SEMI-TIED FULL-COVARIANCE MATRICES FOR HMMS

Size: px
Start display at page:

Download "SEMI-TIED FULL-COVARIANCE MATRICES FOR HMMS"

Transcription

1 SEMI-TIED FULL-COVARIANCE MATRICES FOR HMMS M.J.F. Gales Deceber 9, 997 Cotets Bass. Block Dagoal Matrces : : : : : : : : : : : : : : : : : : : : : : : : : : : :. Cooly used atrx dervatve : : : : : : : : : : : : : : : : : : : : : : : :.3 Collares : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : ML Estato of Se-Ted Full Covaraces 3 3 Updatg the Mea 3 4 Updatg the Dagoal Covarace Matrx 3 5 Updatg the Full-Covarace Trasfor 5 5. Ipleetato : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 6 5. Ipleetato : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Ipleetato 3 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 7 6 The Updatg Sequece 6. Mea ad Dagoal Covarace Frst : : : : : : : : : : : : : : : : : : : : : : 6.. To update the ea ad the dagoal covarace wth A fxed : : : : : : 6.. To update the full-covarace trasfor assug the ea ad dagoal covarace are fxed : : : : : : : : : : : : : : : : : : : : : : : : : : : 9 6. Mea ad Full-Covarace Trasfor Frst : : : : : : : : : : : : : : : : : : : To update the ea ad the full-covarace trasfor, wth Σ () dag fxed : To update the dagoal covarace, wth the ea ad the trasfor fxed 0 7 Maxu Lkelhood Lear Regresso for Speaker Adaptato 7. Assug SI Dagoal-Covarace : : : : : : : : : : : : : : : : : : : : : : : 7.. Splfcatos of W : : : : : : : : : : : : : : : : : : : : : : : : : : 7. Assug SI Se-Ted Full-Covarace : : : : : : : : : : : : : : : : : : : : Assug SI Ay Full-Covarace wth Hyper-MLLR : : : : : : : : : : : : : : Assug Se-Ted Full-Covarace wth Hyper-MLLR : : : : : : : : : : : : 5

2 Bass. Block Dagoal Matrces If The Σ Σ Σ Σ 0 Σ 0 Σ Σ, Σ, 0 0 Σ, (x, ) T Σ, (x, ) (x, T ) Σ, (x, )+(x, T ) Σ, (x, ) Therefore we oly dscuss full-atrces here. Applcato to block dagoal atrces are easy sply treat each block depedetly as a full atrx.. Cooly used atrx dervatve.3 T A + A log (Σ T ), T For ay atrx A dd, defe cofactor of a, COF(a ), beg (,) + tes the deterat of the atrx resultg fro reovg the -th row ad the -th colu fro A.The. A d a COF (a ) d a COF (a ) for ay ad ay.. If A s vertble, A, A fcof(a)g Lear Algebra, p. Lear Algebra, p05.

3 ML Estato of Se-Ted Full Covaraces Let d represets the desoalty of the data x. Supposefor each Gaussa (), there exsts dd such that Σ () 4 full Σ () dag T where s shared by a set of Gaussas, M. does ot eed to be orthogoal or orthoral. We also defe A 4, The log N (x; () ; Σ () dag ;), d log + log Σ (), dag + log +[, (x, )] T Σ (), dag [, (x, )] d log + log Σ () dag,loga +[A(x, () )] T Σ (), dag [A(x, () )] log N (Ax; A () ; Σ () )+log A () dag So the crease coputato cost s oe atrx ultplcato (d d tes d ) per A per frae of data x. Ths kd of covarace s called se-ted full covarace because Σ () s ot dag ted; oly the trasfor A s ted; ad after the trasfor every Gaussa has a full covarace atrx. 3 Updatg the Mea Q( ˆ () ˆ (), Assug both  ad ˆΣ () are full-raked, dag Â(x, ˆ () )T ˆΣ (), dag Â(x, ˆ () ) o,ât ˆΣ (), dag  (x, ˆ() ) 0 d (x, ˆ () )0 d o o Therefore ˆ () x () 4 Updatg the Dagoal Covarace Matrx If Σ () were ot dagoal, defe dag C 4 Σ (), dag 3

4 The Q(Ĉ), Sce Σ () s syetrc, so s C. dag Ĉ, Ĉ, ˆΣ () dag, log Ĉ +[Â(x, ˆ() )] T Ĉ [Â(x, ˆ() )],(ĈT ), +[Â(x, ˆ() )] [Â(x, ˆ() )] T o 0 dd If we force Σ () to be dagoal, assue dag Σ () 4 dag 0 Â(x, ˆ () )Â(x, ˆ () T ) Â(x, ˆ () 0 ::: 0 0 ::: 0 0 ::: ::: d Q( vˆ ), ˆ A 4 Â(x, ˆ () ) T (3) v! 0 ::: 0 0 v ::: 0 0 ::: ::: v d log vˆ + Â(x, ˆ () ) ˆv,, Â(x, ˆ () ) Â(x vˆ, ˆ () ) o, vˆ o, vˆ 0 I other words, dagfforula(3)g ˆ,Âx,, Â ˆ () (4) If A s fxed whle Σ () s beg re-estated,the dag ˆ, Ax,, A ˆ () (5) 4

5 5 Updatg the Full-Covarace Trasfor Q(Â), M o Â(x,log +, ˆ () )T ˆΣ Â(x (),, ˆ () ) dag where M s the set of Gaussas that share ), + ˆΣ (), dag  (x, ˆ() )(x, ˆ () ) To 0 dd By Collary ad, the (; )-etry of the above equato s, Â,COF(â ) + ˆ where â ŷ + d k;k6! ) â () kŷ k ŷ ()  + âcof(â) e ŷ () 4 x, ˆ () Note ths s the ˆ () Forula () wthout applyg the trasfor A to data x. Σ (), dag Ay() y ()T A e Rearragg the above equato gves us where ĉ ĉ ĉ 3 ( d k 4 A,a COF(a ) a () ky k y  ĉâ + ĉ â + ĉ3 0 (6) ( ( ˆ ˆ COF(â ) ŷ " Âeŷ(),COF(â )+  e ˆ + COF(â ) k6 k6 â () kŷ k ŷ () ) #) â () kŷ k ŷ () Sce ˆΣ () Forula (4) depeds o  ad vce versa, t s dffcult to re-estate both dag sultaeously. So whle re-estatg A, let sfxσ () (ad vce versa). Moreover, f we dag use the curret estate of A for all the rght had sdes of the c-equatos, we ca estate  teratvely utl all the eleets coverge or Q(Â) coverges. c () COF(a ) ŷ ) 5

6 c c 3 ( ( " A eŷ,cof(a ) + A e + COF(a ) k6 k6 a () kŷ k ŷ () #) a () kŷ k ŷ () ) (7) ) â,c +, p c, 4c c 3 c There are two solutos, so there s the questo of whch root s to be chose. Dfferetatg Forula (6) Â, ĉâ + ĉ, pĉ +, 4ĉ ĉ 3 Â < 0 sce we are axzg Q. There s o strct costrat that A be postve. But practce ths s varablythe case becausea I tally. Therefore we choose practcally. â,c + p c, 4c c 3 c 5. Ipleetato Ipleetg Forula (7) drectly wth u space requred, each A has the followg forato: struct Afo { float **a; double **cof, det, c, c, c3; } A; where A ca be coputed dyacally by e det_ot_ A.det - A.a[][] * A.cof[][]; The we copute the rght had sdes of Forula (7) for each pece of data x ad accuulate the to A.c, A.c, ad A.c3 for each A. Ths approach has the advatage of usg the least aout of space. I partcular, f there are A s the syste, t requres oly 3 doubles per a etry ad thus 3 d bytes are requred f double s used. A typcal sze s 3**50*39*39.5 MB. However, ths approach eglects a lot of coo expressos Forula (7) ad thus s too coputatoally expesve. 6

