Origin of the inertial mass (II): Vector gravitational theory

Size: px
Start display at page:

Download "Origin of the inertial mass (II): Vector gravitational theory"

Transcription

1 Orn of he neral mass (II): Veor ravaonal heory Weneslao Seura González e-mal: Independen Researher Absra. We dedue he nduve fores of a veor ravaonal heory and we wll sudy wheher hese fores an be denfed wh he fores of nera ha a on a body when s aeleraed. 1. Inroduon In a prevous wor we nvesae he nduon phenomena derved from a salar ravaonal heory 1. We fnd ha here are fores ha have her orn n he movemen of he feld soure, bu hey do no sasfaorly explan he orn of nera Now we propose a veor ravaonal heory and we wll also nvesae s nduve effes, wh he dea of explann he phenomenon of nera. An nvesaon of hs ype was made n a famous wor by Sama.+ When sudyn he effe of he Unverse as a whole, we have o hoose a osm model. As we are neresed n he qualave aspes, we onsder he smples osm model: sa, wh homoeneous densy, lare enouh and of fne ae. In laer wors we wll examne he problem wh more reals osmoloal models. We advse he prevous readn of he frs par of hs researh: «Orn of he neral mass (I): Salar ravonal heory» 1. Veor ravaonal heory To oban a veor ravaonal heory we have o adap he eleromane heory o he ravy 3. The avaonal poenal s a eraveor ha we defne by, A s he salar poenal and A he veor poenal. The soure s he urren eradensy s he proper densy of maer and d s he proper me of he soure parle. The feld equaon s j u j o, j u s he eraveloy defned by u dx d 1 4 G j 3 The proper me We assume ha movemen s relave. In oher words, s equvalen o say ha a body moves wh respe o he Unverse, ha o say ha s he Unverse ha moves wh respe o he body. Boh suaons are equvalen nemaally and dynamally. In our smplfed osm model all he onsuen bodes of he Unverse are a res amon hemselves, wh he exepon of he C body whose movemen we sudy. 1. (1) ()

2 Seura González, Weneslao When we assume ha he Unverse as a whole s n moon, he proper me of s onsuens ondes wh he oordnae me of he referene sysem wh respe o whh he Unverse s a res, whh s naurally an neral referene sysem, where all los ha are a res an be synhronzed. Therefore, he eraveloy of any fxed body o he whole of he Unverse n any referene sysem s herefore u dx dx d dx u u u j j u d Then he feld equaon s dvded no a salar feld and a veor feld d, ; ; ;. 1 1 A 4 G 4 G ; A j. 4 Rearded poenals Equaons (3) are solved wh he rearded poenals ehnque G j r, G dv ; A r, dv r r (4) r s he poson veor of he feld pon, r s he poson of he feld pon wh respe o he soure a he momen of eneran he fore (or poson rearded) and he braes are values a he momen of emsson or rearded values, ha s n he nsan r.the veor s he poson of a soure pon, herefore r r σ. From (4) we noe ha veor poenal s of seond order wh respe o. If he soure moves wh a veloy u hen he poenals of Lénard-Weher have o be appled dm dm G u d G G ; da dm. u r r s s For he alulaon of (5) we mus use relaonshps 4 1 r u r ru r ra u r s s r s s r s s u r a u ru u ra uu. s s s s r s s u s he rearded veloy of he soure and a he aeleraon, herefore σ r u d d. d d The ravoeler feld E and he ravomane feld B are derved from he poenals and A n he same way as n eleromanesm A E ; B A, he fore an on a parle of ravaonal mass m ha has a veloy w s F m E m w B. 5 Induon of fores on a body ha has a relnear aeleraon Suppose a body C ha moves wh aeleraed and relnear movemen wh respe o he whole of he Unverse. The suaon s equvalen o sayn ha he Unverse moves wh respe o he body C. u and a are he veloy and aeleraon of he Unverse wh respe o he body C. Therefore he body C has veloy u and aeleraon a n relaon o he Unverse. To nerae (5) we assume he Unverse dvded no onenr spheral shells of hness hp://vxra.or/abs/ (3) (5) (6) (7) (8)

3 Orn of he neral mass (II): Veor ravaonal heory 3 d. dm s an nfnesmal poron of mass of one of hose shells, hen he fore exered on body C s dedued from (5) and (8) da 1 G u m d G dm m dm m. s s Comparn (4) and (5) and assumn non-relavs veloes herefore ru dm 1 dv dv, r da 1 G u m d G m dv m. dv s s From (6) we fnd ha he only nduve erms (whh are hose ha depend on he movemen of he soure) are 1 r ra σ σ a u a u ra a u σ a ; 3 3 s s s s s s s s we have pu r s and we nele he erms ha depend on 1 beause hey are nelble ompared o hose ha depend on 1. For smply we assume ha he aeleraon a of he Unverse s parallel o he x axs a a and ha n polar oordnaes he veor s σ sn os sn sn j os (9) usn he resuls found n he referene 1 we arrved afer he neraon o A G G 4 m m a a a m G m (1) 3 3 he lm of spaal neraon s he furhes pon from he Unverse ha has a ausal relaonshp wh he body C, ha s, where s he ae of he Unverse. The fore (1) as on he body C when has he relnear aeleraon a, and s aused by he aon of he whole of he Unverse. We denfy hs fore wh he fore of nera, herefore 4 4 m a G m a m G m, (11) 3 3 m s he neral mass. As n he presen momen he neral mass s assumed equal o he ravaonal mass, hen by (11) G (1) s he urren ae of he Unverse and s he urren ravaonal poenal n he poson ouped by he body C. Naurally, hese resuls are vald n he framewor of he osm model onsdered. (11) means ha he neral mass s he resul of he aon of he whole of he Unverse on he body, s no an nnae manude of he maer, bu s aqured by he osm aon. The numeral value (1) s approxmaely orre. Therefore we onlude, whn he lmaons of our osm model, ha he Mah's prnple s fulflled, whh saes ha he nera of a body s produed by he nduve fores of he Unverse. 6 Induon fore on a body n unform moon Suppose a body C ha has a unform and relnear movemen wh respe o he Unverse. u s he veloy of he Unverse wh respe o C. Nex we alulae he nduon fore ha s exered on C. The only erms of (6) ha we have o use n hs problem s he seond and hrd of he frs equaon, he oher erms no null an be neleed for non-relavs veloes, hen 1 u r ru 3 s s s r and he nduon fore produed by an elemen of he spheral shell s hp://vxra.or/abs/189.53

