Bayesian Model Averaging

Size: px
Start display at page:

Download "Bayesian Model Averaging"

Transcription

1 Bayesian Model Averaging Hoff Chapter 9, Hoeting et al 1999, Clyde & George 2004, Liang et al 2008 October 24, 2017

2 Bayesian Model Choice Models for the variable selection problem are based on a subset of the X 1,... X p variables Encode models with a vector γ = (γ 1,... γ p ) where γ j {0, 1} is an indicator for whether variable X j should be included in the model M γ. γ j = 0 β j = 0 Each value of γ represents one of the 2 p models. Under model M γ : Y α, β, σ 2, γ N(1α + X γ β γ, σ 2 I) Where X γ is design matrix using the columns in X where γ j = 1 and β γ is the subset of β that are non-zero.

3 Posterior Probabilities of Models Posterior model probabilities p(m j Y) = p(y M j)p(m j ) j p(y M j)p(m j ) Marginal likelihod of a model is proportional to p(y M γ ) = p(y α, β γ, σ 2 )p(β γ γ, σ 2 )p(α, σ 2 γ)dβ dα, dσ Bayes Factor BF[i : j] = p(y M i )/p(y M j ) P(M i Y) P(M j Y) = p(y M i) p(y M j ) P(M i) P(M j ) Posterior Odds = Bayes Factor Prior odds Probability β j 0: M j :β j 0 p(m j Y) (marginal posterior inclusion probability)

4 Prior Distributions Bayesian Model choice requires proper prior distributions on regression coefficients (exception parameters that are included in all models) otherwise marginal likelihoods are ill-determined Vague but proper priors may lead to paradoxes! Conjugate Normal-Gammas lead to closed form expressions for marginal likelihoods, Zellner s g-prior is one of the most popular.

5 Zellner s g-prior within Models Centered model: Y = 1 n α + X c γβ γ + ϵ Common parameters p(α, ϕ) ϕ 1 Model Specific parameters β γ α, ϕ, γ N(0, gϕ 1 (X c γ X c γ) 1 ) Marginal likelihood of M γ is proportional to p(y M γ ) = C(1 + g) n p 1 2 (1 + g(1 R 2 γ)) (n 1) 2 where R 2 γ is the usual R 2 for model M γ and C is a constant that is p(y M 0 ) (model with intercept alone) uniform distribution over space of models p(m γ ) = 1/(2 p )

6 USair Data: Enumeration of All Models # library(devtools) # suppressmessages(install_github("merliseclyde/bas")) # c library(bas) poll.bma = bas.lm(log(so2) ~ temp + log(firms) + log(popn) + wind + precip+ rain, data=usair, prior="g-prior", alpha=41, # g = n n.models=2^7,# enumerate (can omit) modelprior=uniform(), method="deterministic") # fast enumerat

7 Problem with g-prior with arbitrary g The Bayes factor for comparing M γ to the null model: Let g be a fixed constant and take n fixed. Let F = R 2 γ/p γ (1 R 2 γ)/(n 1 p γ) As R 2 γ 1, F LR test would reject H 0 where F is the usual F statistic for comparing model M γ to M 0 Bayes Factor would go to (1 + g) (n pγ 1)/2 as F (bounded for fixed g, n and p γ Bayes and Frequentist would not agree in this limit Information paradox

8 Resolution of Paradox Liang et al (2008) show that paradox can be resolved with mixtures of g-priors p(β γ ϕ) = 0 N(β γ ; 0, g(x T γx γ ) 1 /ϕ)p(g)dg BF if R 2 1 E g [(1 + g) pγ/2 ] diverges Zellner-Siow Cauchy prior 1/g Gamma(1/2, n/2) Hyper-g p(g) (1 + g) a/2 1 if 2 < a 3 hyper-g/n g 1 + g Beta(1, a 2 1) robust prior (Bayarri et al Annals of Statistics 2012)

9 Example library(bas) poll.zs = bas.lm(log(so2) ~ temp + log(firms) + log(popn) + wind + precip+ rain, data=usair, prior="jzs", #Jeffreys Zellner-Siow n.models=2^7,# enumerate (can omit) modelprior=uniform(), method="deterministic") # fast enumerat use prior = hyper-g and a = 3 for hyper-g or prior = hyper-g/n and a=3 for hyper-g/n

10 plot(poll.zs, which=4) Marginal Inclusion Probability Inclusion Probabilities Intercept temp log(firms) log(popn) wind precip rain bas.lm(log(so2) ~ temp + log(firms) + log(popn) + wind + precip + rain)

11 Bayesian Model Averaging Posterior for µ = 1α + Xβ is a mixture distribution p(µ Y) = p(µ Y, M γ )p(m γ Y) with expectation expressed as a weighted average E[µ Y] = 1ˆα + X E[β Y, M γ ]p(m γ Y) Predictive Distribution for Y p(y Y) = p(y Y, M γ )p(m γ Y) Posterior Distribution of β j p(β j Y) = p(γ j = 0 Y)δ 0 (β)+ p(β j Y, M γ )γ j p(m γ Y)