7 5. Ipleetato Aother extree pleetato s to extract as ay coo expressos as possble. Let s see how uch ths would cost ters of eory. 9 < c COF(a ) () ŷ : () ; If we ca store < : c A e () ŷ < +COF(a ) a k : k6 c 3,COF(a ) +A a e k k6 ŷ () ŷ ()T < : 9 ; ŷ () k ŷ () k ŷ () ŷ () 9 ; (x, ˆ () )(x, ˆ () ) T whch s d etres per Gaussa, the at the ed of data processg we ca copute c s to solve Â. Ths approach s the best coputato-effcet way. However, t requres d N floats or doubles of space, where N s the uber of Gaussas the syste. A typcal uber wll be 39 * 39 * 0k * 4 bytes for floats, or.4606 GB for doubles!! 5.3 Ipleetato 3 Therefore a good coprose betwee the above two pleetatos s to defe The G () 4 c COF(a )G () c COF(a ) a kg () k k6 c 3,COF(a ) ŷ () ŷ ()T 9 ; (x, ˆ () )(x, ˆ () ) T () + A e G() +A e k6 a kg () k (9) 7

8 Ths saves a lot of coputato copared wth the frst pleetato. Space wse, t eeds d 3 etres per A. A typcal sze s 39*39*39*50*4 for floats, or MB for doubles. I addto, f block dagoals are used, the space requred wll be d3 per A, whered s the desoalty of each block. Ifthereareb equally szed blocks, space s saved fro d 3 etres per A to d 3 b etres per A. 6 The Updatg Sequece I ths secto, we assue Ipleetao 3 s used. Frst of all, f we wat to sultaeously update, Σ dag ad A, the because of the depedecy betwee  ad ˆΣ dag we would eed to do soethg as follows:. Update ˆ.. Update ˆΣ dag wth A. 3. Iteratvely estate  wth the curret A ad Σ dag ad ˆ. 4. Uless covergece, A Σ dag ˆΣdag go to step. Due to the eory requreet ad coplexty, we decde to gve up updatg all the paraeters sultaeously. The questo left s f( () ; Σ () dag )+Ag+ or f(() ;A) + Σ () dag g+? 3 It turs out that ether of the has about the sae cost, both coputato ad eory. 6. Mea ad Dagoal Covarace Frst 6.. To update the ea ad the dagoal covarace wth A fxed A I tally.. Read odel cout ad copute fa () ; Σ () dag ;Ag.. Covert each pece of data x to Ax order to copute Forula () to copute. 3. Accuulate x, x Ax, ad x (Ax) per Gaussa utl the ed of the trag corpus. Ths takes ( + d + d) N floats/doubles, where N s the total uber of Gaussas the syste. 4. Wrte out the above odel couts so that we ca copute Forula () ad (5) to get the updated odel. 5. Copy the put A to the output odel. 6. Wrte out HMM trasto couts. 3 The HMM trasto probablty ad the Gaussa xture weght ca always be updated ether at the frst phase or secod phase easly. Â

9 6.. To update the full-covarace trasfor assug the ea ad dagoal covarace are fxed. Read the odel couts output by Secto 6.. to copute fa ˆ () ; ˆΣ () dag ;Ag.. Restore the u-trasfored ea ˆ () A, (A ˆ () ) for coputg G (). 3. Covert each pece of data x to Ax order to copute Forula () to copute. The orgal u-trasfored data x has to be saved too for the followg step. 4. Accuulate G () Forula () for each A utl the ed of the trag corpus. Ths takes d 3 etres per A. I addto, we also eed to accuulate for Forula (9). Ths takes aother sgle etry per A. 5. Iteratvely estate  utl covergece: (a) Copute COF(a ) ada for each A wth ts curret value. e (b) For each row of each A, useg () to copute â. Thus we solve  row by row. (c) If Â, A <or or Q(Â) coverges, stop. Otherwse, set A  adgoto step (a). 6. Wrte out all  s. 7. Now read the odel couts x output by Secto 6.. aga. Use the utrasfored ew ea ˆ () (whch s already coputed at step ) to copute ad wrte out x  ˆ().. Slarly, use the ew dagoal varace (whch s already coputed at step ) ad the ea wrtte at step 7 to copute ad wrte out f ˆ () +[ ˆ() ] g x. 9. Copy HMM trasto couts ad the put x to the output. We eed to do step 7 because for the ext terato of trag or decodg, the ea should use the ew A, whle the odel couts wrtte at Secto 6.. used the old A. We eed to do step because ˆΣ () should be obtaed by usg the old A whch s beg dag overwrtte by the ew values. 6. Mea ad Full-Covarace Trasfor Frst 6.. To update the ea ad the full-covarace trasfor, wth Σ () dag fxed Expad Forula () to G () < :,, < : 9 xx T ; x x A ˆ ()T A ˆ ()T 9 ; T 9

10 + A ˆ () ˆ ()T. Read odel f () ; Σ () dag ;Ag.. Covert the put odel to fa () ; Σ () dag g. The u-trasfored ea () eeds ot to be saved. 3. Covert each pece of data x to Ax order to copute Forula () to copute. The orgal u-trasfored data x has to be saved too for the followg step. 4. Accuulate x, x x, ad xxt (0) for G () Forula (0) (ad ˆ () Forula ()) utl the ed of the trag corpus. Ths takes d 3 etres per A ad d + etres per Gaussa. All tes Forula (0) ad (9) ca be derved fro these statstcs. 5. Use Forula () to copute ˆ (), whch s ot oly oe of the output, but also wll be used ext. 6. Iteratvely estate  utl covergece: (a) Copute COF(a ) ada for each A wth ts curret value. e (b) For each row of each A, copute G () accordg to Forula (0). The use Forula (9) to copute â. (c) If Â, A <or Q(Â) coverges, stop. Otherwse, set A  adgotostep (a). 7. Wrte out all  s.. Wrte out ˆ () ad ts u-oralzed weght x for each Gaussa. 9. Wrte out HMM trasto probabltes. 0. Copy the put Σ () to the output odel. dag 6.. To update the dagoal covarace, wth the ea ad the trasfor fxed. Read odel f ˆ () ; Σ () dag ;Âg.. Covert the put odel to fâ ˆ() ; Σ () dag g. 3. Covert each pece of data x to Ax order to copute Forula () to copute. The orgal u-trasfored data x eeds ot to be saved. 4. Accuulate x,ad x (Âx,ˆ() ) per Gaussa utl the ed of the trag corpus. Ths takes ( + d) N floats/doubles, where N s the total uber of Gaussas the syste. 5. Use Forula (3) to copute ad wrte out ˆΣ () dag. 6. Copy the rest of paraeters the put odel to the output odel. 0

