A class of second-order nonlocal indefinite impulsive differential systems

Size: px
Start display at page:

Download "A class of second-order nonlocal indefinite impulsive differential systems"

Transcription

1 Jiao and Zhang Boundary Value Problems 28) 28:63 R E S E A R C H Open Access A class of second-order nonlocal indefinite impulsive differential systems Lishuai Jiao and Xuemei Zhang * * Correspondence: zxm74@sina.com Department of Mathematics and Physics, North China Electric Power University, Beijing, People s Republic of China Abstract We consider the second-order nonlocal impulsive differential system x = at)xy ωt)fx), < t <,t t k, y = bt)x, <t <,t t k, x t=tk = I k xt k )), k =,2,..., n, y t=tk = J k yt k )), k =,2,..., n, x) = ht)xt) dt, x ) =, y) = gt)yt) dt, y ) =, where the weight functions at), bt), and ωt) change sign on [,], and gt) and ht) on [, ]. By constructing a cone K K 2, which is the Cartesian product of two cones in space PC[, ], and applying the well-known fixed point theorem of cone expansion and compression in K K 2, we obtain conditions for the existence and multiplicity of positive solutions of a nonlocal indefinite impulsive differential system. An example is given to illustrate the main results. Keywords: Indefinite weights; Nonlocal impulsive differential system; Positive solutions; Existence and multiplicity; Fixed point technology Introduction It is generally accepted that the theory and applications of differential equations with impulsive effects are an important area of investigation, since it is far richer than the corresponding theory of differential equations without impulsive effects. Various population models, biological system models, ecology models, biotechnology models, pharmacokinetics models, and optimal control models, which are characterized by the fact that per sudden changing of their state, can be expressed by impulsive differential equations. For an introduction of general theory of impulsive differential equations, we refer the reader to the references []and[2], whereas the applications of impulsive differential equations can be found in [3 5]. Some classical methods have been widely used to study impulsive differential equations: the theory of critical point theory and variational methods [6 8], fixed point theorems in cones [9 25], and bifurcation theory [26, 27]. In particular, we would like to mention some results of Lin and Jiang [28] and Feng and Xie [29]. Lin and Jiang [28] The Authors) 28. This article is distributed under the terms of the Creative Commons Attribution 4. International License which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original authors) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

2 Jiao and Zhang Boundary Value Problems 28) 28:63 Page 2 of 34 considered the following Dirichlet boundary value problem with impulse effects: u t)=ft, ut)), t J, t t k, u t tk = I k ut k )), k =,2,...,m, u) = u) =,.) and by means of the fixed point index theory in cones the authors obtained some sufficient conditions for the existence of multiple positive solutions for problem.). Recently, using fixed point theorems in a cone, Feng and Xie [29] studied the existence of positive solutions for the following problem: u t)=ft, ut)), t J, t t k, u t tk = I k ut k )), k =,2,...,n, u) = m=2 i= a iu i ), u) = m=2 i= b iu i )..2) In comparison with numerous results on the impulsive differential equations, it is less known about the impulsive differential systems, even for the nonlocal impulsive differential systems. Moreover, we see that increasing attention has been paid to the study of boundary value problems with integral boundary conditions; for example, see Liu, Sun, Zhang, and Wu [3], Zhang, Feng, and Ge [3], Zhang andge [32], Haoet al. [33 35], Yan, Zuo, and Hao [36], Zhang et al. [37, 38], Sun, Liu, and Wu [39], Lin and Zhao [4], and Ahmad, Alsaedi, and Alghamdi [4]. This problem contains two-, three-, and multipoint boundary value problems as particular cases; for instance, see Karakostas and Tsamatos [42], Feng and Ge [43], Jiang, Liu, and Wu [44], Lan [45], Zhang et al. [46 5], Feng, Du, and Ge [5], Ahmad and Alsaedi [52], Mao and Zhao [53], Liu, Hao, and Wu [54], and the references therein. Specifically, Boucherif [55] exploited the fixed point theorem in cones to study the following problem: u t)=ft, ut)), < t <, u) cu ) = g t)ut) dt, u) du ) = g t)ut) dt..3) The author obtained several excellent results on the existence of positive solutions to problem.3). Feng, Ji, and Ge [56] began to study the following boundary value problem with integral boundary conditions in abstract spaces: u t)ft, ut)) = θ, <t <, u) = gt)ut) dt, u) = θ..4) Applying the fixed point theory in a cone for strict set contraction operators, the authors investigated the existence, nonexistence, and multiplicity of positive solutions for problem.4).

3 Jiao and Zhang Boundary Value Problems 28) 28:63 Page 3 of 34 Recently, Kong [57] considered the existence and uniqueness of positive solutions for the second-order singular boundary value problem: u t)λfut)) =, t, ), u) = us) das), u) = us) dbs)..5) The author examined the uniqueness of the solution and its dependence on the parameter λ for problem.5) by using the mixed monotone operator theory. Simultaneously, an indefinite problem has attracted the attention of Ma and Han [58], López-Gómez and Tellini [59], Boscaggin and Zanolin [6], Feltrin and Zanolin [6], Boscaggin et al. [62, 63], Sovrano and Zanolin [64], Bravo and Torres [65], Wang and An [66], and Yao [67]. Ma and Han [58] considered the following boundary value problem: u λat)f u)=, <t <, u) = u) =,.6) where a C[, ] may change sign, and λ is a parameter. They proved the existence, multiplicity, and stability of positive solutions forproblem.6) by applying bifurcation techniques. Aapplying the shooting method, Sovrano and Zanolin [6] presented a multiplicity result for positive solutions for the Neumann problem u at)f u)=, <t <, ut)>, t [, T], u ) = u T)=,.7) where the weight function a C[, ] has indefinite sign. Recently, Wang and An [66] dealt with the existence and multiplicity of positive solutions for the second-order differential system u = at)ϕu ht)f u), < t <, ϕ = bt)u, <t <, u) = u) =, ϕ) = ϕ) =,.8) where at), bt), and gt) are allowed to change sign on [, ]. For the latest results of indefinite problems, please refer to Jiao and Zhang [68], Feltrin and Sovrano [69], and Zhang [7]. For all we know, in the literature there are no papers on multiple positive solutions for analogous indefinite impulsive differential systems with nonlocal boundary value conditions. More precisely, the study of at), bt), and ωt) changing sign on [, ] is still open

4 Jiao and Zhang Boundary Value Problems 28) 28:63 Page 4 of 34 for the second-order nonlocal impulsive differential system x = at)xy ωt)f x), < t <,t t k, y = bt)x, <t <, x t=tk = I k xt k )), k =,2,...,n, y t=tk = J k yt k )), k =,2,...,n, x) = ht)xt) dt, x ) =, y) = gt)yt) dt, y ) =,.9) where at), ωt), bt) change sign on [, ], t k k =,2,...,n; wheren is a fixed positive integer) are fixed points such that < t < t 2 < < t k < < t n <, x t=tk denotes the jump of xt) att = t k,thatis, x t=tk = xt k ) xt k ), where xt k )andxt k )representthe right- and left-hand limits of xt) att = t k,respectively; y t=tk has a similar meaning for yt). In addition, a, ω, b, f, I k,andj k k =,2,...,n)satisfyH ) a, ω, b : [, ], ) are continuous, and there exists a constant, ) such that at), ωt), bt), t [, ], at)), ωt), bt), t [,]. Moreover, at), ωt), bt) do not vanish identically on any subinterval of [, ]. H 2 ) f :[, ) [, ) is continuous. H 3 ) I k :[, ) [, ) is continuous. H 4 ) J k :[, ) [, ) is continuous. H 5 ) h, g L [, ] are nonnegative, and ν, ν [, ),where ν = gs) ds, ν = hs) ds..) Let J = [, ] and J = J\{t, t 2,...,t n }. The basic space used in this paper is PC[, ] = {u u : [, ] R is continuous at t t k, ut k )=ut k), and ut k ) exists, k =,2,...,n}. Then PC[, ] is a real Banach space with the norm u PC = max ut). t J For convenience, consider PC [, ] = {x : x is continuous at t t k, xt k )=xt k), and xt k ) exists, k =,2,...,n}, which is a real Banach space with norm x PC = max xt), t J and PC 2 [, ] = {y : y is continuous at t t k, xt k )=xt k), and yt k ) exists, k =,2,...,n}, which is a real Banach space with norm y PC2 = max yt). t J

5 Jiao and Zhang Boundary Value Problems 28) 28:63 Page 5 of 34 Clearly, PC [, ] PC 2 [, ] is also a real Banach space with norm x, y) = max { x PC, y PC2 }. By a positive solution of system.9) we mean a pair of functions x, y)withx C 2 J ) PC [, ] and y C 2 J ) PC 2 [, ] such that x, y)satisfiessystem.9)andx, y, t J, x, y. Remark. The technique to deal with the impulsive term is completely different from that of [6 27]. Remark.2 When we consider nonlocal differential systems with indefinite weights, another difficulty is to prove T : K K 2 K K 2 ; for details, see Lemma 2.3. Remark.3 It is not difficult to see that Proposition 2.3 of [67] plays key roles in the proofs of main results of [66] and[67]. However, it is invalid for nonlocal problems; for details, see Corollary 4.. Remark.4 In comparison with other related indefinite problems [58 66], the main featuresofthispaperareasfollows. i) I k, J k k =,2,...,n)areintroduced. ii) Nonlocal boundary conditions are introduced. iii) K K 2 is the Cartesian product of two cones in the space PC[, ]. We define a ± t), ω ± t), and b ± t)as a t)=max { at), }, a t)= min { at), }, ω t)=max { ωt), }, ω t)= min { ωt), }, b t)=max { bt), }, b t)= min { bt), }, so that at)=a t) a t), ωt)=ω t) ω t), bt)=b t) b t), t [, ]. Inspired by the references mentioned, in this paper, we investigate the existence and multiplicity of positive solutions for system.9). By constructing a cone K K 2,whichis the Cartesian product of two cones in the space PC[, ], and using the well-known fixed point theorem of cone expansion and compression, we obtain conditions for the existence and multiplicity of positive solutions of system.9). We remark that this is probably the first time that the existence and multiplicity of positive solutions of impulsive differential systems with indefinite weight and integral boundary conditions have been studied. The rest of this paper is organized as follows. In Sect. 2,wegivesomepreliminaryresults. Section 3 is devoted to state and prove the main results. Finally, an example is given in Sect. 4.

6 Jiao and Zhang Boundary Value Problems 28) 28:63 Page 6 of 34 2 Preliminaries In this section, we give some preliminary results for the convenience of later use and reference. It is clear that system.9) is equivalent to the following two boundary value problems: y = bt)x, <t <,t t k, y t=tk = J k yt k )), k =,2,...,n, 2.) y) = gt)yt) dt, y ) =, and x = at)xy ωt)f x), < t <,t t k, x t=tk = I k xt k )), k =,2,...,n, x) = ht)xt) dt, x ) =. 2.2) Lemma 2. Assume that H ), H 2 ), H 4 ), and H 5 ) hold. Then problem 2.) has a unique solution y, which can be expressed in the form where yt)= Ht, s)bs)xs) ds Ht, s)=gt, s) ν H s t, s)=g s t, s) ν t, t s, Gt, s)= s, s t, G s, t s, t, s)=, s t. k)j k ytk ) ), 2.3) Gτ, s)gτ) dτ, 2.4) G s τ, s)gτ) dτ, 2.5) 2.6) 2.7) Proof First, suppose that u is a solution of problem 2.). It is easy to see by integration of problem 2.)that y t) y ) = t Integrating again, we get yt)=y) y )t bs)xs) ds. 2.8) t Letting t =in2.8), we find y ) = t s)bs)xs) ds J k ytk ) ). 2.9) t k <t bs)xs) ds. 2.)

7 Jiao and Zhang Boundary Value Problems 28) 28:63 Page 7 of 34 Substituting the boundary condition y) = gt)yt) dt and 2.)into2.9), we obtain where yt)= = gs)ys) ds t gs)ys) ds bs)xs) ds t Gt, s)bs)xs) ds t s)bs)xs) ds J k ytk ) ) t k <t G s t, s)j k ytk ) ), gs)ys) ds = Therefore we have = [ gs) gτ)yτ) dτ G τ s, τ)j k ytk ) )] ds gs) ds gτ)yτ) dτ G τ s, τ)j k ytk ) )] ds. gs)ys) ds = ν [ gs) Gs, τ)bτ)xτ) dτ Gs, τ)bτ)xτ) dτ [ gs) Gs, τ)bτ)xτ) dτ G τ s, τ)j k ytk ) )] ds and Let yt)= ν = ν [ gs) Gs, τ)bτ)xτ) dτ Gt, s)bs)xs) ds ν G τ s, τ)j k ytk ) )] ds G s t, s)j k ytk ) ) [ ] Gτ, s)gτ) dτ bs)ys) ds [ G s τ, s)gτ)j k ytk ) )] dτ Gt, s)bs)xs) ds Ht, s)=gt, s) ν H s t, s)=g s t, s) ν G s t, s)j k ytk ) ). Gτ, s)gτ) dτ, G s τ, s)gτ) dτ.

