Worksheet on Relations

Size: px
Start display at page:

Download "Worksheet on Relations"

Transcription

1 Worksheet on Relations Recall the properties that relations can have: Definition. Let R be a relation on the set A. R is reflexive if for all a A we have ara. R is irreflexive or antireflexive if for all a A we have a Ra. R is symmetric if for all a, b A we have arb bra. R is antisymmetric if for all a, b A we have (arb bra) = a = b. R is transitive if for all a, b, c A we have (arb brc) = arc. Example 1. Let A = {1, 2}. (a) List all the elements of A A. (b) List all possible relations we can define on the set A. 1

2 1 Approach A: brute force Example 2. For each R i we can ask 5 questions: Is it reflexive? Is it anti-reflexive? Is it symmetric? Is it anti-symmetric? Is it transitive? This gives us 80 true or false questions. How many do you want to do? Is there a better way to do it? A.1. Is R 1 reflexive? A.21. Is R 5 reflexive? A.41. Is R 9 reflexive? A.61. Is R 13 reflexive? A.2. Is R 1 anti-reflexive? A.22. Is R 5 anti-reflexive? A.42. Is R 9 anti-reflexive? A.62. Is R 13 anti-reflexive? A.3. Is R 1 symmetric? A.23. Is R 5 symmetric? A.43. Is R 9 symmetric? A.63. Is R 13 symmetric? A.4. Is R 1 anti-symmetric? A.24. Is R 5 anti-symmetric? A.44. Is R 9 anti-symmetric? A.64. Is R 13 anti-symmetric? A.5. Is R 1 transitive? A.25. Is R 5 transitive? A.45. Is R 9 transitive? A.65. Is R 13 transitive? A.6. Is R 2 reflexive? A.26. Is R 6 reflexive? A.46. Is R 10 reflexive? A.66. Is R 14 reflexive? A.7. Is R 2 anti-reflexive? A.27. Is R 6 anti-reflexive? A.47. Is R 10 anti-reflexive? A.67. Is R 14 anti-reflexive? A.8. Is R 2 symmetric? A.28. Is R 6 symmetric? A.48. Is R 10 symmetric? A.68. Is R 14 symmetric? A.9. Is R 2 anti-symmetric? A.29. Is R 6 anti-symmetric? A.49. Is R 10 anti-symmetric? A.69. Is R 14 anti-symmetric? A.10. Is R 2 transitive? A.30. Is R 6 transitive? A.50. Is R 10 transitive? A.70. Is R 14 transitive? A.11. Is R 3 reflexive? A.31. Is R 7 reflexive? A.51. Is R 11 reflexive? A.71. Is R 15 reflexive? A.12. Is R 3 anti-reflexive? A.32. Is R 7 anti-reflexive? A.52. Is R 11 anti-reflexive? A.72. Is R 15 anti-reflexive? A.13. Is R 3 symmetric? A.33. Is R 7 symmetric? A.53. Is R 11 symmetric? A.73. Is R 15 symmetric? A.14. Is R 3 anti-symmetric? A.34. Is R 7 anti-symmetric? A.54. Is R 11 anti-symmetric? A.74. Is R 15 anti-symmetric? A.15. Is R 3 transitive? A.35. Is R 7 transitive? A.55. Is R 11 transitive? A.75. Is R 15 transitive? A.16. Is R 4 reflexive? A.36. Is R 8 reflexive? A.56. Is R 12 reflexive? A.76. Is R 16 reflexive? A.17. Is R 4 anti-reflexive? A.37. Is R 8 anti-reflexive? A.57. Is R 12 anti-reflexive? A.77. Is R 16 anti-reflexive? A.18. Is R 4 symmetric? A.38. Is R 8 symmetric? A.58. Is R 12 symmetric? A.78. Is R 16 symmetric? A.19. Is R 4 anti-symmetric? A.39. Is R 8 anti-symmetric? A.59. Is R 12 anti-symmetric? A.79. Is R 16 anti-symmetric? A.20. Is R 4 transitive? A.40. Is R 8 transitive? A.60. Is R 12 transitive? A.80. Is R 16 transitive?

3 Example 3. The relations and properties can be arranged in a grid like this. How many would you like to mark as T/F? Is there more we can do to reveal the patterns? Reflexive antireflexive symmetric antisymmetric transitive R 1 R 2 R 3 R 4 R 5 R 6 R 7 R 8 R 9 R 10 R 11 R 12 R 13 R 14 R 15 R 16 3

4 2 Approach B: Logic and Patterns As you, a young mathematician, contemplate answering all the questions about which relation has which property, you should naturally start wondering if there are patterns, shortcuts, etc. There are definitely some logical connections you can make and let me lay a little groundwork for them. 2.1 Inheritance of Properties Let s turn the problem around: once we ve shown that a certain relation has a certain property, maybe that property is inherited by other relations. Here s what I mean by that. Example 4. (a) Show that the reflexive property is inherited by supersets (i.e. if R is reflexive and R S then S is reflexive). (b) Show that the antireflexive property is inherited by subsets. (i.e. if R is antireflexive and S R then S is antireflexive). (c) Show that the symmetric property is inherited by unions and intersections (i.e. if R and S are symmetric then so is R S and R S). (d) Show that the antisymmetric property is inherited by subsets. (i.e. if R is antisymmetric and S R then S is antisymmetric). (e) Show that the transitive property is inherited by intersections. (i.e. if R and S are transitive then so is R S). Example 5. Fill in the indicated properties that are inherited, or not, in the table below T/F for inherited Reflexive antireflexive symmetric antisymmetric transitive supersets subsets intersections unions 4

