Lecture 3: Acoustics

Size: px
Start display at page:

Download "Lecture 3: Acoustics"

Transcription

1 CSC 83060: Speech & Audio Understanding Lecture 3: Acoustics Michael Mandel CUNY Graduate Center, Computer Science Program With much content from Dan Ellis EE 6820 course 1 The wave equation 2 Acoustic tubes: reflections & resonance 3 Oscillations & musical acoustics 4 Spherical waves & room acoustics Michael Mandel (83060 SAU) Acoustics 1 / 38

2 Outline 1 The wave equation 2 Acoustic tubes: reflections & resonance 3 Oscillations & musical acoustics 4 Spherical waves & room acoustics Michael Mandel (83060 SAU) Acoustics 2 / 38

3 Acoustics & sound Acoustics is the study of physical waves (Acoustic) waves transmit energy without permanently displacing matter (e.g. ocean waves) Same math recurs in many domains Intuition: pulse going down a rope Michael Mandel (83060 SAU) Acoustics 3 / 38

4 The wave equation Consider a small section of the rope y S x ε φ 2 φ 1 S Displacement y(x), tension S, mass ɛ dx Lateral force is F y = S sin(φ 2 ) S sin(φ 1 ) S 2 y x 2 dx Michael Mandel (83060 SAU) Acoustics 4 / 38

5 Wave equation (2) Newton s law: F = ma S 2 y x 2 dx = ɛ dx 2 y t 2 Call c 2 = S/ɛ (tension to mass-per-length) hence, the Wave Equation: c 2 2 y x 2 = 2 y t 2... partial DE relating curvature and acceleration Michael Mandel (83060 SAU) Acoustics 5 / 38

6 Solution to the wave equation If y(x, t) = f (x ct) (any f ( )) then y x = f (x ct) 2 y x 2 = f (x ct) also works for y(x, t) = f (x + ct) Hence, general solution: y t = cf (x ct) 2 y t 2 = c2 f (x ct) c 2 2 y x 2 = 2 y t 2 y(x, t) = y + (x ct) + y (x + ct) Michael Mandel (83060 SAU) Acoustics 6 / 38

7 Solution to the wave equation (2) y + (x ct) and y (x + ct) are traveling waves shape stays constant but changes position time 0: y y + y - time T: x = c T x y + y - x c is traveling wave velocity ( x/ t) y + moves right, y moves left resultant y(x) is sum of the two waves Michael Mandel (83060 SAU) Acoustics 7 / 38

8 Wave equation solutions (3) What is the form of y +, y? any doubly-differentiable function will satisfy wave equation Actual waveshapes dictated by boundary conditions e.g. y(x) at t = 0 plus constraints on y at particular xs e.g. input motion y(0, t) = m(t) rigid termination y(l, t) = 0 y y(0,t) = m(t) x y + (x,t) y(l,t) = 0 Michael Mandel (83060 SAU) Acoustics 8 / 38

9 Terminations and reflections System constraints: initial y(x, 0) = 0 (flat rope) input y(0, t) = m(t) (at agent s hand) ( y + ) termination y(l, t) = 0 (fixed end) wave equation y(x, t) = y + (x ct) + y (x + ct) At termination: y(l, t) = 0 y + (L ct) = y (L + ct) i.e. y + and y are mirrored in time and amplitude around x = L inverted reflection at termination y + y(x,t) = y + + y [simulation travel1.m] x = L y Michael Mandel (83060 SAU) Acoustics 9 / 38

10 Outline 1 The wave equation 2 Acoustic tubes: reflections & resonance 3 Oscillations & musical acoustics 4 Spherical waves & room acoustics Michael Mandel (83060 SAU) Acoustics 10 / 38

11 Acoustic tubes Sound waves travel down acoustic tubes: pressure x 1-dimensional; very similar to strings Common situation: wind instrument bores ear canal vocal tract Michael Mandel (83060 SAU) Acoustics 11 / 38

12 Pressure and velocity Consider air particle displacement ξ(x, t) ξ(x) x Particle velocity v(x, t) = ξ t hence volume velocity u(x, t) = Av(x, t) (Relative) air pressure p(x, t) = 1 κ ξ x Michael Mandel (83060 SAU) Acoustics 12 / 38

13 Wave equation for a tube Consider elemental volume Area da Force p da x Volume da dx Mass ρ da dx Force (p+ p / x dx) da Newton s law: F = ma p v dx da = ρ da dx x t p x = ρ v t c 2 2 ξ x 2 = 2 ξ t 2 c = 1 ρκ Michael Mandel (83060 SAU) Acoustics 13 / 38

14 Acoustic tube traveling waves Traveling waves in particle displacement: ξ(x, t) = ξ + (x ct) + ξ (x + ct) Call u + (α) = ca α ξ+ (α), Z 0 = ρc A Then volume velocity: And pressure: u(x, t) = A ξ t = u+ (x ct) u (x + ct) p(x, t) = 1 ξ κ x = Z [ 0 u + (x ct) + u (x + ct) ] (Scaled) sum and difference of traveling waves Michael Mandel (83060 SAU) Acoustics 14 / 38

15 Acoustic traveling waves (2) Different resultants for pressure and volume velocity: c c x Acoustic tube u + u - u(x,t) = u + - u - p(x,t) = Z 0 [u + + u - ] Volume velocity Pressure Michael Mandel (83060 SAU) Acoustics 15 / 38

16 Terminations in tubes Equivalent of fixed point for tubes? Solid wall forces u(x,t) = 0 hence u + = u - u 0 (t) (Volume velocity input) Open end forces p(x,t) = 0 hence u + = -u - Open end is like fixed point for rope: reflects wave back inverted Unlike fixed point, solid wall reflects traveling wave without inversion Michael Mandel (83060 SAU) Acoustics 16 / 38

17 Standing waves Consider (complex) sinusoidal input u 0 (t) = U 0 e jωt Pressure/volume must have form Ke j(ωt+φ) Hence traveling waves: u + (x ct) = A e j( kx+ωt+φ A) u (x + ct) = B e j(kx+ωt+φ B) where k = ω/c (spatial frequency, rad/m) (wavelength λ = c/f = 2πc/ω) Pressure and volume velocity resultants show stationary pattern: standing waves even when A B [simulation sintwavemov.m] Michael Mandel (83060 SAU) Acoustics 17 / 38