8 Jiao and Zhang Boundary Value Problems 28) 28:63 Page 8 of 34 Then yt)= Ht, s)bs)xs) ds k)j k ytk ) ). The proof of sufficiency is complete. Conversely, let u be a solution of 2.). Direct differentiation of 2.4) and2.5) implies, for t t k, y t)= Evidently, bs)xs) t bs)xs). y = bt)x, y t=tk = J k ytk ) ), k =,2,...,n, y) = gt)yt) dt, y ) =. The lemma is proved. Proposition 2. Let Gt, s), G s t, s), Ht, s), and H s t, s) be given as in Lemma 2.. If ν [, ), then we get Gt, s)>, Ht, s)>, t, s, ), 2.) Gt, t)gs, s) Gt, s) Gs, s)=s, t, s J, 2.2) ρgt, t)gs, s) Ht, s) Hs, s)=γ Gs, s) γ, t, s J, 2.3) G s t, s), H s t, s) γ, t, s J, 2.4) where γ = ν, ρ = τgτ) dτ. 2.5) ν Proof By the definition of Gt, s) andht, s), relations 2.) and2.2) aresimpletoprove. Next, we consider 2.3). In fact, from.)and2.2) weget Ht, s) Gs, s) Gs, s)gτ) dτ ν = Gs, s) ) gτ) dτ ν = Gs, s) ν γ

9 Jiao and Zhang Boundary Value Problems 28) 28:63 Page 9 of 34 and Ht, s) Gt, t)gs, s) Gs, s)gτ, τ)gτ) dτ ν = Gs, s) Gt, t) ) Gτ, τ)gτ) dτ ν Gt, t) ) Gs, s) Gt, t) Gτ, τ)gτ) dτ ν Gt, t) ) = Gs, s)gt, t) τgτ) dτ ν = ρgt, t)gs, s). This shows that 2.3)holds. Similarly, by the the definition of G s t, s)andh s t, s), we can prove that 2.4)holds. Remark 2. From 2.5) we can prove that H s t, s) ν gτ) dτ, t, s [, ]. Proof It follows from 2.5)and2.7)that H s ν t, s) = G s τ, s)gτ) dτ, t s, ν G s τ, s)gτ) dτ, s t ν = [ s G s τ, s)gτ) dτ s G s τ, s)gτ) dτ], t s, ν [ s G s τ, s)gτ) dτ s G s τ, s)gτ) dτ], s t ν s gτ) dτ, t s, = ν s gτ) dτ, s t gτ) dτ, t, s [, ]. ν Lemma 2.2 Assume that H ) H 3 ) and H 5 ) hold. Then problem 2.2) has a unique solution x given by where xt)= H t, s)as)xs)ys) ds H t, s)ωs)f xs) ) ds k)i k xtk ) ), 2.6) H t, s)=gt, s) ν H s t, s)=g s t, s) ν Gτ, s)hτ) dτ, 2.7) G s τ, s)hτ) dτ. 2.8)

10 Jiao and Zhang Boundary Value Problems 28) 28:63 Page of 34 Proof The proof of Lemma 2.2 issimilartothatoflemma2.. Proposition 2.2 Let H and H s begivenasinlemma2.. If ν [, ), then we get ρ Gt, t)gs, s) H t, s) H s, s)=γ Gs, s) γ, t, s J, 2.9) G s t, s), H s t, s) γ, t, s J, 2.2) where γ = ν, ρ = Remark 2.2 From 2.8) we can prove that τhτ) dτ. 2.2) ν H s t, s) ν hτ) dτ, t, s [, ]. Remark 2.3 Let x, y) be a solution of system.9). Then from Lemma 2. and Lemma 2.2 we have xt)= yt)= H t, s)hs, τ)as)bτ)xs)xτ) dτ ds H t, s)as)xs) H τ s, t k)j k ytk ) )) ds Ht, s)bs)xs) ds k)j k ytk ) ), H t, s)ωs)f xs) ) ds k)i k xtk ) ), 2.22) where H τ s, τ)=g τ s, τ) ν G τ, τ)g) d. To obtain the existence and multiplicity of a positive solution of system.9), we make the following hypotheses: H 6 ) There exists a constant σ satisfying <σ < such that σ Ht, s)b s) ds σ Ht, s)b s) ds; H 7 ) There exists a constant satisfying < < such that ρ H t, s)gs, s)a s) ds γ H t, s)a s) ds; H 8 ) There exists a constant μ satisfying <μ such that f ω) μϕω), ω [, ), where ϕω)=max{f ρ): ρ ω};

11 Jiao and Zhang Boundary Value Problems 28) 28:63 Page of 34 H 9 ) Thereexistconstants<α < with α and k, k 2, l, l 2, m, m 2 >such that k x α f x) k 2 x α, l x α I k x) l 2 x α, m y α J k y) m 2 y α, x, y [, ); H ) Thereexists<σ 3 < satisfying σ 3 2 < t < σ 3 such that σ α 3 μ2 k σ 3 H t, s)ω s) ds k 2 α H t, s)ω s) ds. Obviously, ϕ :[, ) [, ) is nondecreasing. Moreover, if f is nondecreasing, then f = ϕ and μ =. We denote } PC {x [, ] = PC [, ] : min xt) andx) = ht)xt) dt, x ) =, t K = { x PC [, ] : x is concave on [, ], and convex on [,]}, } PC 2 {y [, ] = PC 2 [, ] : min yt) andy) = gt)yt) dt, y ) =, t K 2 = { y PC 2 [, ] : y is concave on [, ], and convex on [,]}. If x K,thenitiseasytoseethat x PC = max t xt). Similarly, we have y PC2 = max t yt).also,forapositivenumberr,wedefine Ω r = { x, y) K K 2, x, y) < r }, and then we get Ω r = { x, y) K K 2, x, y) = r }. For any x, y) K K 2, define the mappings T : K PC [, ], T 2 : K 2 PC 2 [, ], and T : K K 2 PC [, ] PC 2 [, ] as follows: T x)t)= T 2 y)t)= H t, s)hs, τ)as)bτ)xs)xτ) dτ ds H t, s)ωs)f xs) ) ds H t, s)as)xs) H τ s, t k)j k ytk ) )) ds k)i k xtk ) ), Ht, s)bs)xs) ds k)j k ytk ) ), 2.23) Tx, y) ) t)= T x)t), T 2 y)t) ).

12 Jiao and Zhang Boundary Value Problems 28) 28:63 Page 2 of 34 Remark 2.4 It follows from Lemmas and Remark 2.3 that x, y) is a solution of system.9)ifandonlyifx, y) is a fixed point of operator T. Lemma 2.3 Assume that H ) H ) hold. Then TK K 2 ) K K 2, and T : K K 2 K K 2 is completely continuous. Proof For any x, y) K K 2,weprovethatTx, y) K K 2,thatis,T x K and T 2 y K 2.Inviewof2.2), we know that T x) t)= where zs) ds t zs) ds, zs)=as)xy ωs)f xs) ), and then we have T x) ) =. From 2.4)and2.2)weget and T x)) = = ν H, s)hs, τ)as)bτ)xs)xτ) dτ ds H, s)ωs)f xs) ) ds H, s)as)xs) H τ s, t k)j k ytk ) )) ds H s, t k)i k xtk ) ) ν ν ν as)xs) as)xs) Gτ, s)hτ) dτ ds Hs, τ)bτ)xτ) dτ Gτ, s)hτ) dτ H τ s, t k)j k ytk ) )) ds ωs)f xs) ) Gτ, s)hτ) dτ ds G s τ, s)hτ) dτi k xtk ) ) ht)t x)t) dt = ht) [ = H t, s)hs, τ)as)bτ)xs)xτ) dτ ds H t, s)as)xs) H τ s, t k)j k ytk ) )) ds H t, s)ωs)f xs) ) ds ht) dt ht) dt H t, s)as)xs) ds k)i k xtk ) )] dt Hs, τ)bτ)xτ) dτ H t, s)as)xs) H τ s, t k)j k ytk ) )) ds

13 Jiao and Zhang Boundary Value Problems 28) 28:63 Page 3 of 34 ht) dt = ν ν ν ν =T x)). H t, s)ωs)f xs) ) ds H s t, t k)ht) dti k xtk ) ) as)xs) as)xs) Gτ, s)hτ) dτ ds Hs, τ)bτ)xτ) dτ Gτ, s)hτ) dτ H τ s, t k)j k ytk ) )) ds ωs)f xs) ) Gτ, s)hτ) dτ ds G s τ, s)hτ) dτi k xtk ) ) Similarly, we have T 2 y) ) =, T 2 y)) = gt)t 2y)t) dt. Define the function q : [, ] [, ] as follows: if x) =,then { t qt)=min, t }, t J; if x) >,then { } t qt)=min,, t J. Since σ <, max t qt)=andmin σi t qt)= σ i, i =,2,3. Let x K.Thenx is concave on [, ] andconvexon[, ]. Noticing that x) = ht)xt) dt and x ) =, we get xt) x)qt), t [, ]; xt) x)qt), t [,]. Firstofall,foranyx K, we show that Ht, s)bs)xs) ds σ Indeed, for x K,weobtain Ht, s)b s)xs) ds, t J. Ht, s)bs)xs) ds σ = Ht, s)b s)xs) ds σ Ht, s)b s)xs) ds σ Ht, s)b s)qs)x) ds Ht, s)b s)xs) ds Ht, s)b s)qs)x) ds

14 Jiao and Zhang Boundary Value Problems 28) 28:63 Page 4 of 34 [ x) min qs) Ht, s)b s) ds max qs) s [σ,] σ s [,] [ ] σ = x) Ht, s)b s) ds Ht, s)b s) ds. σ ] Ht, s)b s) ds Then by H 6 )wehave Ht, s)bs)xs) ds σ Ht, s)b s)xs) ds. Secondly, for any x K,weprovethat H t, s)hs, τ)as)bτ)xs)xτ) dτ ds H t, s)hs, τ)a s)bτ)xs)xτ) dτ ds. For t J,since Ht, s)bs)xs) ds, we have = H t, s)hs, τ)as)bτ)xs)xτ) dτ ds H t, s)hs, τ)a s)bτ)xs)xτ) dτ ds H t, s)hs, τ)a s)bτ)xs)xτ) dτ ds H t, s)hs, τ)a s)bτ)xs)xτ) dτ ds H t, s)a s)qs)x) H t, s)a s)qs)x) H t, s)a s) min qs)x) s [,] x) x) x) x) Hs, τ)bτ)xτ) dτ ds Hs, τ)bτ)xτ) dτ ds H t, s)a s) max qs)x) s [,] H t, s)a s) H t, s)a s) H t, s)a s) H t, s)a s) Hs, τ)bτ)xτ) dτ ds Hs, τ)bτ)xτ) dτ ds Hs, τ)bτ)xτ) dτ ds Hs, τ)bτ)xτ) dτ ds ρgs, s)gτ, τ)bτ)xτ) dτ ds γ Gτ, τ)bτ)xτ) dτ ds

15 Jiao and Zhang Boundary Value Problems 28) 28:63 Page 5 of 34 = x) γ [ σ2 Gτ, τ)bτ)xτ) dτ ρ ] H t, s)a s) ds, and then it follows from H 7 )that H t, s)gs, s)a s) ds H t, s)hs, τ)as)bτ)xs)xτ) dτ ds H t, s)hs, τ)a s)bτ)xs)xτ) dτ ds. Similarly, for any y K 2,since n H τ s, t k)i k yt k )), we get H t, s)as)xs) H τ s, t k)j k ytk ) )) ds H t, s)as)xs) H τ s, t k)j k ytk ) )) ds. Thirdly, for any x K,weprovethat H t, s)ωs)f xs) ) ds Since ϕ is nondecreasing, we also obtain H t, s)ω s)f xs) ) ds, t J. ϕ xt) ) ϕ qt)x) ), ϕ xt) ) ϕ qt)x) ), t [, ], t [,]. Therefore, for any x K, it follows from H 8 ) H )that H t, s)ωs)f xs) ) ds = H t, s)ω s)f xs) ) ds σ 3 μ μ μ μ H t, s)ω s)f xs) ) ds σ 3 H t, s)ω s)ϕ xs) ) ds σ 3 H t, s)ω s)ϕ x)qs) ) ds σ 3 H t, s)ω s)f x)qs) ) ds μ H t, s)ω s)f xs) ) ds H t, s)ω s)ϕ xs) ) ds H t, s)ω s)k x α )q α s) ds σ 3 μ [ x α ) min σ 3 s qα s)μk H t, s)ω s)ϕ x)qs) ) ds H t, s)ω s)f x)qs) ) ds H t, s)ω s)k 2 x α )q α s) ds σ 3 H t, s)ω s) ds max s qα s) μ k 2 ] H t, s)ω s) ds

16 Jiao and Zhang Boundary Value Problems 28) 28:63 Page 6 of 34 [ σ x α α ) 3 μk α H t, s)ω s) ds σ 3 μ k 2, ] H t, s)ω s) ds which shows that H t, s)ωs)f xs) ) ds Thus, for x, y) K K 2, T x)t)= T 2 y)t)=, H t, s)ω s)f xs) ) ds. H t, s)hs, τ)as)bτ)xs)xτ) dτ ds H t, s)as)xs) H τ s, t k)j k ytk ) )) ds H t, s)a s)xs) H t, s)ω s)f xt k ) ) ds Hs, τ)bτ)xτ) dτ ds H t, s)a s)xs) H τ s, t k)j k ytk ) )) ds Ht, s)bs)xs) ds σ. Ht, s)b s)xs) ds H t, s)ωs)f xt k ) ) ds k)i k xtk ) ) k)j k ytk ) ) k)j k ytk ) ) k)i k xtk ) ) Moreover, by direct calculation we derive T x) t)= a t)xt)yt) ω t)f x), t [, ], T 2 x) t)=a t)xt)yt)ω t)f x), t [,], T y) t)= b t)xt), t [, ], T 2 y) t)=b t)xt), t [,], which shows that T x and T 2 y are concave on [, ] andconvexon[, ]. It follows that T x K and T 2 y K 2.ThusTK K 2 ) K K 2. Finally, by standard methods and the Arzelà Ascoli theorem we can prove that T is completely continuous. Remark 2.5 In [66]and[67], it is not difficult to see that the function qt)playsanimportant role in the proof of completely continuous operator. If x) = x) =, then we can