5 2.2 Hasse Diagrams To see how the above concepts might be helpful, let s make a Hasse diagram of the relations. If A is a finite set that has a partial order, we often picture the elements of A and their order using what s called a Hasse diagram. A Hasse diagram is a type of directed graph where we represent elements of A in a picture. Given two elements x and y with xry, and where no element is between them in the partial order, then we place y higher up in the picture and connect them with an edge. For instance, here are two examples of Hasse diagrams A = {1, 2, 3, 4} and is the usual order. 1 A = {x N x 12} and is the order. For instance in the second diagram we see that 2 4 and that We don t show, but it is implied by transitivity, that We see that both 2 and 3 divide 6, etc. You can see also least common multiples, e.g. to find the least common multiple of 4 and 6 go up until you find the smallest element that is connected to both of them. To find the greatest common divisor you go down until you find the largest element that is connected to both numbers. Example 6. Some of our relations are partial orders, but the collection of all our relations is a partial order. The order is. Make the Hasse diagram for our relations R 1,..., R 16. (Remember, relations are just subsets of A A, so this is really the Hasse diagram for P(A A). If you like you can cheat and look at the Wikipedia page on Hasse diagrams. But remember to use our notation, R 1,..., R 16. For instance, you should have R 2 R 6 in the diagram, with R 6 higher up the diagram.) 5

6 Before you do the next three problems, you might want to do two things. (1) Make three copies of your Hasse diagram from the previous problem. (2) Practice looking at Hasse diagrams to see which set contains which one, and also, therefore, to see intersections and unions. So, for instance, you should be able to look at your diagram to see that R 3 R 10, because there should be a line going up from R 3 directly to R 10. In a similar way, consider R 9 and R 11. Neither of these contains the other, since there is no line connecting them. But, you should be able to see that R 9 R 11 = R 15, because there is a line going up from R 9 to R 15, and a line going up from R 11 to R 15. So R 15 contains both R 9 and R 11, and it is the smallest set that contains them both. In a similar way you should be able find the union of any two sets. Similarly, you should be able to see that R 9 R 11 = R 4, since there are lines going down from R 9 and R 11 directly to R 4. In a similar way you should be able to find the intersection of any two sets. As you do the next three problems, always be looking for patterns in the diagrams based on subsets, supersets, intersections and unions. Example 7. Take your first copy of the Hasse diagram and pick two colors, one for reflexive and one for antireflexive. Color R 8 as reflexive. The reflexive property is inherited by supersets. Use this to color the rest of the nodes on the diagram that are reflexive. Color R 9 as antireflexive. The antireflexive property is inherited by subsets. Use this to color the rest of the nodes on the diagram that are reflexive. Example 8. Take another copy of your diagram, and use two colors: one for symmetric and one for antisymmetric. Color in R 2, R 5, R 12 and R 15 for being symmetric. The property of symmetric is inherited by unions and by intersections. Apply these two facts to color the rest of the relations that are symmetric. Color in R 13 and R 14 for being antisymmetric. The property of antisymmetric is inherited by subsets. Use this to color the rest of the relations that are antisymmetric. Example 9. Take another copy of your diagram, and use one color for transitive. Color in R 6, R 7, R 10, R 11, R 13, R 14 and R 16 for being transitive. The transitive property is inherited by intersections. Use this fact to color in the rest of the relations that are transitive. 6

7 2.3 Overlapping Properties for Relations Let X be any nonempty set. Define two particular, single relations on X = the empty relation (i.e. nothing is related to anything else E = equality = {(x, y) X X x = y} Example 10. The picture below is a Venn diagram on the collection of relations (based on this article by Pfeiffer): Reflexive Transitive Antireflexive E Antisymmetric Symmetric The diagram is meant to be interpreted as follows: The two small black circles represent unique relations. The black circle on the left is E: the only relation that is reflexive, transitive, symmetric and antisymmetric. The black circle on the right is the empty relation. The intersections of different collections are shown as is usual in a Venn diagram. For example, relations that are both reflexive and transitive would be shown in the overlapping ovals labeled with those properties. The black shaded area shows combinations that do not exist. See how many logical statements about relations you can come up with based on the diagram above. Extra Credit: (1) Can you redraw the above Venn diagram in some way to make it nicer? Be creative, come up with your own ideas for making it nicer. (Here are some prompts: use colors. Eliminate areas that are filled in since they represent combinations that don t exist. Maybe represent subsets of E somehow.) (2) How many properties can you write down based on the above Venn diagram? (3) Prove some of the properties you just wrote down. 2.4 Counting relations Example 11. How many relations out of R 1,...,R 16 are reflexive? Antireflexive? Symmetric? Antisymmetric? Transitive? Partial orders? Equivalence relations? 7

Reading 11 : Relations and Functions

Reading 11 : Relations and Functions CS/Math 240: Introduction to Discrete Mathematics Fall 2015 Reading 11 : Relations and Functions Instructor: Beck Hasti and Gautam Prakriya In reading 3, we described a correspondence between predicates

More information

Chapter VI. Relations. Assumptions are the termites of relationships. Henry Winkler

Chapter VI. Relations. Assumptions are the termites of relationships. Henry Winkler Chapter VI Relations Assumptions are the termites of relationships. Henry Winkler Studying relationships between objects can yield important information about the objects themselves. In the real numbers,

More information

Relations Graphical View

Relations Graphical View Introduction Relations Computer Science & Engineering 235: Discrete Mathematics Christopher M. Bourke cbourke@cse.unl.edu Recall that a relation between elements of two sets is a subset of their Cartesian

More information

Chapter 6. Relations. 6.1 Relations

Chapter 6. Relations. 6.1 Relations Chapter 6 Relations Mathematical relations are an extremely general framework for specifying relationships between pairs of objects. This chapter surveys the types of relations that can be constructed

More information

Solutions to In Class Problems Week 4, Mon.