4 4 Seura González, Weneslao da u r ru m d Gm sn ddd. 3 s s r Ineran for he whole of he Unverse and nelen erms, he nduon fore an on he body C s 8 F G m u, (13) 3 by he prnple of dynam equlbrum he sum of all he fores an on he body s zero. We assume ha on he body as n addon o he fore (13), he fore of nera, whh for a body n relnear moon s he equaon (1), hen when we apply he prnple of dynam equlbrum s found 8 4 u F F Gm u G m a a (14) 3 3 s he ae of he Unverse and a s he aeleraon of he body C. The equaon (15) ells us ha when a body s n unform moon wh respe o he Unverse, an nduon fore appears ha produes an aeleraon ven by (14), of manude so exraordnarly small ha we an onsder null. Therefore here s no fore of nera on a body n unform moon and herefore remans wh equal veloy, a saemen ha orresponds o he prnple of nera. 7 Parpaon of he Unverse n he formaon of he neral mass Aordn o Mah's prnple, he neral mass of a body s eneraed by he aon of he whole Unverse. On a body C a fores ha are produed n all pars of he observable Unverse. Some of hese fores ornae n very dsan objes, ha s, hey were produed a lon me ao; whle he fores exered by nearby objes were produed a shor me ao. Now we sudy he parpaon n he eneraon of he neral mass of he dfferen epohs of he Unverse. We onsder he Unverse formed by N spheral shells n whose ener s he body C. To he furhes shell we ve he numeraon n and n are he objes ha produe he fore a he bennn of he Unverse, whose effes reah he body C n he presen momen, when he ae of he Unverse s. The hness of he spheral shells s where N. The neral mass produed by shell n s by (11) 8 m Gm (15) 3 s he me aes he ravaonal neraon o ravel from he spheral shell n o he body C, herefore of (11) and (15) we e n m 1 (16) m N n s he me rearded. We mus remember ha (16) s applable o he osm model ha we are onsdern whh has a onsan and unform densy of maer n he Unverse. Bu ndependenly of he osm model, (16) shows us ha eah epoh of he Unverse onrbues dfferenly o he formaon of he neral mass of a body. (16) shows ha he frs momens of he Unverse (when ) have a reaer onrbuon o he neral mass; whle he presen Unverse ( ) he onrbuon s mnmal. Ths resul an be more pronouned n a reals osm model. 8 Mah's prnple and he B Ban Now we wll use a more reals osm model wh he exlusve dea of sudyn he nfluene ha he B Ban has on he formaon of he neral mass, and onsdern manly he qualave aspes. Now we suppose, for example, a Unverse where he densy depends on he osm ae hp://vxra.or/abs/189.53

5 Orn of he neral mass (II): Veor ravaonal heory 5 aordn o he law (17) s he densy a he presen momen and s he ae of he Unverse a he me of eneran he fore or rearded me. By (17) he densy of he Unverse would be very hh when s ae s small, a suaon smlar o wha happens n he B Ban, herefore (17) wll nform us abou how he neral mass s eneraed n a Unverse ha has a hh densy a s bennn. By (16) he onrbuon o he neral mass of a spheral shell loaed a a dsane and hness d s 8 8 dm G m d G m d 3 3 when we nerae for he whole Unverse we fnd a snulary n. To avod hs snulary we alulae he aon of he Unverse from a me (nsead of ) m 8 G ln1, (18) m 3 wh he urren values of and s found 8,9. 3 G we verfed ha he neral mass observed n he urren epoh would be eneraed by he fores produed by he Unverse from,856. Bu an no aoun anen osm aons, he relaonshp (18) nreases, whh means ha he neral mass beomes muh reaer han he ravaonal mass. For example, f we ae he lm a,999, whh orresponds o an ae of he Unverse of abou foureen mllon years, he rao beween he neral mass and he ravaonal mass s approxmaely 5,4. The onluson s ha f he densy n he pas was reaer han a presen (as mus happen n a osm model wh B Ban), he parpaon n he neral mass of he prmve Unverse nreases, unl ben deermnan. Tha s o say, ha he neral mass would be eneraed manly by he frs saes of he Unverse, unl ben very superor o he mass observed. We onlude ha f he Unverse had a B Ban, he Mah s prnple would no be fulflled and ve versa. 9 Fore ndued by osm expanson Nex, we alulae he nduon fore produed by a movemen of osm expanson. We assume ha he observer s a he ener of he Unverse, herefore r. And ha he expanson veloy s radal σ u u u sn os u sn snj u os where u s any funon of. We follow he same proedure as n he prevous seons. So when alulan he anular nerals ha are derved from he wo equaons (6) we fnd ha he resul s zero. Tha s, a osm expanson does no produe nduon fore, whh s loal for reasons of symmery. 1 Conlusons We have used a veor ravaonal heory, from whh we dedue nduon fores. The resuls show ha s possble o denfy he nduon fore produed by he Unverse wh he fore of nera an on an aeleraed body. We have verfed ha here are no fores of nduon on a body ha has a unform movemen, as s requred by he prnple of nera. We verfy ha he osm expanson does no produe nduon fores. We have found nompably beween Mah's prnple and a osm model wh B Ban. hp://vxra.or/abs/189.53

6 6 Seura González, Weneslao In hs model he neral mass of a body s manly produed by he frs momens of he Unverse and he eneraed mass snfanly exeeds he observed neral mass. The onluson s ha alhouh he veor ravaonal heory s an approxmaon o he orre heory, and he osm model ha we have used s very smple, we fnd ha he nduon fores produed by he whole Unverse are omparable n sense and manude o he fores of nera ha are observed n aeleraed bodes, whh s a sron suppor for Mah's prnple. Bbloraphy (1) SEGURA GONZÁLEZ, Weneslao: «Orn of he neral mass (I): salar ravaonal heory», vxra.or, 18, hp://vxra.or/abs/ () SCIAMA, D. W.: «On he orn of nera», Monhly Noes of he Royal Asronomal Soey, Vol. 113, 1953, pp (3) SEGURA GONZÁLEZ, Weneslao: Teoría relavsa de ampo, ewt Edones, 14, pp (4) SEGURA GONZÁLEZ, Weneslao: «Mah s prnple: he osm orn fo he neral mass», 17, vxra: (5) PANOFSKY W.; PHILLIPS, M.: Classal Elery and Manesm, Addson-Wesley, 197. pp (6) SEGURA GONZÁLEZ, Weneslao: Gravoeleromanesmo y prnpo de Mah, ewt Edones, 13, pp hp://vxra.or/abs/189.53

Pendulum Dynamics. = Ft tangential direction (2) radial direction (1)

Pendulum Dynamics. = Ft tangential direction (2) radial direction (1) Pendulum Dynams Consder a smple pendulum wh a massless arm of lengh L and a pon mass, m, a he end of he arm. Assumng ha he fron n he sysem s proporonal o he negave of he angenal veloy, Newon s seond law

More information

( ) () we define the interaction representation by the unitary transformation () = ()

( ) () we define the interaction representation by the unitary transformation () = () Hgher Order Perurbaon Theory Mchael Fowler 3/7/6 The neracon Represenaon Recall ha n he frs par of hs course sequence, we dscussed he chrödnger and Hesenberg represenaons of quanum mechancs here n he chrödnger

More information

Electromagnetic waves in vacuum.