12 Estimator Find ˆµ that minimizes posterior expected loss E[(µ ˆµ) T (µ ˆµ) Y] Solution is posterior mean under BMA E[µ Y] = 1ˆα + X E[β Y, M γ ]p(m γ Y) If one model has probability 1, then BMA is equivalent to using the highest posterior probability model incorporates estimates from other models when there is substantial uncertainty

13 Coefficients under BMA beta.zs = coef(poll.zs) beta.zs ## ## Marginal Posterior Summaries of Coefficients: ## ## Using BMA ## ## Based on the top 64 models ## post mean post SD post p(b!= 0) ## Intercept ## temp ## log(firms) ## log(popn) ## wind ## precip ## rain

14 Posterior of Coefficients under BMA temp log(firms) log(popn) wind precip rain

15 Credible Intervals for Coefficients under BMA plot(confint(beta.zs, parm=2:7)) β

16 Selection and Model Uncertainty Select a model and ˆµ that minimizes posterior expected loss E[(µ ˆµ) T (µ ˆµ) Y] BMA is best estimator without selection Best model and estimator is the posterior mean under the model that is closest to BMA under squared error loss (ˆµ BMA ˆµ Mγ ) T (ˆµ BMA ˆµ Mγ ) Often contains more predictors than the HPM or Median Probability Model

17 Best Predictive Model #BPM BPM = predict(poll.zs, estimator = "BPM") BPM$bestmodel ## [1] (poll.zs$namesx[attr(bpm$fit, 'model') +1])[-1] ## [1] "temp" "log(firms)" "wind" "precip" #HPM HPM = predict(poll.zs, estimator = "HPM") HPM$bestmodel ## [1]

18 HPM MPM BPM BMA Corr: 1 Corr: 1 Corr: 1 Corr: Corr: Corr: HPM MPM BPM BMA

19 Summary BMA shown in practice to have better out of sample predictions than selection (in many cases) avoids selecting a single model and accounts for out uncertainty if one model dominates BMA is very close to selection (asymptotically will put probability one on model that is closest to the true model) MCMC allows one to implement without enumerating all models BMA depends on prior on coefficients, variance and models (sensitivity to choice?) Mixtures of g priors preferred to usual g prior but can use g = n

Model Choice. Hoff Chapter 9, Clyde & George Model Uncertainty StatSci, Hoeting et al BMA StatSci. October 27, 2015

Model Choice. Hoff Chapter 9, Clyde & George Model Uncertainty StatSci, Hoeting et al BMA StatSci. October 27, 2015 Model Choice Hoff Chapter 9, Clyde & George Model Uncertainty StatSci, Hoeting et al BMA StatSci October 27, 2015 Topics Variable Selection / Model Choice Stepwise Methods Model Selection Criteria Model

More information

Model Choice. Hoff Chapter 9. Dec 8, 2010

Model Choice. Hoff Chapter 9. Dec 8, 2010 Model Choice Hoff Chapter 9 Dec 8, 2010 Topics Variable Selection / Model Choice Stepwise Methods Model Selection Criteria Model Averaging Variable Selection Reasons for reducing the number of variables

More information

Mixtures of Prior Distributions

Mixtures of Prior Distributions Mixtures of Prior Distributions Hoff Chapter 9, Liang et al 2007, Hoeting et al (1999), Clyde & George (2004) November 10, 2016 Bartlett s Paradox The Bayes factor for comparing M γ to the null model:

More information

Mixtures of Prior Distributions

Mixtures of Prior Distributions Mixtures of Prior Distributions Hoff Chapter 9, Liang et al 2007, Hoeting et al (1999), Clyde & George (2004) November 9, 2017 Bartlett s Paradox The Bayes factor for comparing M γ to the null model: BF

More information

Bayesian Variable Selection Under Collinearity

Bayesian Variable Selection Under Collinearity Bayesian Variable Selection Under Collinearity Joyee Ghosh Andrew E. Ghattas. June 3, 2014 Abstract In this article we provide some guidelines to practitioners who use Bayesian variable selection for linear

More information

Mixtures of g-priors for Bayesian Variable Selection

Mixtures of g-priors for Bayesian Variable Selection Mixtures of g-priors for Bayesian Variable Selection January 8, 007 Abstract Zellner s g-prior remains a popular conventional prior for use in Bayesian variable selection, despite several undesirable consistency

More information

Mixtures of g-priors for Bayesian Variable Selection

Mixtures of g-priors for Bayesian Variable Selection Mixtures of g-priors for Bayesian Variable Selection Feng Liang, Rui Paulo, German Molina, Merlise A. Clyde and Jim O. Berger August 8, 007 Abstract Zellner s g-prior remains a popular conventional prior

More information

Bayesian Variable Selection Under Collinearity

Bayesian Variable Selection Under Collinearity Bayesian Variable Selection Under Collinearity Joyee Ghosh Andrew E. Ghattas. Abstract In this article we highlight some interesting facts about Bayesian variable selection methods for linear regression

More information

Mixtures of g Priors for Bayesian Variable Selection

Mixtures of g Priors for Bayesian Variable Selection Mixtures of g Priors for Bayesian Variable Selection Feng LIANG, RuiPAULO, GermanMOLINA, Merlise A. CLYDE, and Jim O. BERGER Zellner s g prior remains a popular conventional prior for use in Bayesian variable