17 Jiao and Zhang Boundary Value Problems 28) 28:63 Page 7 of 34 define qt) =min{ t, t }.However,ifx) = ht)xt) dt and x ) =, then the definition of qt) is invalid. This shows that when x) = ht)xt) dt and x ) =, we require a special technique to give a fine definition of qt). In fact, a fine definition of qt) is very difficult to give when x) = ht)xt) dt and x ) =. This is probably the main reason why there is almost no paper studying the existence of positive solutions for the class of second-order nonlocal differential systems with indefinite weights and even for second-order nonlocal impulsive differential systems with indefinite weights. Remark 2.6 The idea of the proof of Lemma 2.3 comes from Theorem 3. of [67]. The following lemma is very crucial in our argument. Lemma 2.4 Theorem of [7], Fixedpoint theoremof coneexpansion and compression of norm type) Let Ω and Ω 2 be two bounded open sets in a real Banach space E such that Ω and Ω Ω 2. Let an operator T : K Ω 2 \Ω ) K be completely continuous, where K is a cone in E. Suppose that one of the following two conditions is satisfied: a) Tx x, x K Ω, and Tx x, x K Ω 2, and b) Tx x, x K Ω, and Tx x, x K Ω 2, is satisfied. Then T has at least one fixed point in K Ω 2 \Ω ). 3 Main results In this part, applying Lemma 2.4, we obtain the following three existence theorems. Theorem 3. Assume that H ) H ) hold. If α >,then system.9) admits at least one positive solution. Proof On one hand, considering the case α >,byh 9 )weget f x) lim x x lim k 2 x α I k x) l 2 x α =, lim lim x x x x x x =, J k y) m 2 y α lim lim =. y y y y Furthermore, there exist r, r >suchthat f x) ε x, I k x) ε 2 x, k =,2,...,n, x r, J k y) ε 3 y, k =,2,...,n, y r, where ε, ε 2, ε 3 satisfy 4γ ε ω s) ds <, { ε 3 < min 4nγ r a s) ds, nγ 4nε 2 <, ν γ )} b s) ds.

18 Jiao and Zhang Boundary Value Problems 28) 28:63 Page 8 of 34 Let A = γ A = γ n Hs, τ)a s)b τ) dτ ds, a s) ds, 3.) and choose r = min{4a),4ε 3 A ), r, r }. Then for any x, y) K K 2 ) Ω r,wehave x, y) = r,andby2.2)weget T x)t)= = H t, s)hs, τ)as)bτ)xs)xτ) dτ ds H t, s)ωs)f xs) ) ds H t, s)as)xs) H τ s, t k)j k ytk ) )) ds k)i k xtk ) ) H t, s)hs, τ)a s)bτ)xs)xτ) dτ ds H t, s)hs, τ)a s)bτ)xs)xτ) dτ ds H t, s)ω s)f xs) ) ds H t, s)ω s)f xs) ) ds H t, s)a s)xs) H τ s, t k)j k ytk ) )) ds H t, s)a s)xs) H τ s, t k)j k ytk ) )) ds k)i k xtk ) ) = H t, s)hs, τ)a s)bτ)xs)xτ) dτ ds H t, s)a s)xs) H τ s, t k)j k ytk ) )) ds H t, s)hs, τ)a s)b τ)xs)xτ) dτ ds H t, s)ω s)f xs) ) ds k)i k xtk ) ) H t, s)hs, τ)a s)b τ)xs)xτ) dτ ds H t, s)a s)xs) H τ s, t k)j k ytk ) )) ds H t, s)hs, τ)a s)b τ)xs)xτ) dτ ds H t, s)a s)xs) H τ s, t k)j k ytk ) )) ds γ H t, s)ω s)f xs) ) ds k)i k xtk ) ) H t, s)ω s)f xs) ) ds k)i k xtk ) ) Hs, τ)a s)b τ)xs)xτ) dτ ds γ ω s)ε xds

19 Jiao and Zhang Boundary Value Problems 28) 28:63 Page 9 of 34 T 2 y)t)= γ ν A x 2 PC γ ε nε 2 x PC ν Ar 2 γ ε r ε 3 y a s)xs) ds ε 2 x ν ω s) ds x PC γ ν nε 3 a s) ds x PC y PC2 < 4 r 4 r 4 r 4 r ω s) ds A ε 3 r 2 ν nε 2 r = r, 3.2) Ht, s)bs)xs) ds Ht, s)b s)xs) ds γ γ γ k)j k ytk ) ) b s)xs) ds ν k)j k ytk ) ) J k ytk ) ) b s) ds x PC ν nε 3 y PC2 b s) dsr γ nε 3 r < r. 3.3) Consequently, Tx, y) < x, y), x, y) K K 2 ) Ω r. 3.4) On the other hand, since α >, it follows from H 9 )that f x) lim x x lim k x α =, x x I k x) l x α lim lim x x x x =, J k y) m y α lim lim =, y y y y which shows that there exist R, R >suchthat f x) ε 4 x, I k x) ε 5 x, k =,2,...,n, x R, J k y) ε 6 y, k =,2,...,n, y R,

20 Jiao and Zhang Boundary Value Problems 28) 28:63 Page 2 of 34 where ε 4, ε 5, ε 6 satisfy where σ σ3 2 3ρ 2 ε 4 min δt) G σ s, s)ω s) ds >, 32 σ t σ ε 5 min ν ν δt) σ 32 t σ 3 gτ) dτε 6 hτ) dτ >, min δt)>, σ 32 t σ 3 { t δt)=min, t }, t [, ]. 3.5) If x, y) K K 2,thenx, y are two nonnegative concave functions on [, ]. So we get xt) δt) x PC, yt) δt) y PC2, t [, ], t [, ]. 3.6) It follows that min σ i 2 t σ i xt) θ i x PC, min σ i 2 t σ i yt) θ i y PC2, i =,2,3,where Let θ i = { σi min δt)=min σ i 2 t σ i 2, σ } i >. 3.7) B = ρ 2 θ θ 2 σ 2 G s, s)hs, τ)a s)b τ) dτ ds >, 3.8) R > max{3b), R θ 3, r}, R 2 > max{ R θ 3, r}, andr = max{r, R 2 }. Then for any x, y) K K 2 ) Ω R,wehave R = x, y) = max { x PC, y PC2 } = max{r, R 2 }, min xt) min δt) x σ 32 σ PC θ 3 R > R, t σ 32 3 t σ 3 min yt) min δt) y σ 32 σ PC2 θ 3 R 2 > R, t σ 32 3 t σ 3 and T x PC { = max H t, s)hs, τ)as)bτ)xs)xτ) dτ ds H t, s)ωs)f xs) ) ds t J H t, s)as)xs) H τ s, t k)j k ytk ) )) ds k)i k xtk ) )}

21 Jiao and Zhang Boundary Value Problems 28) 28:63 Page 2 of 34 { max H t, s)a s)xs) Hs, τ)bτ)xτ) dτ ds H t, s)ω s)f xs) ) ds t J σ2 H t, s)a s)xs) H τ s, t k)j k ytk ) )) ds k)i k xtk ) )} min H σ t, s)a s)xs) 22 t min 2 2 σ t 22 min ρ 2 2 σ t 32 ρ 2 ρ 2 ρ σ Hs, τ)b τ)xτ) dτ ds H t, s)as)xs) H τ s, t k)j k ytk ) ) ) ds σ 32 <t k <σ 3 H t, s)ω s)f xs) ) ds min σ 3 t t 2 <t k<t H s t, t k)i k xtk ) ) σ G s, s)a s)δs) x PC Hs, τ)b τ)δτ) x PC dτ ds G s, s)ω s)ε 3 xs) ds σ 32 ν hτ) dτ σ 32 <t k <σ 3 ε 4 xt k ) σ G s, s)a s)δs) x PC Hs, τ)b τ)δτ) x PC dτ ds G s, s)ω s)ε 3 xs) ds σ 32 ν B x 2 PC ρ 2 ε 3 min σ 32 t σ 3 δt) ν hτ) dτε 4 B x 2 PC ρ 2 ε 3 min σ 32 t σ 3 δt) ν hτ) dτε 4 σ 32 min σ 32 t σ 3 δt) x PC σ 32 min σ 32 t σ 3 δt) x PC G s, s)ω s) ds x PC G s, s)ω s) ds x PC hτ) dτε 4 xt ) σ 32 <t <σ 3 > 3 x PC 3 x PC 3 x PC = x PC, 3.9) { T 2 y PC2 = max Ht, s)bs)xs) ds k)j k ytk ) )} t J { max Ht, s)b s)xs) ds t J min 2 t ν k)j k ytk ) )} Ht, s)b s)xs) ds min σ 3 t gτ) dτε 6 yt ) σ 32 <t <σ 3 t 2 <t k<t k)j k ytk ) )

22 Jiao and Zhang Boundary Value Problems 28) 28:63 Page 22 of 34 ν gτ) dτε 6 min σ 32 t σ 3 δt) y PC2 = y PC2. 3.) Consequently, Tx, y) > x, y), x, y) K K 2 ) Ω R. 3.) Therefore, applying Lemma 2.4 to 3.4)and3.), we can show that T has at least one fixed point x, y) K K 2 ) Ω R \ Ω r ). The proof of Theorem 3. is completed. The following theorem deals with the multiplicity of system.9). For convenience, we introduce the following notations: D =3γ ω s) ds, Λ =3nγ, Γ = ν ) γ b s) ds, n D = ρ G s, s)ω s) ds, Λ =2γ hτ) dτ, σ 32 Γ = ν n gτ) dτ). Theorem 3.2 Assume that H ) H ) hold. Suppose that <α <and there exist constants d and r satisfying <d < min{4a),4a Γ ), r} such that min f x)<d d, x,y) K K 2 ) Ω d min I k x)<λ d, 3.2) x,y) K K 2 ) Ω d min x,y) K K 2 ) Ω d J k y)<γ d, where A and A are defined in 3.). Then system.9) admits at least two positive solutions. Proof If < α <,thenbyh 9 )weknowthat f x) k i) lim x lim x α I x x =, lim k x) x x x lim y J k y) y ii) lim x f x) x m lim y α y = ; y k lim 2 x α x x =, lim x I k x) x lim x l x α x =, lim x l 2 x α x =, J lim k y) m y lim 2 y α y y =. y From i) it follows that there exists a sufficiently small positive constant r such that f x) ε 7 x, I k x) ε 8 x, k =,2,...,n, x r, J k y) ε 9 y, k =,2,...,n, y r,

23 Jiao and Zhang Boundary Value Problems 28) 28:63 Page 23 of 34 where ε 7, ε 8, ε 9 satisfy ρ ε 7 min δt) σ 32 t σ 3 σ 32 G s, s)ω s) ds >, 2ε 8 hτ) dτ ν gτ) dτε 9 ν min δt)>, σ 32 t σ 3 min δt)>, σ 32 t σ 3 with δt)definedin3.5). Therefore, for any x, y) K K 2 ) Ω r,wegetfrom3.6)that T x PC = max t J { H t, s)hs, τ)as)bτ)xs)xτ) dτ ds H t, s)ωs)f xs) ) ds H t, s)as)xs) H τ s, t k)j k ytk ) )) ds { max H t, s)a s)xs) t J H t, s)ω s)f xs) ) ds k)i k xtk ) )} Hs, τ)bτ)xτ) dτ ds H t, s)as)xs) H τ s, t k)j k ytk ) )) ds min H σ t, s)a s)xs) 22 t min ρ 2 ρ σ t 32 σ H t, s)ω s)f xs) ) ds min G s, s)ω s)f xs) ) ds σ 32 ν G s, s)ω s)ε 7 xs) ds σ 32 ν ρ 2 ε 7 min σ 32 t σ 3 δt) ε 8 ν hτ) dτ σ 32 k)i k xtk ) )} Hs, τ)b τ)xτ) dτ ds t <t k < G s, s)ω s) ds x PC min σ 32 t σ 3 δt) x PC H s t, t k)i k xtk ) ) hτ) dτ hτ) dτ <t k < I k xtk ) ) σ 32 <t <σ 3 ε 8 xt ) > 2 x PC 2 x PC = x PC, 3.3)

