers represent numbers? Tips & Tricks Week 1 Topics in Scientific Computing QMUL Semester A 2017/18 1/10 What does digital mean? The term DIGITAL refers to any device that operates on discrete

More information

FLOATING POINT ARITHMETHIC - ERROR ANALYSIS

FLOATING POINT ARITHMETHIC - ERROR ANALYSIS FLOATING POINT ARITHMETHIC - ERROR ANALYSIS Brief review of floating point arithmetic Model of floating point arithmetic Notation, backward and forward errors 3-1 Roundoff errors and floating-point arithmetic

More information

Algorithms for Quad-Double Precision Floating Point Arithmetic Λ. October 30, Abstract

Algorithms for Quad-Double Precision Floating Point Arithmetic Λ. October 30, Abstract Algorithms for Quad-Double Precision Floating Point Arithmetic Λ Yozo Hida y Xiaoye S.Li z David H. Bailey z October 30, 2000 Abstract A quad-double number is an unevaluated sum of four IEEE double precision

More information

Adaptive and Efficient Algorithm for 2D Orientation Problem

Adaptive and Efficient Algorithm for 2D Orientation Problem Japan J. Indust. Appl. Math., 26 (2009), 215 231 Area 2 Adaptive and Efficient Algorithm for 2D Orientation Problem Katsuhisa Ozaki, Takeshi Ogita, Siegfried M. Rump and Shin ichi Oishi Research Institute

More information

Short Division of Long Integers. (joint work with David Harvey)

Short Division of Long Integers. (joint work with David Harvey) Short Division of Long Integers (joint work with David Harvey) Paul Zimmermann October 6, 2011 The problem to be solved Divide efficiently a p-bit floating-point number by another p-bit f-p number in the

More information

Chapter 4 Number Representations

Chapter 4 Number Representations Chapter 4 Number Representations SKEE2263 Digital Systems Mun im/ismahani/izam {munim@utm.my,e-izam@utm.my,ismahani@fke.utm.my} February 9, 2016 Table of Contents 1 Fundamentals 2 Signed Numbers 3 Fixed-Point

More information

The Euclidean Division Implemented with a Floating-Point Multiplication and a Floor

The Euclidean Division Implemented with a Floating-Point Multiplication and a Floor The Euclidean Division Implemented with a Floating-Point Multiplication and a Floor Vincent Lefèvre 11th July 2005 Abstract This paper is a complement of the research report The Euclidean division implemented

More information

Binary Floating-Point Numbers

Binary Floating-Point Numbers Binary Floating-Point Numbers S exponent E significand M F=(-1) s M β E Significand M pure fraction [0, 1-ulp] or [1, 2) for β=2 Normalized form significand has no leading zeros maximum # of significant

More information

ON REPRESENTATIONS OF COEFFICIENTS IN IMPLICIT INTERVAL METHODS OF RUNGE-KUTTA TYPE

ON REPRESENTATIONS OF COEFFICIENTS IN IMPLICIT INTERVAL METHODS OF RUNGE-KUTTA TYPE COMPUTATIONAL METHODS IN SCIENCE AND TECHNOLOGY 10(1), 57-71 (2004) ON REPRESENTATIONS OF COEFFICIENTS IN IMPLICIT INTERVAL METHODS OF RUNGE-KUTTA TYPE ANDRZEJ MARCINIAK 1,2 AND BARBARA SZYSZKA 3 1 Poznań

More information

Automated design of floating-point logarithm functions on integer processors

Automated design of floating-point logarithm functions on integer processors Automated design of floating-point logarithm functions on integer processors Guillaume Revy To cite this version: Guillaume Revy. Automated design of floating-point logarithm functions on integer processors.