More information

Bayesian methods in economics and finance

Bayesian methods in economics and finance 1/26 Bayesian methods in economics and finance Linear regression: Bayesian model selection and sparsity priors Linear Regression 2/26 Linear regression Model for relationship between (several) independent

More information

Supplementary materials for Scalable Bayesian model averaging through local information propagation

Supplementary materials for Scalable Bayesian model averaging through local information propagation Supplementary materials for Scalable Bayesian model averaging through local information propagation August 25, 2014 S1. Proofs Proof of Theorem 1. The result follows immediately from the distributions

More information

MODEL AVERAGING by Merlise Clyde 1

MODEL AVERAGING by Merlise Clyde 1 Chapter 13 MODEL AVERAGING by Merlise Clyde 1 13.1 INTRODUCTION In Chapter 12, we considered inference in a normal linear regression model with q predictors. In many instances, the set of predictor variables

More information

Inference for a Population Proportion

Inference for a Population Proportion Al Nosedal. University of Toronto. November 11, 2015 Statistical inference is drawing conclusions about an entire population based on data in a sample drawn from that population. From both frequentist

More information

ST440/540: Applied Bayesian Statistics. (9) Model selection and goodness-of-fit checks

ST440/540: Applied Bayesian Statistics. (9) Model selection and goodness-of-fit checks (9) Model selection and goodness-of-fit checks Objectives In this module we will study methods for model comparisons and checking for model adequacy For model comparisons there are a finite number of candidate

More information

The Normal Linear Regression Model with Natural Conjugate Prior. March 7, 2016

The Normal Linear Regression Model with Natural Conjugate Prior. March 7, 2016 The Normal Linear Regression Model with Natural Conjugate Prior March 7, 2016 The Normal Linear Regression Model with Natural Conjugate Prior The plan Estimate simple regression model using Bayesian methods

More information

Bayesian Inference: Concept and Practice

Bayesian Inference: Concept and Practice Inference: Concept and Practice fundamentals Johan A. Elkink School of Politics & International Relations University College Dublin 5 June 2017 1 2 3 Bayes theorem In order to estimate the parameters of

More information

Lecture 5: Conventional Model Selection Priors

Lecture 5: Conventional Model Selection Priors Lecture 5: Conventional Model Selection Priors Susie Bayarri University of Valencia CBMS Conference on Model Uncertainty and Multiplicity July 23-28, 2012 Outline The general linear model and Orthogonalization

More information

Bayesian inference. Rasmus Waagepetersen Department of Mathematics Aalborg University Denmark. April 10, 2017

Bayesian inference. Rasmus Waagepetersen Department of Mathematics Aalborg University Denmark. April 10, 2017 Bayesian inference Rasmus Waagepetersen Department of Mathematics Aalborg University Denmark April 10, 2017 1 / 22 Outline for today A genetic example Bayes theorem Examples Priors Posterior summaries

More information

Some Curiosities Arising in Objective Bayesian Analysis

Some Curiosities Arising in Objective Bayesian Analysis . Some Curiosities Arising in Objective Bayesian Analysis Jim Berger Duke University Statistical and Applied Mathematical Institute Yale University May 15, 2009 1 Three vignettes related to John s work

More information

Predictive Distributions

Predictive Distributions Predictive Distributions October 6, 2010 Hoff Chapter 4 5 October 5, 2010 Prior Predictive Distribution Before we observe the data, what do we expect the distribution of observations to be? p(y i ) = p(y

More information

Mixtures of g-priors in Generalized Linear Models

Mixtures of g-priors in Generalized Linear Models Mixtures of g-priors in Generalized Linear Models Yingbo Li and Merlise A. Clyde arxiv:1503.06913v3 [stat.me] 4 May 018 Abstract Mixtures of Zellner s g-priors have been studied extensively in linear models

More information

Bayesian Regression (1/31/13)

Bayesian Regression (1/31/13) STA613/CBB540: Statistical methods in computational biology Bayesian Regression (1/31/13) Lecturer: Barbara Engelhardt Scribe: Amanda Lea 1 Bayesian Paradigm Bayesian methods ask: given that I have observed

More information

Approximating high-dimensional posteriors with nuisance parameters via integrated rotated Gaussian approximation (IRGA)

Approximating high-dimensional posteriors with nuisance parameters via integrated rotated Gaussian approximation (IRGA) Approximating high-dimensional posteriors with nuisance parameters via integrated rotated Gaussian approximation (IRGA) Willem van den Boom Department of Statistics and Applied Probability National University

More information

Posterior Model Probabilities via Path-based Pairwise Priors

Posterior Model Probabilities via Path-based Pairwise Priors Posterior Model Probabilities via Path-based Pairwise Priors James O. Berger 1 Duke University and Statistical and Applied Mathematical Sciences Institute, P.O. Box 14006, RTP, Durham, NC 27709, U.S.A.

