Connection MATH Connection. Benjamin V.C. Collins, James A. Swenson MATH 2730

Size: px
Start display at page:

Download "Connection MATH Connection. Benjamin V.C. Collins, James A. Swenson MATH 2730"

Transcription

1 MATH 2730 Benjamin V.C. Collins James A. Swenson

2 Traveling Salesman Problem Image: Padberg-Rinaldi, 1987: 532 cities

3 Walks in a graph Let G = (V, E) be a graph. A walk in G is a non-empty list of vertices in which each vertex is adjacent to the next: W = (v 0, v 1,..., v l ) such that v 0 v 1 v l. The number l N is the length of W (even though W contains l + 1 vertices).

4 Walks from a to b The walk W = (v 0, v 1,..., v l ) is called an (a, b)-walk provided a = v 0 and b = v l. Example In the graph below, W = (r, w, u, t, u, s) is an (r, s)-walk.

5 New walks from old The reversal of the walk W = (v 0, v 1,..., v l ) is W 1 = (v l,..., v 1, v 0 ). Let W 1 = (v 0, v 1,..., v l ) and W 2 = (w 0, w 1,..., w k ) be walks. If v l = w 0, then we can define the concatenation W 1 + W 2 = (v 0, v 1,..., v l, w 1,..., w k ), which is a walk of length l + k.

6 Paths in a graph A path is a walk in which no vertex is repeated. An (a, b)-path is a path that begins at a and ends at b. Example In the graph below, W 1 = (r, w, u, t, u, s) is a walk, but not a path; W 2 = (w, r, u, s, t, v) and W 3 = (s) are paths.

7 Why vertices, and not edges? Proposition Let P be a walk in the graph G. If P is a path, then P does not use any edge of G more than once. Proof. We prove the contrapositive. Let P be a walk in G. Suppose that P uses the edge {u, v} at least twice. Then wlog, P = u v u v... or P = u v v u.... In each case, u is repeated in P. Thus P is not a path.

8 Path graphs If V = {v 1,..., v n } and E = {{v k, v k+1 } : 1 k < n}, then (V, E) is called a path graph and denoted by P n. The longest walk in P n has length n 1. P 6

9 Some pairs of vertices are connected Let G = (V, E) be a graph, and let u, v V. We say u is connected to v provided there is a (u, v)-path in G. Example s is connected to t. s is not connected to w. Is s connected to s?

10 as a relation Theorem If G = (V, E) is a graph, then is connected to is an equivalence relation on V. Proof. Define R = {(u, v) V V : u is connected to v}. First, let a V. There is an (a, a)-path in G; namely, (a). Thus ara, so R is reflexive. Now suppose a, b V and arb. Then G contains an (a, b)-path P. Now G contains a (b, a)-path; namely, P 1. Thus bra, so R is symmetric. Finally, let a, b, c V such that arb and brc. Then G contains an (a, b)-path P 1 and a (b, c)-path P 2. The concatenation P 1 + P 2 is an (a, c)-walk in G. Then, for some reason by a lemma, G contains an (a, c)-path. Hence arc, so R is transitive.

11 Walks yield paths Lemma Let G = (V, E) be a graph, and let x, y V. If there is an (x, y)-walk in G, then there is an (x, y)-path in G. Proof. Suppose G contains an (x, y)-walk. By the Well-Ordering Principle, there exists an (x, y)-walk P of minimal length in G. Sftsoc that P is not a path. Let u be a vertex that is repeated in P. Delete a portion of P between two copies of u, including one of the two copies. The result is an (x, y)-walk P in G that is shorter than P, but this is impossible. Thus G contains an (x, y)-path; namely, P. P = (x,..., v j, u, v k,..., y)

12 Components With this lemma, we have finished the proof that is-connected-to is an equivalence relation on V. This means that the vertices of G form equivalence classes: if a V, then [a] = {v V : a is connected to v}. Let G = (V, E) be a graph and let a V. Then [a] V is an equivalence class for the is-connected-to relation, and the induced subgraph G[[a]] is called a component of G.

13 Connected graphs Let G = (V, E) be a graph. We say G is connected provided that any two vertices of G are connected. Proposition A graph G is connected if and only if G has exactly one component.

14 Disconnection Let G = (V, E) be a graph. We say v V is a cut vertex provided that G v has more components than G. We say e E is a cut edge provided that G e has more components than G. Example The graph shown has one cut vertex and one cut edge.

15 How many pieces can you make? Theorem If G is a connected graph and e = {x, y} is a cut edge in G, then H = G e has two components; namely, H[[x]] and H[[y]]. Proof. (See proof in textbook.) Remark If G is a connected graph and v is a cut vertex in G, then the number of components in G may be any number between 2 and d(v).