More information

Accurate Solution of Triangular Linear System

Accurate Solution of Triangular Linear System SCAN 2008 Sep. 29 - Oct. 3, 2008, at El Paso, TX, USA Accurate Solution of Triangular Linear System Philippe Langlois DALI at University of Perpignan France Nicolas Louvet INRIA and LIP at ENS Lyon France

More information

GPU acceleration of Newton s method for large systems of polynomial equations in double double and quad double arithmetic

GPU acceleration of Newton s method for large systems of polynomial equations in double double and quad double arithmetic GPU acceleration of Newton s method for large systems of polynomial equations in double double and quad double arithmetic Jan Verschelde joint work with Xiangcheng Yu University of Illinois at Chicago

More information

Solving Triangular Systems More Accurately and Efficiently

Solving Triangular Systems More Accurately and Efficiently 17th IMACS World Congress, July 11-15, 2005, Paris, France Scientific Computation, Applied Mathematics and Simulation Solving Triangular Systems More Accurately and Efficiently Philippe LANGLOIS and Nicolas

More information

Improving the Compensated Horner Scheme with a Fused Multiply and Add

Improving the Compensated Horner Scheme with a Fused Multiply and Add Équipe de Recherche DALI Laboratoire LP2A, EA 3679 Université de Perpignan Via Domitia Improving the Compensated Horner Scheme with a Fused Multiply and Add S. Graillat, Ph. Langlois, N. Louvet DALI-LP2A

More information

Automated design of floating-point logarithm functions on integer processors

Automated design of floating-point logarithm functions on integer processors 23rd IEEE Symposium on Computer Arithmetic Santa Clara, CA, USA, 10-13 July 2016 Automated design of floating-point logarithm functions on integer processors Guillaume Revy (presented by Florent de Dinechin)

More information

UNIT V FINITE WORD LENGTH EFFECTS IN DIGITAL FILTERS PART A 1. Define 1 s complement form? In 1,s complement form the positive number is represented as in the sign magnitude form. To obtain the negative

More information

Effect of round-off errors on the. Accuracy of randomized algorithms

Effect of round-off errors on the. Accuracy of randomized algorithms Effect of round-off errors on the accuracy of randomized algorithms ÉLIAUS-PROMES (UPR 8521 CNRS) Perpignan France marc.daumas@univ-perp.fr Outline 1 2 3 4 5 Characterize the accuracy of the result of

More information

Computation of the omega function

Computation of the omega function Computation of the omega function David H. Bailey http://www.davidhbailey.com Lawrence Berkeley National Laboratory (retired) University of California, Davis, Department of Computer Science 1 / 17 Mordell-Tornheim-Witten

More information

PowerPoints organized by Dr. Michael R. Gustafson II, Duke University

PowerPoints organized by Dr. Michael R. Gustafson II, Duke University Part 1 Chapter 4 Roundoff and Truncation Errors PowerPoints organized by Dr. Michael R. Gustafson II, Duke University All images copyright The McGraw-Hill Companies, Inc. Permission required for reproduction

More information

Introduction to Scientific Computing Languages

Introduction to Scientific Computing Languages 1 / 19 Introduction to Scientific Computing Languages Prof. Paolo Bientinesi pauldj@aices.rwth-aachen.de Numerical Representation 2 / 19 Numbers 123 = (first 40 digits) 29 4.241379310344827586206896551724137931034...

More information

Director of Research School of Mathematics

Director of Research   School of Mathematics Multiprecision Research Matters Algorithms February Nick25, Higham 2009 School of Mathematics The University Nick Higham of Manchester Director of Research http://www.ma.man.ac.uk/~higham School of Mathematics

More information

Accurate Multiple-Precision Gauss-Legendre Quadrature

Accurate Multiple-Precision Gauss-Legendre Quadrature Accurate Multiple-Precision Gauss-Legendre Quadrature Laurent Fousse Université Henri-Poincaré Nancy 1 laurent@komite.net Abstract Numerical integration is an operation that is frequently available in

More information

ECS 231 Computer Arithmetic 1 / 27

ECS 231 Computer Arithmetic 1 / 27 ECS 231 Computer Arithmetic 1 / 27 Outline 1 Floating-point numbers and representations 2 Floating-point arithmetic 3 Floating-point error analysis 4 Further reading 2 / 27 Outline 1 Floating-point numbers

More information

Mathematical preliminaries and error analysis

Mathematical preliminaries and error analysis Mathematical preliminaries and error analysis Tsung-Ming Huang Department of Mathematics National Taiwan Normal University, Taiwan September 12, 2015 Outline 1 Round-off errors and computer arithmetic

More information

Compensated Horner Scheme

Compensated Horner Scheme Compensated Horner Scheme S. Graillat 1, Philippe Langlois 1, Nicolas Louvet 1 DALI-LP2A Laboratory. Université de Perpignan Via Domitia. firstname.lastname@univ-perp.fr, http://webdali.univ-perp.fr Abstract.