24 Jiao and Zhang Boundary Value Problems 28) 28:63 Page 24 of 34 T 2 y PC2 = max t J { Ht, s)bs)xs) ds k)j k ytk ) )} { max Ht, s)b s)xs) ds t J min 2 t ν ν k)j k ytk ) )} Ht, s)b s)xs) ds min σ 3 t gτ) dτε 9 yt ) σ 32 <t <σ 3 gτ) dτε 9 min σ 32 t σ 3 δt) y PC2 t 2 <t k<t k)j k ytk ) ) = y PC2. 3.4) Consequently, Tx, y) > x, y), x, y) K K 2 ) Ω r. 3.5) Next, let us turn to ii), which shows that there exist R, R > r such that f x) ε x, I k x) ε 2 x, x R, J k y) ε 3 y, y R, where ε, ε 2, ε 3 satisfy Let 5γ ε ω s) ds <, { ε 3 < max 6A R, γ n n 5nε 2 <, ν } b s) ds. { } η = max f x), { η2 = max Ik x) }, x [,R ] x [,R ] { η 3 = max Jk y) }, k =,2,...,n. y [,R ] Then f x) ε x η, I k x) ε 2 x η 2, J k y) ε 3 y η 3, x, y. 3.6) Let M = γ η ω s) ds, M = nη 2. ν

25 Jiao and Zhang Boundary Value Problems 28) 28:63 Page 25 of 34 Choosing max{6m,6m, r} < R <6A), for any x, y) K K 2 ) Ω R, similarly to the proof of 3.2)and3.3), we get T x)t) H t, s)hs, τ)a s)b τ)xs)xτ) dτ ds H t, s)ω s)f xs) ) ds H t, s)a s)xs) H τ s, t k)j k ytk ) )) ds k)i k xtk ) ) T 2 y)t)= γ γ ν n Hs, τ)a s)b τ) x 2 PC dτ ds γ ω s) ) ε x PC η ds AR 2 γ ε ) nε 2 ν a ) s) ds x PC ε3 y PC2 η 3 ν ω s) dsr M ε 3 A R 2 γ ν nη 3 R M < 6 R 6 R 6 R 6 R 6 R 6 R ) ε2 x PC η 2 a s) ds = R, 3.7) Ht, s)bs)xs) ds Ht, s)b s)xs) ds γ γ γ k)j k ytk ) ) b s)xs) ds ν k)j k ytk ) ) J k ytk ) ) b s) ds x PC ν nε 3 y PC2 b s) dsr γ nε 3 R = R, 3.8) which shows that Tx, y) < x, y), x, y) K K 2 ) Ω R. 3.9) Finally, since < d < min{4a),4a Γ ), r},forx, y) K K 2 ) Ω d, it follows from 3.2)that T x)t) H t, s)hs, τ)a s)b τ)xs)xτ) dτ ds H t, s)ω s)f xs) ) ds H t, s)a s)xs) H τ s, t k)j k ytk ) )) ds k)i k xtk ) )

26 Jiao and Zhang Boundary Value Problems 28) 28:63 Page 26 of 34 T 2 y)t)= γ γ ν n Hs, τ)a s)b τ) x 2 PC dτ ds γ ω s)f xs) ) ds a s)j k ytk ) ) ds x PC ν I k xtk ) ) Ad 2 γ ω s) dsd) d A Γ d 2 nλ) d ν < 4 d 4 d 4 d 4 d = d, 3.2) Ht, s)bs)xs) ds Ht, s)b s)xs) ds γ k)j k ytk ) ) b s)xs) ds ν k)j k ytk ) ) J k ytk ) ) γ b s) dsd ν nγ d = d, 3.2) which shows that Tx, y) < x, y), x, y) K K 2 ) Ω d. 3.22) Therefore, applying Lemma 2.4 to 3.5), 3.9), and 3.22), we can show that T has at least two fixed points x, y ) K K 2 ) Ω R \ Ω r ), x 2, y 2 ) K K 2 ) Ω r \ Ω d ). The proof of Theorem 3.2 is completed. Corollary 3. Assume that H ) H ) hold. If <α <,then system.9) admits at least one positive solution. Proof It follows from the proof of Theorem 3.2 that Corollary 3. holds. Corollary 3.2 Assume that H ) H ) hold. Suppose that α >and there exist two constants d and r satisfying <d < r = min{4a),4ε 3 A ), r, r } such that min f x)> D ) d, x,y) K K 2 ) Ω d min I k x)> Λ ) d, x,y) K K 2 ) Ω d min x,y) K K 2 ) Ω d J k y)>γ d,

27 Jiao and Zhang Boundary Value Problems 28) 28:63 Page 27 of 34 where A, A, ε 3, r and r are defined in Theorem 3.. Then system.9) admits at least two positive solutions. Proof SimilarlytotheproofofTheorem3., we can obtain that 3.4)and3.)hold.Then, similarly to the proof 3.22), we get Tx, y) > x, y), x, y) K K 2 ) Ω d. 3.23) This finishes the proof of Corollary 3.2. Finally, in the case < α <, we consider the existence of three positive solutions for system.9). Theorem 3.3 Assume that H ) H ) hold and there exist four positive numbers η, η, η 2, and γ such that one of the following conditions is satisfied: H ) <α <, <η = max{η, η 2 } < min{r,4a),4a Γ ) } r max{6m,6m, r} < R <6A) < γ, and f x)<d) η, I k x)<λ) η, J k y)<γη, x [θ 3 η, η ], y [θ 3 η 2, η 2 ], f x)> D ) γ, Ik x)> Λ ) γ, J k y)>γ γ, x, y [, γ ], where r, R, A, M, M, D, D, γ, γ, θ 3, Λ, and Λ are defined in Theorems 3. and 3.2, respectively. Then system.9) admitsatleastthreepositivesolutions. Proof Since < α <, from the proof of Theorem 3.2 we know that Tx, y) > x, y), x, y) K K 2 ) Ω r, 3.24) Tx, y) < x, y), x, y) K K 2 ) Ω R. 3.25) By the first part of H ), for any x, y) K K 2 ) Ω η,weobtain x, y) = max { x PC, y PC2 } = η = max{η, η 2 }, θ 3 η θ 3 x PC θ 3 η 2 θ 3 y PC2 min xt) xt) η σ, 32 t σ 3 min yt) xt) η, 32 t σ 3 and similarly to the proof of 3.22), we get Tx, y) < x, y), x, y) K K 2 ) Ω η. 3.26)

28 Jiao and Zhang Boundary Value Problems 28) 28:63 Page 28 of 34 Considering the second part of H ), for any x, y) K K 2 ) Ω γ,wehave T x PC = max t J { H t, s)hs, τ)as)bτ)xs)xτ) dτ ds H t, s)ωs)f xs) ) ds H t, s)as)xs) H τ s, t k)j k ytk ) )) ds { max H t, s)a s)xs) t J H t, s)ω s)f xs) ) ds k)i k xtk ) )} Hs, τ)bτ)xτ) dτ ds H t, s)a s)xs) H τ s, t k)j k ytk ) )) ds min H σ t, s)a s)xs) 22 t min 2 2 σ t 22 min 2 σ t 32 σ k)i k xtk ) )} Hs, τ)b τ)xτ) dτ ds H t, s)as)xs) H τ s, t k)j k ytk ) ) ) ds σ 32 <t k <σ 3 H t, s)ω s)f xs) ) ds min min H σ t, s)ω s)f xs) ) ds min 22 t ρ 2 ρ 2 T 2 y PC2 = max t J σ 32 G s, s)ω s)f x) ds σ 32 ν t <t k < t <t k < σ 32 G s, s)ω s) ds D ) γ ν hτ) dτ H s t, t k)i k xtk ) ) H s t, t k)i k xtk ) ) σ 32 <t <σ 3 I k x) hτ) dτ Λ ) γ > 2 γ 2 γ = γ, 3.27) { Ht, s)bs)xs) ds k)j k ytk ) )} { max Ht, s)b s)xs) ds t J min t [,] min t [,] n ν k)j k ytk ) )} Ht, s)b s)xs) ds min t [,] k)j k ytk ) ) k)j k ytk ) ) gτ) dτγ γ = γ. 3.28)

29 Jiao and Zhang Boundary Value Problems 28) 28:63 Page 29 of 34 This shows that Tx, y) > x, y), x, y) K K 2 ) Ω γ. 3.29) Therefore, applying Lemma 2.4 to 3.24), 3.25), 3.26), and 3.29) respectively, we can show that T has at least three fixed points x i, y i )i =,2,3)satisfying x, y ) K K 2 ) Ω γ \ Ω R ), x 2, y 2 ) K K 2 ) Ω R \ Ω r ), x 3, y 3 ) K K 2 ) Ω r \ Ω η ). This gives the proof of Theorem Anexample Example 4. Let n =andt =. Consider the following system: x = at)xy ωt)x 3, <t <,t y = bt)x, <t <,t, x t= = I x )), y t= = J y )), x) = xt) dt, x ) =, y) = tyt) dt, y ) =,, 4.) where I x)= x3 2, J y)= y3, ht), gt)=t,and bt)= t), t [, 3 ], 8 t 3 ), t [ 3,], at)= 3 t), t [, 3 ], 8 t 3 ), t [ 3,], 92 3 gt)= t), t [, 3 ], 8 t 3 ), t [ 3,]. Conclusion 4. System 4.) admits at least one positive solution. For convenience, we give a corollary of Proposition 2.3 in [67]. Corollary 4. Consider the following system: x = kt)x α, <t <, x) = ht)xt) dt, x ) =, y = kt)y α, <t <, y) = gt)yt) dt, y ) =, 4.2) 4.3)

30 Jiao and Zhang Boundary Value Problems 28) 28:63 Page 3 of 34 where α >,and kt) satisfies the changing-sign condition kt), t [, ], kt), t [,], and c x α f x)=x α c 2 x α, c y α f y)=y α c 2 y α, c, c 2 >. If there exists <σ < such that σ c σ α μ 2 k σ ) η c 2 α k η), η [, ], 4.4) then the following inequalities hold: σ α μ 2 σ σ α μ 2 σ Ht, s)k s) ds c 2 c α H t, s)k s) ds c 2 c α Ht, s)k s) ds, 4.5) H t, s)k s) ds. 4.6) Proof SimilarlytotheproofofProposition2.3in[67], we can prove that G t, σ ) η σ Gt, η), Hence it follows from 2.4)that η [, ]. H t, σ ) η = G t, σ ) η ν σ Gt, η) σ ν [ = σ Gt, η) ν = σ Ht, η), η [, ]. G τ, σ ) η gτ) dτ Gτ, η)gτ) dτ ] Gτ, η)gτ) dτ Next, letting s = σ η, η [, ], we get Ht, s)k s) ds = σ H t, σ )k σ η σ ) η dη; letting s = η, η [, ], we have Ht, s)k s) ds = Ht, η)k η) dη. Now, from assumption 4.4), for all t, η) [, ] [, ], we have σ c σ α μ 2 H t, σ )k η σ ) η c 2 α Ht, η)k η). 4.7)

31 Jiao and Zhang Boundary Value Problems 28) 28:63 Page 3 of 34 Finally, by integrating in η both sides of 4.7) fromto it follows that inequality 4.5)holds. Similarly, we can show that inequality 4.6)holds. Proof of Example 4. From the definitions of at), bt), and gt)weknowthat = 3. Step. We show that H 6 ) holds. For fixed c = c 2 =,σ =, μ =,andα =,4.4) is 6 equivalent to the inequality 48 b 3 ) ) [ 3 4 η b η, η, 2 ]. 3 Letting 3 4 τ = ϱ,thisinequalityisequivalentto ) [ 5 48 b ϱ) b 3 4ϱ, ϱ 4, ]. 3 By the definition of bt) the last inequality holds obviously. It is clear that by 4.5) H 6 )is reasonable. Step 2. We show H 7 ) holds. Similarly to Step, letting c =,c 2 = 36 5, = 6, μ =,and α =,by4.6)weget 3 H t, s)a s) ds It is easy to see by calculating that ν = gs) ds = sds= 2, γ = =2, ρ = ν H t, s)a s) ds. 4.8) τgτ) dτ = 5 ν 3. Furthermore, from inequality 4.8) it followsthat H t, s) a s) ds H t, s)a s) ds H t, s) min Gs, s)a s) ds 2 3 s [ 6 6, 3 ] H t, s)gs, s)a s) ds H t, s)a s) ds H t, s)a s) ds. So, H 7 )holds. Step 3. Similarly to Step, letting c = c 2 =,σ 3 = 6, μ =,andα =3,wegetthatH ) holds. Hence it followsfromtheorem3. that system 4.) admits at least one positive solution for α >.