11 Notce at step 4, stead of usg Forula (4), we have to use Forula (3) drectly. Ths s because Â(x vˆ, ˆ ),Âx, + ˆ,,  ˆ () (  " x #) I the last ter, the ter wth the bracket [] s ot ecessarly equal to ˆ () coputed Secto 6.., because the data alget ad ca be dfferet fro what was coputed the. 7 Maxu Lkelhood Lear Regresso for Speaker Adaptato Gve a sall aout of speaker-depedet data, we wat to trasfor the speaker-depedet (SI) Gaussa eas to speaker-depedet (SD) wth a lear trasfor, assug the rest of SI paraeters are fxed: (SD) B dd (SI) + b d Use aother otato, W s dexed fro..d, 0..d. W d(d+) d, bb ) (SD) W 7. Assug SI Dagoal-Covarace Assue the SI covarace s dagoal. Furtherore defe W 4 fgaussas that share the sae Wg. Q(Ŵ), W (x, Ŵ () ) T Σ (), dag (x, Ŵ () ), Σ (), dag (x, Ŵ ()To () ) 0 d(d+)

12 Σ (), dag x ()T Σ (), Ŵ () dag ()T W W Both sdes are d (d + ) atrces. The left-had sde, Z, cabe accuulatedfro the data, ( ) z x () () W for ::d; 0::d wth () 0 forall() s. To copute the rght-had sze, Y, otce Therefore, where y Σ (), dag d k0 Ŵ () ()T ŵ k W < : (), G () (d+)(d+) () k 4 () W d k0 d k0 d k0 () Σ (),Ŵ, () ()T dag k k ( (), ŵ k (), () ŵ k)( k () ) () k 9 A ; () d k0 ŵ kg () k () () ()T (3) () Notce ths G s othg related to the G defed Secto 5.3 ad here G k both dces rage fro 0..d. Let W deote the -th row of W. Equato () ples Notce that G s syetrc, so Y Ŵ G () Z Z T G ()T Ŵ T G () Ŵ T So each row of Ŵ ca be solved depedetly by usg ay of the stadard Gaussa Elato Method. What we eed to accuulate whle scag the trag corpus s the x per Gaussa for coputg Z Forula (), ad per Gaussa for coputg G Forula (3). 7.. Splfcatos of W If B s block dagoal, sply treat each block depedetly as a full atrx. If B s dagoal, t s sply block dagoal wth block sze for each block. However, for the dagoal case, there s a ore effcet way of solvg the varables, see HTK Tr.

13 7. Assug SI Se-Ted Full-Covarace If the se-ted full covarace s used for the SI odel, Σ () full () Σ () dag ()T A (), Σ () dag the Q fucto becoes, Q(Ŵ), W, A (), T A (), x, Ŵ () T (), Σ dag A (), x, Ŵ () Notce that for ; W, t ay be true that A ( ) A ( ). The tyg sharg A ad sharg W eed ot to be the W W Because A ()T Σ (), dag A()o x ()T z (A ()T Σ (), dag A() )q W < : d p,a ()T Σ (), dag A() (x, Ŵ () ) ()To 0 h d W d p a pa pq (), p q apapq( xq) () p A ()T Σ (), dag A()o Ŵ () ()T 9 ; () (4) Whe A I, Equato (4) becoes (). Aga, to copute z, x eeds to be accuulated. I the worst case, ths s a lear equato syste wth d (d + ) varables ad equatos. Therefore t ca stll be solved usg the stadard Gaussa Elato Method. However wth the large desoalty, t s possble that the lear costats do ot have the full rak. Moreover solvg such a hgh desoal equato syste s very expesve. 7.3 Assug SI Ay Full-Covarace wth Hyper-MLLR Whe a arbtrary full covarace s used, we frst decopose the covarace atrx to ts egevalues ad ts orthooral 4 egevectors: Σ () full () Σ () dag ()T The we assue the SD ea ˆ () ad the SI ea () has the followg relatoshp: 4 Reeber ths eas ()T (),. A () ˆ () B, A () () + b 3

14 I other words, ˆ () 4 A (), BA () () + A (), b where A () 4 (), ad W (bb) ust lke what we defed at the begg of ths secto. where That s, A () ˆ () 4 b BA () : 6 4 [b B] W f A () fa () 4 ()... () d A () () A () () Oe should copare ths exteded ea wth that defed at the begg of ths secto. Also otce that f the SI covarace s dagoal (A I), ths trasforato degeerates to that case. We watto fdthe optalw to axze the trag probablty. Aga W cabe shared across a set of Gaussas W. Q(Ŵ),, W W, W W Σ (), dag (x, ˆ () ) Σ (), full (x, ˆ () ) A () (x, ˆ () ) T Σ (), dag A () x, Ŵ f A ()o T Σ (), dag, A () x f A ()T A () (x, ˆ () ) A () x, Ŵ A f ()o, Σ (), dag (A() x, Ŵ () A f ) A f ()To 0 d(d+) W () Σ (), ()T Ŵ A f A f dag Therefore, Forula () ad (3) ca be used aga to fd a closed for soluto for each row of W. ( ) z (A() x) (A () () ) W y d < () ŵ k : (), k0 W (A () () )k (A () () ) 9 A ; d k0 ŵ kg () k 4

15 G () (d+)(d+) 4 W () fa () f A ()T A few ssues eed to be addressed: For two Gaussas the sae W, the fal trasfor A ( ), b A ( ), BA ( ) 6 A ( ), b A ( ), BA () are stll dfferet f A ( ) 6 A ( ). Therefore I call t hyper-mllr. Both the feature data x ad the Gaussa ea have to be coverted by A () for each Gaussa. The oly Σ () s used; Σ() ca go away. dag full The above te exhbt o extra coputatoal cost actually. Ths s because whe full covaraces are used, we always do the coverso o the put ea ad data ayway (see Forula ()). Oce W s foud, stead of coputg ˆ (), A (), b A (), BA () () we sply apply W to f A () The regular decodg/trag algorths whle applyg A () to data x ca cotue as usual. Ths s because (x, ˆ () ) T Σ (), (x, ˆ full () ) A () (x, ˆ () ) T Σ (), dag A () (x, ˆ () ) A () x, W T A () () Σ (), dag A () x, W A () () 7.4 Assug Se-Ted Full-Covarace wth Hyper-MLLR Ths s exactly the sae as the above sub-secto, except that egevector decoposto s ot volved. Istead becoes the shared covarace trasfor defed Secto. Also otce that A () ca be shared across a set of Gaussas M, whch s ot ecessarly the sae as W. As a atter of fact, M W usually. M s usually the phoe class: all the Gaussas that correspod to the sae base phoe share the sae covarace trasforato A. W depeds o the aout of the SD data. Usually we do t have uch SD data. So a broad phoe class (such as asal, vowel, etc.) s usually used for W. That s, usually f two Gaussas share the sae covarace trasfor A, the they share the sae SD ea trasfor W. Butot vce versa. However, whe ore ad ore SD data are avalable, ths ay break. 5

Some Different Perspectives on Linear Least Squares

Some Different Perspectives on Linear Least Squares Soe Dfferet Perspectves o Lear Least Squares A stadard proble statstcs s to easure a respose or depedet varable, y, at fed values of oe or ore depedet varables. Soetes there ests a deterstc odel y f (,,

More information

KURODA S METHOD FOR CONSTRUCTING CONSISTENT INPUT-OUTPUT DATA SETS. Peter J. Wilcoxen. Impact Research Centre, University of Melbourne.