Solutions to In Class Problems Week 4, Mon. Massachusetts Institute of Technology 6.042J/18.062J, Fall 05: Mathematics for Computer Science September 26 Prof. Albert R. Meyer and Prof. Ronitt Rubinfeld revised September 26, 2005, 1050 minutes Solutions

More information

Notes. Relations. Introduction. Notes. Relations. Notes. Definition. Example. Slides by Christopher M. Bourke Instructor: Berthe Y.

Notes. Relations. Introduction. Notes. Relations. Notes. Definition. Example. Slides by Christopher M. Bourke Instructor: Berthe Y. Relations Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry Spring 2006 Computer Science & Engineering 235 Introduction to Discrete Mathematics Sections 7.1, 7.3 7.5 of Rosen cse235@cse.unl.edu

More information

Discrete Mathematics. W. Ethan Duckworth. Fall 2017, Loyola University Maryland

Discrete Mathematics. W. Ethan Duckworth. Fall 2017, Loyola University Maryland Discrete Mathematics W. Ethan Duckworth Fall 2017, Loyola University Maryland Contents 1 Introduction 4 1.1 Statements......................................... 4 1.2 Constructing Direct Proofs................................

More information

14 Equivalence Relations

14 Equivalence Relations 14 Equivalence Relations Tom Lewis Fall Term 2010 Tom Lewis () 14 Equivalence Relations Fall Term 2010 1 / 10 Outline 1 The definition 2 Congruence modulo n 3 Has-the-same-size-as 4 Equivalence classes

More information

Chapter 9: Relations Relations

Chapter 9: Relations Relations Chapter 9: Relations 9.1 - Relations Definition 1 (Relation). Let A and B be sets. A binary relation from A to B is a subset R A B, i.e., R is a set of ordered pairs where the first element from each pair

More information

Sets. Alice E. Fischer. CSCI 1166 Discrete Mathematics for Computing Spring, Outline Sets An Algebra on Sets Summary

Sets. Alice E. Fischer. CSCI 1166 Discrete Mathematics for Computing Spring, Outline Sets An Algebra on Sets Summary An Algebra on Alice E. Fischer CSCI 1166 Discrete Mathematics for Computing Spring, 2018 Alice E. Fischer... 1/37 An Algebra on 1 Definitions and Notation Venn Diagrams 2 An Algebra on 3 Alice E. Fischer...

More information

Relations. Definition 1 Let A and B be sets. A binary relation R from A to B is any subset of A B.

Relations. Definition 1 Let A and B be sets. A binary relation R from A to B is any subset of A B. Chapter 5 Relations Definition 1 Let A and B be sets. A binary relation R from A to B is any subset of A B. If A = B then a relation from A to B is called is called a relation on A. Examples A relation

More information

Solving and Graphing Inequalities

Solving and Graphing Inequalities Solving and Graphing Inequalities Graphing Simple Inequalities: x > 3 When finding the solution for an equation we get one answer for x. (There is only one number that satisfies the equation.) For 3x 5

More information

Section Summary. Relations and Functions Properties of Relations. Combining Relations

Section Summary. Relations and Functions Properties of Relations. Combining Relations Chapter 9 Chapter Summary Relations and Their Properties n-ary Relations and Their Applications (not currently included in overheads) Representing Relations Closures of Relations (not currently included

More information

1.4 Equivalence Relations and Partitions

1.4 Equivalence Relations and Partitions 24 CHAPTER 1. REVIEW 1.4 Equivalence Relations and Partitions 1.4.1 Equivalence Relations Definition 1.4.1 (Relation) A binary relation or a relation on a set S is a set R of ordered pairs. This is a very

More information

Automata and Languages

Automata and Languages Automata and Languages Prof. Mohamed Hamada Software Engineering Lab. The University of Aizu Japan Mathematical Background Mathematical Background Sets Relations Functions Graphs Proof techniques Sets

More information

Relations, Functions, and Sequences

Relations, Functions, and Sequences MCS-236: Graph Theory Handout #A3 San Skulrattanakulchai Gustavus Adolphus College Sep 13, 2010 Relations, Functions, and Sequences Relations An ordered pair can be constructed from any two mathematical

More information

The main limitation of the concept of a. function

The main limitation of the concept of a. function Relations The main limitation of the concept of a A function, by definition, assigns one output to each input. This means that a function cannot model relationships between sets where some objects on each

More information

In mathematics there are endless ways that two entities can be related

In mathematics there are endless ways that two entities can be related CHAPTER 16 Relations In mathematics there are endless ways that two entities can be related to each other. Consider the following mathematical statements. 5 < 10 5 5 6 = 30 5 5 80 7 > 4 x y 8 3 a b ( mod

More information

RED. Name: Instructor: Pace Nielsen Math 290 Section 1: Winter 2014 Final Exam

RED. Name: Instructor: Pace Nielsen Math 290 Section 1: Winter 2014 Final Exam RED Name: Instructor: Pace Nielsen Math 290 Section 1: Winter 2014 Final Exam Note that the first 10 questions are true-false. Mark A for true, B for false. Questions 11 through 20 are multiple choice

More information

Relations MATH Relations. Benjamin V.C. Collins, James A. Swenson MATH 2730

Relations MATH Relations. Benjamin V.C. Collins, James A. Swenson MATH 2730 MATH 2730 Benjamin V.C. Collins James A. Swenson among integers equals a = b is true for some pairs (a, b) Z Z, but not for all pairs. is less than a < b is true for some pairs (a, b) Z Z, but not for

More information

Sets and Motivation for Boolean algebra

Sets and Motivation for Boolean algebra SET THEORY Basic concepts Notations Subset Algebra of sets The power set Ordered pairs and Cartesian product Relations on sets Types of relations and their properties Relational matrix and the graph of

More information

Section 20: Arrow Diagrams on the Integers

Section 20: Arrow Diagrams on the Integers Section 0: Arrow Diagrams on the Integers Most of the material we have discussed so far concerns the idea and representations of functions. A function is a relationship between a set of inputs (the leave

More information

Relations. P. Danziger. We may represent a relation by a diagram in which a line is drawn between two elements if they are related.

