DATA DOMAIN DATA DOMAIN

Size: px
Start display at page:

Download "DATA DOMAIN DATA DOMAIN"

Transcription

1 3//6 Coprght otce: Most ages these sldes are Gozalez ad oods Pretce-Hall Note: ages are [spatall] ostatoar sgals. e eed tools to aalze the locall at dfferet resolutos e ca do ths the data doa or sutable trasfor doas A age prad ad a sste for buldg a par of approato ad predcto resdual prads The flter a be a sple lowpass Gaussa flter Gaussa approato ad Laplaca resdual prads A redudat represetato s obtaed Note: gra-level rage hstogras s e.g. [55] for approato prad [-5555] for resdual prad

2 3//6 - Subbad codg: oredudat represet. perfect recostructo f flters satsf ether g h g or g h h g h tap aubeches - borthogoal & orthooral flters perfect recostructo All flters are derved fro the prototpe sthess flter g o.e. the are borthogoal h g δ δ If the flters are also orthooral: g + g δ δ the ca all be derved fro a sgle prototpe flter - Subbad codg: - borthogoal flters ca be used as - separable flters for subbad codg of ages Four output ages: Approato a Vertcal detal dv Horzotal detal dh agoal detal d a dh dv d ages A wdow scree barel vsble the age geerates the horzotal bars dh ad the alasg effect dv. espte the alasg perfect recostructo ca be acheved. The process ca be terated

3 3//6 I the trasfor doa: ltatos of the FT Hz FT 55 Hz FT - case Magtude of FT does ot provde fo o teporal structure of sgal Applg the FT to overlapped wdowed segets of the put sgal we get a fucto of two varables te ad frequec: the Short Ter Fourer Trasfor STFT Good for pecewse-statoar sgals If statoart tervals becoe shorter ad shorter we eed to deal wth Heseberg's prcple of deterac 97: we ca ow ol the te tervals whch certa frequec bads est ages R. Polar avelet tutoral Parts ad 3 Note: ot the sae sgal as the prev. slde arrow te wdow good te resoluto poor freq. resoluto wde te wdow poor te resoluto good freq. resoluto Foral descrpto: STFT Gabor 94: where g s a wdow fucto that ust copl wth g t dt Te-frequec resoluto s: t g t dt ω G ω dω t ω g t dt G ω dω π t A Gaussa wdow g t ep ω ep σ ω / 4π σ σ G σ provdes the best precso pertted b Heseberg's Prcple. The STFT uses the sae wdow to aalse all frequeces. Sce hgh frequec sgals tpcall have a shorter durato tha low-frequec oes t aes sese to use: arrow te wdow aalse hgh frequec sgals wde te wdow aalse low frequec sgals * S f ω τ f t g t τ ep ωt dt CONTINUOUS AVELET TRANSFORM CT Grossa & Morlet 984: The wdow used the STFT becoes a wavelet fucto derved fro a other wavelet b traslato τ ad scalg s: τ s τ s s τ ad s are cotuous paraeters; s> dlates <s< copresses the fucto. s s equal to /frequec the Fourer doa The CT s a fucto of two varables defed as avelet fuctos ust be Adssble: oscllator zero ea value Regular: epoetall decag The the verse wavelet trasfor ests. * s τ f d f sτ

4 3//6 To copute the CT:. Start wth s sall s hgh frequec. Place the wavelet at the begg of the sgal 3. Multpl the sgal b the wavelet ad tegrate over 4. The result s the CT value for τ s the traslato-scale plae 5. Move the wavelet slghtl to the rght ad repeat 6. Repeat utl the wavelet reaches the ed of the sgal [CT values for the frst row the trasl.-scale plae are foud] 7. Repeat -6 for progressvel larger values of s [CT values foud the whole plae] Note: a - fucto s represeted o the traslato-scale plae the represetato s redudat. Le the Fourer case dscretzg τ ad s elds the avelet seres; f the sgal s dscrete the T results E.g.: s Ths frst wavelet should be as arrow as the hghest-frequec copoet the sgal If the sgal has a spectral copoet that correspods to the curret value of s the sgal wavelet product wll be large where such spectral copoet s located At larger scales e.g. s5 s the trasfors pcs up lowerfrequec copoets of the sgal Eaple 35 Hz

5 3//6 About resoluto: STFT plae vs. T plae Ever bo cotas a sgle value of the STFT ad of the T Boes have fte area; u area s π/4: deterac prcple All boes have the sae area T boes gve varable proportos to te ad scale The Haar trasfor of a NN age F s obtaed as T T H F H where H s a NN Haar atr that ca be derved a teratve fasho startg fro H Low scales / hgh frequeces have good te resoluto but poor frequec resoluto. Hgh scales / low frequeces have good frequec resoluto but poor te resoluto. the splest perfect recostructo - flter E.g. for N8 STFT has costat te to frequec resoluto boes are square The T aubeches 988 of a legth-m sequece s: f f M M where s a approato fucto at the referece scale e.g. are the wavelet fuctos detals for a set { } of scales. The Haar fuctos cota a sgle prototpe shape: a square wave ad ts egatve verso. The paraeters specf the wdth or scale of the shape ad ts posto or shft. I ths wa the represet ot ol the detals the sgal but also ther locatos space. The Haar trasfor s the splest wavelet trasfor. The verse T s f M + M For both the T ad IT a fast calculato algorth ests FT based o the subbad codg strateg

6 3//6 The - T ca be obtaed usg a separable approach. e defe: avelets of tpe easure test varatos alog the vertcal rows horzotal colus dagoal drectos. The the scaled ad traslated bases are defed: Ad the T of a age s H V } { / / V H } { H V f f The - IT s + + H V f Trasfor eaple three-level decoposto