32 Jiao and Zhang Boundary Value Problems 28) 28:63 Page 32 of 34 Acknowledgements The authors are grateful to anonymous referees for their constructive comments and suggestions, which have greatly improved this paper. Funding This work is sponsored by the National Natural Science Foundation of China 378) and the Beijing Natural Science Foundation 637). Availability of data and materials Not applicable. Ethics approval and consent to participate Not applicable. Competing interests The authors declare that there is no conflict of interest regarding the publication of this manuscript. The authors declare that they have no competing interests. Consent for publication Not applicable. Authors contributions The authors contributed equally in this article. They have all read and approved the final manuscript. Publisher s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Received: 3 April 28 Accepted: 8 October 28 References. Lakshmikantham, V., Bainov, D., Simeonov, P.: Theory of Impulsive Differential Equations. World Scientific, Singapore 989) 2. Benchohra, M., Henderson, J., Ntouyas, S.: Impulsive Differential Equations and Inclusions. Hindawi, New York 26) 3. Pasquero, S.: Ideality criterion for unilateral constraints in time-dependent impulsive mechanics. J. Math. Phys. 46, 83 25) 4. Liu, X., Willms, A.: Impulsive controllability of linear dynamical systems with applications to maneuvers of spacecraft. Math.Probl.Eng.2, ) 5. Guo, Y.: Globally robust stability analysis for stochastic Cohen Grossberg neural networks with impulse control and time-varying delays. Ukr. Math. J. 69, ) 6. Nieto, J., O Regan, D.: Variational approach to impulsive differential equations. Nonlinear Anal., Real World Appl., ) 7. Tian, Y., Ge, W.: Variational methods to Sturm Liouville boundary value problem for impulsive differential equations. Nonlinear Anal. 72, ) 8. Zhou, J., Li, Y.: Existence and multiplicity of solutions for some Dirichlet problems with impulsive effects. Nonlinear Anal. 7, ) 9. Wang, M., Feng, M.: New Green s function and two infinite families of positive solutions for a second order impulsive singular parametric equation. Adv. Differ. Equ. 27, 54 27). Zhang, H., Liu, L., Wu, Y.: Positive solutions for nth-order nonlinear impulsive singular integro-differential equations on infinite intervals in Banach spaces. Nonlinear Anal. 7, ). Hao, X., Liu, L., Wu, Y.: Positive solutions for second order impulsive differential equations with integral boundary conditions. Commun. Nonlinear Sci. Numer. Simul. 6, 2) 2. Jiang, J., Liu, L., Wu, Y.: Positive solutions for second order impulsive differential equations with Stieltjes integral boundary conditions. Adv. Differ. Equ. 22, 24 22) 3. Zhang, X., Feng, M., Ge, W.: Existence of solutions of boundary value problems with integral boundary conditions for second-order impulsive integro-differential equations in Banach spaces. J. Comput. Appl. Math. 233, ) 4. Li, P., Feng, M., Wang, M.: A class of singular n-dimensional impulsive Neumann systems. Adv. Differ. Equ. 28, 28) 5. Feng, M., Pang, H.: A class of three-point boundary-value problems for secondorder impulsive integro-differential equations in Banach spaces. Nonlinear Anal. 7, ) 6. Wang, M., Feng, M.: Infinitely many singularities and denumerably many positive solutions for a second-order impulsive Neumann boundary value problem. Bound. Value Probl. 27,5 27) 7. Zhang, X., Ge, W.: Impulsive boundary value problems involving the one-dimensional p-laplacian. Nonlinear Anal. 7, ) 8. Hao, X., Liu, L.: Mild solution of semilinear impulsive integro-differential evolution equation in Banach spaces. Math. Methods Appl. Sci. 4, ) 9. Bai, Z., Dong, X., Yin, C.: Existence results for impulsive nonlinear fractional differential equation with mixed boundary conditions. Bound. Value Probl. 26,63 26) 2. Zhang, X., Yang, X., Ge, W.: Positive solutions of nth-order impulsive boundary value problems with integral boundary conditions in Banach spaces. Nonlinear Anal. 7, )

33 Jiao and Zhang Boundary Value Problems 28) 28:63 Page 33 of Hao, X., Zuo, M., Liu, L.: Multiple positive solutions for a system of impulsive integral boundary value problems with sign-changing nonlinearities. Appl. Math. Lett. 82, ) 22. Tian, Y., Bai, Z.: Existence results for the three-point impulsive boundary value problem involving fractional differential equations. Comput. Math. Appl. 59, ) 23. Zhang, X., Feng, M.: Transformation techniques and fixed point theories to establish the positive solutions of second order impulsive differential equations. J. Comput. Appl. Math. 27, ) 24. Zuo, M., Hao, X., Liu, L., Cui, Y.: Existence results for impulsive fractional integro-differential equation of mixed type with constant coefficient and antiperiodic boundary conditions. Bound. Value Probl. 27,6 27) 25. Liu, J., Zhao, Z.: Multiple solutions for impulsive problems with non-autonomous perturbations. Appl. Math. Lett. 64, ) 26. Liu, Y., O Regan, D.: Multiplicity results using bifurcation techniques for a class of boundary value problems of impulsive differential equations. Commun. Nonlinear Sci. Numer. Simul. 6, ) 27. Ma, R., Yang, B., Wang, Z.: Positive periodic solutions of first-order delay differential equations with impulses. Appl. Math. Comput. 29, ) 28. Lin, X., Jiang, D.: Multiple positive solutions of Dirichlet boundary value problems for second order impulsive differential equations. J. Math. Anal. Appl. 32, ) 29. Feng, M., Xie, D.: Multiple positive solutions of multi-point boundary value problem for second-order impulsive differential equations. J. Comput. Appl. Math. 223, ) 3. Liu, L., Sun, F., Zhang, X., Wu, Y.: Bifurcation analysis for a singular differential system with two parameters via to degree theory. Nonlinear Anal., Model. Control 22,3 5 27) 3. Zhang, X., Feng, M., Ge, W.: Existence result of second-order differential equations with integral boundary conditions at resonance. J. Math. Anal. Appl. 353, ) 32. Zhang, X., Ge, W.: Symmetric positive solutions of boundary value problems with integral boundary conditions. Appl. Math. Comput. 29, ) 33. Hao, X., Sun, H., Liu, L.: Existence results for fractional integral boundary value problem involving fractional derivatives on an infinite interval. Math. Methods Appl. Sci., 3 28) 34. Hao, X., Wang, H.: Positive solutions of semipositone singular fractional differential systems with a parameter and integral boundary conditions. Open Math. 6, ) 35. Hao, X., Wang, H., Liu, L., Cui, Y.: Positive solutions for a system of nonlinear fractional nonlocal boundary value problems with parameters and p-laplacian operator. Bound. Value Probl. 27,82 27) 36. Yan, F., Zuo, M., Hao, X.: Positive solution for a fractional singular boundary value problem with p-laplacian operator. Bound. Value Probl. 28,5 28) 37. Zhang, X., Mao, C., Liu, L., Wu, Y.: Exact iterative solution for an abstract fractional dynamic system model for bioprocess. Qual. Theory Dyn. Syst. 6, ) 38. Zhang,X.,Liu,L.,Wiwatanapataphee,B.,Wu,Y.:The eigenvalue foraclassofsingular p-laplacian fractional differential equations involving the Riemann Stieltjes integral boundary condition. Appl. Math. Comput. 235, ) 39. Sun, F., Liu, L., Wu, Y.: Infinitely many sign-changing solutions for a class of biharmonic equation with p-laplacian and Neumann boundary condition. Appl. Math. Lett. 73, ) 4. Lin, X., Zhao, Z.: Iterative technique for a third-order differential equation with three-point nonlinear boundary value conditions. Electron. J. Qual. Theory Differ. Equ. 26, 2 26) 4. Ahmad, B., Alsaedi, A., Alghamdi, B.S.: Analytic approximation of solutions of the forced Duffing equation with integral boundary conditions. Nonlinear Anal., Real World Appl. 9, ) 42. Karakostas, G.L., Tsamatos, P.C.: Multiple positive solutions of some Fredholm integral equations arisen from nonlocal boundary-value problems. Electron. J. Differ. Equ. 22, 3 22) 43. Feng, M., Ge, W.: Positive solutions for a class of m-point singular boundary value problems. Math. Comput. Model. 46, ) 44. Jiang, J., Liu, L., Wu, Y.: Second-order nonlinear singular Sturm Liouville problems with integral boundary problems. Appl. Math. Comput. 25, ) 45. Lan, K.: Multive positive solutions of semilinear differential equations with singularities. J. Lond. Math. Soc. 63, ) 46. Zhang, X., Liu, L., Wu, Y.: The eigenvalue problem for a singular higher fractional differential equation involving fractional derivatives. Appl. Math. Comput. 28, ) 47. Zhang, X., Liu, L., Wu, Y.: Existence results for multiple positive solutions of nonlinear higher order perturbed fractional differential equations with derivatives. Appl. Math. Comput. 29, ) 48. Zhang, X., Liu, L., Wu, Y., Lu, Y.: The iterative solutions of nonlinear fractional differential equations. Appl. Math. Comput. 29, ) 49. Zhang, X., Liu, L., Wu, Y., Wiwatanapataphee, B.: Nontrivial solutions for a fractional advection dispersion equation in anomalous diffusion. Appl. Math. Lett. 66, 8 27) 5. Zhang, X., Liu, L., Wu, Y.: Multiple positive solutions of a singular fractional differential equation with negatively perturbed term. Math. Comput. Model. 55, ) 5. Feng, M., Du, B., Ge, W.: Impulsive boundary value problems with integral boundary conditions and one-dimensional p-laplacian. Nonlinear Anal. 7, ) 52. Ahmad, B., Alsaedi, A.: Existence of approximate solutions of the forced Duffing equation with discontinuous type integral boundary conditions. Nonlinear Anal., Real World Appl., ) 53. Mao, J., Zhao, Z.: The existence and uniqueness of positive solutions for integral boundary balue problems. Bull. Malays. Math. Sci. Soc. 34, ) 54. Liu, L., Hao, X., Wu, Y.: Positive solutions for singular second order differential equations with integral boundary conditions. Math. Comput. Model. 57, ) 55. Boucherif, A.: Second-order boundary value problems with integral boundary conditions. Nonlinear Anal. 7, ) 56. Feng, M., Ji, D., Ge, W.: Positive solutions for a class of boundary-value problem with integral boundary conditions in Banach spaces. J. Comput. Appl. Math. 222, )

34 Jiao and Zhang Boundary Value Problems 28) 28:63 Page 34 of Kong, L.: Second order singular boundary value problems with integral boundary conditions. Nonlinear Anal. 72, ) 58. Ma, R., Han, X.: Existence and multiplicity of positive solutions of a nonlinear eigenvalue problem with indefinite weight function. Appl. Math. Comput. 25, ) 59. López-Gómez, J., Tellini, A.: Generating an arbitrarily large number of isolas in a superlinear indefnite problem. Nonlinear Anal. 8, ) 6. Boscaggin, A., Zanolin, F.: Second-order ordinary differential equations with indefinite weight: the Neumann boundary value problem. Ann. Mat. Pura Appl. 94, ) 6. Feltrin, G., Zanolin, F.: Existence of positive solutions in the superlinear case via coincidence degree: the Neumann and the periodic boundary value problems. Adv. Differ. Equ. 2, ) 62. Boscaggin, A., Feltrin, G., Zanolin, F.: Fabio Pairs of positive periodic solutions of nonlinear ODEs with indefinite weight: a topological degree approach for the super-sublinear case. Proc. R. Soc. Edinb., Sect. A 46, ) 63. Boscaggin, A., Zanolin, F.: Positive periodic solutions of second order nonlinear equations with indefinite weight: multiplicity results and complex dynamics. J. Differ. Equ. 252, ) 64. Sovrano, E., Zanolin, F.: Indefinite weight nonlinear problems with Neumann boundary conditions. J. Math. Anal. Appl. 452, ) 65. Bravo, J.L., Torres, P.J.: Periodic solutions of a singular equation with indefinite weight. Adv. Nonlinear Stud., ) 66. Wang, F., An, Y.: On positive solutions for a second order differential system with indefinite weight. Appl. Math. Comput. 259, ) 67. Yao, Q.: Existence and multiplicity of positive radial solutions for a semilinear elliptic equation with change of sign. Appl. Anal. 8, ) 68. Jiao, L., Zhang, X.: Multi-parameter second-order impulsive indefinite boundary value problems. Adv. Differ. Equ. 28, 58 28) 69. Feltrin, G., Sovrano, E.: Three positive solutions to an indefinite Neumann problem: a shooting method. Nonlinear Anal. 66, 87 28) 7. Zhang, Q.: Existence of solutions for a class of second-order impulsive Hamiltonian system with indefinite linear part. J. Nonlinear Sci. Appl., ) 7. Guo, D., Lakshmikantham, V.: Nonlinear Problems in Abstract Cones. Academic Press, New York 988)

Positive solutions for integral boundary value problem of two-term fractional differential equations

Positive solutions for integral boundary value problem of two-term fractional differential equations Xu and Han Boundary Value Problems (28) 28: https://doi.org/.86/s366-8-2-z R E S E A R C H Open Access Positive solutions for integral boundary value problem of two-term fractional differential equations

More information

Triple positive solutions for a second order m-point boundary value problem with a delayed argument

Triple positive solutions for a second order m-point boundary value problem with a delayed argument Zhou and Feng Boundary Value Problems (215) 215:178 DOI 1.1186/s13661-15-436-z R E S E A R C H Open Access Triple positive solutions for a second order m-point boundary value problem with a delayed argument

More information

Multiple Positive Solutions For Impulsive Singular Boundary Value Problems With Integral Boundary Conditions

Multiple Positive Solutions For Impulsive Singular Boundary Value Problems With Integral Boundary Conditions Int. J. Open Problems Compt. Math., Vol. 2, No. 4, December 29 ISSN 998-6262; Copyright c ICSRS Publication, 29 www.i-csrs.org Multiple Positive Solutions For Impulsive Singular Boundary Value Problems

More information

Existence and multiplicity of positive solutions of a one-dimensional mean curvature equation in Minkowski space

Existence and multiplicity of positive solutions of a one-dimensional mean curvature equation in Minkowski space Pei et al. Boundary Value Problems (28) 28:43 https://doi.org/.86/s366-8-963-5 R E S E A R C H Open Access Existence and multiplicity of positive solutions of a one-dimensional mean curvature equation

More information

Multiplesolutionsofap-Laplacian model involving a fractional derivative

Multiplesolutionsofap-Laplacian model involving a fractional derivative Liu et al. Advances in Difference Equations 213, 213:126 R E S E A R C H Open Access Multiplesolutionsofap-Laplacian model involving a fractional derivative Xiping Liu 1*,MeiJia 1* and Weigao Ge 2 * Correspondence:

More information

Nontrivial Solutions for Boundary Value Problems of Nonlinear Differential Equation

Nontrivial Solutions for Boundary Value Problems of Nonlinear Differential Equation Advances in Dynamical Systems and Applications ISSN 973-532, Volume 6, Number 2, pp. 24 254 (2 http://campus.mst.edu/adsa Nontrivial Solutions for Boundary Value Problems of Nonlinear Differential Equation

More information

Existence of solutions of fractional boundary value problems with p-laplacian operator

Existence of solutions of fractional boundary value problems with p-laplacian operator Mahmudov and Unul Boundary Value Problems 25 25:99 OI.86/s366-5-358-9 R E S E A R C H Open Access Existence of solutions of fractional boundary value problems with p-laplacian operator Nazim I Mahmudov

More information

Positive solutions for singular third-order nonhomogeneous boundary value problems with nonlocal boundary conditions

Positive solutions for singular third-order nonhomogeneous boundary value problems with nonlocal boundary conditions Positive solutions for singular third-order nonhomogeneous boundary value problems with nonlocal boundary conditions Department of Mathematics Tianjin Polytechnic University No. 6 Chenglin RoadHedong District

More information

Existence and iteration of monotone positive solutions for third-order nonlocal BVPs involving integral conditions

Existence and iteration of monotone positive solutions for third-order nonlocal BVPs involving integral conditions Electronic Journal of Qualitative Theory of Differential Equations 212, No. 18, 1-9; http://www.math.u-szeged.hu/ejqtde/ Existence and iteration of monotone positive solutions for third-order nonlocal

More information

Research Article The Existence of Countably Many Positive Solutions for Nonlinear nth-order Three-Point Boundary Value Problems

Research Article The Existence of Countably Many Positive Solutions for Nonlinear nth-order Three-Point Boundary Value Problems Hindawi Publishing Corporation Boundary Value Problems Volume 9, Article ID 575, 8 pages doi:.55/9/575 Research Article The Existence of Countably Many Positive Solutions for Nonlinear nth-order Three-Point

More information

POSITIVE SOLUTIONS FOR NONLOCAL SEMIPOSITONE FIRST ORDER BOUNDARY VALUE PROBLEMS

POSITIVE SOLUTIONS FOR NONLOCAL SEMIPOSITONE FIRST ORDER BOUNDARY VALUE PROBLEMS Dynamic Systems and Applications 5 6 439-45 POSITIVE SOLUTIONS FOR NONLOCAL SEMIPOSITONE FIRST ORDER BOUNDARY VALUE PROBLEMS ERBIL ÇETIN AND FATMA SERAP TOPAL Department of Mathematics, Ege University,

More information

Positive solutions for a class of fractional 3-point boundary value problems at resonance

Positive solutions for a class of fractional 3-point boundary value problems at resonance Wang and Liu Advances in Difference Equations (217) 217:7 DOI 1.1186/s13662-16-162-5 R E S E A R C H Open Access Positive solutions for a class of fractional 3-point boundary value problems at resonance

More information

Triple positive solutions of fourth-order impulsive differential equations with integral boundary conditions

Triple positive solutions of fourth-order impulsive differential equations with integral boundary conditions Zhou and Zhang Boundary Value Problems (215) 215:2 DOI 1.1186/s13661-14-263-7 R E S E A R C H Open Access Triple positive solutions of fourth-order impulsive differential equations with integral boundary

More information

Three symmetric positive solutions of fourth-order nonlocal boundary value problems

Three symmetric positive solutions of fourth-order nonlocal boundary value problems Electronic Journal of Qualitative Theory of Differential Equations 2, No. 96, -; http://www.math.u-szeged.hu/ejqtde/ Three symmetric positive solutions of fourth-order nonlocal boundary value problems

More information

Boundary value problems for fractional differential equations with three-point fractional integral boundary conditions

Boundary value problems for fractional differential equations with three-point fractional integral boundary conditions Sudsutad and Tariboon Advances in Difference Equations 212, 212:93 http://www.advancesindifferenceequations.com/content/212/1/93 R E S E A R C H Open Access Boundary value problems for fractional differential

More information

EXISTENCE AND UNIQUENESS OF POSITIVE SOLUTIONS TO HIGHER-ORDER NONLINEAR FRACTIONAL DIFFERENTIAL EQUATION WITH INTEGRAL BOUNDARY CONDITIONS

EXISTENCE AND UNIQUENESS OF POSITIVE SOLUTIONS TO HIGHER-ORDER NONLINEAR FRACTIONAL DIFFERENTIAL EQUATION WITH INTEGRAL BOUNDARY CONDITIONS Electronic Journal of Differential Equations, Vol. 212 (212), No. 234, pp. 1 11. ISSN: 172-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu EXISTENCE AND UNIQUENESS

More information

On the existence of solution to a boundary value problem of fractional differential equation on the infinite interval

On the existence of solution to a boundary value problem of fractional differential equation on the infinite interval Shen et al. Boundary Value Problems 5 5:4 DOI.86/s366-5-59-z R E S E A R C H Open Access On the existence of solution to a boundary value problem of fractional differential equation on the infinite interval

More information

Existence Of Solution For Third-Order m-point Boundary Value Problem

Existence Of Solution For Third-Order m-point Boundary Value Problem Applied Mathematics E-Notes, 1(21), 268-274 c ISSN 167-251 Available free at mirror sites of http://www.math.nthu.edu.tw/ amen/ Existence Of Solution For Third-Order m-point Boundary Value Problem Jian-Ping

More information

Computation of fixed point index and applications to superlinear periodic problem

Computation of fixed point index and applications to superlinear periodic problem Wang and Li Fixed Point Theory and Applications 5 5:57 DOI.86/s3663-5-4-5 R E S E A R C H Open Access Computation of fixed point index and applications to superlinear periodic problem Feng Wang,* and Shengjun

More information

NONLINEAR THREE POINT BOUNDARY VALUE PROBLEM

NONLINEAR THREE POINT BOUNDARY VALUE PROBLEM SARAJEVO JOURNAL OF MATHEMATICS Vol.8 (2) (212), 11 16 NONLINEAR THREE POINT BOUNDARY VALUE PROBLEM A. GUEZANE-LAKOUD AND A. FRIOUI Abstract. In this work, we establish sufficient conditions for the existence

More information

Existence and uniqueness results for q-fractional difference equations with p-laplacian operators

Existence and uniqueness results for q-fractional difference equations with p-laplacian operators Mardanov et al. Advances in Difference Equations 25) 25:85 DOI.86/s3662-5-532-5 R E S E A R C H Open Access Existence and uniqueness results for q-fractional difference equations with p-laplacian operators

More information

Multiple positive solutions for a nonlinear three-point integral boundary-value problem

Multiple positive solutions for a nonlinear three-point integral boundary-value problem Int. J. Open Problems Compt. Math., Vol. 8, No. 1, March 215 ISSN 1998-6262; Copyright c ICSRS Publication, 215 www.i-csrs.org Multiple positive solutions for a nonlinear three-point integral boundary-value

More information

Monotone Iterative Method for a Class of Nonlinear Fractional Differential Equations on Unbounded Domains in Banach Spaces

Monotone Iterative Method for a Class of Nonlinear Fractional Differential Equations on Unbounded Domains in Banach Spaces Filomat 31:5 (217), 1331 1338 DOI 1.2298/FIL175331Z Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat Monotone Iterative Method for

More information

Existence Results for Semipositone Boundary Value Problems at Resonance

Existence Results for Semipositone Boundary Value Problems at Resonance Advances in Dynamical Systems and Applications ISSN 973-531, Volume 13, Number 1, pp. 45 57 18) http://campus.mst.edu/adsa Existence Results for Semipositone Boundary Value Problems at Resonance Fulya

More information

Research Article Positive Solutions for Neumann Boundary Value Problems of Second-Order Impulsive Differential Equations in Banach Spaces

Research Article Positive Solutions for Neumann Boundary Value Problems of Second-Order Impulsive Differential Equations in Banach Spaces Abstract and Applied Analysis Volume 212, Article ID 41923, 14 pages doi:1.1155/212/41923 Research Article Positive Solutions for Neumann Boundary Value Problems of Second-Order Impulsive Differential

More information

Existence of homoclinic solutions for Duffing type differential equation with deviating argument

Existence of homoclinic solutions for Duffing type differential equation with deviating argument 2014 9 «28 «3 Sept. 2014 Communication on Applied Mathematics and Computation Vol.28 No.3 DOI 10.3969/j.issn.1006-6330.2014.03.007 Existence of homoclinic solutions for Duffing type differential equation

More information

arxiv: v1 [math.ca] 31 Oct 2013

arxiv: v1 [math.ca] 31 Oct 2013 MULTIPLE POSITIVE SOLUTIONS FOR A NONLINEAR THREE-POINT INTEGRAL BOUNDARY-VALUE PROBLEM arxiv:131.8421v1 [math.ca] 31 Oct 213 FAOUZI HADDOUCHI, SLIMANE BENAICHA Abstract. We investigate the existence of

More information

MULTIPLICITY OF CONCAVE AND MONOTONE POSITIVE SOLUTIONS FOR NONLINEAR FOURTH-ORDER ORDINARY DIFFERENTIAL EQUATIONS

MULTIPLICITY OF CONCAVE AND MONOTONE POSITIVE SOLUTIONS FOR NONLINEAR FOURTH-ORDER ORDINARY DIFFERENTIAL EQUATIONS Fixed Point Theory, 4(23), No. 2, 345-358 http://www.math.ubbcluj.ro/ nodeacj/sfptcj.html MULTIPLICITY OF CONCAVE AND MONOTONE POSITIVE SOLUTIONS FOR NONLINEAR FOURTH-ORDER ORDINARY DIFFERENTIAL EQUATIONS

More information

Positive solutions of BVPs for some second-order four-point difference systems

Positive solutions of BVPs for some second-order four-point difference systems Positive solutions of BVPs for some second-order four-point difference systems Yitao Yang Tianjin University of Technology Department of Applied Mathematics Hongqi Nanlu Extension, Tianjin China yitaoyangqf@63.com

More information

Positive solutions of the three-point boundary value problem for fractional-order differential equations with an advanced argument

Positive solutions of the three-point boundary value problem for fractional-order differential equations with an advanced argument RESEARCH Open Access Positive solutions of the three-point boundary value problem for fractional-order differential equations with an advanced argument Guotao Wang *, SK Ntouyas 2 and Lihong Zhang * Correspondence:

More information

Oscillation theorems for nonlinear fractional difference equations

Oscillation theorems for nonlinear fractional difference equations Adiguzel Boundary Value Problems (2018) 2018:178 https://doi.org/10.1186/s13661-018-1098-4 R E S E A R C H Open Access Oscillation theorems for nonlinear fractional difference equations Hakan Adiguzel

More information

Abdulmalik Al Twaty and Paul W. Eloe

Abdulmalik Al Twaty and Paul W. Eloe Opuscula Math. 33, no. 4 (23, 63 63 http://dx.doi.org/.7494/opmath.23.33.4.63 Opuscula Mathematica CONCAVITY OF SOLUTIONS OF A 2n-TH ORDER PROBLEM WITH SYMMETRY Abdulmalik Al Twaty and Paul W. Eloe Communicated

More information

FRACTIONAL BOUNDARY VALUE PROBLEMS ON THE HALF LINE. Assia Frioui, Assia Guezane-Lakoud, and Rabah Khaldi

FRACTIONAL BOUNDARY VALUE PROBLEMS ON THE HALF LINE. Assia Frioui, Assia Guezane-Lakoud, and Rabah Khaldi Opuscula Math. 37, no. 2 27), 265 28 http://dx.doi.org/.7494/opmath.27.37.2.265 Opuscula Mathematica FRACTIONAL BOUNDARY VALUE PROBLEMS ON THE HALF LINE Assia Frioui, Assia Guezane-Lakoud, and Rabah Khaldi

More information

On boundary value problems for fractional integro-differential equations in Banach spaces

On boundary value problems for fractional integro-differential equations in Banach spaces Malaya J. Mat. 3425 54 553 On boundary value problems for fractional integro-differential equations in Banach spaces Sabri T. M. Thabet a, and Machindra B. Dhakne b a,b Department of Mathematics, Dr. Babasaheb

More information

Layered Compression-Expansion Fixed Point Theorem

Layered Compression-Expansion Fixed Point Theorem Res. Fixed Point Theory Appl. Volume 28, Article ID 2825, pages eissn 258-67 Results in Fixed Point Theory and Applications RESEARCH ARTICLE Layered Compression-Expansion Fixed Point Theorem Richard I.