16 paths Let G be a graph. A path P in G is called provided that P contains every vertex of G. Sir William Rowan Hamilton ( )

17 Knight s Tour of chess

18 A knight s tour found by Euler (1758) E. Sandifer, Euler Did It 30 Knights tour.pdf

19 5 5 knight s tour Proposition A knight s tour exists on a 5 5 chessboard. Proof. a 5 b 5 c 5 d 5 e 5 a 4 b 4 c 4 d 4 e 4 There is a path in the graph shown; namely, a 3 b 3 c 3 d 3 e 3 a 2 b 2 c 2 d 2 e 2 P = (c 3, e 4, c 5, a 4, b 2, d 1, e 3, d 5, b 4, a 2, c 1, e 2, d 4, b 5, a 3, b 1, d 2, c 4, e 5, d 3, e 1, c 2, a 1, b 3, a 5 ). a 1 b 1 c 1 d 1 e 1

20 4 4 knight s tour? Theorem There is no knight s tour on a 4 4 chessboard. Proof. Sftsoc that P is a knight s tour on a 4 4 chessboard. Color the board in various ways, as shown. P must alternate between black and white squares. Sftsoc that P also alternates blue and yellow squares. Then wlog every square visited is blue/white or yellow/black, so the bottom-right square is not visited. So P does not alternate blue and yellow squares. However, it is impossible to move from one yellow square to another. Since there are 4 squares with each pair of colors, the squares of P must be yellow and blue as follows: (y, b, y, b, y, b, y, b, b, y, b, y, b, y, b, y). Likewise, the squares must be red and green in the pattern (r, g, r, g, r, g, r, g, g, r, g, r, g, r, g, r). Now the 8 th and 9 th squares in P are blue/green.

21 That was a lot of work. Remark It is usually fairly easy to show that G has a path (if it does), but extremely difficult to show that G does not have a path (even if it doesn t).

1 Hamiltonian properties

1 Hamiltonian properties 1 Hamiltonian properties 1.1 Hamiltonian Cycles Last time we saw this generalization of Dirac s result, which we shall prove now. Proposition 1 (Ore 60). For a graph G with nonadjacent vertices u and v

More information

Massachusetts Institute of Technology 6.042J/18.062J, Fall 02: Mathematics for Computer Science Professor Albert Meyer and Dr.

Massachusetts Institute of Technology 6.042J/18.062J, Fall 02: Mathematics for Computer Science Professor Albert Meyer and Dr. Massachusetts Institute of Technology 6.042J/18.062J, Fall 02: Mathematics for Computer Science Professor Albert Meyer and Dr. Radhika Nagpal Quiz 1 Appendix Appendix Contents 1 Induction 2 2 Relations

More information

Hamiltonian Graphs Graphs

Hamiltonian Graphs Graphs COMP2121 Discrete Mathematics Hamiltonian Graphs Graphs Hubert Chan (Chapter 9.5) [O1 Abstract Concepts] [O2 Proof Techniques] [O3 Basic Analysis Techniques] 1 Hamiltonian Paths and Circuits [O1] A Hamiltonian

More information

8.3 Hamiltonian Paths and Circuits

8.3 Hamiltonian Paths and Circuits 8.3 Hamiltonian Paths and Circuits 8.3 Hamiltonian Paths and Circuits A Hamiltonian path is a path that contains each vertex exactly once A Hamiltonian circuit is a Hamiltonian path that is also a circuit

More information

Sets II MATH Sets II. Benjamin V.C. Collins, James A. Swenson MATH 2730

Sets II MATH Sets II. Benjamin V.C. Collins, James A. Swenson MATH 2730 MATH 2730 Sets II Benjamin V.C. Collins James A. Swenson New sets from old Suppose A and B are the sets of multiples of 2 and multiples of 5: A = {n Z : 2 n} = {..., 8, 6, 4, 2, 0, 2, 4, 6, 8,... } B =

More information

LECTURE 1: INTRODUCTION

LECTURE 1: INTRODUCTION LECTURE 1: INTRODUCTION What is a Network? What is a Network? What is the meaning of Network Flows? In our course, a network G=(N,A) consists of a finite number of nodes (in N) which are connected by arcs

More information

Algorithms and Theory of Computation. Lecture 22: NP-Completeness (2)

Algorithms and Theory of Computation. Lecture 22: NP-Completeness (2) Algorithms and Theory of Computation Lecture 22: NP-Completeness (2) Xiaohui Bei MAS 714 November 8, 2018 Nanyang Technological University MAS 714 November 8, 2018 1 / 20 Set Cover Set Cover Input: a set

More information

Ngày 20 tháng 7 năm Discrete Optimization Graphs

Ngày 20 tháng 7 năm Discrete Optimization Graphs Discrete Optimization Graphs Ngày 20 tháng 7 năm 2011 Lecture 6: Graphs In this class we shall prove some simple, useful theorems about graphs. We start with very simple obseravations. Lecture 6: Graphs

More information

Relations MATH Relations. Benjamin V.C. Collins, James A. Swenson MATH 2730

Relations MATH Relations. Benjamin V.C. Collins, James A. Swenson MATH 2730 MATH 2730 Benjamin V.C. Collins James A. Swenson among integers equals a = b is true for some pairs (a, b) Z Z, but not for all pairs. is less than a < b is true for some pairs (a, b) Z Z, but not for

More information

Unit 7 Day 4 Section 4.5 & Practice Hamiltonian Circuits and Paths

Unit 7 Day 4 Section 4.5 & Practice Hamiltonian Circuits and Paths Unit 7 Day 4 Section 4.5 & Practice 4.1-4.5 Hamiltonian Circuits and Paths Warm Up ~ Day 4 D B Is the following graph E 1) Connected? 2) Complete? F G 3) An Euler Circuit? If so, write the circuit. If

More information

14 Equivalence Relations

14 Equivalence Relations 14 Equivalence Relations Tom Lewis Fall Term 2010 Tom Lewis () 14 Equivalence Relations Fall Term 2010 1 / 10 Outline 1 The definition 2 Congruence modulo n 3 Has-the-same-size-as 4 Equivalence classes