Relations. P. Danziger. We may represent a relation by a diagram in which a line is drawn between two elements if they are related. - 10 Relations P. Danziger 1 Relations (10.1) Definition 1 1. A relation from a set A to a set B is a subset R of A B. 2. Given (x, y) R we say that x is related to y and write xry. 3. If (x, y) R we say

More information

MAD 3105 PRACTICE TEST 2 SOLUTIONS

MAD 3105 PRACTICE TEST 2 SOLUTIONS MAD 3105 PRACTICE TEST 2 SOLUTIONS 1. Let R be the relation defined below. Determine which properties, reflexive, irreflexive, symmetric, antisymmetric, transitive, the relation satisfies. Prove each answer.

More information

Show Your Work! Point values are in square brackets. There are 35 points possible. Some facts about sets are on the last page.

Show Your Work! Point values are in square brackets. There are 35 points possible. Some facts about sets are on the last page. Formal Methods Name: Key Midterm 2, Spring, 2007 Show Your Work! Point values are in square brackets. There are 35 points possible. Some facts about sets are on the last page.. Determine whether each of

More information

Problem 2: (Section 2.1 Exercise 10) (a.) How many elements are in the power set of the power set of the empty set?

Problem 2: (Section 2.1 Exercise 10) (a.) How many elements are in the power set of the power set of the empty set? Assignment 4 Solutions Problem1: (Section 2.1 Exercise 9) (a.) List all the subsets of the set {a, b, c, d} which contain: (i.) four elements (ii.) three elements (iii.) two elements (iv.) one element

More information

Equivalence relations

Equivalence relations Equivalence relations R A A is an equivalence relation if R is 1. reflexive (a, a) R 2. symmetric, and (a, b) R (b, a) R 3. transitive. (a, b), (b, c) R (a, c) R Example: Let S be a relation on people

More information

CSC Discrete Math I, Spring Relations

CSC Discrete Math I, Spring Relations CSC 125 - Discrete Math I, Spring 2017 Relations Binary Relations Definition: A binary relation R from a set A to a set B is a subset of A B Note that a relation is more general than a function Example:

More information

Name: Block: Unit 2 Inequalities

Name: Block: Unit 2 Inequalities Name: Block: Unit 2 Inequalities 2.1 Graphing and Writing Inequalities 2.2 Solving by Adding and Subtracting 2.3 Solving by Multiplying and Dividing 2.4 Solving Two Step and Multi Step Inequalities 2.5

More information

1. (B) The union of sets A and B is the set whose elements belong to at least one of A

1. (B) The union of sets A and B is the set whose elements belong to at least one of A 1. (B) The union of sets A and B is the set whose elements belong to at least one of A or B. Thus, A B = { 2, 1, 0, 1, 2, 5}. 2. (A) The intersection of sets A and B is the set whose elements belong to

More information

Chapter 2 - Relations

Chapter 2 - Relations Chapter 2 - Relations Chapter 2: Relations We could use up two Eternities in learning all that is to be learned about our own world and the thousands of nations that have arisen and flourished and vanished

More information

CHAPTER 1. Relations. 1. Relations and Their Properties. Discussion

CHAPTER 1. Relations. 1. Relations and Their Properties. Discussion CHAPTER 1 Relations 1. Relations and Their Properties 1.1. Definition of a Relation. Definition 1.1.1. A binary relation from a set A to a set B is a subset R A B. If (a, b) R we say a is Related to b

More information

Definition: A binary relation R from a set A to a set B is a subset R A B. Example:

Definition: A binary relation R from a set A to a set B is a subset R A B. Example: Chapter 9 1 Binary Relations Definition: A binary relation R from a set A to a set B is a subset R A B. Example: Let A = {0,1,2} and B = {a,b} {(0, a), (0, b), (1,a), (2, b)} is a relation from A to B.

More information

Math 2534 Solution to Test 3A Spring 2010

Math 2534 Solution to Test 3A Spring 2010 Math 2534 Solution to Test 3A Spring 2010 Problem 1: (10pts) Prove that R is a transitive relation on Z when given that mrpiff m pmod d (ie. d ( m p) ) Solution: The relation R is transitive, if arb and

More information

SET THEORY. Disproving an Alleged Set Property. Disproving an Alleged Set. Example 1 Solution CHAPTER 6

SET THEORY. Disproving an Alleged Set Property. Disproving an Alleged Set. Example 1 Solution CHAPTER 6 CHAPTER 6 SET THEORY SECTION 6.3 Disproofs, Algebraic Proofs, and Boolean Algebras Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. Disproving an Alleged

More information

ASSIGNMENT 1 SOLUTIONS

ASSIGNMENT 1 SOLUTIONS MATH 271 ASSIGNMENT 1 SOLUTIONS 1. (a) Let S be the statement For all integers n, if n is even then 3n 11 is odd. Is S true? Give a proof or counterexample. (b) Write out the contrapositive of statement

More information

Finite Math Section 6_1 Solutions and Hints

Finite Math Section 6_1 Solutions and Hints Finite Math Section 6_1 Solutions and Hints by Brent M. Dingle for the book: Finite Mathematics, 7 th Edition by S. T. Tan. DO NOT PRINT THIS OUT AND TURN IT IN!!!!!!!! This is designed to assist you in

More information

Sets. A set is a collection of objects without repeats. The size or cardinality of a set S is denoted S and is the number of elements in the set.