18 Standing waves (2) U 0 e jωt kx = π x = λ / 2 pressure = 0 (node) vol.veloc. = max (antinode) For lossless termination ( u + = u ), have true nodes and antinodes Pressure and volume velocity are phase shifted in space and in time Michael Mandel (83060 SAU) Acoustics 18 / 38

19 Transfer function Consider tube excited by u 0 (t) = U 0 e jωt sinusoidal traveling waves must satisfy termination boundary conditions satisfied by complex constants A and B in u(x, t) = u + (x ct) + u (x + ct) = Ae j( kx+ωt) + Be j(kx+ωt) = e jωt (Ae jkx + Be jkx ) standing wave pattern will scale with input magnitude point of excitation makes a big difference... Michael Mandel (83060 SAU) Acoustics 19 / 38

20 Transfer function (2) For open-ended tube of length L excited at x = 0 by U 0 e jωt jωt cos k(l x) u(x, t) = U 0 e cos kl k = ω c (matches at x = 0, maximum at x = L) i.e. standing wave pattern e.g. varying L for a given ω (and hence k): U 0 e jωt U 0 U L U 0 e jωt U 0 U L magnitude of U L depends on L (and ω) Michael Mandel (83060 SAU) Acoustics 20 / 38

21 Transfer function (3) Varying ω for a given L, i.e. at x = L U L u(l, t) = U 0 u(0, t) = 1 cos kl = 1 cos(ωl/c) u(l) u(0) L u(l) at ωl/c = (2r+1)π/2, r = 0,1,2... u(0) Output volume velocity always larger than input Unbounded for L = (2r + 1) πc 2ω = (2r + 1) λ 4 i.e. resonance (amplitude grows without bound) Michael Mandel (83060 SAU) Acoustics 21 / 38

22 Resonant modes For lossless tube with L = m λ 4, m odd, λ wavelength u(l) is unbounded, meaning: u(0) transfer function has pole on frequency axis energy at that frequency sustains indefinitely L = 3 λ 1/ 4 ω 1 = 3ω 0 compare to time domain... e.g cm vocal tract, c = 350 m/s ω 0 = 2π 500 Hz (then 1500, 2500,... ) L = λ 0/ 4 Michael Mandel (83060 SAU) Acoustics 22 / 38

23 Scattering junctions u + k u - k Area A k Area A k+1 u + k+1 u - k+1 At abrupt change in area: pressure must be continuous p k (x, t) = p k+1 (x, t) vol. veloc. must be continuous u k (x, t) = u k+1 (x, t) traveling waves u + k, u- k, u+ k+1, u- k+1 will be different Solve e.g. for u k and u+ k+1 : (generalized term) u + k u - k 1 - r 1 + r + 2r 1 + r 2 r r - 1 r + 1 u + k+1 u - k+1 r = A k+1 A k Area ratio Michael Mandel (83060 SAU) Acoustics 23 / 38

24 Concatenated tube model Vocal tract acts as a waveguide Lips x = L Lips u L (t) Glottis u 0 (t) x = 0 Glottis Discrete approximation as varying-diameter tube A k, L k x A k+1, L k+1 Michael Mandel (83060 SAU) Acoustics 24 / 38

25 Concatenated tube resonances Concatenated tubes scattering junctions lattice filter u + k + e -jωτ 1 + e -jωτ 2 + u - k + e -jωτ 1 + e -jωτ e -jω2τ 1 + e -jω2τ 2 + Can solve for transfer function all-pole Approximate vowel synthesis from resonances [sound example: ah ee oo] Michael Mandel (83060 SAU) Acoustics 25 / 38

26 Outline 1 The wave equation 2 Acoustic tubes: reflections & resonance 3 Oscillations & musical acoustics 4 Spherical waves & room acoustics Michael Mandel (83060 SAU) Acoustics 26 / 38

27 Oscillations & musical acoustics Pitch (periodicity) is essence of music why? why music? Different kinds of oscillators simple harmonic motion (tuning fork) relaxation oscillator (voice) string traveling wave (plucked/struck/bowed) air column (nonlinear energy element) Michael Mandel (83060 SAU) Acoustics 27 / 38

28 Simple harmonic motion Basic mechanical oscillation ẍ = ω 2 x x = A cos(ωt + φ) Spring + mass (+ damper) F = kx m ζ x e.g. tuning fork Not great for music fundamental (cos ωt) only relatively low energy ω 2 = k m Michael Mandel (83060 SAU) Acoustics 28 / 38

29 Relaxation oscillator Multi-state process one state builds up potential (e.g. pressure) switch to second (release) state revert to first state, etc. e.g. vocal folds: p u Oscillation period depends on force (tension) easy to change hard to keep stable less used in music Michael Mandel (83060 SAU) Acoustics 29 / 38

30 Ringing string e.g. our original rope example tension S mass/length ε Many musical instruments guitar (plucked) piano (struck) violin (bowed) Control period (pitch): change length (fretting) change tension (tuning piano) change mass (piano strings) Influence of excitation... [pluck1a.m] L ω 2 = π2 S L 2 ε Michael Mandel (83060 SAU) Acoustics 30 / 38

31 Wind tube Resonant tube + energy input energy nonlinear element ω = acoustic waveguide π c 2 L e.g. clarinet lip pressure keeps reed closed reflected pressure wave opens reed reinforced pressure wave passes through finger holds determine first reflection effective waveguide length scattering junction (tonehole) (quarter wavelength) Michael Mandel (83060 SAU) Acoustics 31 / 38

32 Outline 1 The wave equation 2 Acoustic tubes: reflections & resonance 3 Oscillations & musical acoustics 4 Spherical waves & room acoustics Michael Mandel (83060 SAU) Acoustics 32 / 38

33 Room acoustics Sound in free air expands spherically: Spherical wave equation: radius r 2 p r p r r = 1 2 p c 2 t 2 solved by p(r, t) = P 0 r e j(ωt kr) Energy p 2 falls as 1 r 2 Michael Mandel (83060 SAU) Acoustics 33 / 38

34 Effect of rooms (1): Images Ideal reflections are like multiple sources: virtual (image) sources reflected path source listener Early echoes in room impulse response: h room (t) direct path early echos t actual reflections may be h r (t), not δ(t) Michael Mandel (83060 SAU) Acoustics 34 / 38