More information

Mixtures of g-priors in Generalized Linear Models

Mixtures of g-priors in Generalized Linear Models Mixtures of g-priors in Generalized Linear Models Abstract Mixtures of Zellner s g-priors have been studied extensively in linear models and have been shown to have numerous desirable properties for Bayesian

More information

g-priors for Linear Regression

g-priors for Linear Regression Stat60: Bayesian Modeling and Inference Lecture Date: March 15, 010 g-priors for Linear Regression Lecturer: Michael I. Jordan Scribe: Andrew H. Chan 1 Linear regression and g-priors In the last lecture,

More information

STAT 425: Introduction to Bayesian Analysis

STAT 425: Introduction to Bayesian Analysis STAT 425: Introduction to Bayesian Analysis Marina Vannucci Rice University, USA Fall 2017 Marina Vannucci (Rice University, USA) Bayesian Analysis (Part 3) Fall 2017 1 / 40 Part 3: Hierarchical and Linear

More information

Hypothesis Testing. Econ 690. Purdue University. Justin L. Tobias (Purdue) Testing 1 / 33

Hypothesis Testing. Econ 690. Purdue University. Justin L. Tobias (Purdue) Testing 1 / 33 Hypothesis Testing Econ 690 Purdue University Justin L. Tobias (Purdue) Testing 1 / 33 Outline 1 Basic Testing Framework 2 Testing with HPD intervals 3 Example 4 Savage Dickey Density Ratio 5 Bartlett

More information

Accounting for Complex Sample Designs via Mixture Models

Accounting for Complex Sample Designs via Mixture Models Accounting for Complex Sample Designs via Finite Normal Mixture Models 1 1 University of Michigan School of Public Health August 2009 Talk Outline 1 2 Accommodating Sampling Weights in Mixture Models 3

More information

Stat260: Bayesian Modeling and Inference Lecture Date: March 10, 2010

Stat260: Bayesian Modeling and Inference Lecture Date: March 10, 2010 Stat60: Bayesian Modelin and Inference Lecture Date: March 10, 010 Bayes Factors, -priors, and Model Selection for Reression Lecturer: Michael I. Jordan Scribe: Tamara Broderick The readin for this lecture

More information

Introduction to Bayesian Methods

Introduction to Bayesian Methods Introduction to Bayesian Methods Jessi Cisewski Department of Statistics Yale University Sagan Summer Workshop 2016 Our goal: introduction to Bayesian methods Likelihoods Priors: conjugate priors, non-informative

More information

Power-Expected-Posterior Priors for Variable Selection in Gaussian Linear Models

Power-Expected-Posterior Priors for Variable Selection in Gaussian Linear Models Power-Expected-Posterior Priors for Variable Selection in Gaussian Linear Models Ioannis Ntzoufras, Department of Statistics, Athens University of Economics and Business, Athens, Greece; e-mail: ntzoufras@aueb.gr.

More information

The linear model is the most fundamental of all serious statistical models encompassing:

The linear model is the most fundamental of all serious statistical models encompassing: Linear Regression Models: A Bayesian perspective Ingredients of a linear model include an n 1 response vector y = (y 1,..., y n ) T and an n p design matrix (e.g. including regressors) X = [x 1,..., x

More information

Bayesian linear regression

Bayesian linear regression Bayesian linear regression Linear regression is the basis of most statistical modeling. The model is Y i = X T i β + ε i, where Y i is the continuous response X i = (X i1,..., X ip ) T is the corresponding

More information

Stat 5101 Lecture Notes

Stat 5101 Lecture Notes Stat 5101 Lecture Notes Charles J. Geyer Copyright 1998, 1999, 2000, 2001 by Charles J. Geyer May 7, 2001 ii Stat 5101 (Geyer) Course Notes Contents 1 Random Variables and Change of Variables 1 1.1 Random

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression Reading: Hoff Chapter 9 November 4, 2009 Problem Data: Observe pairs (Y i,x i ),i = 1,... n Response or dependent variable Y Predictor or independent variable X GOALS: Exploring

More information

David Giles Bayesian Econometrics

David Giles Bayesian Econometrics David Giles Bayesian Econometrics 1. General Background 2. Constructing Prior Distributions 3. Properties of Bayes Estimators and Tests 4. Bayesian Analysis of the Multiple Regression Model 5. Bayesian

More information

Linear Models A linear model is defined by the expression

Linear Models A linear model is defined by the expression Linear Models A linear model is defined by the expression x = F β + ɛ. where x = (x 1, x 2,..., x n ) is vector of size n usually known as the response vector. β = (β 1, β 2,..., β p ) is the transpose

More information

Robust Bayesian Regression

Robust Bayesian Regression Readings: Hoff Chapter 9, West JRSSB 1984, Fúquene, Pérez & Pericchi 2015 Duke University November 17, 2016 Body Fat Data: Intervals w/ All Data Response % Body Fat and Predictor Waist Circumference 95%

More information

An Overview of Objective Bayesian Analysis

An Overview of Objective Bayesian Analysis An Overview of Objective Bayesian Analysis James O. Berger Duke University visiting the University of Chicago Department of Statistics Spring Quarter, 2011 1 Lectures Lecture 1. Objective Bayesian Analysis:

More information

Bayesian Econometrics

Bayesian Econometrics Bayesian Econometrics Christopher A. Sims Princeton University sims@princeton.edu September 20, 2016 Outline I. The difference between Bayesian and non-bayesian inference. II. Confidence sets and confidence

More information

Bayesian variable selection via. Penalized credible regions. Brian Reich, NCSU. Joint work with. Howard Bondell and Ander Wilson

Bayesian variable selection via. Penalized credible regions. Brian Reich, NCSU. Joint work with. Howard Bondell and Ander Wilson Bayesian variable selection via penalized credible regions Brian Reich, NC State Joint work with Howard Bondell and Ander Wilson Brian Reich, NCSU Penalized credible regions 1 Motivation big p, small n

More information

Mortgage Default. Zachary Kramer. Department of Statistical Science and Economics Duke University. Date: Approved: Merlise Clyde, Supervisor.