Electromagnetic waves in vacuum. leromagne waves n vauum. The dsovery of dsplaemen urrens enals a peular lass of soluons of Maxwell equaons: ravellng waves of eler and magne felds n vauum. In he absene of urrens and harges, he equaons

More information

Linear Response Theory: The connection between QFT and experiments

Linear Response Theory: The connection between QFT and experiments Phys540.nb 39 3 Lnear Response Theory: The connecon beween QFT and expermens 3.1. Basc conceps and deas Q: ow do we measure he conducvy of a meal? A: we frs nroduce a weak elecrc feld E, and hen measure

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 5 Lecure 9 Hamlonan Equaons of Moon (Chaper 8) Wha We Dd Las Tme Consruced Hamlonan formalsm H ( q, p, ) = q p L( q, q, ) H p = q H q = p H = L Equvalen o Lagrangan formalsm Smpler, bu

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 5 Lecure 9 Hamlonan Equaons of Moon (Chaper 8) Wha We Dd Las Tme Consruced Hamlonan formalsm Hqp (,,) = qp Lqq (,,) H p = q H q = p H L = Equvalen o Lagrangan formalsm Smpler, bu wce as

More information

Lecture Notes 4: Consumption 1

Lecture Notes 4: Consumption 1 Leure Noes 4: Consumpon Zhwe Xu (xuzhwe@sju.edu.n) hs noe dsusses households onsumpon hoe. In he nex leure, we wll dsuss rm s nvesmen deson. I s safe o say ha any propagaon mehansm of maroeonom model s

More information

COMPUTER SCIENCE 349A SAMPLE EXAM QUESTIONS WITH SOLUTIONS PARTS 1, 2

COMPUTER SCIENCE 349A SAMPLE EXAM QUESTIONS WITH SOLUTIONS PARTS 1, 2 COMPUTE SCIENCE 49A SAMPLE EXAM QUESTIONS WITH SOLUTIONS PATS, PAT.. a Dene he erm ll-ondoned problem. b Gve an eample o a polynomal ha has ll-ondoned zeros.. Consder evaluaon o anh, where e e anh. e e

More information

Origin of the inertial mass (I): scalar gravitational theory

Origin of the inertial mass (I): scalar gravitational theory Orn of the nertal ass (I): salar ravtatonal theory Weneslao Seura González e-al: weneslaoseuraonzalez@yahoo.es Independent Researher Abstrat. We wll dedue the nduton fores obtaned fro the feld equaton

More information

Solution in semi infinite diffusion couples (error function analysis)

Solution in semi infinite diffusion couples (error function analysis) Soluon n sem nfne dffuson couples (error funcon analyss) Le us consder now he sem nfne dffuson couple of wo blocks wh concenraon of and I means ha, n a A- bnary sysem, s bondng beween wo blocks made of

More information

Density Matrix Description of NMR BCMB/CHEM 8190

Density Matrix Description of NMR BCMB/CHEM 8190 Densy Marx Descrpon of NMR BCMBCHEM 89 Operaors n Marx Noaon Alernae approach o second order specra: ask abou x magnezaon nsead of energes and ranson probables. If we say wh one bass se, properes vary

More information

Density Matrix Description of NMR BCMB/CHEM 8190

Density Matrix Description of NMR BCMB/CHEM 8190 Densy Marx Descrpon of NMR BCMBCHEM 89 Operaors n Marx Noaon If we say wh one bass se, properes vary only because of changes n he coeffcens weghng each bass se funcon x = h< Ix > - hs s how we calculae

More information

Scattering at an Interface: Oblique Incidence

Scattering at an Interface: Oblique Incidence Course Insrucor Dr. Raymond C. Rumpf Offce: A 337 Phone: (915) 747 6958 E Mal: rcrumpf@uep.edu EE 4347 Appled Elecromagnecs Topc 3g Scaerng a an Inerface: Oblque Incdence Scaerng These Oblque noes may

More information

V.Abramov - FURTHER ANALYSIS OF CONFIDENCE INTERVALS FOR LARGE CLIENT/SERVER COMPUTER NETWORKS

V.Abramov - FURTHER ANALYSIS OF CONFIDENCE INTERVALS FOR LARGE CLIENT/SERVER COMPUTER NETWORKS R&RATA # Vol.) 8, March FURTHER AALYSIS OF COFIDECE ITERVALS FOR LARGE CLIET/SERVER COMPUTER ETWORKS Vyacheslav Abramov School of Mahemacal Scences, Monash Unversy, Buldng 8, Level 4, Clayon Campus, Wellngon

More information

Linear Quadratic Regulator (LQR) - State Feedback Design

Linear Quadratic Regulator (LQR) - State Feedback Design Linear Quadrai Regulaor (LQR) - Sae Feedbak Design A sysem is expressed in sae variable form as x = Ax + Bu n m wih x( ) R, u( ) R and he iniial ondiion x() = x A he sabilizaion problem using sae variable

More information

CH.3. COMPATIBILITY EQUATIONS. Continuum Mechanics Course (MMC) - ETSECCPB - UPC

CH.3. COMPATIBILITY EQUATIONS. Continuum Mechanics Course (MMC) - ETSECCPB - UPC CH.3. COMPATIBILITY EQUATIONS Connuum Mechancs Course (MMC) - ETSECCPB - UPC Overvew Compably Condons Compably Equaons of a Poenal Vecor Feld Compably Condons for Infnesmal Srans Inegraon of he Infnesmal

More information

ECON 8105 FALL 2017 ANSWERS TO MIDTERM EXAMINATION

ECON 8105 FALL 2017 ANSWERS TO MIDTERM EXAMINATION MACROECONOMIC THEORY T. J. KEHOE ECON 85 FALL 7 ANSWERS TO MIDTERM EXAMINATION. (a) Wh an Arrow-Debreu markes sruure fuures markes for goods are open n perod. Consumers rade fuures onras among hemselves.

More information

Solution. The straightforward approach is surprisingly difficult because one has to be careful about the limits.