More information

ACM 106a: Lecture 1 Agenda

ACM 106a: Lecture 1 Agenda 1 ACM 106a: Lecture 1 Agenda Introduction to numerical linear algebra Common problems First examples Inexact computation What is this course about? 2 Typical numerical linear algebra problems Systems of

More information

Chapter 1 Error Analysis

Chapter 1 Error Analysis Chapter 1 Error Analysis Several sources of errors are important for numerical data processing: Experimental uncertainty: Input data from an experiment have a limited precision. Instead of the vector of

More information

MANY numerical problems in dynamical systems

MANY numerical problems in dynamical systems IEEE TRANSACTIONS ON COMPUTERS, VOL., 201X 1 Arithmetic algorithms for extended precision using floating-point expansions Mioara Joldeş, Olivier Marty, Jean-Michel Muller and Valentina Popescu Abstract

More information

Floating Point Number Systems. Simon Fraser University Surrey Campus MACM 316 Spring 2005 Instructor: Ha Le

Floating Point Number Systems. Simon Fraser University Surrey Campus MACM 316 Spring 2005 Instructor: Ha Le Floating Point Number Systems Simon Fraser University Surrey Campus MACM 316 Spring 2005 Instructor: Ha Le 1 Overview Real number system Examples Absolute and relative errors Floating point numbers Roundoff

More information

CRYPTOGRAPHIC COMPUTING

CRYPTOGRAPHIC COMPUTING CRYPTOGRAPHIC COMPUTING ON GPU Chen Mou Cheng Dept. Electrical Engineering g National Taiwan University January 16, 2009 COLLABORATORS Daniel Bernstein, UIC, USA Tien Ren Chen, Army Tanja Lange, TU Eindhoven,

More information

8/13/16. Data analysis and modeling: the tools of the trade. Ø Set of numbers. Ø Binary representation of numbers. Ø Floating points.

8/13/16. Data analysis and modeling: the tools of the trade. Ø Set of numbers. Ø Binary representation of numbers. Ø Floating points. Data analysis and modeling: the tools of the trade Patrice Koehl Department of Biological Sciences National University of Singapore http://www.cs.ucdavis.edu/~koehl/teaching/bl5229 koehl@cs.ucdavis.edu

More information

Elements of Floating-point Arithmetic

Elements of Floating-point Arithmetic Elements of Floating-point Arithmetic Sanzheng Qiao Department of Computing and Software McMaster University July, 2012 Outline 1 Floating-point Numbers Representations IEEE Floating-point Standards Underflow

More information

Computer Arithmetic. MATH 375 Numerical Analysis. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Computer Arithmetic

Computer Arithmetic. MATH 375 Numerical Analysis. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Computer Arithmetic Computer Arithmetic MATH 375 Numerical Analysis J. Robert Buchanan Department of Mathematics Fall 2013 Machine Numbers When performing arithmetic on a computer (laptop, desktop, mainframe, cell phone,

More information

Computing logarithms and other special functions

Computing logarithms and other special functions Computing logarithms and other special functions Mike Giles University of Oxford Mathematical Institute Napier 400 NAIS Symposium April 2, 2014 Mike Giles (Oxford) Computing special functions April 2,

More information

Optimizing the Representation of Intervals

Optimizing the Representation of Intervals Optimizing the Representation of Intervals Javier D. Bruguera University of Santiago de Compostela, Spain Numerical Sofware: Design, Analysis and Verification Santander, Spain, July 4-6 2012 Contents 1

More information

Lecture 2 MODES OF NUMERICAL COMPUTATION

Lecture 2 MODES OF NUMERICAL COMPUTATION 1. Diversity of Numbers Lecture 2 Page 1 It is better to solve the right problem the wrong way than to solve the wrong problem the right way. The purpose of computing is insight, not numbers. Richard Wesley