Mortgage Default. Zachary Kramer. Department of Statistical Science and Economics Duke University. Date: Approved: Merlise Clyde, Supervisor. Default Prior Choice for Bayesian Model Selection in Generalized Linear Models with Applications in Mortgage Default by Zachary Kramer Department of Statistical Science and Economics Duke University Date:

More information

Consistent high-dimensional Bayesian variable selection via penalized credible regions

Consistent high-dimensional Bayesian variable selection via penalized credible regions Consistent high-dimensional Bayesian variable selection via penalized credible regions Howard Bondell bondell@stat.ncsu.edu Joint work with Brian Reich Howard Bondell p. 1 Outline High-Dimensional Variable

More information

Finite Population Estimators in Stochastic Search Variable Selection

Finite Population Estimators in Stochastic Search Variable Selection 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 Biometrika (2011), xx, x, pp. 1 8 C 2007 Biometrika Trust Printed

More information

Caterpillar Regression Example: Conjugate Priors, Conditional & Marginal Posteriors, Predictive Distribution, Variable Selection

Caterpillar Regression Example: Conjugate Priors, Conditional & Marginal Posteriors, Predictive Distribution, Variable Selection Caterpillar Regression Example: Conjugate Priors, Conditional & Marginal Posteriors, Predictive Distribution, Variable Selection Prof. Nicholas Zabaras University of Notre Dame Notre Dame, IN, USA Email:

More information

Unobservable Parameter. Observed Random Sample. Calculate Posterior. Choosing Prior. Conjugate prior. population proportion, p prior:

Unobservable Parameter. Observed Random Sample. Calculate Posterior. Choosing Prior. Conjugate prior. population proportion, p prior: Pi Priors Unobservable Parameter population proportion, p prior: π ( p) Conjugate prior π ( p) ~ Beta( a, b) same PDF family exponential family only Posterior π ( p y) ~ Beta( a + y, b + n y) Observed

More information

An Introduction to Bayesian Linear Regression

An Introduction to Bayesian Linear Regression An Introduction to Bayesian Linear Regression APPM 5720: Bayesian Computation Fall 2018 A SIMPLE LINEAR MODEL Suppose that we observe explanatory variables x 1, x 2,..., x n and dependent variables y 1,

More information

Divergence Based priors for the problem of hypothesis testing

Divergence Based priors for the problem of hypothesis testing Divergence Based priors for the problem of hypothesis testing gonzalo garcía-donato and susie Bayarri May 22, 2009 gonzalo garcía-donato and susie Bayarri () DB priors May 22, 2009 1 / 46 Jeffreys and

More information

Bayesian Inference for Normal Mean

Bayesian Inference for Normal Mean Al Nosedal. University of Toronto. November 18, 2015 Likelihood of Single Observation The conditional observation distribution of y µ is Normal with mean µ and variance σ 2, which is known. Its density

More information

Or How to select variables Using Bayesian LASSO

Or How to select variables Using Bayesian LASSO Or How to select variables Using Bayesian LASSO x 1 x 2 x 3 x 4 Or How to select variables Using Bayesian LASSO x 1 x 2 x 3 x 4 Or How to select variables Using Bayesian LASSO On Bayesian Variable Selection

More information

Vector Autoregressive Model. Vector Autoregressions II. Estimation of Vector Autoregressions II. Estimation of Vector Autoregressions I.

Vector Autoregressive Model. Vector Autoregressions II. Estimation of Vector Autoregressions II. Estimation of Vector Autoregressions I. Vector Autoregressive Model Vector Autoregressions II Empirical Macroeconomics - Lect 2 Dr. Ana Beatriz Galvao Queen Mary University of London January 2012 A VAR(p) model of the m 1 vector of time series

More information

Introduction to Bayesian Methods. Introduction to Bayesian Methods p.1/??

Introduction to Bayesian Methods. Introduction to Bayesian Methods p.1/?? to Bayesian Methods Introduction to Bayesian Methods p.1/?? We develop the Bayesian paradigm for parametric inference. To this end, suppose we conduct (or wish to design) a study, in which the parameter

More information

Power-Expected-Posterior Priors for Variable Selection in Gaussian Linear Models

Power-Expected-Posterior Priors for Variable Selection in Gaussian Linear Models Power-Expected-Posterior Priors for Variable Selection in Gaussian Linear Models Dimitris Fouskakis, Department of Mathematics, School of Applied Mathematical and Physical Sciences, National Technical

More information

Subject CS1 Actuarial Statistics 1 Core Principles

Subject CS1 Actuarial Statistics 1 Core Principles Institute of Actuaries of India Subject CS1 Actuarial Statistics 1 Core Principles For 2019 Examinations Aim The aim of the Actuarial Statistics 1 subject is to provide a grounding in mathematical and