Solution. The straightforward approach is surprisingly difficult because one has to be careful about the limits. ose ad Varably Homewor # (8), aswers Q: Power spera of some smple oses A Posso ose A Posso ose () s a sequee of dela-fuo pulses, eah ourrg depedely, a some rae r (More formally, s a sum of pulses of wdh

More information

Electromagnetic energy, momentum and forces in a dielectric medium with losses

Electromagnetic energy, momentum and forces in a dielectric medium with losses leroane ener, oenu and fores n a deler edu wh losses Yur A. Srhev he Sae Ao ner Cororaon ROSAO, "Researh and esn Insue of Rado-leron nneern" - branh of Federal Senf-Produon Cener "Produon Assoaon "Sar"

More information

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 4

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 4 CS434a/54a: Paern Recognon Prof. Olga Veksler Lecure 4 Oulne Normal Random Varable Properes Dscrmnan funcons Why Normal Random Varables? Analycally racable Works well when observaon comes form a corruped

More information

Consequences of Using the Four-Vector Field of Velocity in Gravitation and Gravitomagnetism 1

Consequences of Using the Four-Vector Field of Velocity in Gravitation and Gravitomagnetism 1 Consequenes of Usin he Four-eor Field of eloi in Graviaion and Graviomaneism 1 Mirosław J. Kubiak Zespół Skół Tehninh, Grudiąd, Poland In his paper are disussed he phsial onsequenes of usin he fourveor

More information

Methods of Improving Constitutive Equations

Methods of Improving Constitutive Equations Mehods o mprovng Consuve Equaons Maxell Model e an mprove h ne me dervaves or ne sran measures. ³ ª º «e, d» ¼ e an also hange he bas equaon lnear modaons non-lnear modaons her Consuve Approahes Smple

More information

Direct Current Circuits

Direct Current Circuits Eler urren (hrges n Moon) Eler urren () The ne moun of hrge h psses hrough onduor per un me ny pon. urren s defned s: Dre urren rus = dq d Eler urren s mesured n oulom s per seond or mperes. ( = /s) n

More information

Let s treat the problem of the response of a system to an applied external force. Again,

Let s treat the problem of the response of a system to an applied external force. Again, Page 33 QUANTUM LNEAR RESPONSE FUNCTON Le s rea he problem of he response of a sysem o an appled exernal force. Agan, H() H f () A H + V () Exernal agen acng on nernal varable Hamlonan for equlbrum sysem

More information

J i-1 i. J i i+1. Numerical integration of the diffusion equation (I) Finite difference method. Spatial Discretization. Internal nodes.

J i-1 i. J i i+1. Numerical integration of the diffusion equation (I) Finite difference method. Spatial Discretization. Internal nodes. umercal negraon of he dffuson equaon (I) Fne dfference mehod. Spaal screaon. Inernal nodes. R L V For hermal conducon le s dscree he spaal doman no small fne spans, =,,: Balance of parcles for an nernal

More information

Epistemic Game Theory: Online Appendix

Epistemic Game Theory: Online Appendix Epsemc Game Theory: Onlne Appendx Edde Dekel Lucano Pomao Marcano Snscalch July 18, 2014 Prelmnares Fx a fne ype srucure T I, S, T, β I and a probably µ S T. Le T µ I, S, T µ, βµ I be a ype srucure ha

More information

UNIVERSITAT AUTÒNOMA DE BARCELONA MARCH 2017 EXAMINATION

UNIVERSITAT AUTÒNOMA DE BARCELONA MARCH 2017 EXAMINATION INTERNATIONAL TRADE T. J. KEHOE UNIVERSITAT AUTÒNOMA DE BARCELONA MARCH 27 EXAMINATION Please answer wo of he hree quesons. You can consul class noes, workng papers, and arcles whle you are workng on he

More information

2.1 Constitutive Theory

2.1 Constitutive Theory Secon.. Consuve Theory.. Consuve Equaons Governng Equaons The equaons governng he behavour of maerals are (n he spaal form) dρ v & ρ + ρdv v = + ρ = Conservaon of Mass (..a) d x σ j dv dvσ + b = ρ v& +

More information

mywbut.com Lesson 11 Study of DC transients in R-L-C Circuits

mywbut.com Lesson 11 Study of DC transients in R-L-C Circuits mywbu.om esson Sudy of DC ransiens in R--C Ciruis mywbu.om Objeives Be able o wrie differenial equaion for a d iruis onaining wo sorage elemens in presene of a resisane. To develop a horough undersanding

More information

In the complete model, these slopes are ANALYSIS OF VARIANCE FOR THE COMPLETE TWO-WAY MODEL. (! i+1 -! i ) + [(!") i+1,q - [(!

In the complete model, these slopes are ANALYSIS OF VARIANCE FOR THE COMPLETE TWO-WAY MODEL. (! i+1 -! i ) + [(!) i+1,q - [(! ANALYSIS OF VARIANCE FOR THE COMPLETE TWO-WAY MODEL The frs hng o es n wo-way ANOVA: Is here neracon? "No neracon" means: The man effecs model would f. Ths n urn means: In he neracon plo (wh A on he horzonal

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 5 Lecure 0 Canoncal Transformaons (Chaper 9) Wha We Dd Las Tme Hamlon s Prncple n he Hamlonan formalsm Dervaon was smple δi δ Addonal end-pon consrans pq H( q, p, ) d 0 δ q ( ) δq ( ) δ

More information

Problem Set 3 EC2450A. Fall ) Write the maximization problem of the individual under this tax system and derive the first-order conditions.

Problem Set 3 EC2450A. Fall ) Write the maximization problem of the individual under this tax system and derive the first-order conditions. Problem Se 3 EC450A Fall 06 Problem There are wo ypes of ndvduals, =, wh dfferen ables w. Le be ype s onsumpon, l be hs hours worked and nome y = w l. Uly s nreasng n onsumpon and dereasng n hours worked.

More information

Example: MOSFET Amplifier Distortion

Example: MOSFET Amplifier Distortion 4/25/2011 Example MSFET Amplfer Dsoron 1/9 Example: MSFET Amplfer Dsoron Recall hs crcu from a prevous handou: ( ) = I ( ) D D d 15.0 V RD = 5K v ( ) = V v ( ) D o v( ) - K = 2 0.25 ma/v V = 2.0 V 40V.