35 Effect of rooms (2): Modes Regularly-spaced echoes behave like acoustic tubes Real rooms have lots of modes! dense, sustained echoes in impulse response complex pattern of peaks in frequency response Michael Mandel (83060 SAU) Acoustics 35 / 38

36 Reverberation Exponential decay of reflections: h room (t) ~e -t /T Frequency-dependent greater absorption at high frequencies faster decay Size-dependent larger rooms longer delays slower decay Sabine s equation: RT 60 = 0.049V Sᾱ Time constant varies with size, absorption t Michael Mandel (83060 SAU) Acoustics 36 / 38

37 Summary Traveling waves Acoustic tubes & resonances Musical acoustics & periodicity Room acoustics & reverberation Parting thought Musical bottles Michael Mandel (83060 SAU) Acoustics 37 / 38

38 References Michael Mandel (83060 SAU) Acoustics 38 / 38

Lecture 2: Acoustics. Acoustics & sound

Lecture 2: Acoustics. Acoustics & sound EE E680: Speech & Audio Processing & Recognition Lecture : Acoustics 1 3 4 The wave equation Acoustic tubes: reflections & resonance Oscillations & musical acoustics Spherical waves & room acoustics Dan

More information

Music 206: Digital Waveguides

Music 206: Digital Waveguides Music 206: Digital Waveguides Tamara Smyth, trsmyth@ucsd.edu Department of Music, University of California, San Diego (UCSD) January 22, 2016 1 Motion for a Wave The 1-dimensional digital waveguide model

More information

CMPT 889: Lecture 8 Digital Waveguides

CMPT 889: Lecture 8 Digital Waveguides CMPT 889: Lecture 8 Digital Waveguides Tamara Smyth, tamaras@cs.sfu.ca School of Computing Science, Simon Fraser University February 10, 2012 1 Motion for a Wave For the string, we are interested in the

More information

Wave Phenomena Physics 15c. Lecture 9 Wave Reflection Standing Waves

Wave Phenomena Physics 15c. Lecture 9 Wave Reflection Standing Waves Wave Phenomena Physics 15c Lecture 9 Wave Reflection Standing Waves What We Did Last Time Energy and momentum in LC transmission lines Transfer rates for normal modes: and The energy is carried by the

More information

Sound, acoustics Slides based on: Rossing, The science of sound, 1990, and Pulkki, Karjalainen, Communication acoutics, 2015

Sound, acoustics Slides based on: Rossing, The science of sound, 1990, and Pulkki, Karjalainen, Communication acoutics, 2015 Acoustics 1 Sound, acoustics Slides based on: Rossing, The science of sound, 1990, and Pulkki, Karjalainen, Communication acoutics, 2015 Contents: 1. Introduction 2. Vibrating systems 3. Waves 4. Resonance

More information

16 SUPERPOSITION & STANDING WAVES

16 SUPERPOSITION & STANDING WAVES Chapter 6 SUPERPOSITION & STANDING WAVES 6. Superposition of waves Principle of superposition: When two or more waves overlap, the resultant wave is the algebraic sum of the individual waves. Illustration:

More information

General Physics I. Lecture 14: Sinusoidal Waves. Prof. WAN, Xin ( 万歆 )

General Physics I. Lecture 14: Sinusoidal Waves. Prof. WAN, Xin ( 万歆 ) General Physics I Lecture 14: Sinusoidal Waves Prof. WAN, Xin ( 万歆 ) xinwan@zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ Motivation When analyzing a linear medium that is, one in which the restoring force

More information

is a What you Hear The Pressure Wave sets the Ear Drum into Vibration.

is a What you Hear The Pressure Wave sets the Ear Drum into Vibration. is a What you Hear The ear converts sound energy to mechanical energy to a nerve impulse which is transmitted to the brain. The Pressure Wave sets the Ear Drum into Vibration. electroencephalogram v S

More information

Waves 2006 Physics 23. Armen Kocharian Lecture 3: Sep

Waves 2006 Physics 23. Armen Kocharian Lecture 3: Sep Waves 2006 Physics 23 Armen Kocharian Lecture 3: Sep 12. 2006 Last Time What is a wave? A "disturbance" that moves through space. Mechanical waves through a medium. Transverse vs. Longitudinal e.g., string

More information

PHYSICS 149: Lecture 24

PHYSICS 149: Lecture 24 PHYSICS 149: Lecture 24 Chapter 11: Waves 11.8 Reflection and Refraction 11.10 Standing Waves Chapter 12: Sound 12.1 Sound Waves 12.4 Standing Sound Waves Lecture 24 Purdue University, Physics 149 1 ILQ

More information

Waves Part 3A: Standing Waves

Waves Part 3A: Standing Waves Waves Part 3A: Standing Waves Last modified: 24/01/2018 Contents Links Contents Superposition Standing Waves Definition Nodes Anti-Nodes Standing Waves Summary Standing Waves on a String Standing Waves

More information

Vibrations of string. Henna Tahvanainen. November 8, ELEC-E5610 Acoustics and the Physics of Sound, Lecture 4

Vibrations of string. Henna Tahvanainen. November 8, ELEC-E5610 Acoustics and the Physics of Sound, Lecture 4 Vibrations of string EEC-E5610 Acoustics and the Physics of Sound, ecture 4 Henna Tahvanainen Department of Signal Processing and Acoustics Aalto University School of Electrical Engineering November 8,

More information

Content of the course 3NAB0 (see study guide)

Content of the course 3NAB0 (see study guide) Content of the course 3NAB0 (see study guide) 17 November diagnostic test! Week 1 : 14 November Week 2 : 21 November Introduction, units (Ch1), Circuits (Ch25,26) Heat (Ch17), Kinematics (Ch2 3) Week 3:

More information

Superposition and Standing Waves

Superposition and Standing Waves Physics 1051 Lecture 9 Superposition and Standing Waves Lecture 09 - Contents 14.5 Standing Waves in Air Columns 14.6 Beats: Interference in Time 14.7 Non-sinusoidal Waves Trivia Questions 1 How many wavelengths

More information

CMPT 889: Lecture 9 Wind Instrument Modelling

CMPT 889: Lecture 9 Wind Instrument Modelling CMPT 889: Lecture 9 Wind Instrument Modelling Tamara Smyth, tamaras@cs.sfu.ca School of Computing Science, Simon Fraser University November 20, 2006 1 Scattering Scattering is a phenomenon in which the

More information

Lecture 30. Chapter 21 Examine two wave superposition (-ωt and +ωt) Examine two wave superposition (-ω 1 t and -ω 2 t)

Lecture 30. Chapter 21 Examine two wave superposition (-ωt and +ωt) Examine two wave superposition (-ω 1 t and -ω 2 t) To do : Lecture 30 Chapter 21 Examine two wave superposition (-ωt and +ωt) Examine two wave superposition (-ω 1 t and -ω 2 t) Review for final (Location: CHEM 1351, 7:45 am ) Tomorrow: Review session,

More information

Exam 3 Review. Chapter 10: Elasticity and Oscillations A stress will deform a body and that body can be set into periodic oscillations.