7 3//6 Applcato eaple edge ehaceet Applcato eaple ose reoval Hard thresholdg t t > δ Hard t otherwse Soft thresholdg sg t t t > t δ δ Soft otherwse Applcato eaple copresso of database of fgerprts

Uniform DFT Filter Banks 1/27

Uniform DFT Filter Banks 1/27 .. Ufor FT Flter Baks /27 Ufor FT Flter Baks We ll look at 5 versos of FT-based flter baks all but the last two have serous ltatos ad are t practcal. But they gve a ce trasto to the last two versos whch

More information

A Conventional Approach for the Solution of the Fifth Order Boundary Value Problems Using Sixth Degree Spline Functions

A Conventional Approach for the Solution of the Fifth Order Boundary Value Problems Using Sixth Degree Spline Functions Appled Matheatcs, 1, 4, 8-88 http://d.do.org/1.4/a.1.448 Publshed Ole Aprl 1 (http://www.scrp.org/joural/a) A Covetoal Approach for the Soluto of the Ffth Order Boudary Value Probles Usg Sth Degree Sple

More information

CS 2750 Machine Learning. Lecture 7. Linear regression. CS 2750 Machine Learning. Linear regression. is a linear combination of input components x

CS 2750 Machine Learning. Lecture 7. Linear regression. CS 2750 Machine Learning. Linear regression. is a linear combination of input components x CS 75 Mache Learg Lecture 7 Lear regresso Mlos Hauskrecht los@cs.ptt.edu 59 Seott Square CS 75 Mache Learg Lear regresso Fucto f : X Y s a lear cobato of put copoets f + + + K d d K k - paraeters eghts

More information

Algorithms behind the Correlation Setting Window

Algorithms behind the Correlation Setting Window Algorths behd the Correlato Settg Wdow Itroducto I ths report detaled forato about the correlato settg pop up wdow s gve. See Fgure. Ths wdow s obtaed b clckg o the rado butto labelled Kow dep the a scree

More information

3D Reconstruction from Image Pairs. Reconstruction from Multiple Views. Computing Scene Point from Two Matching Image Points

3D Reconstruction from Image Pairs. Reconstruction from Multiple Views. Computing Scene Point from Two Matching Image Points D Recostructo fro Iage ars Recostructo fro ultple Ves Dael Deetho Fd terest pots atch terest pots Copute fudaetal atr F Copute caera atrces ad fro F For each atchg age pots ad copute pot scee Coputg Scee

More information

Some Different Perspectives on Linear Least Squares

Some Different Perspectives on Linear Least Squares Soe Dfferet Perspectves o Lear Least Squares A stadard proble statstcs s to easure a respose or depedet varable, y, at fed values of oe or ore depedet varables. Soetes there ests a deterstc odel y f (,,

More information

1 Onto functions and bijections Applications to Counting

1 Onto functions and bijections Applications to Counting 1 Oto fuctos ad bectos Applcatos to Coutg Now we move o to a ew topc. Defto 1.1 (Surecto. A fucto f : A B s sad to be surectve or oto f for each b B there s some a A so that f(a B. What are examples of

More information

Transforms that are commonly used are separable

Transforms that are commonly used are separable Trasforms s Trasforms that are commoly used are separable Eamples: Two-dmesoal DFT DCT DST adamard We ca the use -D trasforms computg the D separable trasforms: Take -D trasform of the rows > rows ( )

More information

Polyphase Filters. Section 12.4 Porat

Polyphase Filters. Section 12.4 Porat Polyphase Flters Secto.4 Porat .4 Polyphase Flters Polyphase s a way of dog saplg-rate coverso that leads to very effcet pleetatos. But ore tha that, t leads to very geeral vewpots that are useful buldg

More information

2/20/2013. Topics. Power Flow Part 1 Text: Power Transmission. Power Transmission. Power Transmission. Power Transmission

2/20/2013. Topics. Power Flow Part 1 Text: Power Transmission. Power Transmission. Power Transmission. Power Transmission /0/0 Topcs Power Flow Part Text: 0-0. Power Trassso Revsted Power Flow Equatos Power Flow Proble Stateet ECEGR 45 Power Systes Power Trassso Power Trassso Recall that for a short trassso le, the power

More information

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution:

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution: Chapter 4 Exercses Samplg Theory Exercse (Smple radom samplg: Let there be two correlated radom varables X ad A sample of sze s draw from a populato by smple radom samplg wthout replacemet The observed

More information

Lecture 07: Poles and Zeros

Lecture 07: Poles and Zeros Lecture 07: Poles ad Zeros Defto of poles ad zeros The trasfer fucto provdes a bass for determg mportat system respose characterstcs wthout solvg the complete dfferetal equato. As defed, the trasfer fucto

More information

EECE 301 Signals & Systems

EECE 301 Signals & Systems EECE 01 Sgals & Systems Prof. Mark Fowler Note Set #9 Computg D-T Covoluto Readg Assgmet: Secto. of Kame ad Heck 1/ Course Flow Dagram The arrows here show coceptual flow betwee deas. Note the parallel

More information

Stationary states of atoms and molecules

Stationary states of atoms and molecules Statoary states of atos ad olecules I followg wees the geeral aspects of the eergy level structure of atos ad olecules that are essetal for the terpretato ad the aalyss of spectral postos the rotatoal

More information

Signal,autocorrelation -0.6

Signal,autocorrelation -0.6 Sgal,autocorrelato Phase ose p/.9.3.7. -.5 5 5 5 Tme Sgal,autocorrelato Phase ose p/.5..7.3 -. -.5 5 5 5 Tme Sgal,autocorrelato. Phase ose p/.9.3.7. -.5 5 5 5 Tme Sgal,autocorrelato. Phase ose p/.8..6.