KURODA S METHOD FOR CONSTRUCTING CONSISTENT INPUT-OUTPUT DATA SETS. Peter J. Wilcoxen. Impact Research Centre, University of Melbourne. KURODA S METHOD FOR CONSTRUCTING CONSISTENT INPUT-OUTPUT DATA SETS by Peter J. Wlcoxe Ipact Research Cetre, Uversty of Melboure Aprl 1989 Ths paper descrbes a ethod that ca be used to resolve cossteces

More information

Chapter 9 Jordan Block Matrices

Chapter 9 Jordan Block Matrices Chapter 9 Jorda Block atrces I ths chapter we wll solve the followg problem. Gve a lear operator T fd a bass R of F such that the matrx R (T) s as smple as possble. f course smple s a matter of taste.

More information

Non-degenerate Perturbation Theory

Non-degenerate Perturbation Theory No-degeerate Perturbato Theory Proble : H E ca't solve exactly. But wth H H H' H" L H E Uperturbed egevalue proble. Ca solve exactly. E Therefore, kow ad. H ' H" called perturbatos Copyrght Mchael D. Fayer,

More information

PRACTICAL CONSIDERATIONS IN HUMAN-INDUCED VIBRATION

PRACTICAL CONSIDERATIONS IN HUMAN-INDUCED VIBRATION PRACTICAL CONSIDERATIONS IN HUMAN-INDUCED VIBRATION Bars Erkus, 4 March 007 Itroducto Ths docuet provdes a revew of fudaetal cocepts structural dyacs ad soe applcatos hua-duced vbrato aalyss ad tgato of

More information

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then Secto 5 Vectors of Radom Varables Whe workg wth several radom varables,,..., to arrage them vector form x, t s ofte coveet We ca the make use of matrx algebra to help us orgaze ad mapulate large umbers

More information

Algorithms behind the Correlation Setting Window

Algorithms behind the Correlation Setting Window Algorths behd the Correlato Settg Wdow Itroducto I ths report detaled forato about the correlato settg pop up wdow s gve. See Fgure. Ths wdow s obtaed b clckg o the rado butto labelled Kow dep the a scree

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Postpoed exam: ECON430 Statstcs Date of exam: Jauary 0, 0 Tme for exam: 09:00 a.m. :00 oo The problem set covers 5 pages Resources allowed: All wrtte ad prted

More information

TESTS BASED ON MAXIMUM LIKELIHOOD

TESTS BASED ON MAXIMUM LIKELIHOOD ESE 5 Toy E. Smth. The Basc Example. TESTS BASED ON MAXIMUM LIKELIHOOD To llustrate the propertes of maxmum lkelhood estmates ad tests, we cosder the smplest possble case of estmatg the mea of the ormal

More information

7.0 Equality Contraints: Lagrange Multipliers

7.0 Equality Contraints: Lagrange Multipliers Systes Optzato 7.0 Equalty Cotrats: Lagrage Multplers Cosder the zato of a o-lear fucto subject to equalty costrats: g f() R ( ) 0 ( ) (7.) where the g ( ) are possbly also olear fuctos, ad < otherwse

More information

Assignment 5/MATH 247/Winter Due: Friday, February 19 in class (!) (answers will be posted right after class)

Assignment 5/MATH 247/Winter Due: Friday, February 19 in class (!) (answers will be posted right after class) Assgmet 5/MATH 7/Wter 00 Due: Frday, February 9 class (!) (aswers wll be posted rght after class) As usual, there are peces of text, before the questos [], [], themselves. Recall: For the quadratc form

More information

D. L. Bricker, 2002 Dept of Mechanical & Industrial Engineering The University of Iowa. CPL/XD 12/10/2003 page 1

D. L. Bricker, 2002 Dept of Mechanical & Industrial Engineering The University of Iowa. CPL/XD 12/10/2003 page 1 D. L. Brcker, 2002 Dept of Mechacal & Idustral Egeerg The Uversty of Iowa CPL/XD 2/0/2003 page Capactated Plat Locato Proble: Mze FY + C X subject to = = j= where Y = j= X D, j =, j X SY, =,... X 0, =,

More information

Class 13,14 June 17, 19, 2015

Class 13,14 June 17, 19, 2015 Class 3,4 Jue 7, 9, 05 Pla for Class3,4:. Samplg dstrbuto of sample mea. The Cetral Lmt Theorem (CLT). Cofdece terval for ukow mea.. Samplg Dstrbuto for Sample mea. Methods used are based o CLT ( Cetral

More information

2/20/2013. Topics. Power Flow Part 1 Text: Power Transmission. Power Transmission. Power Transmission. Power Transmission

2/20/2013. Topics. Power Flow Part 1 Text: Power Transmission. Power Transmission. Power Transmission. Power Transmission /0/0 Topcs Power Flow Part Text: 0-0. Power Trassso Revsted Power Flow Equatos Power Flow Proble Stateet ECEGR 45 Power Systes Power Trassso Power Trassso Recall that for a short trassso le, the power

More information

Lecture 3 Probability review (cont d)

Lecture 3 Probability review (cont d) STATS 00: Itroducto to Statstcal Iferece Autum 06 Lecture 3 Probablty revew (cot d) 3. Jot dstrbutos If radom varables X,..., X k are depedet, the ther dstrbuto may be specfed by specfyg the dvdual dstrbuto

More information

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 17

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 17 CS434a/54a: Patter Recogto Prof. Olga Vesler Lecture 7 Today Paraetrc Usupervsed Learg Expectato Maxato (EM) oe of the ost useful statstcal ethods oldest verso 958 (Hartley) seal paper 977 (Depster et

More information

Department of Mathematics UNIVERSITY OF OSLO. FORMULAS FOR STK4040 (version 1, September 12th, 2011) A - Vectors and matrices

Department of Mathematics UNIVERSITY OF OSLO. FORMULAS FOR STK4040 (version 1, September 12th, 2011) A - Vectors and matrices Deartet of Matheatcs UNIVERSITY OF OSLO FORMULAS FOR STK4040 (verso Seteber th 0) A - Vectors ad atrces A) For a x atrx A ad a x atrx B we have ( AB) BA A) For osgular square atrces A ad B we have ( )

More information

Bayes (Naïve or not) Classifiers: Generative Approach

Bayes (Naïve or not) Classifiers: Generative Approach Logstc regresso Bayes (Naïve or ot) Classfers: Geeratve Approach What do we mea by Geeratve approach: Lear p(y), p(x y) ad the apply bayes rule to compute p(y x) for makg predctos Ths s essetally makg

More information

The Mathematics of Portfolio Theory

The Mathematics of Portfolio Theory The Matheatcs of Portfolo Theory The rates of retur of stocks, ad are as follows Market odtos state / scearo) earsh Neutral ullsh Probablty 0. 0.5 0.3 % 5% 9% -3% 3% % 5% % -% Notato: R The retur of stock

More information

Lecture 8 IEEE DCF Performance

Lecture 8 IEEE DCF Performance Lecture 8 IEEE82. DCF Perforace IEEE82. DCF Basc Access Mechas A stato wth a ew packet to trast otors the chael actvty. If the chael s dle for a perod of te equal to a dstrbuted terfrae space (DIFS), the

More information

for each of its columns. A quick calculation will verify that: thus m < dim(v). Then a basis of V with respect to which T has the form: A

for each of its columns. A quick calculation will verify that: thus m < dim(v). Then a basis of V with respect to which T has the form: A Desty of dagoalzable square atrces Studet: Dael Cervoe; Metor: Saravaa Thyagaraa Uversty of Chcago VIGRE REU, Suer 7. For ths etre aer, we wll refer to V as a vector sace over ad L(V) as the set of lear