More information

Faster arbitrary-precision dot product and matrix multiplication

Faster arbitrary-precision dot product and matrix multiplication Faster arbitrary-precision dot product and matrix multiplication Fredrik Johansson LFANT Inria Bordeaux Talence, France fredrik.johansson@gmail.com arxiv:1901.04289v1 [cs.ms] 14 Jan 2019 Abstract We present

More information

Notes for Chapter 1 of. Scientific Computing with Case Studies

Notes for Chapter 1 of. Scientific Computing with Case Studies Notes for Chapter 1 of Scientific Computing with Case Studies Dianne P. O Leary SIAM Press, 2008 Mathematical modeling Computer arithmetic Errors 1999-2008 Dianne P. O'Leary 1 Arithmetic and Error What

More information

Contents Experimental Perturbations Introduction to Interval Arithmetic Review Questions Problems...

Contents Experimental Perturbations Introduction to Interval Arithmetic Review Questions Problems... Contents 2 How to Obtain and Estimate Accuracy 1 2.1 Basic Concepts in Error Estimation................ 1 2.1.1 Sources of Error.................... 1 2.1.2 Absolute and Relative Errors............. 4

More information

Arithmetic and Error. How does error arise? How does error arise? Notes for Part 1 of CMSC 460

Arithmetic and Error. How does error arise? How does error arise? Notes for Part 1 of CMSC 460 Notes for Part 1 of CMSC 460 Dianne P. O Leary Preliminaries: Mathematical modeling Computer arithmetic Errors 1999-2006 Dianne P. O'Leary 1 Arithmetic and Error What we need to know about error: -- how

More information

An Introduction to Differential Algebra

An Introduction to Differential Algebra An Introduction to Differential Algebra Alexander Wittig1, P. Di Lizia, R. Armellin, et al. 1 ESA Advanced Concepts Team (TEC-SF) SRL, Milan Dinamica Outline 1 Overview Five Views of Differential Algebra

More information

Fast dot product over finite field

Fast dot product over finite field Fast dot product over finite field Jérémy JEAN Jean.Jeremy.Jean@gmail.com February 2010 Master thesis report 1 LIP6 Paris, France Stef Graillat Kungliga Tekniska Högskolan (KTH) Stockholm, Sweden Johan

More information

Parallel Reproducible Summation

Parallel Reproducible Summation Parallel Reproducible Summation James Demmel Mathematics Department and CS Division University of California at Berkeley Berkeley, CA 94720 demmel@eecs.berkeley.edu Hong Diep Nguyen EECS Department University

More information

Tight and rigourous error bounds for basic building blocks of double-word arithmetic. Mioara Joldes, Jean-Michel Muller, Valentina Popescu

Tight and rigourous error bounds for basic building blocks of double-word arithmetic. Mioara Joldes, Jean-Michel Muller, Valentina Popescu Tight and rigourous error bounds for basic building blocks of double-word arithmetic Mioara Joldes, Jean-Michel Muller, Valentina Popescu SCAN - September 2016 AMPAR CudA Multiple Precision ARithmetic

More information

Tunable Floating-Point for Energy Efficient Accelerators

Tunable Floating-Point for Energy Efficient Accelerators Tunable Floating-Point for Energy Efficient Accelerators Alberto Nannarelli DTU Compute, Technical University of Denmark 25 th IEEE Symposium on Computer Arithmetic A. Nannarelli (DTU Compute) Tunable

More information

Welcome to MCS 572. content and organization expectations of the course. definition and classification

Welcome to MCS 572. content and organization expectations of the course. definition and classification Welcome to MCS 572 1 About the Course content and organization expectations of the course 2 Supercomputing definition and classification 3 Measuring Performance speedup and efficiency Amdahl s Law Gustafson

More information

Reliable real arithmetic. one-dimensional dynamical systems

Reliable real arithmetic. one-dimensional dynamical systems Reliable real arithmetic and one-dimensional dynamical systems Keith Briggs, BT Research Keith.Briggs@bt.com http://keithbriggs.info QMUL Mathematics Department 2007 March 27 1600 typeset 2007 March 26

More information

Math 411 Preliminaries

Math 411 Preliminaries Math 411 Preliminaries Provide a list of preliminary vocabulary and concepts Preliminary Basic Netwon s method, Taylor series expansion (for single and multiple variables), Eigenvalue, Eigenvector, Vector