More information

EE40 Summer 2005: Lecture 2 Instructor: Octavian Florescu 1. Measuring Voltages and Currents

EE40 Summer 2005: Lecture 2 Instructor: Octavian Florescu 1. Measuring Voltages and Currents Announemens HW # Due oday a 6pm. HW # posed online oday and due nex Tuesday a 6pm. Due o sheduling onflis wih some sudens, lasses will resume normally his week and nex. Miderm enaively 7/. EE4 Summer 5:

More information

Chapter Lagrangian Interpolation

Chapter Lagrangian Interpolation Chaper 5.4 agrangan Inerpolaon Afer readng hs chaper you should be able o:. dere agrangan mehod of nerpolaon. sole problems usng agrangan mehod of nerpolaon and. use agrangan nerpolans o fnd deraes and

More information

Normal Random Variable and its discriminant functions

Normal Random Variable and its discriminant functions Noral Rando Varable and s dscrnan funcons Oulne Noral Rando Varable Properes Dscrnan funcons Why Noral Rando Varables? Analycally racable Works well when observaon coes for a corruped snle prooype 3 The

More information

Block 5 Transport of solutes in rivers

Block 5 Transport of solutes in rivers Nmeral Hydrals Blok 5 Transpor of soles n rvers Marks Holzner Conens of he orse Blok 1 The eqaons Blok Compaon of pressre srges Blok 3 Open hannel flow flow n rvers Blok 4 Nmeral solon of open hannel flow

More information

. The geometric multiplicity is dim[ker( λi. number of linearly independent eigenvectors associated with this eigenvalue.

. The geometric multiplicity is dim[ker( λi. number of linearly independent eigenvectors associated with this eigenvalue. Lnear Algebra Lecure # Noes We connue wh he dscusson of egenvalues, egenvecors, and dagonalzably of marces We wan o know, n parcular wha condons wll assure ha a marx can be dagonalzed and wha he obsrucons

More information

ELEG 205 Fall Lecture #13. Mark Mirotznik, Ph.D. Professor The University of Delaware Tel: (302)

ELEG 205 Fall Lecture #13. Mark Mirotznik, Ph.D. Professor The University of Delaware Tel: (302) ELEG 205 Fall 2017 Leure #13 Mark Miroznik, Ph.D. Professor The Universiy of Delaware Tel: (302831-4221 Email: mirozni@ee.udel.edu Chaper 8: RL and RC Ciruis 1. Soure-free RL iruis (naural response 2.

More information

. The geometric multiplicity is dim[ker( λi. A )], i.e. the number of linearly independent eigenvectors associated with this eigenvalue.

. The geometric multiplicity is dim[ker( λi. A )], i.e. the number of linearly independent eigenvectors associated with this eigenvalue. Mah E-b Lecure #0 Noes We connue wh he dscusson of egenvalues, egenvecors, and dagonalzably of marces We wan o know, n parcular wha condons wll assure ha a marx can be dagonalzed and wha he obsrucons are

More information

Graduate Macroeconomics 2 Problem set 5. - Solutions

Graduate Macroeconomics 2 Problem set 5. - Solutions Graduae Macroeconomcs 2 Problem se. - Soluons Queson 1 To answer hs queson we need he frms frs order condons and he equaon ha deermnes he number of frms n equlbrum. The frms frs order condons are: F K

More information

Appendix H: Rarefaction and extrapolation of Hill numbers for incidence data

Appendix H: Rarefaction and extrapolation of Hill numbers for incidence data Anne Chao Ncholas J Goell C seh lzabeh L ander K Ma Rober K Colwell and Aaron M llson 03 Rarefacon and erapolaon wh ll numbers: a framewor for samplng and esmaon n speces dversy sudes cology Monographs

More information

[ ] 2. [ ]3 + (Δx i + Δx i 1 ) / 2. Δx i-1 Δx i Δx i+1. TPG4160 Reservoir Simulation 2018 Lecture note 3. page 1 of 5

[ ] 2. [ ]3 + (Δx i + Δx i 1 ) / 2. Δx i-1 Δx i Δx i+1. TPG4160 Reservoir Simulation 2018 Lecture note 3. page 1 of 5 TPG460 Reservor Smulaon 08 page of 5 DISCRETIZATIO OF THE FOW EQUATIOS As we already have seen, fne dfference appromaons of he paral dervaves appearng n he flow equaons may be obaned from Taylor seres

More information

Ordinary Differential Equations in Neuroscience with Matlab examples. Aim 1- Gain understanding of how to set up and solve ODE s

Ordinary Differential Equations in Neuroscience with Matlab examples. Aim 1- Gain understanding of how to set up and solve ODE s Ordnary Dfferenal Equaons n Neuroscence wh Malab eamples. Am - Gan undersandng of how o se up and solve ODE s Am Undersand how o se up an solve a smple eample of he Hebb rule n D Our goal a end of class

More information

Chapter 8 The Complete Response of RL and RC Circuits

Chapter 8 The Complete Response of RL and RC Circuits Chaper 8 he Complee Response of R and RC Ciruis Exerises Ex 8.3-1 Before he swih loses: Afer he swih loses: 2 = = 8 Ω so = 8 0.05 = 0.4 s. 0.25 herefore R ( ) Finally, 2.5 ( ) = o + ( (0) o ) = 2 + V for

More information

CS286.2 Lecture 14: Quantum de Finetti Theorems II

CS286.2 Lecture 14: Quantum de Finetti Theorems II CS286.2 Lecure 14: Quanum de Fne Theorems II Scrbe: Mara Okounkova 1 Saemen of he heorem Recall he las saemen of he quanum de Fne heorem from he prevous lecure. Theorem 1 Quanum de Fne). Le ρ Dens C 2

More information

Variants of Pegasos. December 11, 2009

Variants of Pegasos. December 11, 2009 Inroducon Varans of Pegasos SooWoong Ryu bshboy@sanford.edu December, 009 Youngsoo Cho yc344@sanford.edu Developng a new SVM algorhm s ongong research opc. Among many exng SVM algorhms, we wll focus on

More information

FI 3103 Quantum Physics

FI 3103 Quantum Physics /9/4 FI 33 Quanum Physcs Aleander A. Iskandar Physcs of Magnesm and Phooncs Research Grou Insu Teknolog Bandung Basc Conces n Quanum Physcs Probably and Eecaon Value Hesenberg Uncerany Prncle Wave Funcon

More information

A New Formulation of Electrodynamics

A New Formulation of Electrodynamics . Eleromagnei Analysis & Appliaions 1 457-461 doi:1.436/jemaa.1.86 Published Online Augus 1 hp://www.sirp.org/journal/jemaa A New Formulaion of Elerodynamis Arbab I. Arbab 1 Faisal A. Yassein 1 Deparmen

More information

II. Light is a Ray (Geometrical Optics)

II. Light is a Ray (Geometrical Optics) II Lgh s a Ray (Geomercal Opcs) IIB Reflecon and Refracon Hero s Prncple of Leas Dsance Law of Reflecon Hero of Aleandra, who lved n he 2 nd cenury BC, posulaed he followng prncple: Prncple of Leas Dsance:

More information

ODEs II, Lecture 1: Homogeneous Linear Systems - I. Mike Raugh 1. March 8, 2004

ODEs II, Lecture 1: Homogeneous Linear Systems - I. Mike Raugh 1. March 8, 2004 ODEs II, Lecure : Homogeneous Linear Sysems - I Mike Raugh March 8, 4 Inroducion. In he firs lecure we discussed a sysem of linear ODEs for modeling he excreion of lead from he human body, saw how o ransform