Exam 3 Review. Chapter 10: Elasticity and Oscillations A stress will deform a body and that body can be set into periodic oscillations. Exam 3 Review Chapter 10: Elasticity and Oscillations stress will deform a body and that body can be set into periodic oscillations. Elastic Deformations of Solids Elastic objects return to their original

More information

Scattering. N-port Parallel Scattering Junctions. Physical Variables at the Junction. CMPT 889: Lecture 9 Wind Instrument Modelling

Scattering. N-port Parallel Scattering Junctions. Physical Variables at the Junction. CMPT 889: Lecture 9 Wind Instrument Modelling Scattering CMPT 889: Lecture 9 Wind Instrument Modelling Tamara Smyth, tamaras@cs.sfu.ca School of Computing Science, Simon Fraser niversity November 2, 26 Scattering is a phenomenon in which the wave

More information

Physics 1C. Lecture 13B

Physics 1C. Lecture 13B Physics 1C Lecture 13B Speed of Sound! Example values (m/s): Description of a Sound Wave! A sound wave may be considered either a displacement wave or a pressure wave! The displacement of a small element

More information

Introduction to Acoustics Exercises

Introduction to Acoustics Exercises . 361-1-3291 Introduction to Acoustics Exercises 1 Fundamentals of acoustics 1. Show the effect of temperature on acoustic pressure. Hint: use the equation of state and the equation of state at equilibrium.

More information

α(t) = ω 2 θ (t) κ I ω = g L L g T = 2π mgh rot com I rot

α(t) = ω 2 θ (t) κ I ω = g L L g T = 2π mgh rot com I rot α(t) = ω 2 θ (t) ω = κ I ω = g L T = 2π L g ω = mgh rot com I rot T = 2π I rot mgh rot com Chapter 16: Waves Mechanical Waves Waves and particles Vibration = waves - Sound - medium vibrates - Surface ocean

More information

Chapter 18 Solutions

Chapter 18 Solutions Chapter 18 Solutions 18.1 he resultant wave function has the form y A 0 cos φ sin kx ω t + φ (a) A A 0 cos φ (5.00) cos (π /4) 9.4 m f ω π 100π π 600 Hz *18. We write the second wave function as hen y

More information

1 f. result from periodic disturbance same period (frequency) as source Longitudinal or Transverse Waves Characterized by

1 f. result from periodic disturbance same period (frequency) as source Longitudinal or Transverse Waves Characterized by result from periodic disturbance same period (frequency) as source Longitudinal or Transverse Waves Characterized by amplitude (how far do the bits move from their equilibrium positions? Amplitude of MEDIUM)

More information

Oscillation the vibration of an object. Wave a transfer of energy without a transfer of matter

Oscillation the vibration of an object. Wave a transfer of energy without a transfer of matter Oscillation the vibration of an object Wave a transfer of energy without a transfer of matter Equilibrium Position position of object at rest (mean position) Displacement (x) distance in a particular direction

More information

Lorik educatinal academy vidya nagar

Lorik educatinal academy vidya nagar Lorik educatinal academy vidya nagar ========================================================== PHYSICS-Wave Motion & Sound Assignment. A parachutist jumps from the top of a very high tower with a siren

More information

4.2 Acoustics of Speech Production

4.2 Acoustics of Speech Production 4.2 Acoustics of Speech Production Acoustic phonetics is a field that studies the acoustic properties of speech and how these are related to the human speech production system. The topic is vast, exceeding

More information

Chapter 15 Mechanical Waves

Chapter 15 Mechanical Waves Chapter 15 Mechanical Waves 1 Types of Mechanical Waves This chapter and the next are about mechanical waves waves that travel within some material called a medium. Waves play an important role in how

More information

S=z y. p(x, t) v. = ρ x (x,t)

S=z y. p(x, t) v. = ρ x (x,t) LTUR 2: One-imensional Traveling Waves Main Points - xponential and sine-wave solutions to the one-dimensional wave equation. - The distributed compressibility and mass in acoustic plane waves are analogous

More information

Physical Modeling Synthesis

Physical Modeling Synthesis Physical Modeling Synthesis ECE 272/472 Audio Signal Processing Yujia Yan University of Rochester Table of contents 1. Introduction 2. Basics of Digital Waveguide Synthesis 3. Fractional Delay Line 4.

More information

Signal representations: Cepstrum

Signal representations: Cepstrum Signal representations: Cepstrum Source-filter separation for sound production For speech, source corresponds to excitation by a pulse train for voiced phonemes and to turbulence (noise) for unvoiced phonemes,

More information

-Electromagnetic. Waves - disturbance that propagates through space & time - usually with transfer of energy -Mechanical.

-Electromagnetic. Waves - disturbance that propagates through space & time - usually with transfer of energy -Mechanical. Waves Waves - disturbance that propagates through space & time - usually with transfer of energy -Mechanical requires a medium -Electromagnetic no medium required Mechanical waves: sound, water, seismic.