More information

Chapter 2 - Free Vibration of Multi-Degree-of-Freedom Systems - II

Chapter 2 - Free Vibration of Multi-Degree-of-Freedom Systems - II CEE49b Chapter - Free Vbrato of Mult-Degree-of-Freedom Systems - II We ca obta a approxmate soluto to the fudametal atural frequecy through a approxmate formula developed usg eergy prcples by Lord Raylegh

More information

Coherent Potential Approximation

Coherent Potential Approximation Coheret Potetal Approxato Noveber 29, 2009 Gree-fucto atrces the TB forals I the tght bdg TB pcture the atrx of a Haltoa H s the for H = { H j}, where H j = δ j ε + γ j. 2 Sgle ad double uderles deote

More information

UNIT 2 SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS

UNIT 2 SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS Numercal Computg -I UNIT SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS Structure Page Nos..0 Itroducto 6. Objectves 7. Ital Approxmato to a Root 7. Bsecto Method 8.. Error Aalyss 9.4 Regula Fals Method

More information

Some results and conjectures about recurrence relations for certain sequences of binomial sums.

Some results and conjectures about recurrence relations for certain sequences of binomial sums. Soe results ad coectures about recurrece relatos for certa sequeces of boal sus Joha Cgler Faultät für Matheat Uverstät We A-9 We Nordbergstraße 5 Joha Cgler@uveacat Abstract I a prevous paper [] I have

More information

( ) ( ) ( ( )) ( ) ( ) ( ) ( ) ( ) = ( ) ( ) + ( ) ( ) = ( ( )) ( ) + ( ( )) ( ) Review. Second Derivatives for f : y R. Let A be an m n matrix.

( ) ( ) ( ( )) ( ) ( ) ( ) ( ) ( ) = ( ) ( ) + ( ) ( ) = ( ( )) ( ) + ( ( )) ( ) Review. Second Derivatives for f : y R. Let A be an m n matrix. Revew + v, + y = v, + v, + y, + y, Cato! v, + y, + v, + y geeral Let A be a atr Let f,g : Ω R ( ) ( ) R y R Ω R h( ) f ( ) g ( ) ( ) ( ) ( ( )) ( ) dh = f dg + g df A, y y A Ay = = r= c= =, : Ω R he Proof

More information

7.0 Equality Contraints: Lagrange Multipliers

7.0 Equality Contraints: Lagrange Multipliers Systes Optzato 7.0 Equalty Cotrats: Lagrage Multplers Cosder the zato of a o-lear fucto subject to equalty costrats: g f() R ( ) 0 ( ) (7.) where the g ( ) are possbly also olear fuctos, ad < otherwse

More information

Mechanics of Materials CIVL 3322 / MECH 3322

Mechanics of Materials CIVL 3322 / MECH 3322 Mechacs of Materals CVL / MECH Cetrods ad Momet of erta Calculatos Cetrods = A = = = A = = Cetrod ad Momet of erta Calculatos z= z A = = Parallel As Theorem f ou kow the momet of erta about a cetrodal

More information

Relations to Other Statistical Methods Statistical Data Analysis with Positive Definite Kernels

Relations to Other Statistical Methods Statistical Data Analysis with Positive Definite Kernels Relatos to Other Statstcal Methods Statstcal Data Aalyss wth Postve Defte Kerels Kej Fukuzu Isttute of Statstcal Matheatcs, ROIS Departet of Statstcal Scece, Graduate Uversty for Advaced Studes October

More information

KLT Tracker. Alignment. 1. Detect Harris corners in the first frame. 2. For each Harris corner compute motion between consecutive frames

KLT Tracker. Alignment. 1. Detect Harris corners in the first frame. 2. For each Harris corner compute motion between consecutive frames KLT Tracker Tracker. Detect Harrs corers the frst frame 2. For each Harrs corer compute moto betwee cosecutve frames (Algmet). 3. Lk moto vectors successve frames to get a track 4. Itroduce ew Harrs pots

More information

Simple Linear Regression

Simple Linear Regression Statstcal Methods I (EST 75) Page 139 Smple Lear Regresso Smple regresso applcatos are used to ft a model descrbg a lear relatoshp betwee two varables. The aspects of least squares regresso ad correlato

More information

Power Flow S + Buses with either or both Generator Load S G1 S G2 S G3 S D3 S D1 S D4 S D5. S Dk. Injection S G1

Power Flow S + Buses with either or both Generator Load S G1 S G2 S G3 S D3 S D1 S D4 S D5. S Dk. Injection S G1 ower Flow uses wth ether or both Geerator Load G G G D D 4 5 D4 D5 ecto G Net Comple ower ecto - D D ecto s egatve sg at load bus = _ G D mlarl Curret ecto = G _ D At each bus coservato of comple power

More information

best estimate (mean) for X uncertainty or error in the measurement (systematic, random or statistical) best

best estimate (mean) for X uncertainty or error in the measurement (systematic, random or statistical) best Error Aalyss Preamble Wheever a measuremet s made, the result followg from that measuremet s always subject to ucertaty The ucertaty ca be reduced by makg several measuremets of the same quatty or by mprovg

More information

Chapter 4 (Part 1): Non-Parametric Classification (Sections ) Pattern Classification 4.3) Announcements

Chapter 4 (Part 1): Non-Parametric Classification (Sections ) Pattern Classification 4.3) Announcements Aoucemets No-Parametrc Desty Estmato Techques HW assged Most of ths lecture was o the blacboard. These sldes cover the same materal as preseted DHS Bometrcs CSE 90-a Lecture 7 CSE90a Fall 06 CSE90a Fall

More information

Johns Hopkins University Department of Biostatistics Math Review for Introductory Courses

Johns Hopkins University Department of Biostatistics Math Review for Introductory Courses Johs Hopks Uverst Departmet of Bostatstcs Math Revew for Itroductor Courses Ratoale Bostatstcs courses wll rel o some fudametal mathematcal relatoshps, fuctos ad otato. The purpose of ths Math Revew s

More information

ENGI 4421 Propagation of Error Page 8-01

ENGI 4421 Propagation of Error Page 8-01 ENGI 441 Propagato of Error Page 8-01 Propagato of Error [Navd Chapter 3; ot Devore] Ay realstc measuremet procedure cotas error. Ay calculatos based o that measuremet wll therefore also cota a error.