More information

Amit Mehra. Indian School of Business, Hyderabad, INDIA Vijay Mookerjee

Amit Mehra. Indian School of Business, Hyderabad, INDIA Vijay Mookerjee RESEARCH ARTICLE HUMAN CAPITAL DEVELOPMENT FOR PROGRAMMERS USING OPEN SOURCE SOFTWARE Ami Mehra Indian Shool of Business, Hyderabad, INDIA {Ami_Mehra@isb.edu} Vijay Mookerjee Shool of Managemen, Uniersiy

More information

HEAT CONDUCTION PROBLEM IN A TWO-LAYERED HOLLOW CYLINDER BY USING THE GREEN S FUNCTION METHOD

HEAT CONDUCTION PROBLEM IN A TWO-LAYERED HOLLOW CYLINDER BY USING THE GREEN S FUNCTION METHOD Journal of Appled Mahemacs and Compuaonal Mechancs 3, (), 45-5 HEAT CONDUCTION PROBLEM IN A TWO-LAYERED HOLLOW CYLINDER BY USING THE GREEN S FUNCTION METHOD Sansław Kukla, Urszula Sedlecka Insue of Mahemacs,

More information

Lecture 2 M/G/1 queues. M/G/1-queue

Lecture 2 M/G/1 queues. M/G/1-queue Lecure M/G/ queues M/G/-queue Posson arrval process Arbrary servce me dsrbuon Sngle server To deermne he sae of he sysem a me, we mus now The number of cusomers n he sysems N() Tme ha he cusomer currenly

More information

Regularization and Stabilization of the Rectangle Descriptor Decentralized Control Systems by Dynamic Compensator

Regularization and Stabilization of the Rectangle Descriptor Decentralized Control Systems by Dynamic Compensator www.sene.org/mas Modern Appled ene Vol. 5, o. 2; Aprl 2 Regularzaon and ablzaon of he Reangle Desrpor Deenralzed Conrol ysems by Dynam Compensaor Xume Tan Deparmen of Eleromehanal Engneerng, Heze Unversy

More information

Chapter 6: AC Circuits

Chapter 6: AC Circuits Chaper 6: AC Crcus Chaper 6: Oulne Phasors and he AC Seady Sae AC Crcus A sable, lnear crcu operang n he seady sae wh snusodal excaon (.e., snusodal seady sae. Complee response forced response naural response.

More information

ON THE WEAK LIMITS OF SMOOTH MAPS FOR THE DIRICHLET ENERGY BETWEEN MANIFOLDS

ON THE WEAK LIMITS OF SMOOTH MAPS FOR THE DIRICHLET ENERGY BETWEEN MANIFOLDS ON THE WEA LIMITS OF SMOOTH MAPS FOR THE DIRICHLET ENERGY BETWEEN MANIFOLDS FENGBO HANG Absrac. We denfy all he weak sequenal lms of smooh maps n W (M N). In parcular, hs mples a necessary su cen opologcal

More information

FTCS Solution to the Heat Equation

FTCS Solution to the Heat Equation FTCS Soluon o he Hea Equaon ME 448/548 Noes Gerald Reckenwald Porland Sae Unversy Deparmen of Mechancal Engneerng gerry@pdxedu ME 448/548: FTCS Soluon o he Hea Equaon Overvew Use he forward fne d erence

More information

Notes on the stability of dynamic systems and the use of Eigen Values.

Notes on the stability of dynamic systems and the use of Eigen Values. Noes on he sabl of dnamc ssems and he use of Egen Values. Source: Macro II course noes, Dr. Davd Bessler s Tme Seres course noes, zarads (999) Ineremporal Macroeconomcs chaper 4 & Techncal ppend, and Hamlon

More information

(,,, ) (,,, ). In addition, there are three other consumers, -2, -1, and 0. Consumer -2 has the utility function

(,,, ) (,,, ). In addition, there are three other consumers, -2, -1, and 0. Consumer -2 has the utility function MACROECONOMIC THEORY T J KEHOE ECON 87 SPRING 5 PROBLEM SET # Conder an overlappng generaon economy le ha n queon 5 on problem e n whch conumer lve for perod The uly funcon of he conumer born n perod,

More information

Chapters 2 Kinematics. Position, Distance, Displacement

Chapters 2 Kinematics. Position, Distance, Displacement Chapers Knemacs Poson, Dsance, Dsplacemen Mechancs: Knemacs and Dynamcs. Knemacs deals wh moon, bu s no concerned wh he cause o moon. Dynamcs deals wh he relaonshp beween orce and moon. The word dsplacemen

More information

2/20/2013. EE 101 Midterm 2 Review

2/20/2013. EE 101 Midterm 2 Review //3 EE Mderm eew //3 Volage-mplfer Model The npu ressance s he equalen ressance see when lookng no he npu ermnals of he amplfer. o s he oupu ressance. I causes he oupu olage o decrease as he load ressance

More information

Comparison of Differences between Power Means 1

Comparison of Differences between Power Means 1 In. Journal of Mah. Analyss, Vol. 7, 203, no., 5-55 Comparson of Dfferences beween Power Means Chang-An Tan, Guanghua Sh and Fe Zuo College of Mahemacs and Informaon Scence Henan Normal Unversy, 453007,

More information

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle Chaper 2 Newonian Mechanics Single Paricle In his Chaper we will review wha Newon s laws of mechanics ell us abou he moion of a single paricle. Newon s laws are only valid in suiable reference frames,

More information

Motion in Two Dimensions

Motion in Two Dimensions Phys 1 Chaper 4 Moon n Two Dmensons adzyubenko@csub.edu hp://www.csub.edu/~adzyubenko 005, 014 A. Dzyubenko 004 Brooks/Cole 1 Dsplacemen as a Vecor The poson of an objec s descrbed by s poson ecor, r The

More information

Math 10B: Mock Mid II. April 13, 2016

Math 10B: Mock Mid II. April 13, 2016 Name: Soluions Mah 10B: Mock Mid II April 13, 016 1. ( poins) Sae, wih jusificaion, wheher he following saemens are rue or false. (a) If a 3 3 marix A saisfies A 3 A = 0, hen i canno be inverible. True.