More information

1 Hypothesis Testing and Model Selection

1 Hypothesis Testing and Model Selection A Short Course on Bayesian Inference (based on An Introduction to Bayesian Analysis: Theory and Methods by Ghosh, Delampady and Samanta) Module 6: From Chapter 6 of GDS 1 Hypothesis Testing and Model Selection

More information

Machine Learning using Bayesian Approaches

Machine Learning using Bayesian Approaches Machine Learning using Bayesian Approaches Sargur N. Srihari University at Buffalo, State University of New York 1 Outline 1. Progress in ML and PR 2. Fully Bayesian Approach 1. Probability theory Bayes

More information

A Note on Hypothesis Testing with Random Sample Sizes and its Relationship to Bayes Factors

A Note on Hypothesis Testing with Random Sample Sizes and its Relationship to Bayes Factors Journal of Data Science 6(008), 75-87 A Note on Hypothesis Testing with Random Sample Sizes and its Relationship to Bayes Factors Scott Berry 1 and Kert Viele 1 Berry Consultants and University of Kentucky

More information

Stat 535 C - Statistical Computing & Monte Carlo Methods. Arnaud Doucet.

Stat 535 C - Statistical Computing & Monte Carlo Methods. Arnaud Doucet. Stat 535 C - Statistical Computing & Monte Carlo Methods Arnaud Doucet Email: arnaud@cs.ubc.ca 1 Suggested Projects: www.cs.ubc.ca/~arnaud/projects.html First assignement on the web: capture/recapture.

More information

Robust Bayesian Simple Linear Regression

Robust Bayesian Simple Linear Regression Robust Bayesian Simple Linear Regression October 1, 2008 Readings: GIll 4 Robust Bayesian Simple Linear Regression p.1/11 Body Fat Data: Intervals w/ All Data 95% confidence and prediction intervals for

More information

BAYES AND EMPIRICAL-BAYES MULTIPLICITY ADJUSTMENT IN THE VARIABLE-SELECTION PROBLEM. Department of Statistical Science, Duke University

BAYES AND EMPIRICAL-BAYES MULTIPLICITY ADJUSTMENT IN THE VARIABLE-SELECTION PROBLEM. Department of Statistical Science, Duke University Submitted to the Annals of Statistics BAYES AND EMPIRICAL-BAYES MULTIPLICITY ADJUSTMENT IN THE VARIABLE-SELECTION PROBLEM By James G. Scott and James O. Berger Department of Statistical Science, Duke University

More information

Using Bayes Factors for Model Selection in High-Energy Astrophysics

Using Bayes Factors for Model Selection in High-Energy Astrophysics Using Bayes Factors for Model Selection in High-Energy Astrophysics Shandong Zhao Department of Statistic, UCI April, 203 Model Comparison in Astrophysics Nested models (line detection in spectral analysis):

More information

Bayesian Linear Regression

Bayesian Linear Regression Bayesian Linear Regression Sudipto Banerjee 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. September 15, 2010 1 Linear regression models: a Bayesian perspective

More information

Pattern Recognition and Machine Learning. Bishop Chapter 2: Probability Distributions

Pattern Recognition and Machine Learning. Bishop Chapter 2: Probability Distributions Pattern Recognition and Machine Learning Chapter 2: Probability Distributions Cécile Amblard Alex Kläser Jakob Verbeek October 11, 27 Probability Distributions: General Density Estimation: given a finite

More information

Bayesian Linear Models

Bayesian Linear Models Bayesian Linear Models Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department of Forestry & Department

More information

arxiv: v1 [stat.me] 30 Aug 2018

arxiv: v1 [stat.me] 30 Aug 2018 BAYESIAN MODEL AVERAGING FOR MODEL IMPLIED INSTRUMENTAL VARIABLE TWO STAGE LEAST SQUARES ESTIMATORS arxiv:1808.10522v1 [stat.me] 30 Aug 2018 Teague R. Henry Zachary F. Fisher Kenneth A. Bollen department

More information

New Bayesian methods for model comparison

New Bayesian methods for model comparison Back to the future New Bayesian methods for model comparison Murray Aitkin murray.aitkin@unimelb.edu.au Department of Mathematics and Statistics The University of Melbourne Australia Bayesian Model Comparison

More information

Bayesian Model Averaging with BMS

Bayesian Model Averaging with BMS Bayesian Model Averaging with BMS for BMS Version 0.3.1 Stefan Zeugner September 2, 2012 Abstract This manual is a brief introduction to applied Bayesian Model Averaging with the R package BMS. The manual

More information

Penalized Loss functions for Bayesian Model Choice

Penalized Loss functions for Bayesian Model Choice Penalized Loss functions for Bayesian Model Choice Martyn International Agency for Research on Cancer Lyon, France 13 November 2009 The pure approach For a Bayesian purist, all uncertainty is represented

More information

Sparse Linear Models (10/7/13)

Sparse Linear Models (10/7/13) STA56: Probabilistic machine learning Sparse Linear Models (0/7/) Lecturer: Barbara Engelhardt Scribes: Jiaji Huang, Xin Jiang, Albert Oh Sparsity Sparsity has been a hot topic in statistics and machine