More information

Econometric Methods. Review of Estimation

Econometric Methods. Review of Estimation Ecoometrc Methods Revew of Estmato Estmatg the populato mea Radom samplg Pot ad terval estmators Lear estmators Ubased estmators Lear Ubased Estmators (LUEs) Effcecy (mmum varace) ad Best Lear Ubased Estmators

More information

CHAPTER 4 RADICAL EXPRESSIONS

CHAPTER 4 RADICAL EXPRESSIONS 6 CHAPTER RADICAL EXPRESSIONS. The th Root of a Real Number A real umber a s called the th root of a real umber b f Thus, for example: s a square root of sce. s also a square root of sce ( ). s a cube

More information

The number of observed cases The number of parameters. ith case of the dichotomous dependent variable. the ith case of the jth parameter

The number of observed cases The number of parameters. ith case of the dichotomous dependent variable. the ith case of the jth parameter LOGISTIC REGRESSION Notato Model Logstc regresso regresses a dchotomous depedet varable o a set of depedet varables. Several methods are mplemeted for selectg the depedet varables. The followg otato s

More information

2006 Jamie Trahan, Autar Kaw, Kevin Martin University of South Florida United States of America

2006 Jamie Trahan, Autar Kaw, Kevin Martin University of South Florida United States of America SOLUTION OF SYSTEMS OF SIMULTANEOUS LINEAR EQUATIONS Gauss-Sedel Method 006 Jame Traha, Autar Kaw, Kev Mart Uversty of South Florda Uted States of Amerca kaw@eg.usf.edu Itroducto Ths worksheet demostrates

More information

( ) ( ) ( ( )) ( ) ( ) ( ) ( ) ( ) = ( ) ( ) + ( ) ( ) = ( ( )) ( ) + ( ( )) ( ) Review. Second Derivatives for f : y R. Let A be an m n matrix.

( ) ( ) ( ( )) ( ) ( ) ( ) ( ) ( ) = ( ) ( ) + ( ) ( ) = ( ( )) ( ) + ( ( )) ( ) Review. Second Derivatives for f : y R. Let A be an m n matrix. Revew + v, + y = v, + v, + y, + y, Cato! v, + y, + v, + y geeral Let A be a atr Let f,g : Ω R ( ) ( ) R y R Ω R h( ) f ( ) g ( ) ( ) ( ) ( ( )) ( ) dh = f dg + g df A, y y A Ay = = r= c= =, : Ω R he Proof

More information

ENGI 3423 Simple Linear Regression Page 12-01

ENGI 3423 Simple Linear Regression Page 12-01 ENGI 343 mple Lear Regresso Page - mple Lear Regresso ometmes a expermet s set up where the expermeter has cotrol over the values of oe or more varables X ad measures the resultg values of aother varable

More information

CS 2750 Machine Learning. Lecture 7. Linear regression. CS 2750 Machine Learning. Linear regression. is a linear combination of input components x

CS 2750 Machine Learning. Lecture 7. Linear regression. CS 2750 Machine Learning. Linear regression. is a linear combination of input components x CS 75 Mache Learg Lecture 7 Lear regresso Mlos Hauskrecht los@cs.ptt.edu 59 Seott Square CS 75 Mache Learg Lear regresso Fucto f : X Y s a lear cobato of put copoets f + + + K d d K k - paraeters eghts

More information

Introduction to local (nonparametric) density estimation. methods

Introduction to local (nonparametric) density estimation. methods Itroducto to local (oparametrc) desty estmato methods A slecture by Yu Lu for ECE 66 Sprg 014 1. Itroducto Ths slecture troduces two local desty estmato methods whch are Parze desty estmato ad k-earest

More information

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution:

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution: Chapter 4 Exercses Samplg Theory Exercse (Smple radom samplg: Let there be two correlated radom varables X ad A sample of sze s draw from a populato by smple radom samplg wthout replacemet The observed

More information

A New Method for Solving Fuzzy Linear. Programming by Solving Linear Programming

A New Method for Solving Fuzzy Linear. Programming by Solving Linear Programming ppled Matheatcal Sceces Vol 008 o 50 7-80 New Method for Solvg Fuzzy Lear Prograg by Solvg Lear Prograg S H Nasser a Departet of Matheatcs Faculty of Basc Sceces Mazadara Uversty Babolsar Ira b The Research

More information

Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand DIS 10b

Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand DIS 10b CS 70 Dscrete Mathematcs ad Probablty Theory Fall 206 Sesha ad Walrad DIS 0b. Wll I Get My Package? Seaky delvery guy of some compay s out delverg packages to customers. Not oly does he had a radom package

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Marquette Uverst Maxmum Lkelhood Estmato Dael B. Rowe, Ph.D. Professor Departmet of Mathematcs, Statstcs, ad Computer Scece Coprght 08 b Marquette Uverst Maxmum Lkelhood Estmato We have bee sag that ~

More information

1 Onto functions and bijections Applications to Counting

1 Onto functions and bijections Applications to Counting 1 Oto fuctos ad bectos Applcatos to Coutg Now we move o to a ew topc. Defto 1.1 (Surecto. A fucto f : A B s sad to be surectve or oto f for each b B there s some a A so that f(a B. What are examples of

More information

Chapter 5 Properties of a Random Sample

Chapter 5 Properties of a Random Sample Lecture 6 o BST 63: Statstcal Theory I Ku Zhag, /0/008 Revew for the prevous lecture Cocepts: t-dstrbuto, F-dstrbuto Theorems: Dstrbutos of sample mea ad sample varace, relatoshp betwee sample mea ad sample

More information

MATH 247/Winter Notes on the adjoint and on normal operators.

MATH 247/Winter Notes on the adjoint and on normal operators. MATH 47/Wter 00 Notes o the adjot ad o ormal operators I these otes, V s a fte dmesoal er product space over, wth gve er * product uv, T, S, T, are lear operators o V U, W are subspaces of V Whe we say

More information

18.413: Error Correcting Codes Lab March 2, Lecture 8

18.413: Error Correcting Codes Lab March 2, Lecture 8 18.413: Error Correctg Codes Lab March 2, 2004 Lecturer: Dael A. Spelma Lecture 8 8.1 Vector Spaces A set C {0, 1} s a vector space f for x all C ad y C, x + y C, where we take addto to be compoet wse

More information

Assignment 7/MATH 247/Winter, 2010 Due: Friday, March 19. Powers of a square matrix

Assignment 7/MATH 247/Winter, 2010 Due: Friday, March 19. Powers of a square matrix Assgmet 7/MATH 47/Wter, 00 Due: Frday, March 9 Powers o a square matrx Gve a square matrx A, ts powers A or large, or eve arbtrary, teger expoets ca be calculated by dagoalzg A -- that s possble (!) Namely,

More information

Investigation of Partially Conditional RP Model with Response Error. Ed Stanek

Investigation of Partially Conditional RP Model with Response Error. Ed Stanek Partally Codtoal Radom Permutato Model 7- vestgato of Partally Codtoal RP Model wth Respose Error TRODUCTO Ed Staek We explore the predctor that wll result a smple radom sample wth respose error whe a

More information

Polyphase Filters. Section 12.4 Porat

Polyphase Filters. Section 12.4 Porat Polyphase Flters Secto.4 Porat .4 Polyphase Flters Polyphase s a way of dog saplg-rate coverso that leads to very effcet pleetatos. But ore tha that, t leads to very geeral vewpots that are useful buldg

More information

Feature Selection: Part 2. 1 Greedy Algorithms (continued from the last lecture)

Feature Selection: Part 2. 1 Greedy Algorithms (continued from the last lecture) CSE 546: Mache Learg Lecture 6 Feature Selecto: Part 2 Istructor: Sham Kakade Greedy Algorthms (cotued from the last lecture) There are varety of greedy algorthms ad umerous amg covetos for these algorthms.