More information

The velocity (v) of the transverse wave in the string is given by the relation: Time taken by the disturbance to reach the other end, t =

The velocity (v) of the transverse wave in the string is given by the relation: Time taken by the disturbance to reach the other end, t = Question 15.1: A string of mass 2.50 kg is under a tension of 200 N. The length of the stretched string is 20.0 m. If the transverse jerk is struck at one end of the string, how long does the disturbance

More information

ECE 598: The Speech Chain. Lecture 5: Room Acoustics; Filters

ECE 598: The Speech Chain. Lecture 5: Room Acoustics; Filters ECE 598: The Speech Chain Lecture 5: Room Acoustics; Filters Today Room = A Source of Echoes Echo = Delayed, Scaled Copy Addition and Subtraction of Scaled Cosines Frequency Response Impulse Response Filter

More information

LECTURE 5 WAVES ON STRINGS & HARMONIC WAVES. Instructor: Kazumi Tolich

LECTURE 5 WAVES ON STRINGS & HARMONIC WAVES. Instructor: Kazumi Tolich LECTURE 5 WAVES ON STRINGS & HARMONIC WAVES Instructor: Kazumi Tolich Lecture 5 2 Reading chapter 14.2 14.3 Waves on a string Speed of waves on a string Reflections Harmonic waves Speed of waves 3 The

More information

1) The K.E and P.E of a particle executing SHM with amplitude A will be equal to when its displacement is:

1) The K.E and P.E of a particle executing SHM with amplitude A will be equal to when its displacement is: 1) The K.E and P.E of a particle executing SHM with amplitude A will be equal to when its displacement is: 2) The bob of simple Pendulum is a spherical hallow ball filled with water. A plugged hole near

More information

Chapter 14: Wave Motion Tuesday April 7 th

Chapter 14: Wave Motion Tuesday April 7 th Chapter 14: Wave Motion Tuesday April 7 th Wave superposition Spatial interference Temporal interference (beating) Standing waves and resonance Sources of musical sound Doppler effect Sonic boom Examples,

More information

Nicholas J. Giordano. Chapter 13 Sound

Nicholas J. Giordano.  Chapter 13 Sound Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 13 Sound Sound Sounds waves are an important example of wave motion Sound is central to hearing, speech, music and many other daily activities

More information

Old Exams - Questions Ch-16

Old Exams - Questions Ch-16 Old Exams - Questions Ch-16 T081 : Q1. The displacement of a string carrying a traveling sinusoidal wave is given by: y( x, t) = y sin( kx ω t + ϕ). At time t = 0 the point at x = 0 m has a displacement

More information

Chapter 17. Superposition & Standing Waves

Chapter 17. Superposition & Standing Waves Chapter 17 Superposition & Standing Waves Superposition & Standing Waves Superposition of Waves Standing Waves MFMcGraw-PHY 2425 Chap 17Ha - Superposition - Revised: 10/13/2012 2 Wave Interference MFMcGraw-PHY

More information

-Electromagnetic. Waves - disturbance that propagates through space & time - usually with transfer of energy -Mechanical.

-Electromagnetic. Waves - disturbance that propagates through space & time - usually with transfer of energy -Mechanical. Waves Waves - disturbance that propagates through space & time - usually with transfer of energy -Mechanical requires a medium -Electromagnetic no medium required Mechanical waves: sound, water, seismic.

More information

Lecture 28 March

Lecture 28 March Lecture 28 March 30. 2016. Standing waves Musical instruments, guitars, pianos, organs Doppler Effect Resonance 3/30/2016 Physics 214 Spring 2016 1 Waves on a string If we shake the end of a rope we can

More information

Physics General Physics. Lecture 25 Waves. Fall 2016 Semester Prof. Matthew Jones

Physics General Physics. Lecture 25 Waves. Fall 2016 Semester Prof. Matthew Jones Physics 22000 General Physics Lecture 25 Waves Fall 2016 Semester Prof. Matthew Jones 1 Final Exam 2 3 Mechanical Waves Waves and wave fronts: 4 Wave Motion 5 Two Kinds of Waves 6 Reflection of Waves When

More information

Smith, Kuroda, Perng, Van Heusen, Abel CCRMA, Stanford University ASA November 16, Smith, Kuroda, Perng, Van Heusen, Abel ASA / 31

Smith, Kuroda, Perng, Van Heusen, Abel CCRMA, Stanford University ASA November 16, Smith, Kuroda, Perng, Van Heusen, Abel ASA / 31 Efficient computational modeling of piano strings for real-time synthesis using mass-spring chains, coupled finite differences, and digital waveguide sections Smith, Kuroda, Perng, Van Heusen, Abel CCRMA,

More information

Lecture 17. Mechanical waves. Transverse waves. Sound waves. Standing Waves.

Lecture 17. Mechanical waves. Transverse waves. Sound waves. Standing Waves. Lecture 17 Mechanical waves. Transverse waves. Sound waves. Standing Waves. What is a wave? A wave is a traveling disturbance that transports energy but not matter. Examples: Sound waves (air moves back

More information

Physics 111. Lecture 31 (Walker: ) Wave Superposition Wave Interference Standing Waves Physics of Musical Instruments Temperature

Physics 111. Lecture 31 (Walker: ) Wave Superposition Wave Interference Standing Waves Physics of Musical Instruments Temperature Physics 111 Lecture 31 (Walker: 14.7-8) Wave Superposition Wave Interference Physics of Musical Instruments Temperature Superposition and Interference Waves of small amplitude traveling through the same

More information

THE SCOTTY WHO KNEW TOO MUCH

THE SCOTTY WHO KNEW TOO MUCH A fable THE SCOTTY WHO KNEW TOO MUCH JAMES THURBER Several summers ago there was a Scotty who went to the country for a visit. He decided that all the farm dogs were cowards, because they were afraid of

More information

Chapter 16 Waves in One Dimension

Chapter 16 Waves in One Dimension Chapter 16 Waves in One Dimension Slide 16-1 Reading Quiz 16.05 f = c Slide 16-2 Reading Quiz 16.06 Slide 16-3 Reading Quiz 16.07 Heavier portion looks like a fixed end, pulse is inverted on reflection.

More information

Chapter 16 Mechanical Waves

Chapter 16 Mechanical Waves Chapter 6 Mechanical Waves A wave is a disturbance that travels, or propagates, without the transport of matter. Examples: sound/ultrasonic wave, EM waves, and earthquake wave. Mechanical waves, such as

More information

Chapter 16 Waves. Types of waves Mechanical waves. Electromagnetic waves. Matter waves

Chapter 16 Waves. Types of waves Mechanical waves. Electromagnetic waves. Matter waves Chapter 16 Waves Types of waves Mechanical waves exist only within a material medium. e.g. water waves, sound waves, etc. Electromagnetic waves require no material medium to exist. e.g. light, radio, microwaves,

More information

Let s Review What is Sound?