More information

Third handout: On the Gini Index

Third handout: On the Gini Index Thrd hadout: O the dex Corrado, a tala statstca, proposed (, 9, 96) to measure absolute equalt va the mea dfferece whch s defed as ( / ) where refers to the total umber of dvduals socet. Assume that. The

More information

Johns Hopkins University Department of Biostatistics Math Review for Introductory Courses

Johns Hopkins University Department of Biostatistics Math Review for Introductory Courses Johs Hopks Uverst Departmet of Bostatstcs Math Revew for Itroductor Courses Ratoale Bostatstcs courses wll rel o some fudametal mathematcal relatoshps, fuctos ad otato. The purpose of ths Math Revew s

More information

L5 Polynomial / Spline Curves

L5 Polynomial / Spline Curves L5 Polyomal / Sple Curves Cotets Coc sectos Polyomal Curves Hermte Curves Bezer Curves B-Sples No-Uform Ratoal B-Sples (NURBS) Mapulato ad Represetato of Curves Types of Curve Equatos Implct: Descrbe a

More information

ANALYSIS ON THE NATURE OF THE BASIC EQUATIONS IN SYNERGETIC INTER-REPRESENTATION NETWORK

ANALYSIS ON THE NATURE OF THE BASIC EQUATIONS IN SYNERGETIC INTER-REPRESENTATION NETWORK Far East Joural of Appled Mathematcs Volume, Number, 2008, Pages Ths paper s avalable ole at http://www.pphm.com 2008 Pushpa Publshg House ANALYSIS ON THE NATURE OF THE ASI EQUATIONS IN SYNERGETI INTER-REPRESENTATION

More information

CS 2750 Machine Learning Lecture 8. Linear regression. Supervised learning. a set of n examples

CS 2750 Machine Learning Lecture 8. Linear regression. Supervised learning. a set of n examples CS 75 Mache Learg Lecture 8 Lear regresso Mlos Hauskrecht los@cs.tt.eu 59 Seott Square Suervse learg Data: D { D D.. D} a set of eales D s a ut vector of sze s the esre outut gve b a teacher Obectve: lear

More information

The theoretical background of

The theoretical background of he theoretcal backgroud of -echologes he theoretcal backgroud of FactSage he followg sldes gve a abrdged overvew of the ajor uderlyg prcples of the calculatoal odules of FactSage. -echologes he bbs Eergy

More information

International Journal of Advanced Engineering and Management Research Vol. 2 Issue 3, 2017

International Journal of Advanced Engineering and Management Research Vol. 2 Issue 3, 2017 Iteratoal Joural of Advaced Egeerg ad Maageet Research Vol. 2 Issue 3, 2017 www.aer.co ISSN: 2456-3676 THE OPTIMUM SELECTION OF WAVELET PACKET BASIS FUNCTION IN MAGNETIC FLUX LEAKAGE SIGNAL PRETREATMENT

More information

A tighter lower bound on the circuit size of the hardest Boolean functions

A tighter lower bound on the circuit size of the hardest Boolean functions Electroc Colloquum o Computatoal Complexty, Report No. 86 2011) A tghter lower boud o the crcut sze of the hardest Boolea fuctos Masak Yamamoto Abstract I [IPL2005], Fradse ad Mlterse mproved bouds o the

More information

Correlation and Regression Analysis

Correlation and Regression Analysis Chapter V Correlato ad Regresso Aalss R. 5.. So far we have cosdered ol uvarate dstrbutos. Ma a tme, however, we come across problems whch volve two or more varables. Ths wll be the subject matter of the

More information

Descriptive Statistics

Descriptive Statistics Page Techcal Math II Descrptve Statstcs Descrptve Statstcs Descrptve statstcs s the body of methods used to represet ad summarze sets of data. A descrpto of how a set of measuremets (for eample, people

More information

Solutions to problem set ); (, ) (

Solutions to problem set ); (, ) ( Solutos to proble set.. L = ( yp p ); L = ( p p ); y y L, L = yp p, p p = yp p, + p [, p ] y y y = yp + p = L y Here we use for eaple that yp, p = yp p p yp = yp, p = yp : factors that coute ca be treated

More information

KURODA S METHOD FOR CONSTRUCTING CONSISTENT INPUT-OUTPUT DATA SETS. Peter J. Wilcoxen. Impact Research Centre, University of Melbourne.