Sets. A set is a collection of objects without repeats. The size or cardinality of a set S is denoted S and is the number of elements in the set. Sets A set is a collection of objects without repeats. The size or cardinality of a set S is denoted S and is the number of elements in the set. If A and B are sets, then the set of ordered pairs each

More information

Lecture Notes 1 Basic Concepts of Mathematics MATH 352

Lecture Notes 1 Basic Concepts of Mathematics MATH 352 Lecture Notes 1 Basic Concepts of Mathematics MATH 352 Ivan Avramidi New Mexico Institute of Mining and Technology Socorro, NM 87801 June 3, 2004 Author: Ivan Avramidi; File: absmath.tex; Date: June 11,

More information

5. Partitions and Relations Ch.22 of PJE.

5. Partitions and Relations Ch.22 of PJE. 5. Partitions and Relations Ch. of PJE. We now generalize the ideas of congruence classes of Z to classes of any set X. The properties of congruence classes that we start with here are that they are disjoint

More information

a + b = b + a and a b = b a. (a + b) + c = a + (b + c) and (a b) c = a (b c). a (b + c) = a b + a c and (a + b) c = a c + b c.

a + b = b + a and a b = b a. (a + b) + c = a + (b + c) and (a b) c = a (b c). a (b + c) = a b + a c and (a + b) c = a c + b c. Properties of the Integers The set of all integers is the set and the subset of Z given by Z = {, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, }, N = {0, 1, 2, 3, 4, }, is the set of nonnegative integers (also called

More information

Properties of the Integers

Properties of the Integers Properties of the Integers The set of all integers is the set and the subset of Z given by Z = {, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, }, N = {0, 1, 2, 3, 4, }, is the set of nonnegative integers (also called

More information

COMP 182 Algorithmic Thinking. Relations. Luay Nakhleh Computer Science Rice University

COMP 182 Algorithmic Thinking. Relations. Luay Nakhleh Computer Science Rice University COMP 182 Algorithmic Thinking Relations Luay Nakhleh Computer Science Rice University Chapter 9, Section 1-6 Reading Material When we defined the Sorting Problem, we stated that to sort the list, the elements

More information

A is a subset of (contained in) B A B iff x A = x B Socrates is a man. All men are mortal. A = B iff A B and B A. A B means A is a proper subset of B

A is a subset of (contained in) B A B iff x A = x B Socrates is a man. All men are mortal. A = B iff A B and B A. A B means A is a proper subset of B Subsets C-N Math 207 - Massey, 71 / 125 Sets A is a subset of (contained in) B A B iff x A = x B Socrates is a man. All men are mortal. A = B iff A B and B A x A x B A B means A is a proper subset of B

More information

Sets. Subsets. for any set A, A and A A vacuously true: if x then x A transitivity: A B, B C = A C N Z Q R C. C-N Math Massey, 72 / 125

Sets. Subsets. for any set A, A and A A vacuously true: if x then x A transitivity: A B, B C = A C N Z Q R C. C-N Math Massey, 72 / 125 Subsets Sets A is a subset of (contained in) B A B iff x A = x B Socrates is a man. All men are mortal. A = B iff A B and B A x A x B A B means A is a proper subset of B A B but A B, so x B x / A Illustrate

More information

Chapter 1 Review of Equations and Inequalities

Chapter 1 Review of Equations and Inequalities Chapter 1 Review of Equations and Inequalities Part I Review of Basic Equations Recall that an equation is an expression with an equal sign in the middle. Also recall that, if a question asks you to solve

More information

Relations. Relations of Sets N-ary Relations Relational Databases Binary Relation Properties Equivalence Relations. Reading (Epp s textbook)

Relations. Relations of Sets N-ary Relations Relational Databases Binary Relation Properties Equivalence Relations. Reading (Epp s textbook) Relations Relations of Sets N-ary Relations Relational Databases Binary Relation Properties Equivalence Relations Reading (Epp s textbook) 8.-8.3. Cartesian Products The symbol (a, b) denotes the ordered

More information

Homework 1 2/7/2018 SOLUTIONS Exercise 1. (a) Graph the following sets (i) C = {x R x in Z} Answer:

Homework 1 2/7/2018 SOLUTIONS Exercise 1. (a) Graph the following sets (i) C = {x R x in Z} Answer: Homework 1 2/7/2018 SOLTIONS Eercise 1. (a) Graph the following sets (i) C = { R in Z} nswer: 0 R (ii) D = {(, y), y in R,, y 2}. nswer: = 2 y y = 2 (iii) C C nswer: y 1 2 (iv) (C C) D nswer: = 2 y y =

More information

MITOCW Lec 11 MIT 6.042J Mathematics for Computer Science, Fall 2010

MITOCW Lec 11 MIT 6.042J Mathematics for Computer Science, Fall 2010 MITOCW Lec 11 MIT 6.042J Mathematics for Computer Science, Fall 2010 The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high

More information

Writing Assignment 2 Student Sample Questions

Writing Assignment 2 Student Sample Questions Writing Assignment 2 Student Sample Questions 1. Let P and Q be statements. Then the statement (P = Q) ( P Q) is a tautology. 2. The statement If the sun rises from the west, then I ll get out of the bed.

More information

Massachusetts Institute of Technology 6.042J/18.062J, Fall 02: Mathematics for Computer Science Professor Albert Meyer and Dr.

Massachusetts Institute of Technology 6.042J/18.062J, Fall 02: Mathematics for Computer Science Professor Albert Meyer and Dr. Massachusetts Institute of Technology 6.042J/18.062J, Fall 02: Mathematics for Computer Science Professor Albert Meyer and Dr. Radhika Nagpal Quiz 1 Appendix Appendix Contents 1 Induction 2 2 Relations

More information

Solution. The relationship between cartesian coordinates (x, y) and polar coordinates (r, θ) is given by. (x, y) = (r cos θ, r sin θ).