More information

Chapter 3: Vectors and Two-Dimensional Motion

Chapter 3: Vectors and Two-Dimensional Motion Chape 3: Vecos and Two-Dmensonal Moon Vecos: magnude and decon Negae o a eco: eese s decon Mulplng o ddng a eco b a scala Vecos n he same decon (eaed lke numbes) Geneal Veco Addon: Tangle mehod o addon

More information

NATIONAL UNIVERSITY OF SINGAPORE PC5202 ADVANCED STATISTICAL MECHANICS. (Semester II: AY ) Time Allowed: 2 Hours

NATIONAL UNIVERSITY OF SINGAPORE PC5202 ADVANCED STATISTICAL MECHANICS. (Semester II: AY ) Time Allowed: 2 Hours NATONAL UNVERSTY OF SNGAPORE PC5 ADVANCED STATSTCAL MECHANCS (Semeser : AY 1-13) Tme Allowed: Hours NSTRUCTONS TO CANDDATES 1. Ths examnaon paper conans 5 quesons and comprses 4 prned pages.. Answer all

More information

Numerical simulation of wooden beams fracture under impact

Numerical simulation of wooden beams fracture under impact IOP Conferene Seres: Maerals Sene and ngneerng OPN ACCSS Numeral smulaon of wooden beams fraure under mpa To e hs arle: P Radheno e al 5 IOP Conf. Ser.: Maer. S. ng. 7 39 Relaed onen - Insulaon Teser vershed

More information

EE 247B/ME 218: Introduction to MEMS Design Lecture 27m2: Gyros, Noise & MDS CTN 5/1/14. Copyright 2014 Regents of the University of California

EE 247B/ME 218: Introduction to MEMS Design Lecture 27m2: Gyros, Noise & MDS CTN 5/1/14. Copyright 2014 Regents of the University of California MEMSBase Fork Gyrosoe Ω r z Volage Deermnng Resoluon EE C45: Inrouon o MEMS Desgn LeM 15 C. Nguyen 11/18/08 17 () Curren (+) Curren Eleroe EE C45: Inrouon o MEMS Desgn LeM 15 C. Nguyen 11/18/08 18 [Zaman,

More information

Response of MDOF systems

Response of MDOF systems Response of MDOF syses Degree of freedo DOF: he nu nuber of ndependen coordnaes requred o deerne copleely he posons of all pars of a syse a any nsan of e. wo DOF syses hree DOF syses he noral ode analyss

More information

Panel Data Regression Models

Panel Data Regression Models Panel Daa Regresson Models Wha s Panel Daa? () Mulple dmensoned Dmensons, e.g., cross-secon and me node-o-node (c) Pongsa Pornchawseskul, Faculy of Economcs, Chulalongkorn Unversy (c) Pongsa Pornchawseskul,

More information

Part II CONTINUOUS TIME STOCHASTIC PROCESSES

Part II CONTINUOUS TIME STOCHASTIC PROCESSES Par II CONTINUOUS TIME STOCHASTIC PROCESSES 4 Chaper 4 For an advanced analyss of he properes of he Wener process, see: Revus D and Yor M: Connuous marngales and Brownan Moon Karazas I and Shreve S E:

More information

Matlab and Python programming: how to get started

Matlab and Python programming: how to get started Malab and Pyhon programming: how o ge sared Equipping readers he skills o wrie programs o explore complex sysems and discover ineresing paerns from big daa is one of he main goals of his book. In his chaper,

More information

Existence and Uniqueness Results for Random Impulsive Integro-Differential Equation

Existence and Uniqueness Results for Random Impulsive Integro-Differential Equation Global Journal of Pure and Appled Mahemacs. ISSN 973-768 Volume 4, Number 6 (8), pp. 89-87 Research Inda Publcaons hp://www.rpublcaon.com Exsence and Unqueness Resuls for Random Impulsve Inegro-Dfferenal

More information

Inventory Analysis and Management. Multi-Period Stochastic Models: Optimality of (s, S) Policy for K-Convex Objective Functions

Inventory Analysis and Management. Multi-Period Stochastic Models: Optimality of (s, S) Policy for K-Convex Objective Functions Muli-Period Sochasic Models: Opimali of (s, S) Polic for -Convex Objecive Funcions Consider a seing similar o he N-sage newsvendor problem excep ha now here is a fixed re-ordering cos (> 0) for each (re-)order.

More information

Traveling Waves. Chapter Introduction

Traveling Waves. Chapter Introduction Chaper 4 Traveling Waves 4.1 Inroducion To dae, we have considered oscillaions, i.e., periodic, ofen harmonic, variaions of a physical characerisic of a sysem. The sysem a one ime is indisinguishable from

More information

Two Coupled Oscillators / Normal Modes

Two Coupled Oscillators / Normal Modes Lecure 3 Phys 3750 Two Coupled Oscillaors / Normal Modes Overview and Moivaion: Today we ake a small, bu significan, sep owards wave moion. We will no ye observe waves, bu his sep is imporan in is own

More information

Method of Characteristics for Pure Advection By Gilberto E. Urroz, September 2004

Method of Characteristics for Pure Advection By Gilberto E. Urroz, September 2004 Mehod of Charaerss for Pre Adveon By Glbero E Urroz Sepember 004 Noe: The followng noes are based on lass noes for he lass COMPUTATIONAL HYDAULICS as agh by Dr Forres Holly n he Sprng Semeser 985 a he

More information

6.003 Homework #8 Solutions

6.003 Homework #8 Solutions 6.003 Homework #8 Soluions Problems. Fourier Series Deermine he Fourier series coefficiens a k for x () shown below. x ()= x ( + 0) 0 a 0 = 0 a k = e /0 sin(/0) for k 0 a k = π x()e k d = 0 0 π e 0 k d

More information

Online Supplement for Dynamic Multi-Technology. Production-Inventory Problem with Emissions Trading

Online Supplement for Dynamic Multi-Technology. Production-Inventory Problem with Emissions Trading Onlne Supplemen for Dynamc Mul-Technology Producon-Invenory Problem wh Emssons Tradng by We Zhang Zhongsheng Hua Yu Xa and Baofeng Huo Proof of Lemma For any ( qr ) Θ s easy o verfy ha he lnear programmng

More information

2.7. Some common engineering functions. Introduction. Prerequisites. Learning Outcomes

2.7. Some common engineering functions. Introduction. Prerequisites. Learning Outcomes Some common engineering funcions 2.7 Inroducion This secion provides a caalogue of some common funcions ofen used in Science and Engineering. These include polynomials, raional funcions, he modulus funcion

More information

Math 315: Linear Algebra Solutions to Assignment 6

Math 315: Linear Algebra Solutions to Assignment 6 Mah 35: Linear Algebra s o Assignmen 6 # Which of he following ses of vecors are bases for R 2? {2,, 3, }, {4,, 7, 8}, {,,, 3}, {3, 9, 4, 2}. Explain your answer. To generae he whole R 2, wo linearly independen