KURODA S METHOD FOR CONSTRUCTING CONSISTENT INPUT-OUTPUT DATA SETS. Peter J. Wilcoxen. Impact Research Centre, University of Melbourne. KURODA S METHOD FOR CONSTRUCTING CONSISTENT INPUT-OUTPUT DATA SETS by Peter J. Wlcoxe Ipact Research Cetre, Uversty of Melboure Aprl 1989 Ths paper descrbes a ethod that ca be used to resolve cossteces

More information

Lecture 8 IEEE DCF Performance

Lecture 8 IEEE DCF Performance Lecture 8 IEEE82. DCF Perforace IEEE82. DCF Basc Access Mechas A stato wth a ew packet to trast otors the chael actvty. If the chael s dle for a perod of te equal to a dstrbuted terfrae space (DIFS), the

More information

Chapter 5 Properties of a Random Sample

Chapter 5 Properties of a Random Sample Lecture 6 o BST 63: Statstcal Theory I Ku Zhag, /0/008 Revew for the prevous lecture Cocepts: t-dstrbuto, F-dstrbuto Theorems: Dstrbutos of sample mea ad sample varace, relatoshp betwee sample mea ad sample

More information

D. L. Bricker, 2002 Dept of Mechanical & Industrial Engineering The University of Iowa. CPL/XD 12/10/2003 page 1

D. L. Bricker, 2002 Dept of Mechanical & Industrial Engineering The University of Iowa. CPL/XD 12/10/2003 page 1 D. L. Brcker, 2002 Dept of Mechacal & Idustral Egeerg The Uversty of Iowa CPL/XD 2/0/2003 page Capactated Plat Locato Proble: Mze FY + C X subject to = = j= where Y = j= X D, j =, j X SY, =,... X 0, =,

More information

A New Method for Solving Fuzzy Linear. Programming by Solving Linear Programming

A New Method for Solving Fuzzy Linear. Programming by Solving Linear Programming ppled Matheatcal Sceces Vol 008 o 50 7-80 New Method for Solvg Fuzzy Lear Prograg by Solvg Lear Prograg S H Nasser a Departet of Matheatcs Faculty of Basc Sceces Mazadara Uversty Babolsar Ira b The Research

More information

Centroids & Moments of Inertia of Beam Sections

Centroids & Moments of Inertia of Beam Sections RCH 614 Note Set 8 S017ab Cetrods & Momets of erta of Beam Sectos Notato: b C d d d Fz h c Jo L O Q Q = ame for area = ame for a (base) wdth = desgato for chael secto = ame for cetrod = calculus smbol

More information

Midterm Exam 1, section 2 (Solution) Thursday, February hour, 15 minutes

Midterm Exam 1, section 2 (Solution) Thursday, February hour, 15 minutes coometrcs, CON Sa Fracsco State Uverst Mchael Bar Sprg 5 Mdterm xam, secto Soluto Thursda, Februar 6 hour, 5 mutes Name: Istructos. Ths s closed book, closed otes exam.. No calculators of a kd are allowed..

More information

Block-Based Compact Thermal Modeling of Semiconductor Integrated Circuits

Block-Based Compact Thermal Modeling of Semiconductor Integrated Circuits Block-Based Compact hermal Modelg of Semcoductor Itegrated Crcuts Master s hess Defese Caddate: Jg Ba Commttee Members: Dr. Mg-Cheg Cheg Dr. Daqg Hou Dr. Robert Schllg July 27, 2009 Outle Itroducto Backgroud

More information

are positive, and the pair A, B is controllable. The uncertainty in is introduced to model control failures.

are positive, and the pair A, B is controllable. The uncertainty in is introduced to model control failures. Lectue 4 8. MRAC Desg fo Affe--Cotol MIMO Systes I ths secto, we cosde MRAC desg fo a class of ult-ut-ult-outut (MIMO) olea systes, whose lat dyacs ae lealy aaetezed, the ucetates satsfy the so-called

More information

x y exp λ'. x exp λ 2. x exp 1.

x y exp λ'. x exp λ 2. x exp 1. egecosmcd Egevalue-egevector of the secod dervatve operator d /d hs leads to Fourer seres (se, cose, Legedre, Bessel, Chebyshev, etc hs s a eample of a systematc way of geeratg a set of mutually orthogoal

More information

CHAPTER 3 POSTERIOR DISTRIBUTIONS

CHAPTER 3 POSTERIOR DISTRIBUTIONS CHAPTER 3 POSTERIOR DISTRIBUTIONS If scece caot measure the degree of probablt volved, so much the worse for scece. The practcal ma wll stck to hs apprecatve methods utl t does, or wll accept the results

More information

Multiple Choice Test. Chapter Adequacy of Models for Regression

Multiple Choice Test. Chapter Adequacy of Models for Regression Multple Choce Test Chapter 06.0 Adequac of Models for Regresso. For a lear regresso model to be cosdered adequate, the percetage of scaled resduals that eed to be the rage [-,] s greater tha or equal to

More information

is the score of the 1 st student, x

is the score of the 1 st student, x 8 Chapter Collectg, Dsplayg, ad Aalyzg your Data. Descrptve Statstcs Sectos explaed how to choose a sample, how to collect ad orgaze data from the sample, ad how to dsplay your data. I ths secto, you wll

More information

Generative classification models

Generative classification models CS 75 Mache Learg Lecture Geeratve classfcato models Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square Data: D { d, d,.., d} d, Classfcato represets a dscrete class value Goal: lear f : X Y Bar classfcato

More information

2. Independence and Bernoulli Trials

2. Independence and Bernoulli Trials . Ideedece ad Beroull Trals Ideedece: Evets ad B are deedet f B B. - It s easy to show that, B deedet mles, B;, B are all deedet ars. For examle, ad so that B or B B B B B φ,.e., ad B are deedet evets.,

More information

Ordinary Least Squares Regression. Simple Regression. Algebra and Assumptions.