More information

Applied Mathematics 205. Unit 0: Overview of Scientific Computing. Lecturer: Dr. David Knezevic

Applied Mathematics 205. Unit 0: Overview of Scientific Computing. Lecturer: Dr. David Knezevic Applied Mathematics 205 Unit 0: Overview of Scientific Computing Lecturer: Dr. David Knezevic Scientific Computing Computation is now recognized as the third pillar of science (along with theory and experiment)

More information

Sampling exactly from the normal distribution

Sampling exactly from the normal distribution 1 Sampling exactly from the normal distribution Charles Karney charles.karney@sri.com SRI International AofA 2017, Princeton, June 20, 2017 Background: In my day job, I ve needed normal (Gaussian) deviates

More information

Designing a Correct Numerical Algorithm

Designing a Correct Numerical Algorithm Intro Implem Errors Sollya Gappa Norm Conc Christoph Lauter Guillaume Melquiond March 27, 2013 Intro Implem Errors Sollya Gappa Norm Conc Outline 1 Introduction 2 Implementation theory 3 Error analysis

More information

Fast Dot Product over Finite Field JÉRÉMY JEAN

Fast Dot Product over Finite Field JÉRÉMY JEAN Fast Dot Product over Finite Field JÉRÉMY JEAN Master of Science Thesis Stockholm, Sweden 2010 Fast Dot Product over Finite Field JÉRÉMY JEAN Master s Thesis in Computer Science (30 ECTS credits) at the

More information

Random Sampling for Short Lattice Vectors on Graphics Cards

Random Sampling for Short Lattice Vectors on Graphics Cards Random Sampling for Short Lattice Vectors on Graphics Cards Michael Schneider, Norman Göttert TU Darmstadt, Germany mischnei@cdc.informatik.tu-darmstadt.de CHES 2011, Nara September 2011 Michael Schneider

More information

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 5. Ax = b.

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 5. Ax = b. CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 5 GENE H GOLUB Suppose we want to solve We actually have an approximation ξ such that 1 Perturbation Theory Ax = b x = ξ + e The question is, how

More information

Elements of Floating-point Arithmetic

Elements of Floating-point Arithmetic Elements of Floating-point Arithmetic Sanzheng Qiao Department of Computing and Software McMaster University July, 2012 Outline 1 Floating-point Numbers Representations IEEE Floating-point Standards Underflow

More information

Toward Correctly Rounded Transcendentals

Toward Correctly Rounded Transcendentals IEEE TRANSACTIONS ON COMPUTERS, VOL. 47, NO. 11, NOVEMBER 1998 135 Toward Correctly Rounded Transcendentals Vincent Lefèvre, Jean-Michel Muller, Member, IEEE, and Arnaud Tisserand Abstract The Table Maker

More information

Continued fractions and number systems: applications to correctly-rounded implementations of elementary functions and modular arithmetic.

Continued fractions and number systems: applications to correctly-rounded implementations of elementary functions and modular arithmetic. Continued fractions and number systems: applications to correctly-rounded implementations of elementary functions and modular arithmetic. Mourad Gouicem PEQUAN Team, LIP6/UPMC Nancy, France May 28 th 2013

More information

Error Bounds for Iterative Refinement in Three Precisions

Error Bounds for Iterative Refinement in Three Precisions Error Bounds for Iterative Refinement in Three Precisions Erin C. Carson, New York University Nicholas J. Higham, University of Manchester SIAM Annual Meeting Portland, Oregon July 13, 018 Hardware Support

More information

Algorithms for Experimental Mathematics I David H Bailey Lawrence Berkeley National Lab

Algorithms for Experimental Mathematics I David H Bailey Lawrence Berkeley National Lab Algorithms for Experimental Mathematics I David H Bailey Lawrence Berkeley National Lab All truths are easy to understand once they are discovered; the point is to discover them. Galileo Galilei Algorithms