More information

Part 4b Asymptotic Results for MRR2 using PRESS. Recall that the PRESS statistic is a special type of cross validation procedure (see Allen (1971))

Part 4b Asymptotic Results for MRR2 using PRESS. Recall that the PRESS statistic is a special type of cross validation procedure (see Allen (1971)) art 4b Asymptotc Results for MRR usg RESS Recall that the RESS statstc s a specal type of cross valdato procedure (see Alle (97)) partcular to the regresso problem ad volves fdg Y $,, the estmate at the

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Exam: ECON430 Statstcs Date of exam: Frday, December 8, 07 Grades are gve: Jauary 4, 08 Tme for exam: 0900 am 00 oo The problem set covers 5 pages Resources allowed:

More information

8.1 Hashing Algorithms

8.1 Hashing Algorithms CS787: Advaced Algorthms Scrbe: Mayak Maheshwar, Chrs Hrchs Lecturer: Shuch Chawla Topc: Hashg ad NP-Completeess Date: September 21 2007 Prevously we looked at applcatos of radomzed algorthms, ad bega

More information

4 Inner Product Spaces

4 Inner Product Spaces 11.MH1 LINEAR ALGEBRA Summary Notes 4 Ier Product Spaces Ier product s the abstracto to geeral vector spaces of the famlar dea of the scalar product of two vectors or 3. I what follows, keep these key

More information

Summary of the lecture in Biostatistics

Summary of the lecture in Biostatistics Summary of the lecture Bostatstcs Probablty Desty Fucto For a cotuos radom varable, a probablty desty fucto s a fucto such that: 0 dx a b) b a dx A probablty desty fucto provdes a smple descrpto of the

More information

( ) = ( ) ( ) Chapter 13 Asymptotic Theory and Stochastic Regressors. Stochastic regressors model

( ) = ( ) ( ) Chapter 13 Asymptotic Theory and Stochastic Regressors. Stochastic regressors model Chapter 3 Asmptotc Theor ad Stochastc Regressors The ature of eplaator varable s assumed to be o-stochastc or fed repeated samples a regresso aalss Such a assumpto s approprate for those epermets whch

More information

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ " 1

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ  1 STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS Recall Assumpto E(Y x) η 0 + η x (lear codtoal mea fucto) Data (x, y ), (x 2, y 2 ),, (x, y ) Least squares estmator ˆ E (Y x) ˆ " 0 + ˆ " x, where ˆ

More information

UNIT 2 SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS

UNIT 2 SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS Numercal Computg -I UNIT SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS Structure Page Nos..0 Itroducto 6. Objectves 7. Ital Approxmato to a Root 7. Bsecto Method 8.. Error Aalyss 9.4 Regula Fals Method

More information

X ε ) = 0, or equivalently, lim

X ε ) = 0, or equivalently, lim Revew for the prevous lecture Cocepts: order statstcs Theorems: Dstrbutos of order statstcs Examples: How to get the dstrbuto of order statstcs Chapter 5 Propertes of a Radom Sample Secto 55 Covergece

More information

Lecture 3. Sampling, sampling distributions, and parameter estimation

Lecture 3. Sampling, sampling distributions, and parameter estimation Lecture 3 Samplg, samplg dstrbutos, ad parameter estmato Samplg Defto Populato s defed as the collecto of all the possble observatos of terest. The collecto of observatos we take from the populato s called

More information

CS286.2 Lecture 4: Dinur s Proof of the PCP Theorem

CS286.2 Lecture 4: Dinur s Proof of the PCP Theorem CS86. Lecture 4: Dur s Proof of the PCP Theorem Scrbe: Thom Bohdaowcz Prevously, we have prove a weak verso of the PCP theorem: NP PCP 1,1/ (r = poly, q = O(1)). Wth ths result we have the desred costat

More information

Solutions to problem set ); (, ) (

Solutions to problem set ); (, ) ( Solutos to proble set.. L = ( yp p ); L = ( p p ); y y L, L = yp p, p p = yp p, + p [, p ] y y y = yp + p = L y Here we use for eaple that yp, p = yp p p yp = yp, p = yp : factors that coute ca be treated

More information

ε. Therefore, the estimate

ε. Therefore, the estimate Suggested Aswers, Problem Set 3 ECON 333 Da Hugerma. Ths s ot a very good dea. We kow from the secod FOC problem b) that ( ) SSE / = y x x = ( ) Whch ca be reduced to read y x x = ε x = ( ) The OLS model

More information

Multivariate Transformation of Variables and Maximum Likelihood Estimation

Multivariate Transformation of Variables and Maximum Likelihood Estimation Marquette Uversty Multvarate Trasformato of Varables ad Maxmum Lkelhood Estmato Dael B. Rowe, Ph.D. Assocate Professor Departmet of Mathematcs, Statstcs, ad Computer Scece Copyrght 03 by Marquette Uversty

More information

ESS Line Fitting

ESS Line Fitting ESS 5 014 17. Le Fttg A very commo problem data aalyss s lookg for relatoshpetwee dfferet parameters ad fttg les or surfaces to data. The smplest example s fttg a straght le ad we wll dscuss that here

More information

1 Solution to Problem 6.40

1 Solution to Problem 6.40 1 Soluto to Problem 6.40 (a We wll wrte T τ (X 1,...,X where the X s are..d. wth PDF f(x µ, σ 1 ( x µ σ g, σ where the locato parameter µ s ay real umber ad the scale parameter σ s > 0. Lettg Z X µ σ we

More information

Third handout: On the Gini Index

Third handout: On the Gini Index Thrd hadout: O the dex Corrado, a tala statstca, proposed (, 9, 96) to measure absolute equalt va the mea dfferece whch s defed as ( / ) where refers to the total umber of dvduals socet. Assume that. The

More information

COV. Violation of constant variance of ε i s but they are still independent. The error term (ε) is said to be heteroscedastic.

COV. Violation of constant variance of ε i s but they are still independent. The error term (ε) is said to be heteroscedastic. c Pogsa Porchawseskul, Faculty of Ecoomcs, Chulalogkor Uversty olato of costat varace of s but they are stll depedet. C,, he error term s sad to be heteroscedastc. c Pogsa Porchawseskul, Faculty of Ecoomcs,

More information

Some results and conjectures about recurrence relations for certain sequences of binomial sums.

Some results and conjectures about recurrence relations for certain sequences of binomial sums. Soe results ad coectures about recurrece relatos for certa sequeces of boal sus Joha Cgler Faultät für Matheat Uverstät We A-9 We Nordbergstraße 5 Joha Cgler@uveacat Abstract I a prevous paper [] I have

More information

QR Factorization and Singular Value Decomposition COS 323

QR Factorization and Singular Value Decomposition COS 323 QR Factorzato ad Sgular Value Decomposto COS 33 Why Yet Aother Method? How do we solve least-squares wthout currg codto-squarg effect of ormal equatos (A T A A T b) whe A s sgular, fat, or otherwse poorly-specfed?