Let s Review What is Sound? Mathematics of Sound Objectives: Understand the concept of sound quality and what it represents. Describe the conditions which produce standing waves in a stretched string. Be able to describe the formation

More information

KEELE UNIVERSITY PHYSICS/ASTROPHYSICS MODULE PHY OSCILLATIONS AND WAVES PRACTICE EXAM

KEELE UNIVERSITY PHYSICS/ASTROPHYSICS MODULE PHY OSCILLATIONS AND WAVES PRACTICE EXAM KEELE UNIVERSITY PHYSICS/ASTROPHYSICS MODULE PHY-10012 OSCILLATIONS AND WAVES PRACTICE EXAM Candidates should attempt ALL of PARTS A and B, and TWO questions from PART C. PARTS A and B should be answered

More information

Chapter 13. Hooke s Law: F = - kx Periodic & Simple Harmonic Motion Springs & Pendula Waves Superposition. Next Week!

Chapter 13. Hooke s Law: F = - kx Periodic & Simple Harmonic Motion Springs & Pendula Waves Superposition. Next Week! Chapter 13 Hooke s Law: F = - kx Periodic & Simple Harmonic Motion Springs & Pendula Waves Superposition Next Week! Review Physics 2A: Springs, Pendula & Circular Motion Elastic Systems F = kx Small Vibrations

More information

Important because SHM is a good model to describe vibrations of a guitar string, vibrations of atoms in molecules, etc.

Important because SHM is a good model to describe vibrations of a guitar string, vibrations of atoms in molecules, etc. Simple Harmonic Motion Oscillatory motion under a restoring force proportional to the amount of displacement from equilibrium A restoring force is a force that tries to move the system back to equilibrium

More information

EXAM 1. WAVES, OPTICS AND MODERN PHYSICS 15% of the final mark

EXAM 1. WAVES, OPTICS AND MODERN PHYSICS 15% of the final mark EXAM 1 WAVES, OPTICS AND MODERN PHYSICS 15% of the final mark Autumn 2018 Name: Each multiple-choice question is worth 3 marks. 1. A light beam is deflected by two mirrors, as shown. The incident beam

More information

Physics 142 Mechanical Waves Page 1. Mechanical Waves

Physics 142 Mechanical Waves Page 1. Mechanical Waves Physics 142 Mechanical Waves Page 1 Mechanical Waves This set of notes contains a review of wave motion in mechanics, emphasizing the mathematical formulation that will be used in our discussion of electromagnetic

More information

Exercises The Origin of Sound (page 515) 26.2 Sound in Air (pages ) 26.3 Media That Transmit Sound (page 517)

Exercises The Origin of Sound (page 515) 26.2 Sound in Air (pages ) 26.3 Media That Transmit Sound (page 517) Exercises 26.1 The Origin of (page 515) Match each sound source with the part that vibrates. Source Vibrating Part 1. violin a. strings 2. your voice b. reed 3. saxophone c. column of air at the mouthpiece

More information

Oscillations - AP Physics B 1984

Oscillations - AP Physics B 1984 Oscillations - AP Physics B 1984 1. If the mass of a simple pendulum is doubled but its length remains constant, its period is multiplied by a factor of (A) 1 2 (B) (C) 1 1 2 (D) 2 (E) 2 A block oscillates

More information

Wave Motions and Sound

Wave Motions and Sound EA Notes (Scen 101), Tillery Chapter 5 Wave Motions and Sound Introduction Microscopic molecular vibrations determine temperature (last Chapt.). Macroscopic vibrations of objects set up what we call Sound

More information

Simple Harmonic Motion continued and Waves. Monday, November 28, 11

Simple Harmonic Motion continued and Waves. Monday, November 28, 11 Simple Harmonic Motion continued and Waves Sinusoidal Relationships Mathematical Description of Simple Harmonic Motion Frequency and Period The frequency of oscillation depends on physical properties of

More information

Lecture 4 Notes: 06 / 30. Energy carried by a wave

Lecture 4 Notes: 06 / 30. Energy carried by a wave Lecture 4 Notes: 06 / 30 Energy carried by a wave We want to find the total energy (kinetic and potential) in a sine wave on a string. A small segment of a string at a fixed point x 0 behaves as a harmonic

More information

Standing waves in air columns flute & clarinet same length, why can a much lower note be played on a clarinet? L. Closed at both ends

Standing waves in air columns flute & clarinet same length, why can a much lower note be played on a clarinet? L. Closed at both ends LECTURE 8 Ch 16 Standing waves in air columns flute & clarinet same length, why can a much lower note be played on a clarinet? L 1 Closed at both ends Closed at one end open at the other Open at both ends

More information

KEY SOLUTION. 05/07/01 PHYSICS 223 Exam #1 NAME M 1 M 1. Fig. 1a Fig. 1b Fig. 1c

KEY SOLUTION. 05/07/01 PHYSICS 223 Exam #1 NAME M 1 M 1. Fig. 1a Fig. 1b Fig. 1c KEY SOLUTION 05/07/01 PHYSICS 223 Exam #1 NAME Use g = 10 m/s 2 in your calculations. Wherever appropriate answers must include units. 1. Fig. 1a shows a spring, 20 cm long. The spring gets compressed

More information

Physics 7Em Midterm Exam 1

Physics 7Em Midterm Exam 1 Physics 7Em Midterm Exam 1 MULTIPLE CHOICE PROBLEMS. There are 10 multiple choice problems. Each is worth 2 points. There is no penalty for wrong answers. In each, choose the best answer; only one answer

More information

Work. Work and Energy Examples. Energy. To move an object we must do work Work is calculated as the force applied to the object through a distance or:

Work. Work and Energy Examples. Energy. To move an object we must do work Work is calculated as the force applied to the object through a distance or: Work To move an object we must do work Work is calculated as the force applied to the object through a distance or: W F( d) Work has the units Newton meters (N m) or Joules 1 Joule = 1 N m Energy Work

More information

Chapter 2 SOUND WAVES

Chapter 2 SOUND WAVES Chapter SOUND WAVES Introduction: A sound wave (or pressure or compression wave) results when a surface (layer of molecules) moves back and forth in a medium producing a sequence of compressions C and

More information

42 TRAVELING WAVES (A) (B) (C) (D) (E) (F) (G)

42 TRAVELING WAVES (A) (B) (C) (D) (E) (F) (G) 42 TRAVELING WAVES 1. Wave progagation Source Disturbance Medium (D) Speed (E) Traveling waves (F) Mechanical waves (G) Electromagnetic waves (D) (E) (F) (G) 2. Transverse Waves have the classic sinusoidal

More information

No Lecture on Wed. But, there is a lecture on Thursday, at your normal recitation time, so please be sure to come!