Solution. The relationship between cartesian coordinates (x, y) and polar coordinates (r, θ) is given by. (x, y) = (r cos θ, r sin θ). Problem 1. Let p 1 be the point having polar coordinates r = 1 and θ = π. Let p 2 be the point having polar coordinates r = 1 and θ = π/2. Find the Euclidean distance between p 1 and p 2. The relationship

More information

CIS 375 Intro to Discrete Mathematics Exam 3 (Section M004: Blue) 6 December Points Possible

CIS 375 Intro to Discrete Mathematics Exam 3 (Section M004: Blue) 6 December Points Possible Name: CIS 375 Intro to Discrete Mathematics Exam 3 (Section M004: Blue) 6 December 2016 Question Points Possible Points Received 1 12 2 14 3 14 4 12 5 16 6 16 7 16 Total 100 Instructions: 1. This exam

More information

Solution to Proof Questions from September 1st

Solution to Proof Questions from September 1st Solution to Proof Questions from September 1st Olena Bormashenko September 4, 2011 What is a proof? A proof is an airtight logical argument that proves a certain statement in general. In a sense, it s

More information

Foundations of algebra

Foundations of algebra Foundations of algebra Equivalence relations - suggested problems - solutions P1: There are several relations that you are familiar with: Relations on R (or any of its subsets): Equality. Symbol: x = y.

More information

Do not open this exam until you are told to begin. You will have 75 minutes for the exam.

Do not open this exam until you are told to begin. You will have 75 minutes for the exam. Math 2603 Midterm 1 Spring 2018 Your Name Student ID # Section Do not open this exam until you are told to begin. You will have 75 minutes for the exam. Check that you have a complete exam. There are 5

More information

COT3100 SI Final Exam Review

COT3100 SI Final Exam Review 1 Symbols COT3100 SI Final Exam Review Jarrett Wendt Spring 2018 You ve learned a plethora of new Mathematical symbols this semester. Let s see if you know them all and what they re used for. How many

More information

CIS 375 Intro to Discrete Mathematics Exam 3 (Section M001: Green) 6 December Points Possible

CIS 375 Intro to Discrete Mathematics Exam 3 (Section M001: Green) 6 December Points Possible Name: CIS 375 Intro to Discrete Mathematics Exam 3 (Section M001: Green) 6 December 2016 Question Points Possible Points Received 1 12 2 14 3 14 4 12 5 16 6 16 7 16 Total 100 Instructions: 1. This exam

More information

Relations --- Binary Relations. Debdeep Mukhopadhyay IIT Madras

Relations --- Binary Relations. Debdeep Mukhopadhyay IIT Madras Relations --- Binary Relations Debdeep Mukhopadhyay IIT Madras What is a relation? The mathematical concept of relation is based on the common notion of relationships among objects: One box is heavier

More information

3.4 Set Operations Given a set A, the complement (in the Universal set U) A c is the set of all elements of U that are not in A. So A c = {x x / A}.

3.4 Set Operations Given a set A, the complement (in the Universal set U) A c is the set of all elements of U that are not in A. So A c = {x x / A}. 3.4 Set Operations Given a set, the complement (in the niversal set ) c is the set of all elements of that are not in. So c = {x x /. (This type of picture is called a Venn diagram.) Example 39 Let = {1,

More information

2MA105 Algebraic Structures I

2MA105 Algebraic Structures I 2MA105 Algebraic Structures I Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/2ma105.html Lecture 12 Partially Ordered Sets Lattices Bounded Lattices Distributive Lattices Complemented Lattices

More information

Logic, Set Theory and Computability [M. Coppenbarger]

Logic, Set Theory and Computability [M. Coppenbarger] 7 Relations (Handout) Definition 7-1: A set r is a relation from X to Y if r X Y. If X = Y, then r is a relation on X. Definition 7-2: Let r be a relation from X to Y. The domain of r, denoted dom r, is

More information

CITS2211 Discrete Structures (2017) Cardinality and Countability

CITS2211 Discrete Structures (2017) Cardinality and Countability CITS2211 Discrete Structures (2017) Cardinality and Countability Highlights What is cardinality? Is it the same as size? Types of cardinality and infinite sets Reading Sections 45 and 81 84 of Mathematics

More information

Toss 1. Fig.1. 2 Heads 2 Tails Heads/Tails (H, H) (T, T) (H, T) Fig.2

Toss 1. Fig.1. 2 Heads 2 Tails Heads/Tails (H, H) (T, T) (H, T) Fig.2 1 Basic Probabilities The probabilities that we ll be learning about build from the set theory that we learned last class, only this time, the sets are specifically sets of events. What are events? Roughly,

More information

Exclusive Disjunction

Exclusive Disjunction Exclusive Disjunction Recall A statement is a declarative sentence that is either true or false, but not both. If we have a declarative sentence s, p: s is true, and q: s is false, can we rewrite s is

More information

Practice Final Solutions. 1. Consider the following algorithm. Assume that n 1. line code 1 alg(n) { 2 j = 0 3 if (n = 0) { 4 return j

Practice Final Solutions. 1. Consider the following algorithm. Assume that n 1. line code 1 alg(n) { 2 j = 0 3 if (n = 0) { 4 return j Practice Final Solutions 1. Consider the following algorithm. Assume that n 1. line code 1 alg(n) 2 j = 0 3 if (n = 0) 4 return j } 5 else 6 j = 2n+ alg(n 1) 7 return j } } Set up a recurrence relation