More information

Contradiction MATH Contradiction. Benjamin V.C. Collins, James A. Swenson MATH 2730

Contradiction MATH Contradiction. Benjamin V.C. Collins, James A. Swenson MATH 2730 MATH 2730 Contradiction Benjamin V.C. Collins James A. Swenson Contrapositive The contrapositive of the statement If A, then B is the statement If not B, then not A. A statement and its contrapositive

More information

Exam EDAF August Thore Husfeldt

Exam EDAF August Thore Husfeldt Exam EDAF05 25 August 2011 Thore Husfeldt Instructions What to bring. You can bring any written aid you want. This includes the course book and a dictionary. In fact, these two things are the only aids

More information

NP-completeness. Chapter 34. Sergey Bereg

NP-completeness. Chapter 34. Sergey Bereg NP-completeness Chapter 34 Sergey Bereg Oct 2017 Examples Some problems admit polynomial time algorithms, i.e. O(n k ) running time where n is the input size. We will study a class of NP-complete problems

More information

1.4 Equivalence Relations and Partitions

1.4 Equivalence Relations and Partitions 24 CHAPTER 1. REVIEW 1.4 Equivalence Relations and Partitions 1.4.1 Equivalence Relations Definition 1.4.1 (Relation) A binary relation or a relation on a set S is a set R of ordered pairs. This is a very

More information

Bounds on the Traveling Salesman Problem

Bounds on the Traveling Salesman Problem Bounds on the Traveling Salesman Problem Sean Zachary Roberson Texas A&M University MATH 613, Graph Theory A common routing problem is as follows: given a collection of stops (for example, towns, stations,

More information

CS 320, Fall Dr. Geri Georg, Instructor 320 NP 1

CS 320, Fall Dr. Geri Georg, Instructor 320 NP 1 NP CS 320, Fall 2017 Dr. Geri Georg, Instructor georg@colostate.edu 320 NP 1 NP Complete A class of problems where: No polynomial time algorithm has been discovered No proof that one doesn t exist 320

More information

Trees. A tree is a graph which is. (a) Connected and. (b) has no cycles (acyclic).

Trees. A tree is a graph which is. (a) Connected and. (b) has no cycles (acyclic). Trees A tree is a graph which is (a) Connected and (b) has no cycles (acyclic). 1 Lemma 1 Let the components of G be C 1, C 2,..., C r, Suppose e = (u, v) / E, u C i, v C j. (a) i = j ω(g + e) = ω(g).

More information

The P versus NP Problem. Ker-I Ko. Stony Brook, New York

The P versus NP Problem. Ker-I Ko. Stony Brook, New York The P versus NP Problem Ker-I Ko Stony Brook, New York ? P = NP One of the seven Millenium Problems The youngest one A folklore question? Has hundreds of equivalent forms Informal Definitions P : Computational

More information

Exam EDAF May 2011, , Vic1. Thore Husfeldt

Exam EDAF May 2011, , Vic1. Thore Husfeldt Exam EDAF05 25 May 2011, 8.00 13.00, Vic1 Thore Husfeldt Instructions What to bring. You can bring any written aid you want. This includes the course book and a dictionary. In fact, these two things are

More information

Hamiltonian Cycle. Zero Knowledge Proof

Hamiltonian Cycle. Zero Knowledge Proof Hamiltonian Cycle Zero Knowledge Proof Hamiltonian cycle Hamiltonian cycle - A path that visits each vertex exactly once, and ends at the same point it started Example Hamiltonian cycle - A path that visits

More information

Ring Sums, Bridges and Fundamental Sets

Ring Sums, Bridges and Fundamental Sets 1 Ring Sums Definition 1 Given two graphs G 1 = (V 1, E 1 ) and G 2 = (V 2, E 2 ) we define the ring sum G 1 G 2 = (V 1 V 2, (E 1 E 2 ) (E 1 E 2 )) with isolated points dropped. So an edge is in G 1 G

More information

MATH 22 HAMILTONIAN GRAPHS. Lecture V: 11/18/2003

MATH 22 HAMILTONIAN GRAPHS. Lecture V: 11/18/2003 MATH 22 Lecture V: 11/18/2003 HAMILTONIAN GRAPHS All communities [graphs] divide themselves into the few and the many [i.e., are bipartite]. Alexander Hamilton, Debates of the Federal Convention Before

More information

Graph fundamentals. Matrices associated with a graph

Graph fundamentals. Matrices associated with a graph Graph fundamentals Matrices associated with a graph Drawing a picture of a graph is one way to represent it. Another type of representation is via a matrix. Let G be a graph with V (G) ={v 1,v,...,v n

More information

Binomial Coefficients MATH Benjamin V.C. Collins, James A. Swenson MATH 2730

Binomial Coefficients MATH Benjamin V.C. Collins, James A. Swenson MATH 2730 MATH 2730 Benjamin V.C. Collins James A. Swenson Binomial coefficients count subsets Definition Suppose A = n. The number of k-element subsets in A is a binomial coefficient, denoted by ( n k or n C k

More information

The main limitation of the concept of a. function

The main limitation of the concept of a. function Relations The main limitation of the concept of a A function, by definition, assigns one output to each input. This means that a function cannot model relationships between sets where some objects on each

More information

Automata and Languages

Automata and Languages Automata and Languages Prof. Mohamed Hamada Software Engineering Lab. The University of Aizu Japan Mathematical Background Mathematical Background Sets Relations Functions Graphs Proof techniques Sets