More information

First-order piecewise-linear dynamic circuits

First-order piecewise-linear dynamic circuits Frs-order pecewse-lnear dynamc crcus. Fndng he soluon We wll sudy rs-order dynamc crcus composed o a nonlnear resse one-por, ermnaed eher by a lnear capacor or a lnear nducor (see Fg.. Nonlnear resse one-por

More information

Sequential Unit Root Test

Sequential Unit Root Test Sequenal Un Roo es Naga, K, K Hom and Y Nshyama 3 Deparmen of Eonoms, Yokohama Naonal Unversy, Japan Deparmen of Engneerng, Kyoo Insue of ehnology, Japan 3 Insue of Eonom Researh, Kyoo Unversy, Japan Emal:

More information

Lecture 18: The Laplace Transform (See Sections and 14.7 in Boas)

Lecture 18: The Laplace Transform (See Sections and 14.7 in Boas) Lecure 8: The Lalace Transform (See Secons 88- and 47 n Boas) Recall ha our bg-cure goal s he analyss of he dfferenal equaon, ax bx cx F, where we emloy varous exansons for he drvng funcon F deendng on

More information

BEng (Hons) Telecommunications. Examinations for / Semester 2

BEng (Hons) Telecommunications. Examinations for / Semester 2 BEng (Hons) Telecommunicaions Cohor: BTEL/14/FT Examinaions for 2015-2016 / Semeser 2 MODULE: ELECTROMAGNETIC THEORY MODULE CODE: ASE2103 Duraion: 2 ½ Hours Insrucions o Candidaes: 1. Answer ALL 4 (FOUR)

More information

Vector aeroacoustics for a uniform mean flow: acoustic velocity and

Vector aeroacoustics for a uniform mean flow: acoustic velocity and Veor aeroaouss for a unform mean flow: aous veloy and voral veloy Yjun ao 1,, Zhwe Hu 1, Chen Xu 1, 1 Unversy of Souhampon, SO17 1BJ Souhampon, Uned Kngdom X'an Jaoong Unversy, 7149 X'an, People's epubl

More information

TSS = SST + SSE An orthogonal partition of the total SS

TSS = SST + SSE An orthogonal partition of the total SS ANOVA: Topc 4. Orhogonal conrass [ST&D p. 183] H 0 : µ 1 = µ =... = µ H 1 : The mean of a leas one reamen group s dfferen To es hs hypohess, a basc ANOVA allocaes he varaon among reamen means (SST) equally

More information

MEEN Handout 4a ELEMENTS OF ANALYTICAL MECHANICS

MEEN Handout 4a ELEMENTS OF ANALYTICAL MECHANICS MEEN 67 - Handou 4a ELEMENTS OF ANALYTICAL MECHANICS Newon's laws (Euler's fundamenal prncples of moon) are formulaed for a sngle parcle and easly exended o sysems of parcles and rgd bodes. In descrbng

More information

EP2200 Queuing theory and teletraffic systems. 3rd lecture Markov chains Birth-death process - Poisson process. Viktoria Fodor KTH EES

EP2200 Queuing theory and teletraffic systems. 3rd lecture Markov chains Birth-death process - Poisson process. Viktoria Fodor KTH EES EP Queung heory and eleraffc sysems 3rd lecure Marov chans Brh-deah rocess - Posson rocess Vora Fodor KTH EES Oulne for oday Marov rocesses Connuous-me Marov-chans Grah and marx reresenaon Transen and

More information

GENERATING CERTAIN QUINTIC IRREDUCIBLE POLYNOMIALS OVER FINITE FIELDS. Youngwoo Ahn and Kitae Kim

GENERATING CERTAIN QUINTIC IRREDUCIBLE POLYNOMIALS OVER FINITE FIELDS. Youngwoo Ahn and Kitae Kim Korean J. Mah. 19 (2011), No. 3, pp. 263 272 GENERATING CERTAIN QUINTIC IRREDUCIBLE POLYNOMIALS OVER FINITE FIELDS Youngwoo Ahn and Kae Km Absrac. In he paper [1], an explc correspondence beween ceran

More information

Advanced time-series analysis (University of Lund, Economic History Department)

Advanced time-series analysis (University of Lund, Economic History Department) Advanced me-seres analss (Unvers of Lund, Economc Hsor Dearmen) 3 Jan-3 Februar and 6-3 March Lecure 4 Economerc echnues for saonar seres : Unvarae sochasc models wh Box- Jenns mehodolog, smle forecasng

More information

Linear Circuit Elements

Linear Circuit Elements 1/25/2011 inear ircui Elemens.doc 1/6 inear ircui Elemens Mos microwave devices can be described or modeled in erms of he hree sandard circui elemens: 1. ESISTANE () 2. INDUTANE () 3. APAITANE () For he

More information

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes Represening Periodic Funcions by Fourier Series 3. Inroducion In his Secion we show how a periodic funcion can be expressed as a series of sines and cosines. We begin by obaining some sandard inegrals

More information

The Finite Element Method for the Analysis of Non-Linear and Dynamic Systems

The Finite Element Method for the Analysis of Non-Linear and Dynamic Systems Swss Federal Insue of Page 1 The Fne Elemen Mehod for he Analyss of Non-Lnear and Dynamc Sysems Prof. Dr. Mchael Havbro Faber Dr. Nebojsa Mojslovc Swss Federal Insue of ETH Zurch, Swzerland Mehod of Fne

More information

Li An-Ping. Beijing , P.R.China

Li An-Ping. Beijing , P.R.China A New Type of Cpher: DICING_csb L An-Png Bejng 100085, P.R.Chna apl0001@sna.com Absrac: In hs paper, we wll propose a new ype of cpher named DICING_csb, whch s derved from our prevous sream cpher DICING.

More information

Second-Order Boundary Value Problems of Singular Type

Second-Order Boundary Value Problems of Singular Type JOURNAL OF MATEMATICAL ANALYSIS AND APPLICATIONS 226, 4443 998 ARTICLE NO. AY98688 Seond-Order Boundary Value Probles of Singular Type Ravi P. Agarwal Deparen of Maheais, Naional Uniersiy of Singapore,

More information

Cubic Bezier Homotopy Function for Solving Exponential Equations

Cubic Bezier Homotopy Function for Solving Exponential Equations Penerb Journal of Advanced Research n Compung and Applcaons ISSN (onlne: 46-97 Vol. 4, No.. Pages -8, 6 omoopy Funcon for Solvng Eponenal Equaons S. S. Raml *,,. Mohamad Nor,a, N. S. Saharzan,b and M.

More information

Decomposing exports growth differences across Spanish regions

Decomposing exports growth differences across Spanish regions Deomposng expors growh dfferenes aross Spansh regons Aser Mnondo* (Unversdad de Deuso) Franso Requena (Unversdad de Valena) Absra Why do expors grow faser n some regons han n ohers? The regonal leraure

More information