No Lecture on Wed. But, there is a lecture on Thursday, at your normal recitation time, so please be sure to come! Announcements Quiz 6 tomorrow Driscoll Auditorium Covers: Chapter 15 (lecture and homework, look at Questions, Checkpoint, and Summary) Chapter 16 (Lecture material covered, associated Checkpoints and

More information

Wave Motion Wave and Wave motion Wave is a carrier of energy Wave is a form of disturbance which travels through a material medium due to the repeated periodic motion of the particles of the medium about

More information

Sound 2: frequency analysis

Sound 2: frequency analysis COMP 546 Lecture 19 Sound 2: frequency analysis Tues. March 27, 2018 1 Speed of Sound Sound travels at about 340 m/s, or 34 cm/ ms. (This depends on temperature and other factors) 2 Wave equation Pressure

More information

Sinusoids. Amplitude and Magnitude. Phase and Period. CMPT 889: Lecture 2 Sinusoids, Complex Exponentials, Spectrum Representation

Sinusoids. Amplitude and Magnitude. Phase and Period. CMPT 889: Lecture 2 Sinusoids, Complex Exponentials, Spectrum Representation Sinusoids CMPT 889: Lecture Sinusoids, Complex Exponentials, Spectrum Representation Tamara Smyth, tamaras@cs.sfu.ca School of Computing Science, Simon Fraser University September 6, 005 Sinusoids are

More information

INDIANA UNIVERSITY, DEPT. OF PHYSICS P105, Basic Physics of Sound, Spring 2010

INDIANA UNIVERSITY, DEPT. OF PHYSICS P105, Basic Physics of Sound, Spring 2010 Name: Joe E. Physics ID#: 999 999 999 INDIANA UNIVERSITY, DEPT. OF PHYSICS P105, Basic Physics of Sound, Spring 2010 Midterm Exam #1 Thursday, 11 Feb. 2010, 7:30 9:30 p.m. Closed book. You are allowed

More information

CMPT 889: Lecture 2 Sinusoids, Complex Exponentials, Spectrum Representation

CMPT 889: Lecture 2 Sinusoids, Complex Exponentials, Spectrum Representation CMPT 889: Lecture 2 Sinusoids, Complex Exponentials, Spectrum Representation Tamara Smyth, tamaras@cs.sfu.ca School of Computing Science, Simon Fraser University September 26, 2005 1 Sinusoids Sinusoids

More information

Waves Encountering Barriers

Waves Encountering Barriers Waves Encountering Barriers Reflection and Refraction: When a wave is incident on a boundary that separates two regions of different wave speed, part of the wave is reflected and part is transmitted. Figure

More information

Physics 121H Fall Homework #15 23-November-2015 Due Date : 2-December-2015

Physics 121H Fall Homework #15 23-November-2015 Due Date : 2-December-2015 Reading : Chapters 16 and 17 Note: Reminder: Physics 121H Fall 2015 Homework #15 23-November-2015 Due Date : 2-December-2015 This is a two-week homework assignment that will be worth 2 homework grades

More information

PHY 103: Standing Waves and Harmonics. Segev BenZvi Department of Physics and Astronomy University of Rochester

PHY 103: Standing Waves and Harmonics. Segev BenZvi Department of Physics and Astronomy University of Rochester PHY 103: Standing Waves and Harmonics Segev BenZvi Department of Physics and Astronomy University of Rochester Sounds of the Universe NASA/JPL, September 2016 2 Properties of Waves Wavelength: λ, length

More information

Producing a Sound Wave. Chapter 14. Using a Tuning Fork to Produce a Sound Wave. Using a Tuning Fork, cont.

Producing a Sound Wave. Chapter 14. Using a Tuning Fork to Produce a Sound Wave. Using a Tuning Fork, cont. Producing a Sound Wave Chapter 14 Sound Sound waves are longitudinal waves traveling through a medium A tuning fork can be used as an example of producing a sound wave Using a Tuning Fork to Produce a

More information

Chapter 15. Mechanical Waves

Chapter 15. Mechanical Waves Chapter 15 Mechanical Waves A wave is any disturbance from an equilibrium condition, which travels or propagates with time from one region of space to another. A harmonic wave is a periodic wave in which

More information

Chapter 16: Oscillatory Motion and Waves. Simple Harmonic Motion (SHM)

Chapter 16: Oscillatory Motion and Waves. Simple Harmonic Motion (SHM) Chapter 6: Oscillatory Motion and Waves Hooke s Law (revisited) F = - k x Tthe elastic potential energy of a stretched or compressed spring is PE elastic = kx / Spring-block Note: To consider the potential

More information

COMP 546, Winter 2018 lecture 19 - sound 2

COMP 546, Winter 2018 lecture 19 - sound 2 Sound waves Last lecture we considered sound to be a pressure function I(X, Y, Z, t). However, sound is not just any function of those four variables. Rather, sound obeys the wave equation: 2 I(X, Y, Z,

More information

3 THE P HYSICS PHYSICS OF SOUND

3 THE P HYSICS PHYSICS OF SOUND Chapter 3 THE PHYSICS OF SOUND Contents What is sound? What is sound wave?» Wave motion» Source & Medium How do we analyze sound?» Classifications» Fourier Analysis How do we measure sound?» Amplitude,

More information

Mathématiques appliquées (MATH0504-1) B. Dewals, Ch. Geuzaine

Mathématiques appliquées (MATH0504-1) B. Dewals, Ch. Geuzaine Lecture 2 The wave equation Mathématiques appliquées (MATH0504-1) B. Dewals, Ch. Geuzaine V1.0 28/09/2018 1 Learning objectives of this lecture Understand the fundamental properties of the wave equation

More information

Numerical Sound Synthesis

Numerical Sound Synthesis Numerical Sound Synthesis Finite Difference Schemes and Simulation in Musical Acoustics Stefan Bilbao Acoustics and Fluid Dynamics Group/Music, University 01 Edinburgh, UK @WILEY A John Wiley and Sons,

More information

MUS420 Lecture Mass Striking a String (Simplified Piano Model)

MUS420 Lecture Mass Striking a String (Simplified Piano Model) MUS420 Lecture Mass Striking a String (Simplified Piano Model) Julius O. Smith III (jos@ccrma.stanford.edu) Center for Computer Research in Music and Acoustics (CCRMA) Department of Music, Stanford University

More information

Resonance on Air Column

Resonance on Air Column Resonance on Air Column Objectives a. To measure the speed of sound with the help of sound wave resonance in air column inside the tube with one end closed. b. To do error analysis of speed of sound measurement.