More information

Coherent Potential Approximation

Coherent Potential Approximation Coheret Potetal Approxato Noveber 29, 2009 Gree-fucto atrces the TB forals I the tght bdg TB pcture the atrx of a Haltoa H s the for H = { H j}, where H j = δ j ε + γ j. 2 Sgle ad double uderles deote

More information

Capacitated Plant Location Problem:

Capacitated Plant Location Problem: . L. Brcker, 2002 ept of Mechacal & Idustral Egeerg The Uversty of Iowa CPL/ 5/29/2002 page CPL/ 5/29/2002 page 2 Capactated Plat Locato Proble: where Mze F + C subect to = = =, =, S, =,... 0, =, ; =,

More information

(b) By independence, the probability that the string 1011 is received correctly is

(b) By independence, the probability that the string 1011 is received correctly is Soluto to Problem 1.31. (a) Let A be the evet that a 0 s trasmtted. Usg the total probablty theorem, the desred probablty s P(A)(1 ɛ ( 0)+ 1 P(A) ) (1 ɛ 1)=p(1 ɛ 0)+(1 p)(1 ɛ 1). (b) By depedece, the probablty

More information

means the first term, a2 means the term, etc. Infinite Sequences: follow the same pattern forever.

means the first term, a2 means the term, etc. Infinite Sequences: follow the same pattern forever. 9.4 Sequeces ad Seres Pre Calculus 9.4 SEQUENCES AND SERIES Learg Targets:. Wrte the terms of a explctly defed sequece.. Wrte the terms of a recursvely defed sequece. 3. Determe whether a sequece s arthmetc,

More information

A Conventional Approach for the Solution of the Fifth Order Boundary Value Problems Using Sixth Degree Spline Functions

A Conventional Approach for the Solution of the Fifth Order Boundary Value Problems Using Sixth Degree Spline Functions Appled Matheatcs, 1, 4, 8-88 http://d.do.org/1.4/a.1.448 Publshed Ole Aprl 1 (http://www.scrp.org/joural/a) A Covetoal Approach for the Soluto of the Ffth Order Boudary Value Probles Usg Sth Degree Sple

More information

ENGI 4421 Propagation of Error Page 8-01

ENGI 4421 Propagation of Error Page 8-01 ENGI 441 Propagato of Error Page 8-01 Propagato of Error [Navd Chapter 3; ot Devore] Ay realstc measuremet procedure cotas error. Ay calculatos based o that measuremet wll therefore also cota a error.

More information

9.1 Introduction to the probit and logit models

9.1 Introduction to the probit and logit models EC3000 Ecoometrcs Lecture 9 Probt & Logt Aalss 9. Itroducto to the probt ad logt models 9. The logt model 9.3 The probt model Appedx 9. Itroducto to the probt ad logt models These models are used regressos

More information

Functions of Random Variables

Functions of Random Variables Fuctos of Radom Varables Chapter Fve Fuctos of Radom Varables 5. Itroducto A geeral egeerg aalyss model s show Fg. 5.. The model output (respose) cotas the performaces of a system or product, such as weght,

More information

Lecture Notes 2. The ability to manipulate matrices is critical in economics.

Lecture Notes 2. The ability to manipulate matrices is critical in economics. Lecture Notes. Revew of Matrces he ablt to mapulate matrces s crtcal ecoomcs.. Matr a rectagular arra of umbers, parameters, or varables placed rows ad colums. Matrces are assocated wth lear equatos. lemets

More information

Lecture Note to Rice Chapter 8

Lecture Note to Rice Chapter 8 ECON 430 HG revsed Nov 06 Lecture Note to Rce Chapter 8 Radom matrces Let Y, =,,, m, =,,, be radom varables (r.v. s). The matrx Y Y Y Y Y Y Y Y Y Y = m m m s called a radom matrx ( wth a ot m-dmesoal dstrbuto,

More information

Line Fitting and Regression

Line Fitting and Regression Marquette Uverst MSCS6 Le Fttg ad Regresso Dael B. Rowe, Ph.D. Professor Departmet of Mathematcs, Statstcs, ad Computer Scece Coprght 8 b Marquette Uverst Least Squares Regresso MSCS6 For LSR we have pots

More information

DATA DOMAIN DATA DOMAIN

DATA DOMAIN DATA DOMAIN 3//6 Coprght otce: Most ages these sldes are Gozalez ad oods Pretce-Hall Note: ages are [spatall] ostatoar sgals. e eed tools to aalze the locall at dfferet resolutos e ca do ths the data doa or sutable

More information

Answer key to problem set # 2 ECON 342 J. Marcelo Ochoa Spring, 2009

Answer key to problem set # 2 ECON 342 J. Marcelo Ochoa Spring, 2009 Aswer key to problem set # ECON 34 J. Marcelo Ochoa Sprg, 009 Problem. For T cosder the stadard pael data model: y t x t β + α + ǫ t a Numercally compare the fxed effect ad frst dfferece estmates. b Compare

More information

Construction of Composite Indices in Presence of Outliers

Construction of Composite Indices in Presence of Outliers Costructo of Coposte dces Presece of Outlers SK Mshra Dept. of Ecoocs North-Easter Hll Uversty Shllog (da). troducto: Oftetes we requre costructg coposte dces by a lear cobato of a uber of dcator varables.

More information

Logistic regression (continued)

Logistic regression (continued) STAT562 page 138 Logstc regresso (cotued) Suppose we ow cosder more complex models to descrbe the relatoshp betwee a categorcal respose varable (Y) that takes o two (2) possble outcomes ad a set of p explaatory

More information

Introduction to Matrices and Matrix Approach to Simple Linear Regression

Introduction to Matrices and Matrix Approach to Simple Linear Regression Itroducto to Matrces ad Matrx Approach to Smple Lear Regresso Matrces Defto: A matrx s a rectagular array of umbers or symbolc elemets I may applcatos, the rows of a matrx wll represet dvduals cases (people,

More information

L5 Polynomial / Spline Curves

L5 Polynomial / Spline Curves L5 Polyomal / Sple Curves Cotets Coc sectos Polyomal Curves Hermte Curves Bezer Curves B-Sples No-Uform Ratoal B-Sples (NURBS) Mapulato ad Represetato of Curves Types of Curve Equatos Implct: Descrbe a

More information

PTAS for Bin-Packing

PTAS for Bin-Packing CS 663: Patter Matchg Algorthms Scrbe: Che Jag /9/00. Itroducto PTAS for B-Packg The B-Packg problem s NP-hard. If we use approxmato algorthms, the B-Packg problem could be solved polyomal tme. For example,

More information

Lecture 02: Bounding tail distributions of a random variable

Lecture 02: Bounding tail distributions of a random variable CSCI-B609: A Theorst s Toolkt, Fall 206 Aug 25 Lecture 02: Boudg tal dstrbutos of a radom varable Lecturer: Yua Zhou Scrbe: Yua Xe & Yua Zhou Let us cosder the ubased co flps aga. I.e. let the outcome

More information

THE ROYAL STATISTICAL SOCIETY 2016 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE MODULE 5