More information

July 18, Approximation Algorithms (Travelling Salesman Problem)

July 18, Approximation Algorithms (Travelling Salesman Problem) Approximation Algorithms (Travelling Salesman Problem) July 18, 2014 The travelling-salesman problem Problem: given complete, undirected graph G = (V, E) with non-negative integer cost c(u, v) for each

More information

D1 Discrete Mathematics The Travelling Salesperson problem. The Nearest Neighbour Algorithm The Lower Bound Algorithm The Tour Improvement Algorithm

D1 Discrete Mathematics The Travelling Salesperson problem. The Nearest Neighbour Algorithm The Lower Bound Algorithm The Tour Improvement Algorithm 1 iscrete Mathematics The Travelling Salesperson problem The Nearest Neighbour lgorithm The Lower ound lgorithm The Tour Improvement lgorithm The Travelling Salesperson: Typically a travelling salesperson

More information

Relations. Definition 1 Let A and B be sets. A binary relation R from A to B is any subset of A B.

Relations. Definition 1 Let A and B be sets. A binary relation R from A to B is any subset of A B. Chapter 5 Relations Definition 1 Let A and B be sets. A binary relation R from A to B is any subset of A B. If A = B then a relation from A to B is called is called a relation on A. Examples A relation

More information

CS 583: Algorithms. NP Completeness Ch 34. Intractability

CS 583: Algorithms. NP Completeness Ch 34. Intractability CS 583: Algorithms NP Completeness Ch 34 Intractability Some problems are intractable: as they grow large, we are unable to solve them in reasonable time What constitutes reasonable time? Standard working

More information

Warm-up Find the shortest trip (total distance) starting and ending in Chicago and visiting each other city once.

Warm-up Find the shortest trip (total distance) starting and ending in Chicago and visiting each other city once. Warm-up Find the shortest trip (total distance) starting and ending in Chicago and visiting each other city once. Minimum-cost Hamiltonian Circuits Practice Homework time Minneapolis Cleveland 779 354

More information

CS/COE

CS/COE CS/COE 1501 www.cs.pitt.edu/~nlf4/cs1501/ P vs NP But first, something completely different... Some computational problems are unsolvable No algorithm can be written that will always produce the correct

More information

Discrete Mathematics. Benny George K. September 22, 2011

Discrete Mathematics. Benny George K. September 22, 2011 Discrete Mathematics Benny George K Department of Computer Science and Engineering Indian Institute of Technology Guwahati ben@iitg.ernet.in September 22, 2011 Set Theory Elementary Concepts Let A and

More information

Generalized knight s tours on rectangular chessboards

Generalized knight s tours on rectangular chessboards Discrete Applied Mathematics 150 (2005) 80 98 www.elsevier.com/locate/dam Generalized knight s tours on rectangular chessboards G.L. Chia, Siew-Hui Ong Institute of Mathematical Sciences, University of

More information

RECAP: Extremal problems Examples

RECAP: Extremal problems Examples RECAP: Extremal problems Examples Proposition 1. If G is an n-vertex graph with at most n edges then G is disconnected. A Question you always have to ask: Can we improve on this proposition? Answer. NO!

More information

Graphic sequences, adjacency matrix

Graphic sequences, adjacency matrix Chapter 2 Graphic sequences, adjacency matrix Definition 2.1. A sequence of integers (d 1,..., d n ) is called graphic if it is the degree sequence of a graph. Example 2.2. 1. (1, 2, 2, 3) is graphic:

More information

Intro to Contemporary Math

Intro to Contemporary Math Intro to Contemporary Math Hamiltonian Circuits and Nearest Neighbor Algorithm Nicholas Nguyen nicholas.nguyen@uky.edu Department of Mathematics UK Agenda Hamiltonian Circuits and the Traveling Salesman

More information

Midterm 1. Your Exam Room: Name of Person Sitting on Your Left: Name of Person Sitting on Your Right: Name of Person Sitting in Front of You:

Midterm 1. Your Exam Room: Name of Person Sitting on Your Left: Name of Person Sitting on Your Right: Name of Person Sitting in Front of You: CS70 Discrete Mathematics and Probability Theory, Fall 2018 Midterm 1 8:00-10:00pm, 24 September Your First Name: SIGN Your Name: Your Last Name: Your Exam Room: Name of Person Sitting on Your Left: Name

More information

8. INTRACTABILITY I. Lecture slides by Kevin Wayne Copyright 2005 Pearson-Addison Wesley. Last updated on 2/6/18 2:16 AM

8. INTRACTABILITY I. Lecture slides by Kevin Wayne Copyright 2005 Pearson-Addison Wesley. Last updated on 2/6/18 2:16 AM 8. INTRACTABILITY I poly-time reductions packing and covering problems constraint satisfaction problems sequencing problems partitioning problems graph coloring numerical problems Lecture slides by Kevin

More information

Hamiltonian Cycle. Hamiltonian Cycle

Hamiltonian Cycle. Hamiltonian Cycle Hamiltonian Cycle Hamiltonian Cycle Hamiltonian Cycle Problem Hamiltonian Cycle Given a directed graph G, is there a cycle that visits every vertex exactly once? Such a cycle is called a Hamiltonian cycle.