Ordinary Least Squares Regression. Simple Regression. Algebra and Assumptions. Ordary Least Squares egresso. Smple egresso. Algebra ad Assumptos. I ths part of the course we are gog to study a techque for aalysg the lear relatoshp betwee two varables Y ad X. We have pars of observatos

More information

d dt d d dt dt Also recall that by Taylor series, / 2 (enables use of sin instead of cos-see p.27 of A&F) dsin

d dt d d dt dt Also recall that by Taylor series, / 2 (enables use of sin instead of cos-see p.27 of A&F) dsin Learzato of the Swg Equato We wll cover sectos.5.-.6 ad begg of Secto 3.3 these otes. 1. Sgle mache-fte bus case Cosder a sgle mache coected to a fte bus, as show Fg. 1 below. E y1 V=1./_ Fg. 1 The admttace

More information

Summary of the lecture in Biostatistics

Summary of the lecture in Biostatistics Summary of the lecture Bostatstcs Probablty Desty Fucto For a cotuos radom varable, a probablty desty fucto s a fucto such that: 0 dx a b) b a dx A probablty desty fucto provdes a smple descrpto of the

More information

Supervised learning: Linear regression Logistic regression

Supervised learning: Linear regression Logistic regression CS 57 Itroducto to AI Lecture 4 Supervsed learg: Lear regresso Logstc regresso Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square CS 57 Itro to AI Data: D { D D.. D D Supervsed learg d a set of eamples s

More information

1. A real number x is represented approximately by , and we are told that the relative error is 0.1 %. What is x? Note: There are two answers.

1. A real number x is represented approximately by , and we are told that the relative error is 0.1 %. What is x? Note: There are two answers. PROBLEMS A real umber s represeted appromately by 63, ad we are told that the relatve error s % What s? Note: There are two aswers Ht : Recall that % relatve error s What s the relatve error volved roudg

More information

Line Fitting and Regression

Line Fitting and Regression Marquette Uverst MSCS6 Le Fttg ad Regresso Dael B. Rowe, Ph.D. Professor Departmet of Mathematcs, Statstcs, ad Computer Scece Coprght 8 b Marquette Uverst Least Squares Regresso MSCS6 For LSR we have pots

More information

Module 7: Probability and Statistics

Module 7: Probability and Statistics Lecture 4: Goodess of ft tests. Itroducto Module 7: Probablty ad Statstcs I the prevous two lectures, the cocepts, steps ad applcatos of Hypotheses testg were dscussed. Hypotheses testg may be used to

More information

Introduction to Computer Design. Standard Forms for Boolean Functions. Sums and Products. Standard Forms for Boolean Functions (cont ) CMPT-150

Introduction to Computer Design. Standard Forms for Boolean Functions. Sums and Products. Standard Forms for Boolean Functions (cont ) CMPT-150 CMPT- Itroducto to Computer Desg SFU Harbour Cetre Sprg 7 Lecture : Ja. 6 7 Stadard orms or boolea uctos Sum o Products Product o Sums Stadard Forms or Boolea Fuctos (cot ) It s useul to spec Boolea uctos

More information

b. There appears to be a positive relationship between X and Y; that is, as X increases, so does Y.

b. There appears to be a positive relationship between X and Y; that is, as X increases, so does Y. .46. a. The frst varable (X) s the frst umber the par ad s plotted o the horzotal axs, whle the secod varable (Y) s the secod umber the par ad s plotted o the vertcal axs. The scatterplot s show the fgure

More information

Chapter 3 Sampling For Proportions and Percentages

Chapter 3 Sampling For Proportions and Percentages Chapter 3 Samplg For Proportos ad Percetages I may stuatos, the characterstc uder study o whch the observatos are collected are qualtatve ature For example, the resposes of customers may marketg surveys

More information

Non-degenerate Perturbation Theory

Non-degenerate Perturbation Theory No-degeerate Perturbato Theory Proble : H E ca't solve exactly. But wth H H H' H" L H E Uperturbed egevalue proble. Ca solve exactly. E Therefore, kow ad. H ' H" called perturbatos Copyrght Mchael D. Fayer,

More information

ENGI 3423 Simple Linear Regression Page 12-01

ENGI 3423 Simple Linear Regression Page 12-01 ENGI 343 mple Lear Regresso Page - mple Lear Regresso ometmes a expermet s set up where the expermeter has cotrol over the values of oe or more varables X ad measures the resultg values of aother varable

More information

2.28 The Wall Street Journal is probably referring to the average number of cubes used per glass measured for some population that they have chosen.

2.28 The Wall Street Journal is probably referring to the average number of cubes used per glass measured for some population that they have chosen. .5 x 54.5 a. x 7. 786 7 b. The raked observatos are: 7.4, 7.5, 7.7, 7.8, 7.9, 8.0, 8.. Sce the sample sze 7 s odd, the meda s the (+)/ 4 th raked observato, or meda 7.8 c. The cosumer would more lkely

More information

Midterm Exam 1, section 1 (Solution) Thursday, February hour, 15 minutes

Midterm Exam 1, section 1 (Solution) Thursday, February hour, 15 minutes coometrcs, CON Sa Fracsco State Uversty Mchael Bar Sprg 5 Mdterm am, secto Soluto Thursday, February 6 hour, 5 mutes Name: Istructos. Ths s closed book, closed otes eam.. No calculators of ay kd are allowed..

More information

Test Paper-II. 1. If sin θ + cos θ = m and sec θ + cosec θ = n, then (a) 2n = m (n 2 1) (b) 2m = n (m 2 1) (c) 2n = m (m 2 1) (d) none of these

Test Paper-II. 1. If sin θ + cos θ = m and sec θ + cosec θ = n, then (a) 2n = m (n 2 1) (b) 2m = n (m 2 1) (c) 2n = m (m 2 1) (d) none of these Test Paer-II. If s θ + cos θ = m ad sec θ + cosec θ =, the = m ( ) m = (m ) = m (m ). If a ABC, cos A = s B, the t s C a osceles tragle a eulateral tragle a rght agled tragle. If cos B = cos ( A+ C), the

More information

Laboratory I.10 It All Adds Up

Laboratory I.10 It All Adds Up Laboratory I. It All Adds Up Goals The studet wll work wth Rema sums ad evaluate them usg Derve. The studet wll see applcatos of tegrals as accumulatos of chages. The studet wll revew curve fttg sklls.