More information

Computing Time for Summation Algorithm: Less Hazard and More Scientific Research

Computing Time for Summation Algorithm: Less Hazard and More Scientific Research Computing Time for Summation Algorithm: Less Hazard and More Scientific Research Bernard Goossens, Philippe Langlois, David Parello, Kathy Porada To cite this version: Bernard Goossens, Philippe Langlois,

More information

1 Floating point arithmetic

1 Floating point arithmetic Introduction to Floating Point Arithmetic Floating point arithmetic Floating point representation (scientific notation) of numbers, for example, takes the following form.346 0 sign fraction base exponent

More information

Chapter 1: Introduction and mathematical preliminaries

Chapter 1: Introduction and mathematical preliminaries Chapter 1: Introduction and mathematical preliminaries Evy Kersalé September 26, 2011 Motivation Most of the mathematical problems you have encountered so far can be solved analytically. However, in real-life,

More information

Computing with precision

Computing with precision 1 / 44 Computing with precision Fredrik Johansson Inria Bordeaux X, Mountain View, CA January 24, 2019 Computing with real numbers 2 / 44 How can we represent 3.14159265358979323846264338327950288419716939937510582097

More information

Innocuous Double Rounding of Basic Arithmetic Operations

Innocuous Double Rounding of Basic Arithmetic Operations Innocuous Double Rounding of Basic Arithmetic Operations Pierre Roux ISAE, ONERA Double rounding occurs when a floating-point value is first rounded to an intermediate precision before being rounded to

More information

Some Functions Computable with a Fused-mac

Some Functions Computable with a Fused-mac Some Functions Computable with a Fused-mac Sylvie Boldo, Jean-Michel Muller To cite this version: Sylvie Boldo, Jean-Michel Muller. Some Functions Computable with a Fused-mac. Paolo Montuschi, Eric Schwarz.

More information

Enhancing Performance of Tall-Skinny QR Factorization using FPGAs

Enhancing Performance of Tall-Skinny QR Factorization using FPGAs Enhancing Performance of Tall-Skinny QR Factorization using FPGAs Abid Rafique Imperial College London August 31, 212 Enhancing Performance of Tall-Skinny QR Factorization using FPGAs 1/18 Our Claim Common

More information

History & Binary Representation

History & Binary Representation History & Binary Representation C. R. da Cunha 1 1 Instituto de Física, Universidade Federal do Rio Grande do Sul, RS 91501-970, Brazil. August 30, 2017 Abstract In this lesson we will review the history

More information

CR-LIBM A library of correctly rounded elementary functions in double-precision

CR-LIBM A library of correctly rounded elementary functions in double-precision CR-LIBM A library of correctly rounded elementary functions in double-precision Catherine Daramy-Loirat, David Defour, Florent De Dinechin, Matthieu Gallet, Nicolas Gast, Christoph Lauter, Jean-Michel

More information

9. Datapath Design. Jacob Abraham. Department of Electrical and Computer Engineering The University of Texas at Austin VLSI Design Fall 2017

9. Datapath Design. Jacob Abraham. Department of Electrical and Computer Engineering The University of Texas at Austin VLSI Design Fall 2017 9. Datapath Design Jacob Abraham Department of Electrical and Computer Engineering The University of Texas at Austin VLSI Design Fall 2017 October 2, 2017 ECE Department, University of Texas at Austin

More information

Numerics and Error Analysis

Numerics and Error Analysis Numerics and Error Analysis CS 205A: Mathematical Methods for Robotics, Vision, and Graphics Doug James (and Justin Solomon) CS 205A: Mathematical Methods Numerics and Error Analysis 1 / 30 A Puzzle What

More information

Laboratoire de l Informatique du Parallélisme. École Normale Supérieure de Lyon Unité Mixte de Recherche CNRS-INRIA-ENS LYON n o 8512

Laboratoire de l Informatique du Parallélisme. École Normale Supérieure de Lyon Unité Mixte de Recherche CNRS-INRIA-ENS LYON n o 8512 Laboratoire de l Informatique du Parallélisme École Normale Supérieure de Lyon Unité Mixte de Recherche CNRS-INRIA-ENS LYON n o 8512 SPI A few results on table-based methods Jean-Michel Muller October