More information

Approximating solutions of nonlinear second order ordinary differential equations via Dhage iteration principle

Approximating solutions of nonlinear second order ordinary differential equations via Dhage iteration principle Malaya J. Mat. 4(1)(216) 8-18 Approximating solutions of nonlinear second order ordinary differential equations via Dhage iteration principle B. C. Dhage a,, S. B. Dhage a and S. K. Ntouyas b,c, a Kasubai,

More information

Existence and approximation of solutions to fractional order hybrid differential equations

Existence and approximation of solutions to fractional order hybrid differential equations Somjaiwang and Sa Ngiamsunthorn Advances in Difference Equations (2016) 2016:278 DOI 10.1186/s13662-016-0999-8 R E S E A R C H Open Access Existence and approximation of solutions to fractional order hybrid

More information

Positive solutions for singular boundary value problems involving integral conditions

Positive solutions for singular boundary value problems involving integral conditions Hu Boundary Value Problems 22, 22:72 http://www.boundaryvalueproblems.com/content/22//72 R E S E A R C H Open Access Positive solutions for singular boundary value problems involving integral conditions

More information

Solvability of Neumann boundary value problem for fractional p-laplacian equation

Solvability of Neumann boundary value problem for fractional p-laplacian equation Zhang Advances in Difference Equations 215) 215:76 DOI 1.1186/s13662-14-334-1 R E S E A R C H Open Access Solvability of Neumann boundary value problem for fractional p-laplacian equation Bo Zhang * *

More information

MULTIPLE POSITIVE SOLUTIONS FOR FOURTH-ORDER THREE-POINT p-laplacian BOUNDARY-VALUE PROBLEMS

MULTIPLE POSITIVE SOLUTIONS FOR FOURTH-ORDER THREE-POINT p-laplacian BOUNDARY-VALUE PROBLEMS Electronic Journal of Differential Equations, Vol. 27(27, No. 23, pp. 1 1. ISSN: 172-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp MULTIPLE POSITIVE

More information

Positive Solution of a Nonlinear Four-Point Boundary-Value Problem

Positive Solution of a Nonlinear Four-Point Boundary-Value Problem Nonlinear Analysis and Differential Equations, Vol. 5, 27, no. 8, 299-38 HIKARI Ltd, www.m-hikari.com https://doi.org/.2988/nade.27.78 Positive Solution of a Nonlinear Four-Point Boundary-Value Problem

More information

Oscillation by Impulses for a Second-Order Delay Differential Equation

Oscillation by Impulses for a Second-Order Delay Differential Equation PERGAMON Computers and Mathematics with Applications 0 (2006 0 www.elsevier.com/locate/camwa Oscillation by Impulses for a Second-Order Delay Differential Equation L. P. Gimenes and M. Federson Departamento

More information

Existence of triple positive solutions for boundary value problem of nonlinear fractional differential equations

Existence of triple positive solutions for boundary value problem of nonlinear fractional differential equations Computational Methods for Differential Equations http://cmde.tabrizu.ac.ir Vol. 5, No. 2, 217, pp. 158-169 Existence of triple positive solutions for boundary value problem of nonlinear fractional differential

More information

Existence Results for Multivalued Semilinear Functional Differential Equations

Existence Results for Multivalued Semilinear Functional Differential Equations E extracta mathematicae Vol. 18, Núm. 1, 1 12 (23) Existence Results for Multivalued Semilinear Functional Differential Equations M. Benchohra, S.K. Ntouyas Department of Mathematics, University of Sidi

More information

MULTIPLE SOLUTIONS FOR AN INDEFINITE KIRCHHOFF-TYPE EQUATION WITH SIGN-CHANGING POTENTIAL

MULTIPLE SOLUTIONS FOR AN INDEFINITE KIRCHHOFF-TYPE EQUATION WITH SIGN-CHANGING POTENTIAL Electronic Journal of Differential Equations, Vol. 2015 (2015), o. 274, pp. 1 9. ISS: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu MULTIPLE SOLUTIOS

More information

A General Boundary Value Problem For Impulsive Fractional Differential Equations

A General Boundary Value Problem For Impulsive Fractional Differential Equations Palestine Journal of Mathematics Vol. 5) 26), 65 78 Palestine Polytechnic University-PPU 26 A General Boundary Value Problem For Impulsive Fractional Differential Equations Hilmi Ergoren and Cemil unc

More information

Research Article Mean Square Stability of Impulsive Stochastic Differential Systems

Research Article Mean Square Stability of Impulsive Stochastic Differential Systems International Differential Equations Volume 011, Article ID 613695, 13 pages doi:10.1155/011/613695 Research Article Mean Square Stability of Impulsive Stochastic Differential Systems Shujie Yang, Bao

More information

Research Article Solvability of a Class of Integral Inclusions

Research Article Solvability of a Class of Integral Inclusions Abstract and Applied Analysis Volume 212, Article ID 21327, 12 pages doi:1.1155/212/21327 Research Article Solvability of a Class of Integral Inclusions Ying Chen and Shihuang Hong Institute of Applied

More information

BOUNDARY VALUE PROBLEMS OF A HIGHER ORDER NONLINEAR DIFFERENCE EQUATION

BOUNDARY VALUE PROBLEMS OF A HIGHER ORDER NONLINEAR DIFFERENCE EQUATION U.P.B. Sci. Bull., Series A, Vol. 79, Iss. 4, 2017 ISSN 1223-7027 BOUNDARY VALUE PROBLEMS OF A HIGHER ORDER NONLINEAR DIFFERENCE EQUATION Lianwu Yang 1 We study a higher order nonlinear difference equation.

More information

Research Article Existence and Uniqueness Results for Perturbed Neumann Boundary Value Problems

Research Article Existence and Uniqueness Results for Perturbed Neumann Boundary Value Problems Hindawi Publishing Corporation Boundary Value Problems Volume 2, Article ID 4942, pages doi:.55/2/4942 Research Article Existence and Uniqueness Results for Perturbed Neumann Boundary Value Problems Jieming

More information

TRIPLE POSITIVE SOLUTIONS FOR A CLASS OF TWO-POINT BOUNDARY-VALUE PROBLEMS

TRIPLE POSITIVE SOLUTIONS FOR A CLASS OF TWO-POINT BOUNDARY-VALUE PROBLEMS Electronic Journal of Differential Equations, Vol. 24(24), No. 6, pp. 8. ISSN: 72-669. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp) TRIPLE POSITIVE

More information

MONOTONE POSITIVE SOLUTION OF NONLINEAR THIRD-ORDER TWO-POINT BOUNDARY VALUE PROBLEM

MONOTONE POSITIVE SOLUTION OF NONLINEAR THIRD-ORDER TWO-POINT BOUNDARY VALUE PROBLEM Miskolc Mathematical Notes HU e-issn 177-2413 Vol. 15 (214), No. 2, pp. 743 752 MONOTONE POSITIVE SOLUTION OF NONLINEAR THIRD-ORDER TWO-POINT BOUNDARY VALUE PROBLEM YONGPING SUN, MIN ZHAO, AND SHUHONG

More information

Positive solutions of three-point boundary value problems for systems of nonlinear second order ordinary differential equations

Positive solutions of three-point boundary value problems for systems of nonlinear second order ordinary differential equations J. Math. Anal. Appl. 32 26) 578 59 www.elsevier.com/locate/jmaa Positive solutions of three-point boundary value problems for systems of nonlinear second order ordinary differential equations Youming Zhou,

More information

EXISTENCE THEOREM FOR A FRACTIONAL MULTI-POINT BOUNDARY VALUE PROBLEM

EXISTENCE THEOREM FOR A FRACTIONAL MULTI-POINT BOUNDARY VALUE PROBLEM Fixed Point Theory, 5(, No., 3-58 http://www.math.ubbcluj.ro/ nodeacj/sfptcj.html EXISTENCE THEOREM FOR A FRACTIONAL MULTI-POINT BOUNDARY VALUE PROBLEM FULAI CHEN AND YONG ZHOU Department of Mathematics,

More information

Bull. Math. Soc. Sci. Math. Roumanie Tome 60 (108) No. 1, 2017, 3 18

Bull. Math. Soc. Sci. Math. Roumanie Tome 60 (108) No. 1, 2017, 3 18 Bull. Math. Soc. Sci. Math. Roumanie Tome 6 8 No., 27, 3 8 On a coupled system of sequential fractional differential equations with variable coefficients and coupled integral boundary conditions by Bashir

More information

ANALYSIS AND APPLICATION OF DIFFUSION EQUATIONS INVOLVING A NEW FRACTIONAL DERIVATIVE WITHOUT SINGULAR KERNEL

ANALYSIS AND APPLICATION OF DIFFUSION EQUATIONS INVOLVING A NEW FRACTIONAL DERIVATIVE WITHOUT SINGULAR KERNEL Electronic Journal of Differential Equations, Vol. 217 (217), No. 289, pp. 1 6. ISSN: 172-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ANALYSIS AND APPLICATION OF DIFFUSION EQUATIONS

More information

Second order Volterra-Fredholm functional integrodifferential equations

Second order Volterra-Fredholm functional integrodifferential equations Malaya Journal of Matematik )22) 7 Second order Volterra-Fredholm functional integrodifferential equations M. B. Dhakne a and Kishor D. Kucche b, a Department of Mathematics, Dr. Babasaheb Ambedkar Marathwada

More information

Research Article Solvability for a Coupled System of Fractional Integrodifferential Equations with m-point Boundary Conditions on the Half-Line

Research Article Solvability for a Coupled System of Fractional Integrodifferential Equations with m-point Boundary Conditions on the Half-Line Abstract and Applied Analysis Volume 24, Article ID 29734, 7 pages http://dx.doi.org/.55/24/29734 Research Article Solvability for a Coupled System of Fractional Integrodifferential Equations with m-point

More information

Research Article Nonlinear Systems of Second-Order ODEs

Research Article Nonlinear Systems of Second-Order ODEs Hindawi Publishing Corporation Boundary Value Problems Volume 28, Article ID 236386, 9 pages doi:1.1155/28/236386 Research Article Nonlinear Systems of Second-Order ODEs Patricio Cerda and Pedro Ubilla

More information

POSITIVE SOLUTIONS FOR BOUNDARY VALUE PROBLEM OF SINGULAR FRACTIONAL FUNCTIONAL DIFFERENTIAL EQUATION

POSITIVE SOLUTIONS FOR BOUNDARY VALUE PROBLEM OF SINGULAR FRACTIONAL FUNCTIONAL DIFFERENTIAL EQUATION International Journal of Pure and Applied Mathematics Volume 92 No. 2 24, 69-79 ISSN: 3-88 (printed version); ISSN: 34-3395 (on-line version) url: http://www.ijpam.eu doi: http://dx.doi.org/.2732/ijpam.v92i2.3

More information

Permanence and global stability of a May cooperative system with strong and weak cooperative partners

Permanence and global stability of a May cooperative system with strong and weak cooperative partners Zhao et al. Advances in Difference Equations 08 08:7 https://doi.org/0.86/s366-08-68-5 R E S E A R C H Open Access ermanence and global stability of a May cooperative system with strong and weak cooperative

More information

Positive solutions for a class of fractional boundary value problems

Positive solutions for a class of fractional boundary value problems Nonlinear Analysis: Modelling and Control, Vol. 21, No. 1, 1 17 ISSN 1392-5113 http://dx.doi.org/1.15388/na.216.1.1 Positive solutions for a class of fractional boundary value problems Jiafa Xu a, Zhongli

More information

Approximate controllability of impulsive neutral functional differential equations with state-dependent delay via fractional operators

Approximate controllability of impulsive neutral functional differential equations with state-dependent delay via fractional operators International Journal of Computer Applications (975 8887) Volume 69 - No. 2, May 23 Approximate controllability of impulsive neutral functional differential equations with state-dependent delay via fractional

More information

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SYSTEM OF FRACTIONAL DIFFERENTIAL EQUATIONS 1. Yong Zhou. Abstract

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SYSTEM OF FRACTIONAL DIFFERENTIAL EQUATIONS 1. Yong Zhou. Abstract EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SYSTEM OF FRACTIONAL DIFFERENTIAL EQUATIONS 1 Yong Zhou Abstract In this paper, the initial value problem is discussed for a system of fractional differential

More information

Research Article A New Fractional Integral Inequality with Singularity and Its Application

Research Article A New Fractional Integral Inequality with Singularity and Its Application Abstract and Applied Analysis Volume 212, Article ID 93798, 12 pages doi:1.1155/212/93798 Research Article A New Fractional Integral Inequality with Singularity and Its Application Qiong-Xiang Kong 1 and

More information

Upper and lower solution method for fourth-order four-point boundary value problems

Upper and lower solution method for fourth-order four-point boundary value problems Journal of Computational and Applied Mathematics 196 (26) 387 393 www.elsevier.com/locate/cam Upper and lower solution method for fourth-order four-point boundary value problems Qin Zhang a, Shihua Chen

More information

Nontrivial Solutions for Singular Nonlinear Three-Point Boundary Value Problems 1

Nontrivial Solutions for Singular Nonlinear Three-Point Boundary Value Problems 1 Advances in Dynamical Systems and Applications. ISSN 973-532 Volume 2 Number 2 (27), pp. 225 239 Research India Publications http://www.ripublication.com/adsa.htm Nontrivial Solutions for Singular Nonlinear

More information

Xiyou Cheng Zhitao Zhang. 1. Introduction

Xiyou Cheng Zhitao Zhang. 1. Introduction Topological Methods in Nonlinear Analysis Journal of the Juliusz Schauder Center Volume 34, 2009, 267 277 EXISTENCE OF POSITIVE SOLUTIONS TO SYSTEMS OF NONLINEAR INTEGRAL OR DIFFERENTIAL EQUATIONS Xiyou

More information

Upper and lower solutions method and a fractional differential equation boundary value problem.