More information

Lecture 7. Confidence Intervals and Hypothesis Tests in the Simple CLR Model

Lecture 7. Confidence Intervals and Hypothesis Tests in the Simple CLR Model Lecture 7. Cofdece Itervals ad Hypothess Tests the Smple CLR Model I lecture 6 we troduced the Classcal Lear Regresso (CLR) model that s the radom expermet of whch the data Y,,, K, are the outcomes. The

More information

Non-uniform Turán-type problems

Non-uniform Turán-type problems Joural of Combatoral Theory, Seres A 111 2005 106 110 wwwelsevercomlocatecta No-uform Turá-type problems DhruvMubay 1, Y Zhao 2 Departmet of Mathematcs, Statstcs, ad Computer Scece, Uversty of Illos at

More information

ROOT-LOCUS ANALYSIS. Lecture 11: Root Locus Plot. Consider a general feedback control system with a variable gain K. Y ( s ) ( ) K

ROOT-LOCUS ANALYSIS. Lecture 11: Root Locus Plot. Consider a general feedback control system with a variable gain K. Y ( s ) ( ) K ROOT-LOCUS ANALYSIS Coder a geeral feedback cotrol yte wth a varable ga. R( Y( G( + H( Root-Locu a plot of the loc of the pole of the cloed-loop trafer fucto whe oe of the yte paraeter ( vared. Root locu

More information

Analysis of System Performance IN2072 Chapter 5 Analysis of Non Markov Systems

Analysis of System Performance IN2072 Chapter 5 Analysis of Non Markov Systems Char for Network Archtectures ad Servces Prof. Carle Departmet of Computer Scece U Müche Aalyss of System Performace IN2072 Chapter 5 Aalyss of No Markov Systems Dr. Alexader Kle Prof. Dr.-Ig. Georg Carle

More information

Econometric Methods. Review of Estimation

Econometric Methods. Review of Estimation Ecoometrc Methods Revew of Estmato Estmatg the populato mea Radom samplg Pot ad terval estmators Lear estmators Ubased estmators Lear Ubased Estmators (LUEs) Effcecy (mmum varace) ad Best Lear Ubased Estmators

More information

HOOKE'S LAW. THE RATE OR SPRING CONSTANT k.

HOOKE'S LAW. THE RATE OR SPRING CONSTANT k. Practces Group Sesso Date Phscs Departmet Mechacs Laborator Studets who made the practce Stamp cotrol Deadle Date HOOKE'S LAW. THE RATE OR SPRING CONSTANT k. IMPORTANT: Iclude uts ad errors all measuremets

More information

X ε ) = 0, or equivalently, lim

X ε ) = 0, or equivalently, lim Revew for the prevous lecture Cocepts: order statstcs Theorems: Dstrbutos of order statstcs Examples: How to get the dstrbuto of order statstcs Chapter 5 Propertes of a Radom Sample Secto 55 Covergece

More information

2006 Jamie Trahan, Autar Kaw, Kevin Martin University of South Florida United States of America

2006 Jamie Trahan, Autar Kaw, Kevin Martin University of South Florida United States of America SOLUTION OF SYSTEMS OF SIMULTANEOUS LINEAR EQUATIONS Gauss-Sedel Method 006 Jame Traha, Autar Kaw, Kev Mart Uversty of South Florda Uted States of Amerca kaw@eg.usf.edu Itroducto Ths worksheet demostrates

More information

MEASURES OF DISPERSION

MEASURES OF DISPERSION MEASURES OF DISPERSION Measure of Cetral Tedecy: Measures of Cetral Tedecy ad Dsperso ) Mathematcal Average: a) Arthmetc mea (A.M.) b) Geometrc mea (G.M.) c) Harmoc mea (H.M.) ) Averages of Posto: a) Meda

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Marquette Uverst Maxmum Lkelhood Estmato Dael B. Rowe, Ph.D. Professor Departmet of Mathematcs, Statstcs, ad Computer Scece Coprght 08 b Marquette Uverst Maxmum Lkelhood Estmato We have bee sag that ~

More information

Chapter Business Statistics: A First Course Fifth Edition. Learning Objectives. Correlation vs. Regression. In this chapter, you learn:

Chapter Business Statistics: A First Course Fifth Edition. Learning Objectives. Correlation vs. Regression. In this chapter, you learn: Chapter 3 3- Busess Statstcs: A Frst Course Ffth Edto Chapter 2 Correlato ad Smple Lear Regresso Busess Statstcs: A Frst Course, 5e 29 Pretce-Hall, Ic. Chap 2- Learg Objectves I ths chapter, you lear:

More information

residual. (Note that usually in descriptions of regression analysis, upper-case

residual. (Note that usually in descriptions of regression analysis, upper-case Regresso Aalyss Regresso aalyss fts or derves a model that descres the varato of a respose (or depedet ) varale as a fucto of oe or more predctor (or depedet ) varales. The geeral regresso model s oe of

More information

St John s College. Preliminary Examinations July 2014 Mathematics Paper 1. Examiner: G Evans Time: 3 hrs Moderator: D Grigoratos Marks: 150

St John s College. Preliminary Examinations July 2014 Mathematics Paper 1. Examiner: G Evans Time: 3 hrs Moderator: D Grigoratos Marks: 150 St Joh s College Prelmar Eamatos Jul 04 Mathematcs Paper Eamer: G Evas Tme: 3 hrs Moderator: D Grgoratos Marks: 50 PLEASE READ THE FOLLOWING INSTRUCTIONS CAREFULLY. Ths questo paper cossts of pages, cludg