More information

Answer: 101 db. db = 10 * log( 1.16 x 10-2 W/m 2 / 1 x W/m 2 ) = 101 db

Answer: 101 db. db = 10 * log( 1.16 x 10-2 W/m 2 / 1 x W/m 2 ) = 101 db 54. A machine produces a sound with an intensity of 2.9 x 10-3 W/m 2. What would be the decibel rating if four of these machines occupy the same room? Answer: 101 db Four of these machines would be four

More information

Transverse Wave - Only in solids (having rigidity), in liquids possible only on the surface. Longitudinal Wave

Transverse Wave - Only in solids (having rigidity), in liquids possible only on the surface. Longitudinal Wave Wave is when one particle passes its motion to its neighbour. The Elasticity and Inertia of the medium play important role in the propagation of wave. The elasticity brings the particle momentarily at

More information

Differential Equations

Differential Equations Electricity and Magnetism I (P331) M. R. Shepherd October 14, 2008 Differential Equations The purpose of this note is to provide some supplementary background on differential equations. The problems discussed

More information

Chapters 11 and 12. Sound and Standing Waves

Chapters 11 and 12. Sound and Standing Waves Chapters 11 and 12 Sound and Standing Waves The Nature of Sound Waves LONGITUDINAL SOUND WAVES Speaker making sound waves in a tube The Nature of Sound Waves The distance between adjacent condensations

More information

Ideal String Struck by a Mass

Ideal String Struck by a Mass Ideal String Struck by a Mass MUS420/EE367A Lecture 7 Mass Striking a String (Simplified Piano Model) Julius O. Smith III (jos@ccrma.stanford.edu) Center for Computer Research in Music and Acoustics (CCRMA)

More information

THE SYRINX: NATURE S HYBRID WIND INSTRUMENT

THE SYRINX: NATURE S HYBRID WIND INSTRUMENT THE SYRINX: NATURE S HYBRID WIND INSTRUMENT Tamara Smyth, Julius O. Smith Center for Computer Research in Music and Acoustics Department of Music, Stanford University Stanford, California 94305-8180 USA

More information

Welcome to: Physics I. I m Dr Alex Pettitt, and I ll be your guide!

Welcome to: Physics I. I m Dr Alex Pettitt, and I ll be your guide! Welcome to: Physics I I m Dr Alex Pettitt, and I ll be your guide! Interference superposition principal: most waves can be added y(x, t) =y 1 (x vt)+y 2 (x + vt) wave 1 + wave 2 = resulting wave y 1 +

More information

Fall 2004 Physics 3 Tu-Th Section

Fall 2004 Physics 3 Tu-Th Section Fall 2004 Physics 3 Tu-Th Section Claudio Campagnari Lecture 3: 30 Sep. 2004 Web page: http://hep.ucsb.edu/people/claudio/ph3-04/ 1 Sound Sound = longitudinal wave in a medium. The medium can be anything:

More information

Marketed and Distributed By FaaDoOEngineers.com

Marketed and Distributed By FaaDoOEngineers.com WAVES GUPTA CLASSES For any help contact: 995368795, 968789880 Nishant Gupta, D-, Prashant vihar, Rohini, Delhi-85 Waves Wave motion A wave motion is a kind of disturbance which is transferred from one

More information

Chapter 16 Waves in One Dimension

Chapter 16 Waves in One Dimension Lecture Outline Chapter 16 Waves in One Dimension Slide 16-1 Chapter 16: Waves in One Dimension Chapter Goal: To study the kinematic and dynamics of wave motion, i.e., the transport of energy through a

More information

Standing waves. The interference of two sinusoidal waves of the same frequency and amplitude, travel in opposite direction, produce a standing wave.

Standing waves. The interference of two sinusoidal waves of the same frequency and amplitude, travel in opposite direction, produce a standing wave. Standing waves The interference of two sinusoidal waves of the same frequency and amplitude, travel in opposite direction, produce a standing wave. y 1 (x, t) = y m sin(kx ωt), y 2 (x, t) = y m sin(kx

More information

EE C245 ME C218 Introduction to MEMS Design Fall 2012

EE C245 ME C218 Introduction to MEMS Design Fall 2012 EE C245 ME C218 Introduction to MEMS Design Fall 2012 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 94720 Lecture EE C245:

More information

SECTION A Waves and Sound

SECTION A Waves and Sound AP Physics Multiple Choice Practice Waves and Optics SECTION A Waves and Sound 1. Which of the following statements about the speed of waves on a string are true? I. The speed depends on the tension in

More information

Phys101 Lectures 28, 29. Wave Motion

Phys101 Lectures 28, 29. Wave Motion Phys101 Lectures 8, 9 Wave Motion Key points: Types of Waves: Transverse and Longitudinal Mathematical Representation of a Traveling Wave The Principle of Superposition Standing Waves; Resonance Ref: 11-7,8,9,10,11,16,1,13,16.

More information

Waves Standing Waves and Sound

Waves Standing Waves and Sound Waves Standing Waves and Sound Lana Sheridan De Anza College May 24, 2018 Last time sound Overview interference and sound standing waves and sound musical instruments Speed of Sound waves v = B ρ Compare

More information

AP Physics 1 Waves and Simple Harmonic Motion Practice Test

AP Physics 1 Waves and Simple Harmonic Motion Practice Test AP Physics 1 Waves and Simple Harmonic Motion Practice Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) An object is attached to a vertical

More information