Upper and lower solutions method and a fractional differential equation boundary value problem. Electronic Journal of Qualitative Theory of Differential Equations 9, No. 3, -3; http://www.math.u-szeged.hu/ejqtde/ Upper and lower solutions method and a fractional differential equation boundary value

More information

K-DIMENSIONAL NONLOCAL BOUNDARY-VALUE PROBLEMS AT RESONANCE. 1. Introduction In this article we study the system of ordinary differential equations

K-DIMENSIONAL NONLOCAL BOUNDARY-VALUE PROBLEMS AT RESONANCE. 1. Introduction In this article we study the system of ordinary differential equations Electronic Journal of Differential Equations, Vol. 215 (215), No. 148, pp. 1 8. ISSN: 172-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu K-DIMENSIONAL NONLOCAL

More information

Research Article Existence of Positive Solutions for a Kind of Fractional Boundary Value Problems

Research Article Existence of Positive Solutions for a Kind of Fractional Boundary Value Problems Abstract and Applied Analysis Volume 24 Article ID 6264 8 pages http://dx.doi.org/.55/24/6264 Research Article Existence of Positive Solutions for a Kind of Fractional Boundary Value Problems Hongjie Liu

More information

Research Article Existence and Uniqueness of Smooth Positive Solutions to a Class of Singular m-point Boundary Value Problems

Research Article Existence and Uniqueness of Smooth Positive Solutions to a Class of Singular m-point Boundary Value Problems Hindawi Publishing Corporation Boundary Value Problems Volume 29, Article ID 9627, 3 pages doi:.55/29/9627 Research Article Existence and Uniqueness of Smooth Positive Solutions to a Class of Singular

More information

POSITIVE SOLUTIONS FOR A SECOND-ORDER DIFFERENCE EQUATION WITH SUMMATION BOUNDARY CONDITIONS

POSITIVE SOLUTIONS FOR A SECOND-ORDER DIFFERENCE EQUATION WITH SUMMATION BOUNDARY CONDITIONS Kragujevac Journal of Mathematics Volume 41(2) (2017), Pages 167 178. POSITIVE SOLUTIONS FOR A SECOND-ORDER DIFFERENCE EQUATION WITH SUMMATION BOUNDARY CONDITIONS F. BOUCHELAGHEM 1, A. ARDJOUNI 2, AND

More information

Sign-changing solutions to discrete fourth-order Neumann boundary value problems

Sign-changing solutions to discrete fourth-order Neumann boundary value problems Yang Advances in Difference Equations 2013, 2013:10 R E S E A R C H Open Access Sign-changing solutions to discrete fourth-order Neumann boundary value problems Jingping Yang * * Correspondence: fuj09@lzu.cn

More information

Existence, Uniqueness and Stability of Hilfer Type Neutral Pantograph Differential Equations with Nonlocal Conditions

Existence, Uniqueness and Stability of Hilfer Type Neutral Pantograph Differential Equations with Nonlocal Conditions International Journal of Scientific and Innovative Mathematical Research (IJSIMR) Volume 6, Issue 8, 2018, PP 42-53 ISSN No. (Print) 2347-307X & ISSN No. (Online) 2347-3142 DOI: http://dx.doi.org/10.20431/2347-3142.0608004

More information

EXISTENCE THEORY FOR NONLINEAR STURM-LIOUVILLE PROBLEMS WITH NON-LOCAL BOUNDARY CONDITIONS. 1. Introduction

EXISTENCE THEORY FOR NONLINEAR STURM-LIOUVILLE PROBLEMS WITH NON-LOCAL BOUNDARY CONDITIONS. 1. Introduction EXISTENCE THEORY FOR NONLINEAR STURM-LIOUVILLE PROBLEMS WITH NON-LOCAL BOUNDARY CONDITIONS DANIEL MARONCELLI AND JESÚS RODRÍGUEZ Abstract. In this work we provide conditions for the existence of solutions

More information

Positive Solutions of a Third-Order Three-Point Boundary-Value Problem

Positive Solutions of a Third-Order Three-Point Boundary-Value Problem Kennesaw State University DigitalCommons@Kennesaw State University Faculty Publications 7-28 Positive Solutions of a Third-Order Three-Point Boundary-Value Problem Bo Yang Kennesaw State University, byang@kennesaw.edu

More information

ON PERIODIC BOUNDARY VALUE PROBLEMS OF FIRST-ORDER PERTURBED IMPULSIVE DIFFERENTIAL INCLUSIONS

ON PERIODIC BOUNDARY VALUE PROBLEMS OF FIRST-ORDER PERTURBED IMPULSIVE DIFFERENTIAL INCLUSIONS Electronic Journal of Differential Equations, Vol. 24(24), No. 84, pp. 1 9. ISSN: 172-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp) ON PERIODIC

More information

Positive Periodic Solutions for a Higher Order Functional Difference Equation

Positive Periodic Solutions for a Higher Order Functional Difference Equation University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange University of Tennessee Honors Thesis Projects University of Tennessee Honors Program 5-2014 Positive Periodic Solutions

More information

IMPULSIVE NEUTRAL FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS WITH STATE DEPENDENT DELAYS AND INTEGRAL CONDITION

IMPULSIVE NEUTRAL FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS WITH STATE DEPENDENT DELAYS AND INTEGRAL CONDITION Electronic Journal of Differential Equations, Vol. 213 (213), No. 273, pp. 1 13. ISSN: 172-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu IMPULSIVE NEUTRAL

More information

Iterative Approximation of Positive Solutions for Fractional Boundary Value Problem on the Half-line

Iterative Approximation of Positive Solutions for Fractional Boundary Value Problem on the Half-line Filomat 32:8 (28, 677 687 https://doi.org/.2298/fil8877c Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat Iterative Approximation

More information

EXISTENCE OF SOLUTIONS TO FRACTIONAL DIFFERENTIAL EQUATIONS WITH MULTI-POINT BOUNDARY CONDITIONS AT RESONANCE IN HILBERT SPACES

EXISTENCE OF SOLUTIONS TO FRACTIONAL DIFFERENTIAL EQUATIONS WITH MULTI-POINT BOUNDARY CONDITIONS AT RESONANCE IN HILBERT SPACES Electronic Journal of Differential Equations, Vol. 216 (216), No. 61, pp. 1 16. ISSN: 172-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu EXISTENCE OF SOLUTIONS

More information

ON SECOND ORDER IMPULSIVE FUNCTIONAL DIFFERENTIAL EQUATIONS IN BANACH SPACES

ON SECOND ORDER IMPULSIVE FUNCTIONAL DIFFERENTIAL EQUATIONS IN BANACH SPACES Applied Mathematics and Stochastic Analysis 15:1 (2002) 45-52. ON SECOND ORDER IMPULSIVE FUNCTIONAL DIFFERENTIAL EQUATIONS IN BANACH SPACES M. BENCHOHRA Université de Sidi Bel Abbés Département de Mathématiques

More information

On Positive Solutions of Boundary Value Problems on the Half-Line

On Positive Solutions of Boundary Value Problems on the Half-Line Journal of Mathematical Analysis and Applications 259, 127 136 (21) doi:1.16/jmaa.2.7399, available online at http://www.idealibrary.com on On Positive Solutions of Boundary Value Problems on the Half-Line

More information

A maximum principle for optimal control system with endpoint constraints

A maximum principle for optimal control system with endpoint constraints Wang and Liu Journal of Inequalities and Applications 212, 212: http://www.journalofinequalitiesandapplications.com/content/212/231/ R E S E A R C H Open Access A maimum principle for optimal control system

More information

PERIODIC PROBLEMS WITH φ-laplacian INVOLVING NON-ORDERED LOWER AND UPPER FUNCTIONS

PERIODIC PROBLEMS WITH φ-laplacian INVOLVING NON-ORDERED LOWER AND UPPER FUNCTIONS Fixed Point Theory, Volume 6, No. 1, 25, 99-112 http://www.math.ubbcluj.ro/ nodeacj/sfptcj.htm PERIODIC PROBLEMS WITH φ-laplacian INVOLVING NON-ORDERED LOWER AND UPPER FUNCTIONS IRENA RACHŮNKOVÁ1 AND MILAN

More information

EXISTENCE AND MULTIPLICITY OF PERIODIC SOLUTIONS GENERATED BY IMPULSES FOR SECOND-ORDER HAMILTONIAN SYSTEM

EXISTENCE AND MULTIPLICITY OF PERIODIC SOLUTIONS GENERATED BY IMPULSES FOR SECOND-ORDER HAMILTONIAN SYSTEM Electronic Journal of Differential Equations, Vol. 14 (14), No. 11, pp. 1 1. ISSN: 17-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu EXISTENCE AND MULTIPLICITY

More information

Singularities and Laplacians in Boundary Value Problems for Nonlinear Ordinary Differential Equations

Singularities and Laplacians in Boundary Value Problems for Nonlinear Ordinary Differential Equations Singularities and Laplacians in Boundary Value Problems for Nonlinear Ordinary Differential Equations Irena Rachůnková, Svatoslav Staněk, Department of Mathematics, Palacký University, 779 OLOMOUC, Tomkova

More information

The Existence of Nodal Solutions for the Half-Quasilinear p-laplacian Problems

The Existence of Nodal Solutions for the Half-Quasilinear p-laplacian Problems Journal of Mathematical Research with Applications Mar., 017, Vol. 37, No., pp. 4 5 DOI:13770/j.issn:095-651.017.0.013 Http://jmre.dlut.edu.cn The Existence of Nodal Solutions for the Half-Quasilinear

More information

Tiziana Cardinali Francesco Portigiani Paola Rubbioni. 1. Introduction

Tiziana Cardinali Francesco Portigiani Paola Rubbioni. 1. Introduction Topological Methods in Nonlinear Analysis Journal of the Juliusz Schauder Center Volume 32, 2008, 247 259 LOCAL MILD SOLUTIONS AND IMPULSIVE MILD SOLUTIONS FOR SEMILINEAR CAUCHY PROBLEMS INVOLVING LOWER

More information

A New Analytical Method for Solutions of Nonlinear Impulsive Volterra-Fredholm Integral Equations

A New Analytical Method for Solutions of Nonlinear Impulsive Volterra-Fredholm Integral Equations Nonlinear Analysis and Differential Equations, Vol. 6, 218, no. 4, 121-13 HIKARI Ltd, www.m-hikari.com https://doi.org/1.12988/nade.218.8112 A New Analytical Method for Solutions of Nonlinear Impulsive

More information

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR FOURTH-ORDER BOUNDARY-VALUE PROBLEMS IN BANACH SPACES

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR FOURTH-ORDER BOUNDARY-VALUE PROBLEMS IN BANACH SPACES Electronic Journal of Differential Equations, Vol. 9(9), No. 33, pp. 1 8. ISSN: 17-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu EXISTENCE AND UNIQUENESS

More information

Existence And Uniqueness Of Mild Solutions Of Second Order Volterra Integrodifferential Equations With Nonlocal Conditions

Existence And Uniqueness Of Mild Solutions Of Second Order Volterra Integrodifferential Equations With Nonlocal Conditions Applied Mathematics E-Notes, 9(29), 11-18 c ISSN 167-251 Available free at mirror sites of http://www.math.nthu.edu.tw/ amen/ Existence And Uniqueness Of Mild Solutions Of Second Order Volterra Integrodifferential

More information

Properties for the Perron complement of three known subclasses of H-matrices

Properties for the Perron complement of three known subclasses of H-matrices Wang et al Journal of Inequalities and Applications 2015) 2015:9 DOI 101186/s13660-014-0531-1 R E S E A R C H Open Access Properties for the Perron complement of three known subclasses of H-matrices Leilei

More information

Existence of Ulam Stability for Iterative Fractional Differential Equations Based on Fractional Entropy

Existence of Ulam Stability for Iterative Fractional Differential Equations Based on Fractional Entropy Entropy 215, 17, 3172-3181; doi:1.339/e1753172 OPEN ACCESS entropy ISSN 199-43 www.mdpi.com/journal/entropy Article Existence of Ulam Stability for Iterative Fractional Differential Equations Based on

More information

Positive Solutions of Three-Point Nonlinear Second Order Boundary Value Problem

Positive Solutions of Three-Point Nonlinear Second Order Boundary Value Problem Positive Solutions of Three-Point Nonlinear Second Order Boundary Value Problem YOUSSEF N. RAFFOUL Department of Mathematics University of Dayton, Dayton, OH 45469-236 email:youssef.raffoul@notes.udayton.edu

More information

Positive Solutions to an N th Order Right Focal Boundary Value Problem

Positive Solutions to an N th Order Right Focal Boundary Value Problem Electronic Journal of Qualitative Theory of Differential Equations 27, No. 4, 1-17; http://www.math.u-szeged.hu/ejqtde/ Positive Solutions to an N th Order Right Focal Boundary Value Problem Mariette Maroun

More information

Research Article Existence and Uniqueness of Homoclinic Solution for a Class of Nonlinear Second-Order Differential Equations

Research Article Existence and Uniqueness of Homoclinic Solution for a Class of Nonlinear Second-Order Differential Equations Applied Mathematics Volume 2012, Article ID 615303, 13 pages doi:10.1155/2012/615303 Research Article Existence and Uniqueness of Homoclinic Solution for a Class of Nonlinear Second-Order Differential

More information

Existence of Solutions for Nonlocal Boundary Value Problems of Nonlinear Fractional Differential Equations

Existence of Solutions for Nonlocal Boundary Value Problems of Nonlinear Fractional Differential Equations Advances in Dynamical Systems and Applications ISSN 973-5321, Volume 7, Number 1, pp. 31 4 (212) http://campus.mst.edu/adsa Existence of Solutions for Nonlocal Boundary Value Problems of Nonlinear Fractional

More information