More information

Ahmed Elgamal. MDOF Systems & Modal Analysis

Ahmed Elgamal. MDOF Systems & Modal Analysis DOF Systems & odal Aalyss odal Aalyss (hese otes cover sectos from Ch. 0, Dyamcs of Structures, Al Chopra, Pretce Hall, 995). Refereces Dyamcs of Structures, Al K. Chopra, Pretce Hall, New Jersey, ISBN

More information

Chapter 14 Logistic Regression Models

Chapter 14 Logistic Regression Models Chapter 4 Logstc Regresso Models I the lear regresso model X β + ε, there are two types of varables explaatory varables X, X,, X k ad study varable y These varables ca be measured o a cotuous scale as

More information

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 17

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 17 CS434a/54a: Patter Recogto Prof. Olga Vesler Lecture 7 Today Paraetrc Usupervsed Learg Expectato Maxato (EM) oe of the ost useful statstcal ethods oldest verso 958 (Hartley) seal paper 977 (Depster et

More information

Objectives of Multiple Regression

Objectives of Multiple Regression Obectves of Multple Regresso Establsh the lear equato that best predcts values of a depedet varable Y usg more tha oe eplaator varable from a large set of potetal predctors {,,... k }. Fd that subset of

More information

Fibonacci Identities as Binomial Sums

Fibonacci Identities as Binomial Sums It. J. Cotemp. Math. Sceces, Vol. 7, 1, o. 38, 1871-1876 Fboacc Idettes as Bomal Sums Mohammad K. Azara Departmet of Mathematcs, Uversty of Evasvlle 18 Lcol Aveue, Evasvlle, IN 477, USA E-mal: azara@evasvlle.edu

More information

3.1 Introduction to Multinomial Logit and Probit

3.1 Introduction to Multinomial Logit and Probit ES3008 Ecooetrcs Lecture 3 robt ad Logt - Multoal 3. Itroducto to Multoal Logt ad robt 3. Estato of β 3. Itroducto to Multoal Logt ad robt The ultoal Logt odel s used whe there are several optos (ad therefore

More information

Maps on Triangular Matrix Algebras

Maps on Triangular Matrix Algebras Maps o ragular Matrx lgebras HMED RMZI SOUROUR Departmet of Mathematcs ad Statstcs Uversty of Vctora Vctora, BC V8W 3P4 CND sourour@mathuvcca bstract We surveys results about somorphsms, Jorda somorphsms,

More information

Multiple Regression. More than 2 variables! Grade on Final. Multiple Regression 11/21/2012. Exam 2 Grades. Exam 2 Re-grades

Multiple Regression. More than 2 variables! Grade on Final. Multiple Regression 11/21/2012. Exam 2 Grades. Exam 2 Re-grades STAT 101 Dr. Kar Lock Morga 11/20/12 Exam 2 Grades Multple Regresso SECTIONS 9.2, 10.1, 10.2 Multple explaatory varables (10.1) Parttog varablty R 2, ANOVA (9.2) Codtos resdual plot (10.2) Trasformatos

More information

Introduction to local (nonparametric) density estimation. methods

Introduction to local (nonparametric) density estimation. methods Itroducto to local (oparametrc) desty estmato methods A slecture by Yu Lu for ECE 66 Sprg 014 1. Itroducto Ths slecture troduces two local desty estmato methods whch are Parze desty estmato ad k-earest

More information

1. BLAST (Karlin Altschul) Statistics

1. BLAST (Karlin Altschul) Statistics Parwse seuece algmet global ad local Multple seuece algmet Substtuto matrces Database searchg global local BLAST Seuece statstcs Evolutoary tree recostructo Gee Fdg Prote structure predcto RNA structure

More information

Centroids Method of Composite Areas

Centroids Method of Composite Areas Cetrods Method of Composte reas small boy swallowed some cos ad was take to a hosptal. Whe hs gradmother telephoed to ask how he was a urse sad 'No chage yet'. Cetrods Prevously, we developed a geeral

More information

Special Instructions / Useful Data

Special Instructions / Useful Data JAM 6 Set of all real umbers P A..d. B, p Posso Specal Istructos / Useful Data x,, :,,, x x Probablty of a evet A Idepedetly ad detcally dstrbuted Bomal dstrbuto wth parameters ad p Posso dstrbuto wth

More information

9.1 Introduction to the probit and logit models

9.1 Introduction to the probit and logit models EC3000 Ecoometrcs Lecture 9 Probt & Logt Aalss 9. Itroducto to the probt ad logt models 9. The logt model 9.3 The probt model Appedx 9. Itroducto to the probt ad logt models These models are used regressos

More information

Unique Common Fixed Point of Sequences of Mappings in G-Metric Space M. Akram *, Nosheen

Unique Common Fixed Point of Sequences of Mappings in G-Metric Space M. Akram *, Nosheen Vol No : Joural of Facult of Egeerg & echolog JFE Pages 9- Uque Coo Fed Pot of Sequeces of Mags -Metrc Sace M. Ara * Noshee * Deartet of Matheatcs C Uverst Lahore Pasta. Eal: ara7@ahoo.co Deartet of Matheatcs

More information

QR Factorization and Singular Value Decomposition COS 323

QR Factorization and Singular Value Decomposition COS 323 QR Factorzato ad Sgular Value Decomposto COS 33 Why Yet Aother Method? How do we solve least-squares wthout currg codto-squarg effect of ormal equatos (A T A A T b) whe A s sgular, fat, or otherwse poorly-specfed?

More information