More information

Jim Lambers MAT 610 Summer Session Lecture 2 Notes

Jim Lambers MAT 610 Summer Session Lecture 2 Notes Jim Lambers MAT 610 Summer Session 2009-10 Lecture 2 Notes These notes correspond to Sections 2.2-2.4 in the text. Vector Norms Given vectors x and y of length one, which are simply scalars x and y, the

More information

EAD 115. Numerical Solution of Engineering and Scientific Problems. David M. Rocke Department of Applied Science

EAD 115. Numerical Solution of Engineering and Scientific Problems. David M. Rocke Department of Applied Science EAD 115 Numerical Solution of Engineering and Scientific Problems David M. Rocke Department of Applied Science Computer Representation of Numbers Counting numbers (unsigned integers) are the numbers 0,

More information

ACCURATE SUM AND DOT PRODUCT

ACCURATE SUM AND DOT PRODUCT ACCURATE SUM AND DOT PRODUCT TAKESHI OGITA, SIEGFRIED M. RUMP, AND SHIN ICHI OISHI Abstract. Algorithms for summation and dot product of floating point numbers are presented which are fast in terms of

More information

Numerical Methods - Preliminaries

Numerical Methods - Preliminaries Numerical Methods - Preliminaries Y. K. Goh Universiti Tunku Abdul Rahman 2013 Y. K. Goh (UTAR) Numerical Methods - Preliminaries 2013 1 / 58 Table of Contents 1 Introduction to Numerical Methods Numerical

More information

Computing Machine-Efficient Polynomial Approximations

Computing Machine-Efficient Polynomial Approximations Computing Machine-Efficient Polynomial Approximations N. Brisebarre, S. Chevillard, G. Hanrot, J.-M. Muller, D. Stehlé, A. Tisserand and S. Torres Arénaire, LIP, É.N.S. Lyon Journées du GDR et du réseau

More information

Accelerating linear algebra computations with hybrid GPU-multicore systems.

Accelerating linear algebra computations with hybrid GPU-multicore systems. Accelerating linear algebra computations with hybrid GPU-multicore systems. Marc Baboulin INRIA/Université Paris-Sud joint work with Jack Dongarra (University of Tennessee and Oak Ridge National Laboratory)

More information

ALU (3) - Division Algorithms

ALU (3) - Division Algorithms HUMBOLDT-UNIVERSITÄT ZU BERLIN INSTITUT FÜR INFORMATIK Lecture 12 ALU (3) - Division Algorithms Sommersemester 2002 Leitung: Prof. Dr. Miroslaw Malek www.informatik.hu-berlin.de/rok/ca CA - XII - ALU(3)

More information

MAT 460: Numerical Analysis I. James V. Lambers

MAT 460: Numerical Analysis I. James V. Lambers MAT 460: Numerical Analysis I James V. Lambers January 31, 2013 2 Contents 1 Mathematical Preliminaries and Error Analysis 7 1.1 Introduction............................ 7 1.1.1 Error Analysis......................

More information

4.2 Floating-Point Numbers

4.2 Floating-Point Numbers 101 Approximation 4.2 Floating-Point Numbers 4.2 Floating-Point Numbers The number 3.1416 in scientific notation is 0.31416 10 1 or (as computer output) -0.31416E01..31416 10 1 exponent sign mantissa base

More information

Basic building blocks for a triple-double intermediate format

Basic building blocks for a triple-double intermediate format Laboratoire de l Informatique du Parallélisme École Normale Supérieure de Lyon Unité Mixte de Recherche CNRS-INRIA-ENS LYON-UCBL n o 5668 Basic building blocks for a triple-double intermediate format Christoph

More information

Parallel Polynomial Evaluation

Parallel Polynomial Evaluation Parallel Polynomial Evaluation Jan Verschelde joint work with Genady Yoffe University of Illinois at Chicago Department of Mathematics, Statistics, and Computer Science http://www.math.uic.edu/ jan jan@math.uic.edu

More information

Floating Point Arithmetic and Rounding Error Analysis

Floating Point Arithmetic and Rounding Error Analysis Floating Point Arithmetic and Rounding Error Analysis Claude-Pierre Jeannerod Nathalie Revol Inria LIP, ENS de Lyon 2 Context Starting point: How do numerical algorithms behave in nite precision arithmetic?

More information