More information

INF210 Datamaskinteori (Models of Computation)

INF210 Datamaskinteori (Models of Computation) INF210 Datamaskinteori (Models of Computation) Textbook: John Martin, Introduction to Languages and the Theory of Computation, McGraw Hill, Third Edition. Fedor V. Fomin Datamaskinteori 1 Datamaskinteori

More information

STRATEGIES OF PROBLEM SOLVING

STRATEGIES OF PROBLEM SOLVING STRATEGIES OF PROBLEM SOLVING Second Edition Maria Nogin Department of Mathematics College of Science and Mathematics California State University, Fresno 2014 2 Chapter 1 Introduction Solving mathematical

More information

Check off these skills when you feel that you have mastered them. Write in your own words the definition of a Hamiltonian circuit.

Check off these skills when you feel that you have mastered them. Write in your own words the definition of a Hamiltonian circuit. Chapter Objectives Check off these skills when you feel that you have mastered them. Write in your own words the definition of a Hamiltonian circuit. Explain the difference between an Euler circuit and

More information

Definition of Algebraic Graph and New Perspective on Chromatic Number

Definition of Algebraic Graph and New Perspective on Chromatic Number Definition of Algebraic Graph and New Perspective on Chromatic Number Gosu Choi February 2019 Abstract This paper is an article on the unusual structure that can be thought on set of simple graph. I discovered

More information

Preliminaries. Graphs. E : set of edges (arcs) (Undirected) Graph : (i, j) = (j, i) (edges) V = {1, 2, 3, 4, 5}, E = {(1, 3), (3, 2), (2, 4)}

Preliminaries. Graphs. E : set of edges (arcs) (Undirected) Graph : (i, j) = (j, i) (edges) V = {1, 2, 3, 4, 5}, E = {(1, 3), (3, 2), (2, 4)} Preliminaries Graphs G = (V, E), V : set of vertices E : set of edges (arcs) (Undirected) Graph : (i, j) = (j, i) (edges) 1 2 3 5 4 V = {1, 2, 3, 4, 5}, E = {(1, 3), (3, 2), (2, 4)} 1 Directed Graph (Digraph)

More information

Tractable & Intractable Problems

Tractable & Intractable Problems Tractable & Intractable Problems We will be looking at : What is a P and NP problem NP-Completeness The question of whether P=NP The Traveling Salesman problem again Programming and Data Structures 1 Polynomial

More information

Worksheet on Relations

Worksheet on Relations Worksheet on Relations Recall the properties that relations can have: Definition. Let R be a relation on the set A. R is reflexive if for all a A we have ara. R is irreflexive or antireflexive if for all

More information

SAT, Coloring, Hamiltonian Cycle, TSP

SAT, Coloring, Hamiltonian Cycle, TSP 1 SAT, Coloring, Hamiltonian Cycle, TSP Slides by Carl Kingsford Apr. 28, 2014 Sects. 8.2, 8.7, 8.5 2 Boolean Formulas Boolean Formulas: Variables: x 1, x 2, x 3 (can be either true or false) Terms: t

More information

Math 2534 Solution to Test 3A Spring 2010

Math 2534 Solution to Test 3A Spring 2010 Math 2534 Solution to Test 3A Spring 2010 Problem 1: (10pts) Prove that R is a transitive relation on Z when given that mrpiff m pmod d (ie. d ( m p) ) Solution: The relation R is transitive, if arb and

More information

Topics in Graph Theory

Topics in Graph Theory Topics in Graph Theory September 4, 2018 1 Preliminaries A graph is a system G = (V, E) consisting of a set V of vertices and a set E (disjoint from V ) of edges, together with an incidence function End

More information

Circuits. CSE 373 Data Structures

Circuits. CSE 373 Data Structures Circuits CSE 373 Data Structures Readings Reading Alas not in your book. So it won t be on the final! Circuits 2 Euler Euler (1707-1783): might be the most prolific mathematician of all times (analysis,

More information

Advanced Topics in Discrete Math: Graph Theory Fall 2010

Advanced Topics in Discrete Math: Graph Theory Fall 2010 21-801 Advanced Topics in Discrete Math: Graph Theory Fall 2010 Prof. Andrzej Dudek notes by Brendan Sullivan October 18, 2010 Contents 0 Introduction 1 1 Matchings 1 1.1 Matchings in Bipartite Graphs...................................

More information

NP-Completeness. CptS 223 Advanced Data Structures. Larry Holder School of Electrical Engineering and Computer Science Washington State University

NP-Completeness. CptS 223 Advanced Data Structures. Larry Holder School of Electrical Engineering and Computer Science Washington State University NP-Completeness CptS 223 Advanced Data Structures Larry Holder School of Electrical Engineering and Computer Science Washington State University 1 Hard Graph Problems Hard means no known solutions with

More information

Greatest Common Divisor MATH Greatest Common Divisor. Benjamin V.C. Collins, James A. Swenson MATH 2730

Greatest Common Divisor MATH Greatest Common Divisor. Benjamin V.C. Collins, James A. Swenson MATH 2730 MATH 2730 Greatest Common Divisor Benjamin V.C. Collins James A. Swenson The world s least necessary definition Definition Let a, b Z, not both zero. The largest integer d such that d a and d b is called

More information

Polynomial-Time Reductions

Polynomial-Time Reductions Reductions 1 Polynomial-Time Reductions Classify Problems According to Computational Requirements Q. Which problems will we be able to solve in practice? A working definition. [von Neumann 1953, Godel