More information

Math Precalculus I University of Hawai i at Mānoa Spring

Math Precalculus I University of Hawai i at Mānoa Spring Math 135 - Precalculus I University of Hawai i at Mānoa Spring - 2014 Created for Math 135, Spring 2008 by Lukasz Grabarek and Michael Joyce Send comments and corrections to lukasz@math.hawaii.edu Contents

More information

Outline for Today. Binary Relations. Equivalence Relations. Partial Orders. Quick Midterm Review

Outline for Today. Binary Relations. Equivalence Relations. Partial Orders. Quick Midterm Review Binary Relations Outline for Today Binary Relations Studying connections between objects from a different perspective. Equivalence Relations Relations that break objects into groups. Partial Orders Relations

More information

Mathematical Logic Part Three

Mathematical Logic Part Three Mathematical Logic Part hree riday our Square! oday at 4:15PM, Outside Gates Announcements Problem Set 3 due right now. Problem Set 4 goes out today. Checkpoint due Monday, October 22. Remainder due riday,

More information

Equivalence, Order, and Inductive Proof

Equivalence, Order, and Inductive Proof 2/ chapter 4 Equivalence, Order, and Inductive Proof Good order is the foundation of all things. Edmund Burke (729 797) Classifying things and ordering things are activities in which we all engage from

More information

Math 300: Final Exam Practice Solutions

Math 300: Final Exam Practice Solutions Math 300: Final Exam Practice Solutions 1 Let A be the set of all real numbers which are zeros of polynomials with integer coefficients: A := {α R there exists p(x) = a n x n + + a 1 x + a 0 with all a

More information

Discrete Mathematics. (c) Marcin Sydow. Sets. Set operations. Sets. Set identities Number sets. Pair. Power Set. Venn diagrams

Discrete Mathematics. (c) Marcin Sydow. Sets. Set operations. Sets. Set identities Number sets. Pair. Power Set. Venn diagrams Contents : basic definitions and notation A set is an unordered collection of its elements (or members). The set is fully specified by its elements. Usually capital letters are used to name sets and lowercase

More information

Part IA Numbers and Sets

Part IA Numbers and Sets Part IA Numbers and Sets Definitions Based on lectures by A. G. Thomason Notes taken by Dexter Chua Michaelmas 2014 These notes are not endorsed by the lecturers, and I have modified them (often significantly)

More information

Is g one-to-one? Is g onto? Why? Solution: g is not one-to-one, since for c A, g(b) = g(c) = c. g is not onto, since a / g(a).

Is g one-to-one? Is g onto? Why? Solution: g is not one-to-one, since for c A, g(b) = g(c) = c. g is not onto, since a / g(a). Discrete Structures: Exam 2 Solutions to Sample Questions, 1. Let A = B = {a, b, c}. Consider the relation g = {(a, b), (b, c), (c, c)}. Is g one-to-one? Is g onto? Why? Solution: g is not one-to-one,

More information

Packet #5: Binary Relations. Applied Discrete Mathematics

Packet #5: Binary Relations. Applied Discrete Mathematics Packet #5: Binary Relations Applied Discrete Mathematics Table of Contents Binary Relations Summary Page 1 Binary Relations Examples Page 2 Properties of Relations Page 3 Examples Pages 4-5 Representations

More information

Chapter 3. Cartesian Products and Relations. 3.1 Cartesian Products

Chapter 3. Cartesian Products and Relations. 3.1 Cartesian Products Chapter 3 Cartesian Products and Relations The material in this chapter is the first real encounter with abstraction. Relations are very general thing they are a special type of subset. After introducing

More information

MATH 433 Applied Algebra Lecture 14: Functions. Relations.

MATH 433 Applied Algebra Lecture 14: Functions. Relations. MATH 433 Applied Algebra Lecture 14: Functions. Relations. Cartesian product Definition. The Cartesian product X Y of two sets X and Y is the set of all ordered pairs (x,y) such that x X and y Y. The Cartesian

More information

Automata Theory for Presburger Arithmetic Logic

Automata Theory for Presburger Arithmetic Logic Automata Theory for Presburger Arithmetic Logic References from Introduction to Automata Theory, Languages & Computation and Constraints in Computational Logic Theory & Application Presented by Masood

More information

Warmup Recall, a group H is cyclic if H can be generated by a single element. In other words, there is some element x P H for which Multiplicative

Warmup Recall, a group H is cyclic if H can be generated by a single element. In other words, there is some element x P H for which Multiplicative Warmup Recall, a group H is cyclic if H can be generated by a single element. In other words, there is some element x P H for which Multiplicative notation: H tx l l P Zu xxy, Additive notation: H tlx

More information

Last time: Cyclic groups. Proposition

Last time: Cyclic groups. Proposition Warmup Recall, a group H is cyclic if H can be generated by a single element. In other words, there is some element x P H for which Multiplicative notation: H tx` ` P Zu xxy, Additive notation: H t`x `

More information

Fundamentals of Probability CE 311S

Fundamentals of Probability CE 311S Fundamentals of Probability CE 311S OUTLINE Review Elementary set theory Probability fundamentals: outcomes, sample spaces, events Outline ELEMENTARY SET THEORY Basic probability concepts can be cast in

More information

QUASI-PREFERENCE: CHOICE ON PARTIALLY ORDERED SETS. Contents

QUASI-PREFERENCE: CHOICE ON PARTIALLY ORDERED SETS. Contents QUASI-PREFERENCE: CHOICE ON PARTIALLY ORDERED SETS ZEFENG CHEN Abstract. A preference relation is a total order on a finite set and a quasipreference relation is a partial order. This paper first introduces

More information

Cosets and Lagrange s theorem

Cosets and Lagrange s theorem Cosets and Lagrange s theorem These are notes on cosets and Lagrange s theorem some of which may already have been lecturer. There are some questions for you included in the text. You should write the