More information

Bayesian Linear Models

Bayesian Linear Models Bayesian Linear Models Sudipto Banerjee 1 and Andrew O. Finley 2 1 Department of Forestry & Department of Geography, Michigan State University, Lansing Michigan, U.S.A. 2 Biostatistics, School of Public

More information

Bayesian Model Diagnostics and Checking

Bayesian Model Diagnostics and Checking Earvin Balderama Quantitative Ecology Lab Department of Forestry and Environmental Resources North Carolina State University April 12, 2013 1 / 34 Introduction MCMCMC 2 / 34 Introduction MCMCMC Steps in

More information

Introduction into Bayesian statistics

Introduction into Bayesian statistics Introduction into Bayesian statistics Maxim Kochurov EF MSU November 15, 2016 Maxim Kochurov Introduction into Bayesian statistics EF MSU 1 / 7 Content 1 Framework Notations 2 Difference Bayesians vs Frequentists

More information

A Bayesian perspective on GMM and IV

A Bayesian perspective on GMM and IV A Bayesian perspective on GMM and IV Christopher A. Sims Princeton University sims@princeton.edu November 26, 2013 What is a Bayesian perspective? A Bayesian perspective on scientific reporting views all

More information

Package horseshoe. November 8, 2016

Package horseshoe. November 8, 2016 Title Implementation of the Horseshoe Prior Version 0.1.0 Package horseshoe November 8, 2016 Description Contains functions for applying the horseshoe prior to highdimensional linear regression, yielding

More information

A Bayesian Treatment of Linear Gaussian Regression

A Bayesian Treatment of Linear Gaussian Regression A Bayesian Treatment of Linear Gaussian Regression Frank Wood December 3, 2009 Bayesian Approach to Classical Linear Regression In classical linear regression we have the following model y β, σ 2, X N(Xβ,

More information

A Very Brief Summary of Bayesian Inference, and Examples

A Very Brief Summary of Bayesian Inference, and Examples A Very Brief Summary of Bayesian Inference, and Examples Trinity Term 009 Prof Gesine Reinert Our starting point are data x = x 1, x,, x n, which we view as realisations of random variables X 1, X,, X

More information

Overall Objective Priors

Overall Objective Priors Overall Objective Priors Jim Berger, Jose Bernardo and Dongchu Sun Duke University, University of Valencia and University of Missouri Recent advances in statistical inference: theory and case studies University

More information

Bayesian Methods in Multilevel Regression

Bayesian Methods in Multilevel Regression Bayesian Methods in Multilevel Regression Joop Hox MuLOG, 15 september 2000 mcmc What is Statistics?! Statistics is about uncertainty To err is human, to forgive divine, but to include errors in your design

More information

Methods and Tools for Bayesian Variable Selection and Model Averaging in Univariate Linear Regression

Methods and Tools for Bayesian Variable Selection and Model Averaging in Univariate Linear Regression Methods and Tools for Bayesian Variable Selection and Model Averaging in Univariate Linear Regression Anabel Forte, Department of Statistics and Operations research, University of Valencia Gonzalo García-Donato

More information

David Giles Bayesian Econometrics

David Giles Bayesian Econometrics 9. Model Selection - Theory David Giles Bayesian Econometrics One nice feature of the Bayesian analysis is that we can apply it to drawing inferences about entire models, not just parameters. Can't do

More information

Hierarchical Linear Models

Hierarchical Linear Models Hierarchical Linear Models Statistics 220 Spring 2005 Copyright c 2005 by Mark E. Irwin The linear regression model Hierarchical Linear Models y N(Xβ, Σ y ) β σ 2 p(β σ 2 ) σ 2 p(σ 2 ) can be extended

More information

Other Noninformative Priors

Other Noninformative Priors Other Noninformative Priors Other methods for noninformative priors include Bernardo s reference prior, which seeks a prior that will maximize the discrepancy between the prior and the posterior and minimize

More information

Introduction to Bayesian Statistics. James Swain University of Alabama in Huntsville ISEEM Department

Introduction to Bayesian Statistics. James Swain University of Alabama in Huntsville ISEEM Department Introduction to Bayesian Statistics James Swain University of Alabama in Huntsville ISEEM Department Author Introduction James J. Swain is Professor of Industrial and Systems Engineering Management at

More information

(1) Introduction to Bayesian statistics

(1) Introduction to Bayesian statistics Spring, 2018 A motivating example Student 1 will write down a number and then flip a coin If the flip is heads, they will honestly tell student 2 if the number is even or odd If the flip is tails, they

More information

Stat 535 C - Statistical Computing & Monte Carlo Methods. Arnaud Doucet.

Stat 535 C - Statistical Computing & Monte Carlo Methods. Arnaud Doucet. Stat 535 C - Statistical Computing & Monte Carlo Methods Arnaud Doucet Email: arnaud@cs.ubc.ca 1 Suggested Projects: www.cs.ubc.ca/~arnaud/projects.html First assignement on the web this afternoon: capture/recapture.