More information

Problem Set 3 Due: Wednesday, October 22nd, 2014

Problem Set 3 Due: Wednesday, October 22nd, 2014 6.89: Algorithmic Lower Bounds Fall 24 Prof. Erik Demaine TAs: Sarah Eisenstat, Jayson Lynch Problem Set 3 Due: Wednesday, October 22nd, 24 Problem. A Tour of Hamiltonicity Variants For each of the following

More information

MATH CIRCLE Session # 2, 9/29/2018

MATH CIRCLE Session # 2, 9/29/2018 MATH CIRCLE Session # 2, 9/29/2018 SOLUTIONS 1. The n-queens Problem. You do NOT need to know how to play chess to work this problem! This is a classical problem; to look it up today on the internet would

More information

Laceable Knights. Michael Dupuis, Univ. of St. Thomas, St. Paul, Minnesota, USA

Laceable Knights. Michael Dupuis, Univ. of St. Thomas, St. Paul, Minnesota, USA Laceable Knights Michael Dupuis, Univ. of St. Thomas, St. Paul, Minnesota, USA dupu3805@stthomas.edu; mdupuis@osii.com; mjd7832@yahoo.com Stan Wagon, Macalester College, St. Paul, Minnesota, USA wagon@macalester.edu,

More information

HW Graph Theory SOLUTIONS (hbovik) - Q

HW Graph Theory SOLUTIONS (hbovik) - Q 1, Diestel 3.5: Deduce the k = 2 case of Menger s theorem (3.3.1) from Proposition 3.1.1. Let G be 2-connected, and let A and B be 2-sets. We handle some special cases (thus later in the induction if these

More information

Institute of Operating Systems and Computer Networks Algorithms Group. Network Algorithms. Tutorial 3: Shortest paths and other stuff

Institute of Operating Systems and Computer Networks Algorithms Group. Network Algorithms. Tutorial 3: Shortest paths and other stuff Institute of Operating Systems and Computer Networks Algorithms Group Network Algorithms Tutorial 3: Shortest paths and other stuff Christian Rieck Shortest paths: Dijkstra s algorithm 2 Dijkstra s algorithm

More information

Hamiltonian circuits in Cayley digraphs. Dan Isaksen. Wayne State University

Hamiltonian circuits in Cayley digraphs. Dan Isaksen. Wayne State University Hamiltonian circuits in Cayley digraphs Dan Isaksen Wayne State University 1 Digraphs Definition. A digraph is a set V and a subset E of V V. The elements of V are called vertices. We think of vertices

More information

Research Collection. Grid exploration. Master Thesis. ETH Library. Author(s): Wernli, Dino. Publication Date: 2012

Research Collection. Grid exploration. Master Thesis. ETH Library. Author(s): Wernli, Dino. Publication Date: 2012 Research Collection Master Thesis Grid exploration Author(s): Wernli, Dino Publication Date: 2012 Permanent Link: https://doi.org/10.3929/ethz-a-007343281 Rights / License: In Copyright - Non-Commercial

More information

Relations. Relations of Sets N-ary Relations Relational Databases Binary Relation Properties Equivalence Relations. Reading (Epp s textbook)

Relations. Relations of Sets N-ary Relations Relational Databases Binary Relation Properties Equivalence Relations. Reading (Epp s textbook) Relations Relations of Sets N-ary Relations Relational Databases Binary Relation Properties Equivalence Relations Reading (Epp s textbook) 8.-8.3. Cartesian Products The symbol (a, b) denotes the ordered

More information

ASSIGNMENT 1 SOLUTIONS

ASSIGNMENT 1 SOLUTIONS MATH 271 ASSIGNMENT 1 SOLUTIONS 1. (a) Let S be the statement For all integers n, if n is even then 3n 11 is odd. Is S true? Give a proof or counterexample. (b) Write out the contrapositive of statement

More information

Malaya J. Mat. 2(3)(2014)

Malaya J. Mat. 2(3)(2014) Malaya J Mat (3)(04) 80-87 On k-step Hamiltonian Bipartite and Tripartite Graphs Gee-Choon Lau a,, Sin-Min Lee b, Karl Schaffer c and Siu-Ming Tong d a Faculty of Comp & Mathematical Sciences, Universiti

More information

Partial cubes: structures, characterizations, and constructions

Partial cubes: structures, characterizations, and constructions Partial cubes: structures, characterizations, and constructions Sergei Ovchinnikov San Francisco State University, Mathematics Department, 1600 Holloway Ave., San Francisco, CA 94132 Abstract Partial cubes

More information

A Dynamic Programming Approach to Counting Hamiltonian Cycles in Bipartite Graphs

A Dynamic Programming Approach to Counting Hamiltonian Cycles in Bipartite Graphs A Dynamic Programming Approach to Counting Hamiltonian Cycles in Bipartite Graphs Patric R. J. Östergård Department of Communications and Networking Aalto University School of Electrical Engineering P.O.