More information

MGF 1106: Exam 1 Solutions

MGF 1106: Exam 1 Solutions MGF 1106: Exam 1 Solutions 1. (15 points total) True or false? Explain your answer. a) A A B Solution: Drawn as a Venn diagram, the statement says: This is TRUE. The union of A with any set necessarily

More information

Relations (3A) Young Won Lim 3/27/18

Relations (3A) Young Won Lim 3/27/18 Relations (3A) Copyright (c) 2015 2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later

More information

Binary Relation Review Questions

Binary Relation Review Questions CSE 191 Discrete Structures Fall 2016 Recursive sets Binary Relation Review Questions 1. For each of the relations below, answer the following three questions: Is the relation reflexive? Is the relation

More information

If you have completed your extra credit opportunity, please place it on your inbox.

If you have completed your extra credit opportunity, please place it on your inbox. Warm-Up If you have completed your extra credit opportunity, please place it on your inbox. On everyone s desk should be paper and a pencil for notes. We are covering all of Quarter 1 in one day, so we

More information

Discrete Mathematics. Benny George K. September 22, 2011

Discrete Mathematics. Benny George K. September 22, 2011 Discrete Mathematics Benny George K Department of Computer Science and Engineering Indian Institute of Technology Guwahati ben@iitg.ernet.in September 22, 2011 Set Theory Elementary Concepts Let A and

More information

Preparing for the CS 173 (A) Fall 2018 Midterm 1

Preparing for the CS 173 (A) Fall 2018 Midterm 1 Preparing for the CS 173 (A) Fall 2018 Midterm 1 1 Basic information Midterm 1 is scheduled from 7:15-8:30 PM. We recommend you arrive early so that you can start exactly at 7:15. Exams will be collected

More information

ABOUT THE CLASS AND NOTES ON SET THEORY

ABOUT THE CLASS AND NOTES ON SET THEORY ABOUT THE CLASS AND NOTES ON SET THEORY About the Class Evaluation. Final grade will be based 25%, 25%, 25%, 25%, on homework, midterm 1, midterm 2, final exam. Exam dates. Midterm 1: Oct 4. Midterm 2:

More information

a. See the textbook for examples of proving logical equivalence using truth tables. b. There is a real number x for which f (x) < 0. (x 1) 2 > 0.

a. See the textbook for examples of proving logical equivalence using truth tables. b. There is a real number x for which f (x) < 0. (x 1) 2 > 0. For some problems, several sample proofs are given here. Problem 1. a. See the textbook for examples of proving logical equivalence using truth tables. b. There is a real number x for which f (x) < 0.

More information

Chapter 6. Systems of Equations and Inequalities

Chapter 6. Systems of Equations and Inequalities Chapter 6 Systems of Equations and Inequalities 6.1 Solve Linear Systems by Graphing I can graph and solve systems of linear equations. CC.9-12.A.CED.2, CC.9-12.A.CED.3, CC.9-12.A.REI.6 What is a system

More information

cse303 ELEMENTS OF THE THEORY OF COMPUTATION Professor Anita Wasilewska

cse303 ELEMENTS OF THE THEORY OF COMPUTATION Professor Anita Wasilewska cse303 ELEMENTS OF THE THEORY OF COMPUTATION Professor Anita Wasilewska LECTURE 1 Course Web Page www3.cs.stonybrook.edu/ cse303 The webpage contains: lectures notes slides; very detailed solutions to

More information

Inequalities - Solve and Graph Inequalities

Inequalities - Solve and Graph Inequalities 3.1 Inequalities - Solve and Graph Inequalities Objective: Solve, graph, and give interval notation for the solution to linear inequalities. When we have an equation such as x = 4 we have a specific value

More information

Notes on Venn Diagrams Cynthia Bolton Arizona State University - Summer 2005

Notes on Venn Diagrams Cynthia Bolton Arizona State University - Summer 2005 Notes on Venn Diagrams Cynthia Bolton Arizona tate University - ummer 2005 Venn Diagrams: An Introduction Venn diagrams are used to pictorially prove the validity or invalidity of syllogisms. A Venn diagram

More information

What can you prove by induction?

What can you prove by induction? MEI CONFERENCE 013 What can you prove by induction? Martyn Parker M.J.Parker@keele.ac.uk Contents Contents iii 1 Splitting Coins.................................................. 1 Convex Polygons................................................

More information

Electric Circuits Part 2: Kirchhoff s Rules

Electric Circuits Part 2: Kirchhoff s Rules Electric Circuits Part 2: Kirchhoff s Rules Last modified: 31/07/2018 Contents Links Complex Circuits Applying Kirchhoff s Rules Example Circuit Labelling the currents Kirchhoff s First Rule Meaning Kirchhoff

More information

At least one of us is a knave. What are A and B?

At least one of us is a knave. What are A and B? 1. This is a puzzle about an island in which everyone is either a knight or a knave. Knights always tell the truth and knaves always lie. This problem is about two people A and B, each of whom is either

More information

MATH 13 SAMPLE FINAL EXAM SOLUTIONS

MATH 13 SAMPLE FINAL EXAM SOLUTIONS MATH 13 SAMPLE FINAL EXAM SOLUTIONS WINTER 2014 Problem 1 (15 points). For each statement below, circle T or F according to whether the statement is true or false. You do NOT need to justify your answers.

More information

Discrete Mathematics. 2. Relations

Discrete Mathematics. 2. Relations Discrete Mathematics 2. Relations Binary Relations Let A, B be any two sets. A binary relation R from A to B is a subset of A B. E.g., Let < : N N : {(n,m) n < m} The notation a R b or arb means (a,b)îr.

More information