THE ROYAL STATISTICAL SOCIETY 2016 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE MODULE 5 THE ROYAL STATISTICAL SOCIETY 06 EAMINATIONS SOLUTIONS HIGHER CERTIFICATE MODULE 5 The Socety s provdg these solutos to assst cadtes preparg for the examatos 07. The solutos are teded as learg ads ad should

More information

Generalized Linear Regression with Regularization

Generalized Linear Regression with Regularization Geeralze Lear Regresso wth Regularzato Zoya Bylsk March 3, 05 BASIC REGRESSION PROBLEM Note: I the followg otes I wll make explct what s a vector a what s a scalar usg vec t or otato, to avo cofuso betwee

More information

STK4011 and STK9011 Autumn 2016

STK4011 and STK9011 Autumn 2016 STK4 ad STK9 Autum 6 Pot estmato Covers (most of the followg materal from chapter 7: Secto 7.: pages 3-3 Secto 7..: pages 3-33 Secto 7..: pages 35-3 Secto 7..3: pages 34-35 Secto 7.3.: pages 33-33 Secto

More information

Bounds on the expected entropy and KL-divergence of sampled multinomial distributions. Brandon C. Roy

Bounds on the expected entropy and KL-divergence of sampled multinomial distributions. Brandon C. Roy Bouds o the expected etropy ad KL-dvergece of sampled multomal dstrbutos Brado C. Roy bcroy@meda.mt.edu Orgal: May 18, 2011 Revsed: Jue 6, 2011 Abstract Iformato theoretc quattes calculated from a sampled

More information

( t) ( t) ( t) ρ ψ ψ. (9.1)

( t) ( t) ( t) ρ ψ ψ. (9.1) Adre Toaoff, MT Departet of Cestry, 3/19/29 p. 9-1 9. THE DENSTY MATRX Te desty atrx or desty operator s a alterate represetato of te state of a quatu syste for wc we ave prevously used te wavefucto. Altoug

More information

Chapter 4 Multiple Random Variables

Chapter 4 Multiple Random Variables Revew for the prevous lecture: Theorems ad Examples: How to obta the pmf (pdf) of U = g (, Y) ad V = g (, Y) Chapter 4 Multple Radom Varables Chapter 44 Herarchcal Models ad Mxture Dstrbutos Examples:

More information

Chapter 2 - Free Vibration of Multi-Degree-of-Freedom Systems - II

Chapter 2 - Free Vibration of Multi-Degree-of-Freedom Systems - II CEE49b Chapter - Free Vbrato of Mult-Degree-of-Freedom Systems - II We ca obta a approxmate soluto to the fudametal atural frequecy through a approxmate formula developed usg eergy prcples by Lord Raylegh

More information

Lecture Notes Types of economic variables

Lecture Notes Types of economic variables Lecture Notes 3 1. Types of ecoomc varables () Cotuous varable takes o a cotuum the sample space, such as all pots o a le or all real umbers Example: GDP, Polluto cocetrato, etc. () Dscrete varables fte

More information

å 1 13 Practice Final Examination Solutions - = CS109 Dec 5, 2018

å 1 13 Practice Final Examination Solutions - = CS109 Dec 5, 2018 Chrs Pech Fal Practce CS09 Dec 5, 08 Practce Fal Examato Solutos. Aswer: 4/5 8/7. There are multle ways to obta ths aswer; here are two: The frst commo method s to sum over all ossbltes for the rak of

More information

Analysis of System Performance IN2072 Chapter 5 Analysis of Non Markov Systems

Analysis of System Performance IN2072 Chapter 5 Analysis of Non Markov Systems Char for Network Archtectures ad Servces Prof. Carle Departmet of Computer Scece U Müche Aalyss of System Performace IN2072 Chapter 5 Aalyss of No Markov Systems Dr. Alexader Kle Prof. Dr.-Ig. Georg Carle

More information

3.1 Introduction to Multinomial Logit and Probit

3.1 Introduction to Multinomial Logit and Probit ES3008 Ecooetrcs Lecture 3 robt ad Logt - Multoal 3. Itroducto to Multoal Logt ad robt 3. Estato of β 3. Itroducto to Multoal Logt ad robt The ultoal Logt odel s used whe there are several optos (ad therefore

More information

Queueing Networks. γ 3

Queueing Networks. γ 3 Queueg Networks Systes odeled by queueg etworks ca roughly be grouped to four categores. Ope etworks Custoers arrve fro outsde the syste are served ad the depart. Exaple: acket swtched data etwork. γ µ

More information

CS 2750 Machine Learning Lecture 8. Linear regression. Supervised learning. a set of n examples

CS 2750 Machine Learning Lecture 8. Linear regression. Supervised learning. a set of n examples CS 75 Mache Learg Lecture 8 Lear regresso Mlos Hauskrecht los@cs.tt.eu 59 Seott Square Suervse learg Data: D { D D.. D} a set of eales D s a ut vector of sze s the esre outut gve b a teacher Obectve: lear

More information

Standard Deviation for PDG Mass Data

Standard Deviation for PDG Mass Data 4 Dec 06 Stadard Devato for PDG Mass Data M. J. Gerusa Retred, 47 Clfde Road, Worghall, HP8 9JR, UK. gerusa@aol.co, phoe: +(44) 844 339754 Abstract Ths paper aalyses the data for the asses of eleetary

More information

Laboratory I.10 It All Adds Up

Laboratory I.10 It All Adds Up Laboratory I. It All Adds Up Goals The studet wll work wth Rema sums ad evaluate them usg Derve. The studet wll see applcatos of tegrals as accumulatos of chages. The studet wll revew curve fttg sklls.

More information

22 Nonparametric Methods.

22 Nonparametric Methods. 22 oparametrc Methods. I parametrc models oe assumes apror that the dstrbutos have a specfc form wth oe or more ukow parameters ad oe tres to fd the best or atleast reasoably effcet procedures that aswer

More information

Ordinary Least Squares Regression. Simple Regression. Algebra and Assumptions.

Ordinary Least Squares Regression. Simple Regression. Algebra and Assumptions. Ordary Least Squares egresso. Smple egresso. Algebra ad Assumptos. I ths part of the course we are gog to study a techque for aalysg the lear relatoshp betwee two varables Y ad X. We have pars of observatos

More information

An Innovative Algorithmic Approach for Solving Profit Maximization Problems

An Innovative Algorithmic Approach for Solving Profit Maximization Problems Matheatcs Letters 208; 4(: -5 http://www.scecepublshggroup.co/j/l do: 0.648/j.l.208040. ISSN: 2575-503X (Prt; ISSN: 2575-5056 (Ole A Iovatve Algorthc Approach for Solvg Proft Maxzato Probles Abul Kala

More information

Derivation of 3-Point Block Method Formula for Solving First Order Stiff Ordinary Differential Equations

Derivation of 3-Point Block Method Formula for Solving First Order Stiff Ordinary Differential Equations Dervato of -Pot Block Method Formula for Solvg Frst Order Stff Ordary Dfferetal Equatos Kharul Hamd Kharul Auar, Kharl Iskadar Othma, Zara Bb Ibrahm Abstract Dervato of pot block method formula wth costat

More information

2SLS Estimates ECON In this case, begin with the assumption that E[ i

2SLS Estimates ECON In this case, begin with the assumption that E[ i SLS Estmates ECON 3033 Bll Evas Fall 05 Two-Stage Least Squares (SLS Cosder a stadard lear bvarate regresso model y 0 x. I ths case, beg wth the assumto that E[ x] 0 whch meas that OLS estmates of wll

More information