More information

Lecture 4: NP and computational intractability

Lecture 4: NP and computational intractability Chapter 4 Lecture 4: NP and computational intractability Listen to: Find the longest path, Daniel Barret What do we do today: polynomial time reduction NP, co-np and NP complete problems some examples

More information

Cycles in 4-Connected Planar Graphs

Cycles in 4-Connected Planar Graphs Cycles in 4-Connected Planar Graphs Guantao Chen Department of Mathematics & Statistics Georgia State University Atlanta, GA 30303 matgcc@panther.gsu.edu Genghua Fan Institute of Systems Science Chinese

More information

HAMILTONICITY AND FORBIDDEN SUBGRAPHS IN 4-CONNECTED GRAPHS

HAMILTONICITY AND FORBIDDEN SUBGRAPHS IN 4-CONNECTED GRAPHS HAMILTONICITY AND FORBIDDEN SUBGRAPHS IN 4-CONNECTED GRAPHS FLORIAN PFENDER Abstract. Let T be the line graph of the unique tree F on 8 vertices with degree sequence (3, 3, 3,,,,, ), i.e. T is a chain

More information

Reading 11 : Relations and Functions

Reading 11 : Relations and Functions CS/Math 240: Introduction to Discrete Mathematics Fall 2015 Reading 11 : Relations and Functions Instructor: Beck Hasti and Gautam Prakriya In reading 3, we described a correspondence between predicates

More information

Hamiltonian cycles in circulant digraphs with jumps 2, 3, c [We need a real title???]

Hamiltonian cycles in circulant digraphs with jumps 2, 3, c [We need a real title???] Hamiltonian cycles in circulant digraphs with jumps,, c [We need a real title???] Abstract [We need an abstract???] 1 Introduction It is not known which circulant digraphs have hamiltonian cycles; this

More information

Optimization Prof. A. Goswami Department of Mathematics Indian Institute of Technology, Kharagpur. Lecture - 20 Travelling Salesman Problem

Optimization Prof. A. Goswami Department of Mathematics Indian Institute of Technology, Kharagpur. Lecture - 20 Travelling Salesman Problem Optimization Prof. A. Goswami Department of Mathematics Indian Institute of Technology, Kharagpur Lecture - 20 Travelling Salesman Problem Today we are going to discuss the travelling salesman problem.

More information

Algorithms Design & Analysis. Approximation Algorithm

Algorithms Design & Analysis. Approximation Algorithm Algorithms Design & Analysis Approximation Algorithm Recap External memory model Merge sort Distribution sort 2 Today s Topics Hard problem Approximation algorithms Metric traveling salesman problem A

More information

CSC Discrete Math I, Spring Relations

CSC Discrete Math I, Spring Relations CSC 125 - Discrete Math I, Spring 2017 Relations Binary Relations Definition: A binary relation R from a set A to a set B is a subset of A B Note that a relation is more general than a function Example:

More information

Graphs with few total dominating sets

Graphs with few total dominating sets Graphs with few total dominating sets Marcin Krzywkowski marcin.krzywkowski@gmail.com Stephan Wagner swagner@sun.ac.za Abstract We give a lower bound for the number of total dominating sets of a graph

More information

Observation 4.1 G has a proper separation of order 0 if and only if G is disconnected.

Observation 4.1 G has a proper separation of order 0 if and only if G is disconnected. 4 Connectivity 2-connectivity Separation: A separation of G of order k is a pair of subgraphs (H 1, H 2 ) so that H 1 H 2 = G E(H 1 ) E(H 2 ) = V (H 1 ) V (H 2 ) = k Such a separation is proper if V (H

More information

On uniquely 3-colorable plane graphs without prescribed adjacent faces 1

On uniquely 3-colorable plane graphs without prescribed adjacent faces 1 arxiv:509.005v [math.co] 0 Sep 05 On uniquely -colorable plane graphs without prescribed adjacent faces Ze-peng LI School of Electronics Engineering and Computer Science Key Laboratory of High Confidence

More information

A Markov Chain Inspired View of Hamiltonian Cycle Problem

A Markov Chain Inspired View of Hamiltonian Cycle Problem A Markov Chain Inspired View of Hamiltonian Cycle Problem December 12, 2012 I hereby acknowledge valuable collaboration with: W. Murray (Stanford University) V.S. Borkar (Tata Inst. for Fundamental Research)

More information

Traveling Salesman Problem

Traveling Salesman Problem Traveling Salesman Problem Zdeněk Hanzálek hanzalek@fel.cvut.cz CTU in Prague April 17, 2017 Z. Hanzálek (CTU) Traveling Salesman Problem April 17, 2017 1 / 33 1 Content 2 Solved TSP instances in pictures

More information

Graph Theory. Thomas Bloom. February 6, 2015

Graph Theory. Thomas Bloom. February 6, 2015 Graph Theory Thomas Bloom February 6, 2015 1 Lecture 1 Introduction A graph (for the purposes of these lectures) is a finite set of vertices, some of which are connected by a single edge. Most importantly,

More information

UCSD CSE 21, Spring 2014 [Section B00] Mathematics for Algorithm and System Analysis

UCSD CSE 21, Spring 2014 [Section B00] Mathematics for Algorithm and System Analysis UCSD CSE 21, Spring 2014 [Section B00] Mathematics for Algorithm and System Analysis Lecture 10 Class URL: http://vlsicad.ucsd.edu/courses/cse21-s14/ Lecture 10 Notes Midterm Good job overall! = 81; =

More information

Theory of Computer Science. Theory of Computer Science. E5.1 Routing Problems. E5.2 Packing Problems. E5.3 Conclusion.

Theory of Computer Science. Theory of Computer Science. E5.1 Routing Problems. E5.2 Packing Problems. E5.3 Conclusion. Theory of Computer Science May 31, 2017 E5. Some NP-Complete Problems, Part II Theory of Computer Science E5. Some NP-Complete Problems, Part II E5.1 Routing Problems Malte Helmert University of Basel

More information

NP and Computational Intractability

NP and Computational Intractability NP and Computational Intractability 1 Polynomial-Time Reduction Desiderata'. Suppose we could solve X in polynomial-time. What else could we solve in polynomial time? don't confuse with reduces from Reduction.