More information

Bayesian Statistics Adrian Raftery and Jeff Gill One-day course for the American Sociological Association August 15, 2002

Bayesian Statistics Adrian Raftery and Jeff Gill One-day course for the American Sociological Association August 15, 2002 Bayesian Statistics Adrian Raftery and Jeff Gill One-day course for the American Sociological Association August 15, 2002 Bayes Course, ASA Meeting, August 2002 c Adrian E. Raftery 2002 1 Outline 1. Bayes

More information

A Discussion of the Bayesian Approach

A Discussion of the Bayesian Approach A Discussion of the Bayesian Approach Reference: Chapter 10 of Theoretical Statistics, Cox and Hinkley, 1974 and Sujit Ghosh s lecture notes David Madigan Statistics The subject of statistics concerns

More information

Model Averaging (Bayesian Learning)

Model Averaging (Bayesian Learning) Model Averaging (Bayesian Learning) We want to predict the output Y of a new case that has input X = x given the training examples e: p(y x e) = m M P(Y m x e) = m M P(Y m x e)p(m x e) = m M P(Y m x)p(m

More information

Part 4: Multi-parameter and normal models

Part 4: Multi-parameter and normal models Part 4: Multi-parameter and normal models 1 The normal model Perhaps the most useful (or utilized) probability model for data analysis is the normal distribution There are several reasons for this, e.g.,

More information

MAXIMUM LIKELIHOOD, SET ESTIMATION, MODEL CRITICISM

MAXIMUM LIKELIHOOD, SET ESTIMATION, MODEL CRITICISM Eco517 Fall 2004 C. Sims MAXIMUM LIKELIHOOD, SET ESTIMATION, MODEL CRITICISM 1. SOMETHING WE SHOULD ALREADY HAVE MENTIONED A t n (µ, Σ) distribution converges, as n, to a N(µ, Σ). Consider the univariate

More information

DECOUPLING SHRINKAGE AND SELECTION IN BAYESIAN LINEAR MODELS: A POSTERIOR SUMMARY PERSPECTIVE. By P. Richard Hahn and Carlos M.

DECOUPLING SHRINKAGE AND SELECTION IN BAYESIAN LINEAR MODELS: A POSTERIOR SUMMARY PERSPECTIVE. By P. Richard Hahn and Carlos M. DECOUPLING SHRINKAGE AND SELECTION IN BAYESIAN LINEAR MODELS: A POSTERIOR SUMMARY PERSPECTIVE By P. Richard Hahn and Carlos M. Carvalho Booth School of Business and McCombs School of Business Selecting

More information

Forecast combination and model averaging using predictive measures. Jana Eklund and Sune Karlsson Stockholm School of Economics

Forecast combination and model averaging using predictive measures. Jana Eklund and Sune Karlsson Stockholm School of Economics Forecast combination and model averaging using predictive measures Jana Eklund and Sune Karlsson Stockholm School of Economics 1 Introduction Combining forecasts robustifies and improves on individual

More information

On the Effect of Prior Assumptions in Bayesian Model Averaging with Applications to Growth Regression

On the Effect of Prior Assumptions in Bayesian Model Averaging with Applications to Growth Regression Public Disclosure Authorized Public Disclosure Authorized Public Disclosure Authorized Public Disclosure Authorized On the Effect of Prior Assumptions in Bayesian Model Averaging with Applications to Growth

More information

Module 22: Bayesian Methods Lecture 9 A: Default prior selection

Module 22: Bayesian Methods Lecture 9 A: Default prior selection Module 22: Bayesian Methods Lecture 9 A: Default prior selection Peter Hoff Departments of Statistics and Biostatistics University of Washington Outline Jeffreys prior Unit information priors Empirical

More information

Bayesian Statistics. Debdeep Pati Florida State University. February 11, 2016

Bayesian Statistics. Debdeep Pati Florida State University. February 11, 2016 Bayesian Statistics Debdeep Pati Florida State University February 11, 2016 Historical Background Historical Background Historical Background Brief History of Bayesian Statistics 1764-1838: called probability

More information

Module 11: Linear Regression. Rebecca C. Steorts

Module 11: Linear Regression. Rebecca C. Steorts Module 11: Linear Regression Rebecca C. Steorts Announcements Today is the last class Homework 7 has been extended to Thursday, April 20, 11 PM. There will be no lab tomorrow. There will be office hours

More information

Lecture 16 : Bayesian analysis of contingency tables. Bayesian linear regression. Jonathan Marchini (University of Oxford) BS2a MT / 15

Lecture 16 : Bayesian analysis of contingency tables. Bayesian linear regression. Jonathan Marchini (University of Oxford) BS2a MT / 15 Lecture 16 : Bayesian analysis of contingency tables. Bayesian linear regression. Jonathan Marchini (University of Oxford) BS2a MT 2013 1 / 15 Contingency table analysis North Carolina State University

More information

Bayes Factors for Grouped Data

Bayes Factors for Grouped Data Bayes Factors for Grouped Data Lizanne Raubenheimer and Abrie J. van der Merwe 2 Department of Statistics, Rhodes University, Grahamstown, South Africa, L.Raubenheimer@ru.ac.za 2 Department of Mathematical

More information

Bayesian variable selection in high dimensional problems without assumptions on prior model probabilities

Bayesian variable selection in high dimensional problems without assumptions on prior model probabilities arxiv:1607.02993v1 [stat.me] 11 Jul 2016 Bayesian variable selection in high dimensional problems without assumptions on prior model probabilities J. O. Berger 1, G. García-Donato 2, M. A. Martínez-Beneito

More information