More information

Graph Algorithms in Bioinformatics

Graph Algorithms in Bioinformatics Graph Algorithms in Bioinformatics Outline 1. Introduction to Graph Theory 2. The Hamiltonian & Eulerian Cycle Problems 3. Basic Biological Applications of Graph Theory 4. DNA Sequencing 5. Shortest Superstring

More information

Exam Practice Problems

Exam Practice Problems Math 231 Exam Practice Problems WARNING: This is not a sample test. Problems on the exams may or may not be similar to these problems. These problems are just intended to focus your study of the topics.

More information

COMP4141 Theory of Computation

COMP4141 Theory of Computation COMP4141 Theory of Computation Lecture 4 Regular Languages cont. Ron van der Meyden CSE, UNSW Revision: 2013/03/14 (Credits: David Dill, Thomas Wilke, Kai Engelhardt, Peter Höfner, Rob van Glabbeek) Regular

More information

} } } Lecture 23: Computational Complexity. Lecture Overview. Definitions: EXP R. uncomputable/ undecidable P C EXP C R = = Examples

} } } Lecture 23: Computational Complexity. Lecture Overview. Definitions: EXP R. uncomputable/ undecidable P C EXP C R = = Examples Lecture 23 Computational Complexity 6.006 Fall 2011 Lecture 23: Computational Complexity Lecture Overview P, EXP, R Most problems are uncomputable NP Hardness & completeness Reductions Definitions: P =

More information

5. Partitions and Relations Ch.22 of PJE.

5. Partitions and Relations Ch.22 of PJE. 5. Partitions and Relations Ch. of PJE. We now generalize the ideas of congruence classes of Z to classes of any set X. The properties of congruence classes that we start with here are that they are disjoint

More information

Chapter 9: Relations Relations

Chapter 9: Relations Relations Chapter 9: Relations 9.1 - Relations Definition 1 (Relation). Let A and B be sets. A binary relation from A to B is a subset R A B, i.e., R is a set of ordered pairs where the first element from each pair

More information

Data Structures and Algorithms

Data Structures and Algorithms Data Structures and Algorithms CS245-2015S-23 NP-Completeness and Undecidablity David Galles Department of Computer Science University of San Francisco 23-0: Hard Problems Some algorithms take exponential

More information

Graduate Algorithms CS F-21 NP & Approximation Algorithms

Graduate Algorithms CS F-21 NP & Approximation Algorithms Graduate Algorithms CS673-2016F-21 NP & Approximation Algorithms David Galles Department of Computer Science University of San Francisco 21-0: Classes of Problems Consider three problem classes: Polynomial

More information

arxiv:math/ v1 [math.gt] 14 Nov 2003

arxiv:math/ v1 [math.gt] 14 Nov 2003 AUTOMORPHISMS OF TORELLI GROUPS arxiv:math/0311250v1 [math.gt] 14 Nov 2003 JOHN D. MCCARTHY AND WILLIAM R. VAUTAW Abstract. In this paper, we prove that each automorphism of the Torelli group of a surface

More information

Chapter 2 - Relations

Chapter 2 - Relations Chapter 2 - Relations Chapter 2: Relations We could use up two Eternities in learning all that is to be learned about our own world and the thousands of nations that have arisen and flourished and vanished

More information

CS 70 Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand Midterm 1 Solutions

CS 70 Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand Midterm 1 Solutions CS 70 Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand Midterm 1 Solutions PRINT Your Name: Answer: Oski Bear SIGN Your Name: PRINT Your Student ID: CIRCLE your exam room: Dwinelle

More information

MATH 2200 Final Review

MATH 2200 Final Review MATH 00 Final Review Thomas Goller December 7, 01 1 Exam Format The final exam will consist of 8-10 proofs It will take place on Tuesday, December 11, from 10:30 AM - 1:30 PM, in the usual room Topics

More information

International Journal of Trend in Research and Development, Volume 3(5), ISSN: Hamiltonian and Eulerian Cycles

International Journal of Trend in Research and Development, Volume 3(5), ISSN: Hamiltonian and Eulerian Cycles Hamiltonian and Eulerian Cycles Vidhi Sutaria M.Tech in Information and Network Security, Computer Science and Engineering Department, Institute of Technology, Nirma University, Ahmadabad, Gujarat, India

More information

Design and Analysis of Algorithms

Design and Analysis of Algorithms Design and Analysis of Algorithms CSE 5311 Lecture 25 NP Completeness Junzhou Huang, Ph.D. Department of Computer Science and Engineering CSE5311 Design and Analysis of Algorithms 1 NP-Completeness Some

More information

Graph G = (V, E). V ={vertices}, E={edges}. V={a,b,c,d,e,f,g,h,k} E={(a,b),(a,g),( a,h),(a,k),(b,c),(b,k),...,(h,k)}

Graph G = (V, E). V ={vertices}, E={edges}. V={a,b,c,d,e,f,g,h,k} E={(a,b),(a,g),( a,h),(a,k),(b,c),(b,k),...,(h,k)} Graph Theory Graph G = (V, E). V ={vertices}, E={edges}. a b c h k d g f e V={a,b,c,d,e,f,g,h,k} E={(a,b),(a,g),( a,h),(a,k),(b,c),(b,k),...,(h,k)} E =16. Digraph D = (V, A). V ={vertices}, E={edges}.

More information